On sets $X \subseteq \mathbb{N}$ for which we know an algorithm that computes a threshold number $t(X) \in \mathbb{N}$ such that X is infinite if and only if X contains an element greater than $t(X)$

Apoloniusz Tyszka

Abstract

Let $\Gamma_{[n]}(k)$ denote $(k-1)!$, where $n \in \{3, \ldots, 16\}$ and $k \in \{2\} \cup \{2^{2^{2^{n-3}}} + 1, 2^{2^{n-3}} + 2, 2^{2^{n-3}} + 3, \ldots\}$. For an integer $n \in \{3, \ldots, 16\}$, let S_n denote the following statement: if a system of equations $S \subseteq \Gamma_{[n]}(x_i) = x_k : i, k \in \{1, \ldots, n\}$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq 2^{2^{n-2}}$. The statement S_n proves the following implication: if the equation $x(x+1) = y!$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$. The statement S_6 proves the following implication: if the equation $x! + 1 = y^2$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$. The statement S_∞ implies the infinitude of primes of the form $n^2 + 1$. The statement S_9 implies that any prime of the form $n! + 1$ with $n \geq 2^{2^{n-3}}$ proves the infinitude of primes of the form $n! + 1$. The statement S_{14} implies the infinitude of twin primes. The statement S_{16} implies the infinitude of Sophie Germain primes. A modified statement S_∞ implies the infinitude of Wilson primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation $x! + 1 = y^2$, composite Fermat numbers, Erdős’ equation $x(x+1) = y!$, prime numbers of the form $n^2 + 1$, prime numbers of the form $n! + 1$, Richert’s lemma, Sophie Germain primes, Wilson primes, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 11A41, 68Q05.

1 Introduction

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that there are infinitely many twin primes, see [18] p. 39. The following statement

(1) “For every non-negative integer n there exist prime exist numbers p and q

such that $p + 2 = q$ and $p \in \{10^q, 10^q + 1\}$

is a Π_1 statement which strengthens the twin prime conjecture, see [5] p. 43), cf. [7] pp. 337–338]. Statement (1) is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_1 statements, see [1].

In this article, we study sets $X \subseteq \mathbb{N}$ for which we know an algorithm that computes a threshold number $t(X) \in \mathbb{N}$ such that X is infinite if and only if X contains an element greater than $t(X)$. If X is computable, then this property implies that the infinity of X is equivalent to the halting of a Turing machine. If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any non-negative integer m is a threshold number of X. If a set $X \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of X form the set $\{\max(X), \max(X) + 1, \max(X) + 2, \ldots\}$.

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [19] p. 234).

Corollary 1. If an algorithm Alg_1 for every recursive set $R \subseteq \mathbb{N}$ finds a non-negative integer $Alg_1(R)$, then there exists a finite set $W \subseteq \mathbb{N}$ such that $W \cap [Alg_1(W) + 1, \infty) \neq \emptyset$. If an algorithm Alg_2 for
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

every recursively enumerable set $R \subseteq \mathbb{N}$ finds a non-negative integer $\text{Alg}_2(R)$, then there exists a finite set $W \subseteq \mathbb{N}$ such that $W \cap \{\text{Alg}_2(W) + 1, \infty\} \neq \emptyset$.

2 A Diophantine equation whose non-solvability expresses the consistency of ZFC

Gödel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 1. ([2] p. 35). There exists a polynomial $D(x_1, \ldots, x_m)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences "The equation $D(x_1, \ldots, x_m) = 0$ is solvable in non-negative integers" and "The equation $D(x_1, \ldots, x_m) = 0$ is not solvable in non-negative integers" are not provable in ZFC.

Let Y denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has no solutions in $[0, \ldots, k]^m$. Since the set $[0, \ldots, k]^m$ is finite, we know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in Y$. Let $\gamma : \mathbb{N}^{m+1} \to \mathbb{N}$ be a computable bijection, and let $E \subseteq \mathbb{N}^{m+1}$ be the solution set of the equation $D(x_1, \ldots, x_m) + 0 \cdot x_{m+1} = 0$. Theorem 1 implies Theorems 2 and 3.

Theorem 2. If ZFC is arithmetically consistent, then for every $n \in \mathbb{N}$ the sentences "n is a threshold number of Y" and "n is not a threshold number of Y" are not provable in ZFC.

Theorem 3. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \gamma(E)$. The set $\gamma(E)$ is empty or infinite. In both cases, every non-negative integer n is a threshold number of $\gamma(E)$. If ZFC is arithmetically consistent, then the sentences "$\gamma(E)$ is empty", "$\gamma(E)$ is not empty", "$\gamma(E)$ is finite", and "$\gamma(E)$ is infinite" are not provable in ZFC.

In Figure 1, $D(x_1, \ldots, x_m)$ stands for the polynomial described in Theorem 1. Let K denote the set of all positive integers k such that the algorithm in Figure 1 halts for k on the input. If ZFC is consistent, then $K = \emptyset$. Otherwise, $\text{card}(K) = 1$.

![Fig. 1 The algorithm which may halt only when ZFC is inconsistent](image-url)

Theorem 4. If ZFC is consistent, then for every positive integer n, the inclusion $K \subseteq \{1, \ldots, n\}$ is not provable in ZFC.

Proof. It follows from Gödel’s second incompleteness theorem because the inclusion $K \subseteq \{1, \ldots, n\}$ implies $K = \emptyset$ and the consistency of ZFC.

Theorem 5. (cf. Theorem 28). If ZFC is consistent and a computer program halts for at most finitely many positive integers k on the input, then not always we can write the decimal expansion of a positive integer n which is not smaller than every such number k.
Proof. We write a computer program which implements the algorithm in Figure 1. This program halts exactly for elements of \(\mathcal{K}\) on the input. The set \(\mathcal{K}\) is finite as \(\text{card}(\mathcal{K}) \leq 1\). By Theorem 4, if ZFC is consistent, then for every positive integer \(n\), the inclusion \(\mathcal{K} \subseteq \{1, \ldots, n\}\) is not provable in ZFC. \(\square\)

3 Hypothetical statements \(\Psi_3, \ldots, \Psi_{16}\) and number-theoretic lemmas

For a positive integer \(n\), let \(\Gamma(n)\) denote \((n - 1)!\). Let \(f(1) = 2\), \(f(2) = 4\), and let \(f(n + 1) = f(n)!\) for every integer \(n \geq 2\). Let \(h(1) = 1\), and let \(h(n + 1) = 2^{2h(n)}\) for every positive integer \(n\). Let \(g(3) = 4\), and let \(g(n + 1) = g(n)!\) for every integer \(n \geq 3\). For an integer \(n \geq 3\), let \(\mathcal{U}_n\) denote the following system of equations:

\[
\begin{align*}
\forall i \in \{1, \ldots, n - 1\} \setminus \{2\} & \quad x_i! = x_{i+1} \\
x_1 \cdot x_2 & = x_3 \\
x_2 \cdot x_2 & = x_3
\end{align*}
\]

The diagram in Figure 2 illustrates the construction of the system \(\mathcal{U}_n\).

![Fig. 2 Construction of the system \(\mathcal{U}_n\)](image)

\textbf{Lemma 1.} For every integer \(n \geq 3\), the system \(\mathcal{U}_n\) has exactly two solutions in positive integers, namely \((1, 1, 1)\) and \((2, 2, g(3), \ldots, g(n))\).

Let \(B_n = \{x_i! = x_k \mid (i, k \in \{1, \ldots, n\}) \land (i \neq k)\} \cup \{x_i \cdot x_j = x_k \mid i, j, k \in \{1, \ldots, n\}\}\)

For an integer \(n \geq 3\), let \(\Psi_n\) denote the following statement: if a system \(S \subseteq B_n\) has only finitely many solutions in positive integers \(x_1, \ldots, x_n\), then each such solution \((x_1, \ldots, x_n)\) satisfies \(x_1, \ldots, x_n \leq g(n)\). The statement \(\Psi_n\) says that for subsystems of \(B_n\) the largest known solution is indeed the largest possible.

\textbf{Hypothesis 1.} The statements \(\Psi_3, \ldots, \Psi_{16}\) are true.

\textbf{Theorem 6.} Every statement \(\Psi_n\) is true with an unknown integer bound that depends on \(n\).

\textbf{Proof.} For every positive integer \(n\), the system \(B_n\) has a finite number of subsystems. \(\square\)

\textbf{Theorem 7.} For every statement \(\Psi_n\), the bound \(g(n)\) cannot be decreased.

\textbf{Proof.} It follows from Lemma 1 because \(\mathcal{U}_n \subseteq B_n\). \(\square\)

\textbf{Lemma 2.} For every positive integers \(x\) and \(y\), \(x! \cdot y! = y!\) if and only if \((x + 1 = y) \lor (x = y = 1)\)

\textbf{Lemma 3.} For every positive integers \(x\) and \(y\), \(x \cdot \Gamma(x) = \Gamma(y)\) if and only if \((x + 1 = y) \lor (x = y = 1)\)

\textbf{Lemma 4.} For every positive integers \(x\) and \(y\), \(x + 1 = y\) if and only if \((1 \neq y) \land (x! \cdot y! = y!)\)
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Lemma 5. For every non-negative integers b and c, $b + 1 = c$ if and only if $2^{2b} \cdot 2^{2b} = 2^{2c}$.

Let \mathcal{P} denote the set of prime numbers.

Lemma 6. (Wilson’s theorem, [9 p. 89]). For every positive integer x, x divides $(x - 1)! + 1$ if and only if $x \in \{1\} \cup \mathcal{P}$.

4 Heuristic arguments against the statement $\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \Psi_n$

Let

$$G_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{x_i + 1 = x_k : i, k \in \{1, \ldots, n\}\}$$

Hypothesis 2. ([33] p. 109). If a system $S \subseteq G_n$ has only finitely many solutions in non-negative integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq h(2n)$.

Hypothesis 3. If a system $S \subseteq G_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq f(2n)$.

Observations 1 and 2 heuristically justify Hypothesis 3.

Observation 1. (cf. [33] p. 110, Observation 1). For every system $S \subseteq G_n$ which involves all the variables x_1, \ldots, x_n, the following new system

$$\left\{ \bigcup_{x_i \cdot x_j = x_k \in S} \{x_i \cdot x_j = x_k\} \bigcup \{x_i! = y_k : k \in \{1, \ldots, n\}\} \bigcup \{ \{1 \neq x_k, y_i \cdot x_k = y_k\} \right\}$$

is equivalent to S. If the system S has only finitely many solutions in positive integers x_1, \ldots, x_n, then the new system has only finitely many solutions in positive integers $x_1, \ldots, x_n, y_1, \ldots, y_n$.

Proof. It follows from Lemma 4.

Observation 2. The equation $x_1! = x_1$ has exactly two solutions in positive integers, namely $x_1 = 1$ and $x_1 = f(1)$. The system $\left\{ \begin{array}{l} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \end{array} \right.$ has exactly two solutions in positive integers, namely $(1, 1)$ and $(f(1), f(2))$. For every integer $n \geq 3$, the following system

$$\left\{ \begin{array}{l} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \\ \forall i \in \{2, \ldots, n - 1\} \ x_i! = x_{i+1} \end{array} \right.$$

has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

For a positive integer n, let Φ_n denote the following statement: if a system

$$S \subseteq \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{x_i! = x_k : i, k \in \{1, \ldots, n\}\} \cup \{1 \neq x_k : k \in \{1, \ldots, n\}\}$$

has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq f(n)$.

Theorem 8. The statement $\forall n \in \mathbb{N} \setminus \{0\} \Phi_n$ implies Hypothesis 3.

Proof. It follows from Lemma 4.

Let $\mathcal{R}_{\mathbb{N}}$ denote the class of all rings K that extend \mathbb{Z}, and let

$$E_n = \{1 = x_k : k \in \{1, \ldots, n\}\} \cup \{x_i + x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$$

Th. Skolem proved that every Diophantine equation can be algorithmically transformed into an equivalent system of Diophantine equations of degree at most 2, see [25] pp. 2–3 and [15] pp. 3–4. The following result strengthens Skolem’s theorem.
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Lemma 7. (\cite{31} p. 720). Let $D(x_1, \ldots, x_p) \in \mathbb{Z}[x_1, \ldots, x_p]$. Assume that $\deg(D, x_i) \geq 1$ for each $i \in \{1, \ldots, p\}$. We can compute a positive integer $n > p$ and a system $T \subseteq E_n$ which satisfies the following two conditions:

1. If $K \in \mathcal{R}_n$ and $\{N, \mathbb{N} \setminus \{0\}\}$, then
 \[\forall x_1, \ldots, x_p \in K \left(D(x_1, \ldots, x_p) = 0 \iff \exists x_{p+1}, \ldots, x_n \in K (x_1, \ldots, x_p, x_{p+1}, \ldots, x_n) \text{ solves } T \right) \]

2. If $K \in \mathcal{R}_n$ and $\{N, \mathbb{N} \setminus \{0\}\}$, then for each $x_1, \ldots, x_p \in K$ with $D(x_1, \ldots, x_p) = 0$, there exists a unique tuple $(x_{p+1}, \ldots, x_n) \in K^{n-p}$ such that the tuple $(x_1, \ldots, x_p, x_{p+1}, \ldots, x_n)$ solves T.

Corollary 2. We can express the equation $x + y = z$ as an equivalent system \mathcal{F}, where \mathcal{F} involves x, y, z and 9 new variables, and where \mathcal{F} consists of equations of the forms $\alpha + 1 = \gamma$ and $\alpha \cdot \beta = \gamma$.

Proof. The new 9 variables express the following polynomials:

\[zx, \quad z\mathcal{x} + 1, \quad zy, \quad zy + 1, \quad z^2, \quad xy, \quad xy + 1, \quad z^2(xy + 1), \quad z^2(xy + 1) + 1 \]

\[\square \]

Lemma 8. (\cite{23} p. 100) For each positive integers $x, y, z, x + y = z$ if and only if

\[(zx + 1)(zy + 1) = z^2(xy + 1) + 1 \]

Theorem 9. Hypothesis\footnote{3} implies that there is an algorithm which takes as input a Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set.

Proof. It follows from Lemma\footnote{9} \[\square \]

Open Problem 1. Is there an algorithm which takes as input a Diophantine equation, and returns an integer such that this integer is greater than the moduli of integer (non-negative integer, positive integer) solutions, if the solution set is finite?

Matiyasevich’s conjecture on finite-fold Diophantine representations (\cite{17}) implies a negative answer to Open Problem\footnote{1} see \cite{16} p. 42.

The statement $\forall n \in \mathbb{N} \setminus \{0\} \Phi_n$ implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see \cite{14} p. 300.]
5 The Brocard-Ramanujan equation \(x! + 1 = y^2 \)

Let \(\mathcal{A} \) denote the following system of equations:

\[
\begin{align*}
x_1! &= x_2 \\
x_2! &= x_3 \\
x_3! &= x_6 \\
x_4 \cdot x_4 &= x_5 \\
x_3 \cdot x_5 &= x_6
\end{align*}
\]

Lemma 2 and the diagram in Figure 3 explain the construction of the system \(\mathcal{A} \).

\[
\begin{array}{c}
\xrightarrow{\text{x}_1!} & \xrightarrow{\text{or} \ x_2 = x_5 = 1} & \xrightarrow{\text{or} \ x_5!} & \xrightarrow{\text{squaring}} & \xrightarrow{\text{x}_2 \cdot x_5 = x_6} & \xrightarrow{\text{x}_6!} \\
\end{array}
\]

Fig. 3 Construction of the system \(\mathcal{A} \)

Lemma 10. For every \(x_1, x_4 \in \mathbb{N} \setminus \{0, 1\} \), the system \(\mathcal{A} \) is solvable in positive integers \(x_2, x_3, x_5, x_6 \) if and only if \(x_1! + 1 = x_4^2 \). In this case, the integers \(x_2, x_3, x_5, x_6 \) are uniquely determined by the following equalities:

\[
\begin{align*}
x_2 &= x_1! \\
x_3 &= (x_1!)! \\
x_5 &= x_1! + 1 \\
x_6 &= (x_1! + 1)!
\end{align*}
\]

Proof. It follows from Lemma 2.

It is conjectured that \(x! + 1 \) is a perfect square only for \(x \in \{4, 5, 7\} \), see [34, p. 297]. A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the equation \(x! + 1 = y^2 \), see [20].

Theorem 10. If the equation \(x_1! + 1 = x_4^2 \) has only finitely many solutions in positive integers, then the statement \(\Psi_6 \) guarantees that each such solution \((x_1, x_4) \) belongs to the set \(\{(4, 5), (5, 11), (7, 71)\} \).

Proof. Suppose that the antecedent holds. Let positive integers \(x_1 \) and \(x_4 \) satisfy \(x_1! + 1 = x_4^2 \). Then, \(x_1, x_4 \in \mathbb{N} \setminus \{0, 1\} \). By Lemma 10 the system \(\mathcal{A} \) is solvable in positive integers \(x_2, x_3, x_5, x_6 \). Since \(\mathcal{A} \subseteq \mathcal{B} \), the statement \(\Psi_6 \) implies that \(x_6 = (x_1! + 1)! \leq g(6) = g(5)! \). Hence, \(x_1! + 1 \leq g(5) = g(4)! \). Consequently, \(x_1 \leq g(4) = 24 \). If \(x_1 \in \{1, \ldots, 23\} \), then \(x_1! + 1 \) is a perfect square only for \(x_1 \in \{4, 5, 7\} \).

6 Are there infinitely many prime numbers of the form \(n^2 + 1 \)?

Let \(\mathcal{B} \) denote the following system of equations:

\[
\begin{align*}
x_2! &= x_3 \\
x_3! &= x_4 \\
x_5! &= x_6 \\
x_8! &= x_9 \\
x_1 \cdot x_1 &= x_2 \\
x_3 \cdot x_5 &= x_6 \\
x_4 \cdot x_8 &= x_9 \\
x_5 \cdot x_7 &= x_8
\end{align*}
\]

Lemma 2 and the diagram in Figure 4 explain the construction of the system \(\mathcal{B} \).
Lemma 11. For every integer $x_1 \geq 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

\[
\begin{align*}
x_2 &= x_1^2 \\
x_3 &= (x_1^2)! \\
x_4 &= ((x_1^2)!)! \\
x_5 &= x_2^2 + 1 \\
x_6 &= (x_3^2 + 1)! \\
x_7 &= (x_4^2)! + 1 \\
x_8 &= (x_5^2)! + 1 \\
x_9 &= ((x_6^2)! + 1)!
\end{align*}
\]

Proof. By Lemma 2, for every integer $x_1 \geq 2$, the system \mathcal{B} is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 11 follows from Lemma 6.

Lemma 12. There are only finitely many tuples $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ which solve the system \mathcal{B} and satisfy $x_1 = 1$.

Proof. If a tuple $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ solves the system \mathcal{B} and $x_1 = 1$, then $x_1, \ldots, x_9 \leq 2$. Indeed, $x_1 = 1$ implies that $x_2 = x_1^2 = 1$. Hence, for example, $x_3 = x_2! = 1$. Therefore, $x_8 = x_3 + 1 = 2$ or $x_8 = 1$. Consequently, $x_9 = x_8! \leq 2$.

Edmund Landau’s conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [18] pp. 37–38).

Theorem 11. The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \geq 2$ such that $x_1^2 + 1$ is prime and greater than $g(7)$, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Suppose that the antecedent holds. By Lemma 11, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B}. Since $x_1^2 + 1 > g(7)$, we obtain that $x_1^2 \geq g(7)$. Hence, $(x_1^2)! \geq g(7)! = g(8)$. Consequently,

\[
x_9 = ((x_1^2)! + 1)! \geq (g(8) + 1)! > g(8)! = g(9)
\]

Since $\mathcal{B} \subseteq B_9$, the statement Ψ_9 and the inequality $x_9 > g(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemmas 11 and 12, there are infinitely many primes of the form $n^2 + 1$.

\[\square\]
7 Are there infinitely many prime numbers of the form \(n! + 1 \)?

It is conjectured that there are infinitely many primes of the form \(n! + 1 \), see [4, p. 443] and [26].

Theorem 12. (cf. Theorem 17). The statement \(\Psi \) proves the following implication: if there exists an integer \(x_1 \geq g(6) \) such that \(x_1! + 1 \) is prime, then there are infinitely many primes of the form \(n! + 1 \).

Proof. We leave the analogous proof to the reader. \(\square \)

8 The twin prime conjecture

Let \(C \) denote the following system of equations:

\[
\begin{align*}
 x_1! &= x_2 \\
 x_2! &= x_3 \\
 x_4! &= x_5 \\
 x_6! &= x_7 \\
 x_7! &= x_8 \\
 x_9! &= x_{10} \\
 x_{12}! &= x_{13} \\
 x_{15}! &= x_{16} \\
 x_2 \cdot x_4 &= x_5 \\
 x_5 \cdot x_6 &= x_7 \\
 x_7 \cdot x_9 &= x_{10} \\
 x_4 \cdot x_{11} &= x_{12} \\
 x_3 \cdot x_{12} &= x_{13} \\
 x_9 \cdot x_{14} &= x_{15} \\
 x_8 \cdot x_{15} &= x_{16}
\end{align*}
\]

Lemma[5] and the diagram in Figure 5 explain the construction of the system \(C \).

![Fig. 5 Construction of the system C](image-url)
Lemma 13. For every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{align*}
 x_1 &= x_4 - 1 \\
 x_2 &= (x_4 - 1)! \\
 x_3 &= ((x_4 - 1)!)! \\
 x_5 &= x_4! \\
 x_6 &= x_9 - 1 \\
 x_7 &= (x_9 - 1)! \\
 x_8 &= ((x_9 - 1)!)! \\
 x_{10} &= x_9! \\
 x_{11} &= \frac{(x_4 - 1)! + 1}{x_4} \\
 x_{12} &= (x_4 - 1)! + 1 \\
 x_{13} &= ((x_4 - 1)! + 1)! \\
 x_{14} &= \frac{(x_9 - 1)! + 1}{x_9} \\
 x_{15} &= (x_9 - 1)! + 1 \\
 x_{16} &= ((x_9 - 1)! + 1)!
\end{align*}
$$

Proof. By Lemma 2 for every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

$$
(x_4 + 2 = x_9) \land (x_4((x_4 - 1)! + 1) \land (x_9((x_9 - 1)! + 1))
$$

Hence, the claim of Lemma 13 follows from Lemma 6.

Lemma 14. There are only finitely many tuples $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ which solve the system C and satisfy

$$(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$$

Proof. If a tuple $(x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ solves the system C and

$$(x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})$$

then $x_1, \ldots, x_{16} \leq 7!$. Indeed, for example, if $x_4 = 2$ then $x_6 = x_4 + 1 = 3$. Hence, $x_7 = x_6! = 6$. Therefore, $x_{15} = x_7 + 1 = 7$. Consequently, $x_{16} = x_{15}! = 7!$.

Theorem 13. The statement Ψ_{16} proves the following implication: (*) if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > g(14)$. Hence, $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$. By Lemma 13 there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0\})^{14}$ such that the tuple (x_1, \ldots, x_{16}) solves the system C. Since $x_9 > g(14)$, we obtain that $x_9 - 1 \geq g(14)$. Therefore, $(x_9 - 1)! > g(14)! = g(15)$. Hence, $(x_9 - 1)! + 1 > g(15)$. Consequently,

$$
x_{16} = ((x_9 - 1)! + 1)! > g(15)! = g(16)
$$

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16} > g(16)$ imply that the system C has infinitely many solutions in positive integers x_1, \ldots, x_{16}. According to Lemmas 13 and 14 there are infinitely many twin primes.

Let $P(x)$ denote the predicate "x is a prime number". Dickson’s conjecture ([18, p. 36], [36, p. 109]) implies that the existential theory of $(\mathbb{N}, =, +, P)$ is decidable, see [36, Theorem 2, p. 109]. For a positive integer n, let Θ_n denote the following statement: for every system $S \subseteq \{x_i + 1 = x_k : i, k \in \{1, \ldots, n\} \cup \{P(x_i) : i \in \{1, \ldots, n\}\}$ the solvability of S in non-negative integers is decidable.
Lemma 15. If the existential theory of $(\mathbb{N}, =, +, \mathbb{P})$ is decidable, then the statements Θ_n are true.

Proof. For every non-negative integers x and y, $x + 1 = y$ if and only if
$$\exists u, v \in \mathbb{N} \ (u + u = v) \land \mathbb{P}(v) \land (x + u = y)$$
\[\square \]

Theorem 14. The conjunction of the implication (\ast) and the statement $\Theta_{g(14)+2}$ implies that the twin prime conjecture is decidable.

Proof. By the statement $\Theta_{g(14)+2}$, we can decide the truth of the sentence
$$\exists x_1 \ldots \exists x_{g(14)+2} \left((\forall i \in \{1, \ldots, g(14)+1\} \ x_i + 1 = x_{i+1} \land \mathbb{P}(x_{g(14)}) \land \mathbb{P}(x_{g(14)+2}) \right)$$
(2)
If sentence (2) is false, then the twin prime conjecture is false. If sentence (2) is true, then there exists a twin prime greater than $g(14)$. In this case, the twin prime conjecture follows from Theorem 13. \[\square \]

9 Hypothetical statements $\Delta_5, \ldots, \Delta_{14}$ about the Gamma function and their consequences

Let $\lambda(5) = \Gamma(25)$, and let $\lambda(n + 1) = \Gamma(\lambda(n))$ for every integer $n \geq 5$. For an integer $n \geq 5$, let J_n denote the following system of equations:

$$\begin{cases}
\forall i \in \{1, \ldots, n-1\} \setminus \{3\} \ \Gamma(x_i) & = \ x_{i+1} \\
\Gamma(x_1) \cdot x_1 & = \ x_4 \\
x_2 \cdot x_3 & = \ x_5
\end{cases}$$

Lemma 3 and the diagram in Figure 6 explain the construction of the system J_n.

![Fig. 6 Construction of the system J_n](image)

Observation 3. For every integer $n \geq 5$, the system J_n has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(5, 24, 23!, 25, \lambda(5), \ldots, \lambda(n))$.

For an integer $n \geq 5$, let Δ_n denote the following statement: if a system $S \subseteq \{\Gamma(x_i) = x_k : i, k \in \{1, \ldots, n\}\} \cup \{x_{i} \cdot x_{j} = x_{k} : i, j, k \in \{1, \ldots, n\}\}$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq \lambda(n)$.

Hypothesis 4. The statements $\Delta_5, \ldots, \Delta_{14}$ are true.

Lemmas 3 and 6 imply that the statements Δ_n have similar consequences as the statements Ψ_n.

Theorem 15. The statement Δ_6 implies that any prime number $p \geq 25$ proves the infinitude of primes.

Proof. It follows from Lemmas 3 and 6. We leave the details to the reader. \[\square \]
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

10 Hypothetical statements $\Sigma_3, \ldots, \Sigma_{16}$ about the Gamma function and their consequences

Let $\Gamma_n(k)$ denote $(k-1)!$, where $n \in \{3, \ldots, 16\}$ and $k \in \{2\} \cup \left\{2^{2^{n-3}} + 1, 2^{2^{n-3}} + 2, 2^{2^{n-3}} + 3, \ldots\right\}$. For an integer $n \in \{3, \ldots, 16\}$, let

$$Q_n = \{\Gamma_n(x_i) = x_k : i, k \in \{1, \ldots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$$

For an integer $n \in \{3, \ldots, 16\}$, let P_n denote the following system of equations:

$$\begin{cases} x_1 \cdot x_1 = x_1 \\ \Gamma_n(x_2) = x_1 \\ \forall i \in \{2, \ldots, n-1\} x_i \cdot x_i = x_{i+1} \end{cases}$$

Lemma 16. For every integer $n \in \{3, \ldots, 16\}$, $P_n \subseteq Q_n$ and the system P_n has exactly one solution in positive integers x_1, \ldots, x_n, namely $(1, 2^{2^{0}}, 2^{2^{1}}, 2^{2^{2}}, \ldots, 2^{2^{n-2}})$.

For an integer $n \in \{3, \ldots, 16\}$, let Σ_n denote the following statement: if a system of equations $S \subseteq Q_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq 2^{2^{n-2}}$.

Hypothesis 5. The statements $\Sigma_3, \ldots, \Sigma_{16}$ are true.

Lemma 17. (cf. Lemma 3). For every integer $n \in \{4, \ldots, 16\}$ and for every positive integers x and y,

$$x \cdot \Gamma_n(x) = \Gamma_n(y) \text{ if and only if } (x + 1 = y) \land \left(x \geq 2^{2^{n-3}} + 1\right).$$

Let $Z_9 \subseteq Q_9$ be the system of equations in Figure 7.

![Fig. 7 Construction of the system Z_9](image)

Lemma 18. For every positive integer x_1, the system Z_9 is solvable in positive integers x_2, \ldots, x_9 if and only if $x_1 > 2^{2^{9-4}}$ and $x_1^2 + 1$ is prime. In this case, positive integers x_2, \ldots, x_9 are uniquely determined by x_1.

Proof. It follows from Lemmas 6 and 17.
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Lemma 19. ([29]). The number $(13!)^2 + 1 = 38775788043632640001$ is prime.

Lemma 20. $((13!)^2 \geq 2^{29-3} + 1 = 18446744073709551617) \land (13! > 2^{29-2})$.

Theorem 16. The statement Σ_9 implies the infinitude of primes of the form $n^2 + 1$.

Proof. It follows from Lemmas 18–20.

Theorem 17. (cf. Theorem [12]). The statement Σ_9 implies that any prime of the form $n! + 1$ with $n \geq 2^{29-3}$ proves the infinitude of primes of the form $n! + 1$.

Proof. We leave the proof to the reader.

Let $\mathcal{Z}_{14} \subseteq \mathcal{Q}_{14}$ be the system of equations in Figure 8.

![Fig. 8 Construction of the system \mathcal{Z}_{14}](image)

Lemma 21. For every positive integer x_1, the system \mathcal{Z}_{14} is solvable in positive integers x_2, \ldots, x_{14} if and only if x_1 and $x_1 + 2$ are prime and $x_1 \geq 2^{2^{14-3}} + 1$. In this case, positive integers x_2, \ldots, x_{14} are uniquely determined by x_1.

Proof. It follows from Lemmas 6 and 17.

Lemma 22. ([37], p. 87). The numbers $459 \cdot 2^{8529} - 1$ and $459 \cdot 2^{8529} + 1$ are prime (Harvey Dubner).

Lemma 23. $459 \cdot 2^{8529} - 1 > 2^{2^{14-2}} = 2^{4096}$.

Theorem 18. The statement Σ_{14} implies the infinitude of twin primes.

Proof. It follows from Lemmas 21–23.
A prime p is said to be a Sophie Germain prime if both p and $2p + 1$ are prime, see [35]. Let $Z_{16} \subseteq Q_{16}$ be the system of equations in Figure 9.

Fig. 9 Construction of the system Z_{16}

Lemma 24. For every positive integer x_1, the system Z_{16} is solvable in positive integers x_2, \ldots, x_{16} if and only if x_1 is a Sophie Germain prime and $x_1 \geq 2^{16-3} + 1$. In this case, positive integers x_2, \ldots, x_{16} are uniquely determined by x_1.

Proof. It follows from Lemmas [6] and [17].

Lemma 25. ([27] p. 330). $8069496435 \cdot 10^{5072} - 1$ is a Sophie Germain prime (Harvey Dubner).

Lemma 26. $8069496435 \cdot 10^{5072} - 1 > 2^{216-2}$.

Theorem 19. The statement Σ_{16} implies the infinitude of Sophie Germain primes.

Proof. It follows from Lemmas [24]-[26].

Theorem 20. The statement Σ_6 proves the following implication: if the equation $x(x + 1) = y!$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$.

Proof. We leave the proof to the reader.

The question of solving the equation $x(x + 1) = y!$ was posed by P. Erdös, see [2]. F. Luca proved that the abc conjecture implies that the equation $x(x + 1) = y!$ has only finitely many solutions in positive integers, see [13].

Theorem 21. The statement Σ_6 proves the following implication: if the equation $x! + 1 = y^2$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$.

Proof. We leave the proof to the reader.
11 A hypothesis which implies the infinitude of Wilson primes

Let $\zeta(k)$ denote $(k-1)!$, where $k \in \{2\} \cup \{17, 18, 19, \ldots\}$. Let

$$V = \{ \zeta(x_i) = x_k : i, k \in \{1, \ldots, 7\} \} \cup \{ x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, 7\} \}$$

Let I_7 denote the following system of equations:

$$\begin{cases}
 x_1 \cdot x_1 &= x_1 \\
 \zeta(x_2) &= x_1 \\
 x_2 \cdot x_2 &= x_3 \\
 x_3 \cdot x_3 &= x_4 \\
 x_4 \cdot x_4 &= x_5 \\
 \zeta(x_5) &= x_6 \\
 \zeta(x_6) &= x_7
\end{cases}$$

Lemma 27. $I_7 \subseteq V$ and the system I_7 has exactly one solution in positive integers x_1, \ldots, x_7, namely $(1, 2, 4, 16, 256, 255!, (255! - 1)!)$.

Let Ξ_7 denote the following statement: if a system of equations $S \subseteq V$ has only finitely many solutions in positive integers x_1, \ldots, x_7, then each such solution (x_1, \ldots, x_7) satisfies $x_1, \ldots, x_7 \leq (255! - 1)!$.

Hypothesis 6. The statement Ξ_7 is true.

Lemma 28. (cf. Lemma 3). For every positive integers x and y, $x \cdot \zeta(x) = \zeta(y)$ if and only if $(x + 1 = y) \land (x \geq 17)$.

A Wilson prime is a prime number p such that p^2 divides $(p - 1)! + 1$, see [3], [21, p. 346], and [30]. It is conjectured that the set of Wilson primes is infinite, see [3]. Let $Z_7 \subseteq V$ be the system of equations in Figure 10.

Fig. 10 Construction of the system Z_7

Lemma 29. For every positive integer x_1, the system Z_7 is solvable in positive integers x_2, \ldots, x_7 if and only if x_1 is a Wilson prime prime and $x_1 \geq 17$. In this case, positive integers x_2, \ldots, x_7 are uniquely determined by x_1.

Proof. It follows from Lemmas 6 and 28.

\square
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Lemma 30. ([3], [21] p. 346), [30]). 563 is a Wilson prime.

Lemma 31. $\zeta(563)(1) > (255! - 1)!$.

Theorem 22. The statement Ξ_7 implies the infinitude of Wilson primes.

12 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [12, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [12, p. 1].

Open Problem 2. ([12, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \geq 5$, see [11, p. 23].

Theorem 23. ([32]). An unproven inequality stated in [32] implies that $2^{2^n} + 1$ is composite for every integer $n \geq 5$.

Let

$H_n = \{ x_1 \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\} \cup \{2^{2^{x_i}} = x_k : i, k \in \{1, \ldots, n\}\}$

Lemma 32. The following subsystem of H_n

$$
\begin{align*}
\forall i \in \{1, \ldots, n-1\} & \quad 2^{2^{x_i}} = x_{i+1} \\
\end{align*}
$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(h(1), \ldots, h(n))$.

For a positive integer n, let Γ_n denote the following statement: *if a system $S \subseteq H_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq h(n)$.* The statement Γ_n says that for subsystems of H_n the largest known solution is indeed the largest possible.

Hypothesis 7. The statements $\Gamma_1, \ldots, \Gamma_{13}$ are true.

The truth of the statement $\forall n \in \mathbb{N} \setminus \{0\} \Gamma_n$ is doubtful because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [14, p. 300].

Theorem 24. Every statement Γ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H_n has a finite number of subsystems. □

Theorem 25. The statement Γ_{13} proves the following implication: *if $z \in \mathbb{N} \setminus \{0\}$ and $2^{2^z} + 1$ is composite and greater than $h(12)$, then $2^{2^z} + 1$ is composite for infinitely many positive integers z.*

Proof. Let us consider the equation

$$(x + 1)(y + 1) = 2^{2^z} + 1$$ \hspace{1cm} (3)

in positive integers. By Lemma 5, we can transform equation (3) into an equivalent system G which has 13 variables $(x, y, z, \text{ and 10 other variables})$ and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2^\alpha} = \gamma$, see the diagram in Figure 11.
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Since $2^{2z} + 1 > h(12)$, we obtain that $2^{2^{2^z+1}} > h(13)$. By this, the statement Γ_{13} implies that the system G has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers.

13 Subsets of \mathbb{N} whose infinitude is unconditionally equivalent to the halting of a Turing machine

The following lemma is known as Richert’s lemma.

Lemma 33. ([8], [22], [24, p. 152]). Let $(m_i)_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leq 2m_i$ holds for all $i \geq k$. Suppose there exists a non-negative integer b such that the numbers $b+1$, $b+2$, $b+3$, ..., $b+m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\{m_1, \ldots, m_k\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

Let T denote the set of all positive integers i such that every integer $j \geq i$ is expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$. Obviously, $T = \emptyset$ or $T = [d, \infty) \cap \mathbb{N}$ for some positive integer d.

Corollary 3. If the sequence $(m_i)_{i=1}^{\infty}$ is computable and the algorithm in Figure 12 terminates, then almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$. In particular, if the sequence $(m_i)_{i=1}^{\infty}$ is computable and the algorithm in Figure 12 terminates, then the set T is infinite. In this case, the algorithm is Figure 12 prints all positive integers which are not expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.
On sets \(X \subseteq \mathbb{N} \) for which we know an algorithm ...

Theorem 26. ([10], Theorem 2.3). If there exists \(\varepsilon > 0 \) such that the inequality \(m_{i+1} \leq (2 - \varepsilon) \cdot m_i \) holds for every sufficiently large \(i \), then the algorithm in Figure 12 terminates if and only if almost all positive integers are expressible as a sum of one or more distinct elements of the set \(\{m_1, m_2, m_3, \ldots\} \).

Corollary 4. If there exists \(\varepsilon > 0 \) such that the inequality \(m_{i+1} \leq (2 - \varepsilon) \cdot m_i \) holds for every sufficiently large \(i \), then the algorithm in Figure 12 terminates if and only if the set \(T \) is infinite.

We show how the algorithm in Figure 12 works for a concrete sequence \(\{m_i\}_{i=1}^{\infty} \). Let \([\cdot]\) denote the integer part function. For a positive integer \(i \), let \(t_i = \frac{(i + 19)^i + 19}{(i + 19)! \cdot 2^i + 19} \), and let \(m_i = [t_i] \).

Lemma 34. The inequality \(m_{i+1} \leq 2m_i \) holds for every positive integer \(i \).

Proof. For every positive integer \(i \),

\[
\frac{m_i}{m_{i+1}} = \frac{[t_i]}{[t_{i+1}]} > \frac{t_i - 1}{t_{i+1}} = \frac{t_i}{t_{i+1}} - \frac{1}{t_{i+1}} > \frac{t_i}{t_{i+1}} - \frac{1}{t_2} = 2 \cdot \frac{i + 20}{i + 19} \cdot \left(1 - \frac{1}{i + 20}\right)^{i+20} - 21! \cdot \frac{2^{21}}{2^{21}} > 2 \cdot \left(1 - \frac{1}{21}\right)^{21} - 21! \cdot \frac{2^{21}}{2^{21}} = \frac{4087158528442715204485120000}{5842587018385982521381124421}
\]

The last fraction was computed by MuPAD and is greater than \(\frac{1}{2} \). \(\square \)
On sets \(X \subseteq \mathbb{N} \) for which we know an algorithm ...

Theorem 27. The algorithm in Figure 12 terminates for the sequence \(\{m_i\}_{i=1}^{\infty} \).

Proof. By Lemma \(\square \) we take \(k = 2 \) as the initial value of \(k \). The following MuPAD code

\[
\begin{align*}
&k:=2: \\
&\text{repeat} \\
&A:=\{\text{floor}((i+19)^{(i+19})/(i+19)!*2^{(i+19)}) \mid i=1..k+1\}: \\
&B:=\{A[1]\}:
&\text{for } i \text{ from 2 to nops(A)-1 do} \\
&B:=B \cup \{A[i]\} \cup \{B[j]+A[i] \mid j=1..\text{nops}(B)\}: \\
&\text{end_for:} \\
&G:=\{y \mid y=B[1]-1..\text{B[nops(B)]+1}\} \setminus B: \\
&H:=\{G[n+1]-G[n] \mid n=1..\text{nops}(G)-1\}: \\
&k:=k+1: \\
&\text{until } H[\text{nops}(H)]>A[\text{nops}(A)] \text{ end_repeat:} \\
&b:=B[\text{nops}(B)]: \\
&k:=1: \\
&\text{while } \text{floor}((k+20)^{(k+20})/(k+20)!*2^{(k+20)}) \leq b \text{ do} \\
&k:=k+1: \\
&\text{end_while:} \\
&A:=\{\text{floor}((i+19)^{(i+19})/(i+19)!*2^{(i+19)}) \mid i=1..k\}: \\
&B:=\{A[1]\}:
&\text{for } i \text{ from 2 to nops(A)-1 do} \\
&B:=B \cup \{A[i]\} \cup \{B[j]+A[i] \mid j=1..\text{nops}(B)\}: \\
&\text{end_for:} \\
&\text{print(\{n \mid n=1..b\} \setminus B):}
\end{align*}
\]

implements the algorithm in Figure 12 because MuPAD automatically orders every finite set of integers and the inequality \(H[\text{nops}(H)]>A[\text{nops}(A)] \) holds true if and only if the set \(B \) contains \(m_{k+1} \) consecutive integers. The code returns the following output:

\[
\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97,
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127,
129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 175, 176,
177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188, 189, 190, 192,
193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207,
\}
\]
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

\[\square\]

Corollary 5. $\mathcal{T} = [2762, \infty) \cap \mathbb{N}$.

MuPAD is a general-purpose computer algebra system. *MuPAD* is no longer available as a stand-alone computer program, but only as the *Symbolic Math Toolbox* of *MATLAB*. Fortunately, the presented code can be executed by *MuPAD Light*, which was offered for free for research and education until autumn 2005.

14 A hypothetical infinitude of various classes of primes via computer programs which halt for at most finitely many positive integers on the input

Let $\text{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \to \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\text{rem}(x, y)$ denote the remainder from dividing x by y.

Definition. For a positive integer n, by a program of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is defined as the variable x, and for every integer $i \in \{2, \ldots, n\}$, x_i is defined as $\Gamma(x_i-1)$, or $\text{fact}^{-1}(x_i-1)$, or $\text{rem}(x_i-1, x_i-2)$ — but only if $i \geq 3$ and x_i-1 is defined as $\Gamma(x_i-2)$.

Let $\delta(4) = 3$, and let $\delta(n+1) = \delta(n)!$ for every integer $n \geq 4$. For an integer $n \geq 4$, let Ω_n denote the following statement: if a program of length n returns positive integers x_1, \ldots, x_n for at most finitely many positive integers x_i, then every such x does not exceed $\delta(n)$.

Theorem 28. (cf. Theorem [5]). For every integer $n \geq 4$, the statement Ω_n is true with an unknown integer bound that depends on n.

\[\text{Preprints (www.preprints.org)} \mid \text{NOT PEER-REVIEWED} \mid \text{Posted: 10 January 2019}
\]

\[\text{doi:10.20944/preprints201811.0301.v6}\]
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Proof. For every positive integer n, there are only finitely many programs of length n. □

Lemma 35. ([24] pp. 214–215) . For every positive integer x, $\text{rem}(\Gamma(x), x) \in \mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$.

Theorem 29. For every integer $n \geq 4$ and for every positive integer x, the following program \mathcal{H}_n

$$
\begin{align*}
\forall i \in \{2, \ldots, n-3\} & \quad x_i := \text{fact}^{-1}(x_{i-1}) \\
x_{n-2} & := \Gamma(x_{n-3}) \\
x_{n-1} & := \Gamma(x_{n-2}) \\
x_n & := \text{rem}(x_{n-1}, x_{n-2})
\end{align*}
$$

returns positive integers x_1, \ldots, x_n if and only if $x = \delta(n)$. Proof. We make three observations.

Observation 4. If $x_{n-3} = 3$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x = x_1 = \delta(n)$. If $x = \delta(n)$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x_{n-3} = 3$. Hence, $x_{n-2} = \Gamma(x_{n-3}) = 2$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 1$.

Observation 5. If $x_{n-3} = 2$, then $x = x_1 = \ldots = x_{n-3} = 2$. If $x = 2$, then $x_1 = \ldots = x_{n-3} = 2$. Hence, $x_{n-2} = \Gamma(x_{n-3}) = 1$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\}$.

Observation 6. If $x_{n-3} = 1$, then $x_{n-2} = \Gamma(x_{n-3}) = 1$. Hence, $x_{n-1} = \Gamma(x_{n-2}) = 1$. Observations [4]–[6] cover the case when $x_{n-3} \in \{1, 2, 3\}$. If $x_{n-3} \geq 4$, then $x_{n-2} = \Gamma(x_{n-3})$ is greater than 4 and composite. By Lemma 35, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = \text{rem}(\Gamma(x_{n-2}), x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\}$. □

Corollary 6. For every integer $n \geq 4$, the bound $\delta(n)$ in the statement Ω_n cannot be decreased.

Lemma 36. If $x \in \mathcal{P}$, then $\text{rem}(\Gamma(x), x) = x - 1$.

Proof. It follows from Lemma 6. □

Lemma 37. For every positive integer x, the following program \mathcal{A}

$$
\begin{align*}
x_1 & := x \\
x_2 & := \Gamma(x_1) \\
x_3 & := \text{rem}(x_2, x_1) \\
x_4 & := \text{fact}^{-1}(x_3)
\end{align*}
$$

returns positive integers x_1, \ldots, x_4 if and only if $x = 4$ or x is a prime number of the form $n! + 1$.

Proof. For an integer $i \in \{1, \ldots, 4\}$, let A_i denote the set of positive integers x such that the first i instructions of the program \mathcal{A} returns positive integers x_1, \ldots, x_i. We show that

$$
A_4 = \{4\} \cup \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\} \cap \mathcal{P}
$$

(4)

For every positive integer x, the terms x_1 and x_2 belong to $\mathbb{N} \setminus \{0\}$. By Lemma 35, the term x_3 (which equals $\text{rem}(\Gamma(x), x)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$. Hence, $A_3 = \{4\} \cup \mathcal{P}$. If $x = 4$, then $x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in A_4$. If $x \in \mathcal{P}$, then Lemma 36 implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 \in \mathbb{N} \setminus \{0\}$. Therefore, for every $x \in \mathcal{P}$, the term $x_4 = \text{fact}^{-1}(x_3)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\}$. This proves equality (4). □

Theorem 30. The statement Ω_4 implies that the set of primes of the form $n! + 1$ is infinite.
On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Proof. The number $3! + 1 = 7$ is prime. By Lemma 37, for $x = 7$ the program \mathcal{A} returns positive integers x_1, \ldots, x_4. Since $x = 7 > 3 = \delta(4)$, the statement Ω_4 guarantees that the program \mathcal{A} returns positive integers x_1, \ldots, x_4 for infinitely many positive integers x. By Lemma 38 there are infinitely many primes of the form $n! + 1$. \hfill \square

Lemma 38. If $x \in \mathbb{N} \setminus \{0, 1\}$, then $\text{fact}^{-1}(\Gamma(x)) = x - 1$.

Theorem 31. If the set of primes of the form $n! + 1$ is infinite, then the statement Ω_4 is true.

Proof. There exist exactly 10 programs of length 4 that differ from \mathcal{H}_4 and \mathcal{A}, see Figure 13. For every such program \mathcal{F}_i, we determine the set S_i of all positive integers x such that the program \mathcal{F}_i outputs positive integers x_1, \ldots, x_4 on input x. We omit 10 easy proofs which use Lemmas 35 and 38. The sets S_i are infinite, see Figure 13.

\begin{table}[h]
\begin{tabular}{|c|c|c|c|c|}
\hline
\mathcal{F}_1 & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \Gamma(x_2)$ & $x_4 := \Gamma(x_3)$ \\
\hline
\mathcal{F}_2 & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \Gamma(x_2)$ & $x_4 := \text{fact}^{-1}(x_3)$ \\
\hline
\mathcal{H}_4 & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \Gamma(x_2)$ & $x_4 := \text{rem}(x_3, x_2)$ \\
\hline
\mathcal{F}_3 & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \text{fact}^{-1}(x_2)$ & $x_4 := \Gamma(x_3)$ \\
\hline
\mathcal{F}_4 & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \text{fact}^{-1}(x_2)$ & $x_4 := \text{fact}^{-1}(x_3)$ \\
\hline
\mathcal{F}_5 & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \text{rem}(x_2, x_1)$ & $x_4 := \Gamma(x_3)$ \\
\hline
\mathcal{A} & $x_1 := x$ & $x_2 := \Gamma(x_1)$ & $x_3 := \text{rem}(x_2, x_1)$ & $x_4 := \text{fact}^{-1}(x_3)$ \\
\hline
\mathcal{F}_6 & $x_1 := x$ & $x_2 := \text{fact}^{-1}(x_1)$ & $x_3 := \Gamma(x_2)$ & $x_4 := \Gamma(x_3)$ \\
\hline
\mathcal{F}_7 & $x_1 := x$ & $x_2 := \text{fact}^{-1}(x_1)$ & $x_3 := \Gamma(x_2)$ & $x_4 := \text{fact}^{-1}(x_3)$ \\
\hline
\mathcal{F}_8 & $x_1 := x$ & $x_2 := \text{fact}^{-1}(x_1)$ & $x_3 := \Gamma(x_2)$ & $x_4 := \text{rem}(x_3, x_2)$ \\
\hline
\mathcal{F}_9 & $x_1 := x$ & $x_2 := \text{fact}^{-1}(x_1)$ & $x_3 := \text{fact}^{-1}(x_2)$ & $x_4 := \Gamma(x_3)$ \\
\hline
\mathcal{F}_{10} & $x_1 := x$ & $x_2 := \text{fact}^{-1}(x_1)$ & $x_3 := \text{fact}^{-1}(x_2)$ & $x_4 := \text{fact}^{-1}(x_3)$ \\
\hline
\end{tabular}
\end{table}

This completes the proof. \hfill \square

Hypothesis 8. The statements $\Omega_4, \ldots, \Omega_7$ are true.

Lemma 39. For every positive integer x, the following program \mathcal{B}

\[
\begin{align*}
x_1 & := x \\
x_2 & := \Gamma(x_1) \\
x_3 & := \text{rem}(x_2, x_1) \\
x_4 & := \text{fact}^{-1}(x_3) \\
x_5 & := \Gamma(x_4) \\
x_6 & := \text{rem}(x_5, x_4)
\end{align*}
\]

returns positive integers x_1, \ldots, x_6 if and only if $x \in \{4\} \cup \{n! + 1 : p \in \mathcal{P} \} \cap \mathcal{P}$

Proof. For an integer $i \in \{1, \ldots, 6\}$, let B_i denote the set of positive integers x such that the first i instructions of the program \mathcal{B} returns positive integers x_1, \ldots, x_i. Since the programs \mathcal{A} and \mathcal{B} have the same first four instructions, the equality $B_i = A_i$ holds for every $i \in \{1, \ldots, 4\}$. In particular,

\[
B_4 = \{4\} \cup \{n! + 1 : n \in \mathbb{N} \setminus \{0\} \} \cap \mathcal{P}
\]
On sets \(X \subseteq \mathbb{N} \) for which we know an algorithm ...

We show that

\[
B_6 = \{4\} \cup \{p! + 1 : p \in \mathcal{P}\} \cap \mathcal{P}
\]

(5)

If \(x = 4 \), then \(x_1, \ldots, x_6 \in \mathbb{N} \setminus \{0\} \). Hence, \(4 \in B_6 \). Let \(x \in \mathcal{P} \), and let \(x = n! + 1 \), where \(n \in \mathbb{N} \setminus \{0\} \). Hence, \(n \neq 4 \). Lemma 36 implies that \(x_4 = \text{rem}(\Gamma(x), x) = x - 1 = n! \). Hence, \(x_4 = \text{fact}^{-1}(x_3) = n \) and \(x_5 = \Gamma(x_4) = \Gamma(n) \in \mathbb{N} \setminus \{0\} \). By Lemma 35 the term \(x_6 \) (which equals \(\text{rem}(\Gamma(n), n) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(n \in \{4\} \cup \mathcal{P} \). This proves equality (5) as \(n \neq 4 \).

\[\square\]

Theorem 32. The statement \(\Omega_6 \) implies that for infinitely many primes \(p \) the number \(p! + 1 \) is prime.

Proof. The numbers 11 and 11! + 1 are prime, see [4, p. 441] and [28]. By Lemma 39 for \(x = 11! + 1 \) the program \(B \) returns positive integers \(x_1, \ldots, x_6 \). Since \(x = 11! + 1 > 6! = \delta(6) \), the statement \(\Omega_6 \) guarantees that the program \(B \) returns positive integers \(x_1, \ldots, x_6 \) for infinitely many positive integers \(x \). By Lemma 39 for infinitely many primes \(p \) the number \(p! + 1 \) is prime.

\[\square\]

Lemma 40. For every positive integer \(x \), the following program \(C \)

\[
\begin{align*}
x_1 & := x \\
x_2 & := \Gamma(x_1) \\
x_3 & := \Gamma(x_2) \\
x_4 & := \text{fact}^{-1}(x_3) \\
x_5 & := \Gamma(x_4) \\
x_6 & := \text{rem}(x_5, x_4)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_6 \) if and only if \((x - 1)! - 1 \) is prime.

Proof. For an integer \(i \in \{1, \ldots, 6\} \), let \(C_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the program \(C \) returns positive integers \(x_1, \ldots, x_i \). If \(x \in \{1, 2, 3\} \), then \(x_6 = 0 \). Therefore, \(C_6 \subseteq \mathbb{N} \setminus \{0, 1, 2, 3\} \). By Lemma 38 for every integer \(x \geq 4 \), \(x_4 = (x - 1)! - 1 \), \(x_5 = \Gamma((x - 1)! - 1) \), and \(x_1, \ldots, x_5 \in \mathbb{N} \setminus \{0\} \). By Lemma 55 for every integer \(x \geq 4 \),

\[x_6 = \text{rem}(\Gamma((x - 1)! - 1), (x - 1)! - 1)\]

belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \((x - 1)! - 1 \in \{4\} \cup \mathcal{P} \). The last condition equivalently expresses that \((x - 1)! - 1 \) is prime as \((x - 1)! - 1 \geq 5 \) for every integer \(x \geq 4 \). Hence,

\[C_6 = (\mathbb{N} \setminus \{0, 1, 2, 3\}) \cap \{x \in \mathbb{N} \setminus \{0, 1, 2, 3\} : (x - 1)! - 1 \in \mathcal{P}\} = \{x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P}\}\]

\[\square\]

It is conjectured that there are infinitely many primes of the form \(n! - 1 \), see [4, p. 443] and [27].

Theorem 33. The statement \(\Omega_6 \) implies that there are infinitely many primes of the form \(x! - 1 \).

Proof. The number \((975! - 1)! - 1 \) is prime, see [4, p. 441] and [27]. By Lemma 40 for \(x = 975 \) the program \(C \) returns positive integers \(x_1, \ldots, x_6 \). Since \(x = 975 > 720 = \delta(6) \), the statement \(\Omega_6 \) guarantees that the program \(C \) returns positive integers \(x_1, \ldots, x_6 \) for infinitely many positive integers \(x \). By Lemma 40 the set \(\{x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P}\} \) is infinite.

\[\square\]

Lemma 41. For every positive integer \(x \), the following program \(D \)

\[
\begin{align*}
x_1 & := x \\
x_2 & := \Gamma(x_1) \\
x_3 & := \text{rem}(x_2, x_1) \\
x_4 & := \Gamma(x_3) \\
x_5 & := \text{fact}^{-1}(x_4) \\
x_6 & := \Gamma(x_5) \\
x_7 & := \text{rem}(x_6, x_5)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_7 \) if and only if both \(x \) and \(x - 2 \) are prime.
We replace every instruction of the form
\[\text{x}^{\text{th}} \] for infinitely many positive integers
x. Since x = 1, then x = 0. Hence, \(D_3 \subseteq D_2 \subseteq \mathbb{N} \setminus \{0, 1\} \).
If \(x \in \{2, 3, 4\} \), then \(x = 0 \). Therefore,
\[
D_7 \subseteq (\mathbb{N} \setminus \{0, 1\}) \cap (\mathbb{N} \setminus \{0, 2, 3, 4\}) = \mathbb{N} \setminus \{0, 1, 2, 3, 4\}
\]
By Lemma 35 for every integer \(x \geq 5 \), the term \(x \) (which equals \(\text{rem}(\Gamma(x), x) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(x \in \mathcal{P} \setminus \{2, 3\} \). By Lemma 36 for every \(x \in \mathcal{P} \setminus \{2, 3\}, x = x - 1 \in \mathbb{N} \setminus \{0, 1, 2, 3\} \). By Lemma 38 for every \(x \in \mathcal{P} \setminus \{2, 3\} \), the terms \(x_4 \) and \(x_5 \) belong to \(\mathbb{N} \setminus \{0\} \) and \(x_5 = x_3 - 1 = x - 2 \). By Lemma 35 for every \(x \in \mathcal{P} \setminus \{2, 3\} \), the term \(x_6 \) (which equals \(\text{rem}(\Gamma(x_3), x_3) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(x_5 = x - 2 \in \{4\} \cup \mathcal{P} \).
From these facts, we obtain that
\[
D_7 = (\mathbb{N} \setminus \{0, 1, 2, 3, 4\}) \cap (\mathcal{P} \setminus \{2, 3\}) \cap \{(6) \cup \{p + 2 : p \in \mathcal{P}\}\} = \{p \in \mathcal{P} : p - 2 \in \mathcal{P}\}
\]

\[\square \]

Theorem 34. The statement \(\Omega_2 \) implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers \(459 \cdot 2^{8529} - 1 \) and \(459 \cdot 2^{8529} + 1 \) are prime, see [37, p. 87]. By Lemma 41 for \(x = 459 \cdot 2^{8529} + 1 \) the program \(\mathcal{D} \) returns positive integers \(x_1, \ldots, x_7 \). Since \(x > 720! = \delta(7) \), the statement \(\Omega_2 \) guarantees that the program \(\mathcal{D} \) returns positive integers \(x_1, \ldots, x_7 \) for infinitely many positive integers \(x \). By Lemma 41, there are infinitely many twin primes.

We can transform every program of length \(n \) into a computer program with \(n \) instructions which for every \(x \in \mathbb{N} \setminus \{0\} \) does the same if \((x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n \), and never halts if \((x_1, \ldots, x_n) \notin (\mathbb{N} \setminus \{0\})^n \) or the tuple \((x_1, \ldots, x_n) \) is undefined. To do so, we perform the following steps:

a) We replace the instruction \(x_1 := x \) by the following instruction:
\[
x_1 := x \& \text{PRINT}(x_1)
\]
b) We replace every instruction of the form \(x_i = \Gamma(x_{i-1}) \) by the following instruction:
\[
x_i := \Gamma(x_{i-1}) \& \text{PRINT}(x_i)
\]
c) We replace every instruction of the form \(x_i := \text{fact}^{-1}(x_{i-1}) \) by the following instruction:
\[
\text{IF} \ \text{fact}^{-1}(x_{i-1}) \in \mathbb{N} \setminus \{0\} \text{ THEN } x_i := \text{fact}^{-1}(x_{i-1}) \& \text{PRINT}(x_i) \text{ ELSE GOTO Instruction 1}
\]
d) We replace every instruction of the form \(x_i := \text{rem}(x_{i-1}, x_{i-2}) \) by the following instruction:
\[
\text{IF} \ \text{rem}(x_{i-1}, x_{i-2}) \in \mathbb{N} \setminus \{0\} \text{ THEN } x_i := \text{rem}(x_{i-1}, x_{i-2}) \& \text{PRINT}(x_i) \text{ ELSE GOTO Instruction 1}
\]

References

On sets $X \subseteq \mathbb{N}$ for which we know an algorithm ...

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl