

On sets $\mathcal{X} \subseteq \mathbb{N}$ for which we know an algorithm that computes a threshold number $t(\mathcal{X}) \in \mathbb{N}$ such that \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than $t(\mathcal{X})$

Apoloniusz Tyszka

Abstract

We define computable functions $g, h : \mathbb{N} \setminus \{0\} \rightarrow \mathbb{N} \setminus \{0\}$. For an integer $n \geq 3$, let Ψ_n denote the following statement: *if a system $\mathcal{S} \subseteq \{x_i! = x_k : (i, k \in \{1, \dots, n\}) \wedge (i \neq k)\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$ has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq g(n)$.* For a positive integer n , let Γ_n denote the following statement: *if a system $\mathcal{S} \subseteq \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{2^{2x_i} = x_k : i, k \in \{1, \dots, n\}\}$ has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq h(n)$.* We prove: (1) if the equation $x! + 1 = y^2$ has only finitely many solutions in positive integers, then the statement Ψ_6 guarantees that each such solution (x, y) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$, (2) the statement Ψ_9 proves the following implication: if there exists a positive integer x such that $x^2 + 1$ is prime and $x^2 + 1 > g(7)$, then there are infinitely many primes of the form $n^2 + 1$, (3) the statement Ψ_9 proves the following implication: if there exists an integer $x \geq g(6)$ such that $x! + 1$ is prime, then there are infinitely many primes of the form $n! + 1$, (4) the statement Ψ_{16} proves the following implication: if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes, (5) the statement Γ_{13} proves the following implication: if $n \in \mathbb{N} \setminus \{0\}$ and $2^{2n} + 1$ is composite and greater than $h(12)$, then $2^{2n} + 1$ is composite for infinitely many positive integers n .

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, composite Fermat numbers, Dickson's conjecture, halting of a Turing machine, prime numbers of the form $n^2 + 1$, prime numbers of the form $n! + 1$, Richert's lemma, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 11A41.

1 Introduction

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that there are infinitely many twin primes, see [15, p. 39]. The following statement

(1) "For every non-negative integer n there exist prime exist numbers p and q such that $p + 2 = q$ and $p \in [10^n, 10^{n+1}]$ "

is a Π_1 statement which strengthens the twin prime conjecture, see [3, p. 43], cf. [5, pp. 337–338]. Statement (1) is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_1 statements, see [1].

In this article, we study sets $\mathcal{X} \subseteq \mathbb{N}$ for which we know an algorithm that computes a threshold number $t(\mathcal{X}) \in \mathbb{N}$ such that \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than $t(\mathcal{X})$. If \mathcal{X} is computable, then this property implies that the infinity of \mathcal{X} is equivalent to the halting of a Turing machine. If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any non-negative integer m is a threshold number of \mathcal{X} . If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $\{\max(\mathcal{X}), \max(\mathcal{X}) + 1, \max(\mathcal{X}) + 2, \dots\}$.

Theorem 1. ([4, p. 35]). *There exists a polynomial $D(x_1, \dots, x_m)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences "The equation $D(x_1, \dots, x_m) = 0$ is solvable in non-negative integers" and "The equation $D(x_1, \dots, x_m) = 0$ is not solvable in non-negative integers are not provable in ZFC.*

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

2

Let \mathcal{Y} denote the set of all non-negative integers k such that the equation $D(x_1, \dots, x_m) = 0$ has no solutions in $\{0, \dots, k\}^m$. Since the set $\{0, \dots, k\}^m$ is finite, we know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{Y}$. Let $\gamma: \mathbb{N}^{m+1} \rightarrow \mathbb{N}$ be a computable bijection, and let $\mathcal{E} \subseteq \mathbb{N}^{m+1}$ be the solution set of the equation $D(x_1, \dots, x_m) + 0 \cdot x_{m+1} = 0$. Theorem 1 implies Theorems 2 and 3.

Theorem 2. *If ZFC is arithmetically consistent, then for every $n \in \mathbb{N}$ the sentences "n is a threshold number of \mathcal{Y} " and "n is not a threshold number of \mathcal{Y} " are not provable in ZFC.*

Theorem 3. *We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \gamma(\mathcal{E})$. The set $\gamma(\mathcal{E})$ is empty or infinite. In both cases, every non-negative integer n is a threshold number of $\gamma(\mathcal{E})$. If ZFC is arithmetically consistent, then the sentences " $\gamma(\mathcal{E})$ is empty", " $\gamma(\mathcal{E})$ is not empty", " $\gamma(\mathcal{E})$ is finite", and " $\gamma(\mathcal{E})$ is infinite" are not provable in ZFC.*

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [16, p. 234].

Corollary 1. *If an algorithm Alg_1 for every recursive set $\mathcal{R} \subseteq \mathbb{N}$ finds a non-negative integer $\text{Alg}_1(\mathcal{R})$, then there exists a finite set $\mathcal{W} \subseteq \mathbb{N}$ such that $\mathcal{W} \cap [\text{Alg}_1(\mathcal{W}) + 1, \infty) \neq \emptyset$. If an algorithm Alg_2 for every recursively enumerable set $\mathcal{R} \subseteq \mathbb{N}$ finds a non-negative integer $\text{Alg}_2(\mathcal{R})$, then there exists a finite set $\mathcal{W} \subseteq \mathbb{N}$ such that $\mathcal{W} \cap [\text{Alg}_2(\mathcal{W}) + 1, \infty) \neq \emptyset$.*

2 Basic definitions and lemmas

Let $f(1) = 2$, $f(2) = 4$, and let $f(n+1) = f(n)!$ for every integer $n \geq 2$. Let $h(1) = 1$, and let $h(n+1) = 2^{2^{h(n)}}$ for every positive integer n . Let $g(3) = 4$, and let $g(n+1) = g(n)!$ for every integer $n \geq 3$. For an integer $n \geq 3$, let \mathcal{U}_n denote the following system of equations:

$$\left\{ \begin{array}{lcl} \forall i \in \{1, \dots, n-1\} \setminus \{2\} x_i! & = & x_{i+1} \\ x_1 \cdot x_2 & = & x_3 \\ x_2 \cdot x_2 & = & x_3 \end{array} \right.$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_n .

Fig. 1 Construction of the system \mathcal{U}_n

Lemma 1. *For every integer $n \geq 3$, the system \mathcal{U}_n has exactly two solutions in positive integers, namely $(1, \dots, 1)$ and $(2, 2, g(3), \dots, g(n))$.*

Let

$$B_n = \left\{ x_i! = x_k : (i, k \in \{1, \dots, n\}) \wedge (i \neq k) \right\} \cup \left\{ x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \right\}$$

For an integer $n \geq 3$, let Ψ_n denote the following statement: *if a system $\mathcal{S} \subseteq B_n$ has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq g(n)$.* The statement Ψ_n says that for subsystems of B_n the largest known solution is indeed the largest possible.

Hypothesis 1. *The statements Ψ_3, \dots, Ψ_{16} are true.*

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

3

Theorem 4. Every statement Ψ_n is true with an unknown integer bound that depends on n .

Proof. For every positive integer n , the system B_n has a finite number of subsystems. \square

Theorem 5. For every statement Ψ_n , the bound $g(n)$ cannot be decreased.

Proof. It follows from Lemma 1 because $\mathcal{U}_n \subseteq B_n$. \square

Lemma 2. For every positive integers x and y , $x! \cdot y = y!$ if and only if

$$(x + 1 = y) \vee (x = y = 1)$$

Lemma 3. For every positive integers x and y , $x \cdot \Gamma(x) = \Gamma(y)$ if and only if

$$(x + 1 = y) \vee (x = y = 1)$$

Lemma 4. For every positive integers x and y , $x + 1 = y$ if and only if

$$(1 \neq y) \wedge (x! \cdot y = y!)$$

Lemma 5. For every non-negative integers b and c , $b + 1 = c$ if and only if $2^{2^b} \cdot 2^{2^b} = 2^{2^c}$.

Lemma 6. (Wilson's theorem, [7, p. 89]). For every integer $x \geq 2$, x is prime if and only if x divides $(x - 1)! + 1$.

3 Heuristic arguments against the statement $\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \Psi_n$

Let

$$G_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{x_i + 1 = x_k : i, k \in \{1, \dots, n\}\}$$

Hypothesis 2. ([25, p. 109]. If a system $\mathcal{S} \subseteq G_n$ has only finitely many solutions in non-negative integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq h(2n)$.

Hypothesis 3. If a system $\mathcal{S} \subseteq G_n$ has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq f(2n)$.

Observations 1 and 2 heuristically justify Hypothesis 3.

Observation 1. (cf. [25, p. 110, Observation 1]). For every system $\mathcal{S} \subseteq G_n$ which involves all the variables x_1, \dots, x_n , the following new system

$$\left(\bigcup_{x_i \cdot x_j = x_k \in \mathcal{S}} \{x_i \cdot x_j = x_k\} \right) \cup \{x_k! = y_k : k \in \{1, \dots, n\}\} \cup \left(\bigcup_{x_i + 1 = x_k \in \mathcal{S}} \{1 \neq x_k, y_i \cdot x_k = y_k\} \right)$$

is equivalent to \mathcal{S} . If the system \mathcal{S} has only finitely many solutions in positive integers x_1, \dots, x_n , then the new system has only finitely many solutions in positive integers $x_1, \dots, x_n, y_1, \dots, y_n$.

Proof. It follows from Lemma 4. \square

Observation 2. The equation $x_1! = x_1$ has exactly two solutions in positive integers, namely $x_1 = 1$ and $x_1 = f(1)$. The system $\begin{cases} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \end{cases}$ has exactly two solutions in positive integers, namely $(1, 1)$ and $(f(1), f(2))$. For every integer $n \geq 3$, the following system

$$\begin{cases} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \\ \forall i \in \{2, \dots, n-1\} x_i! = x_{i+1} \end{cases}$$

has exactly two solutions in positive integers, namely $(1, \dots, 1)$ and $(f(1), \dots, f(n))$.

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

4

For a positive integer n , let Φ_n denote the following statement: *if a system*

$$\mathcal{S} \subseteq \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{x_i! = x_k : i, k \in \{1, \dots, n\}\} \cup \{1 \neq x_k : k \in \{1, \dots, n\}\}$$

has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq f(n)$.

Theorem 6. *The statement $\forall n \in \mathbb{N} \setminus \{0\} \Phi_n$ implies Hypothesis 3.*

Proof. It follows from Lemma 4. □

Let \mathcal{Rng} denote the class of all rings \mathbf{K} that extend \mathbb{Z} , and let

$$E_n = \{1 = x_k : k \in \{1, \dots, n\}\} \cup \{x_i + x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$$

Th. Skolem proved that every Diophantine equation can be algorithmically transformed into an equivalent system of Diophantine equations of degree at most 2, see [21, pp. 2–3] and [12, pp. 3–4]. The following result strengthens Skolem's theorem.

Lemma 7. ([23, p. 720]). *Let $D(x_1, \dots, x_p) \in \mathbb{Z}[x_1, \dots, x_p]$. Assume that $\deg(D, x_i) \geq 1$ for each $i \in \{1, \dots, p\}$. We can compute a positive integer $n > p$ and a system $T \subseteq E_n$ which satisfies the following two conditions:*

Condition 1. *If $\mathbf{K} \in \mathcal{Rng} \cup \{\mathbb{N}, \mathbb{N} \setminus \{0\}\}$, then*

$$\forall \tilde{x}_1, \dots, \tilde{x}_p \in \mathbf{K} (D(\tilde{x}_1, \dots, \tilde{x}_p) = 0 \iff \exists \tilde{x}_{p+1}, \dots, \tilde{x}_n \in \mathbf{K} (\tilde{x}_1, \dots, \tilde{x}_p, \tilde{x}_{p+1}, \dots, \tilde{x}_n) \text{ solves } T)$$

Condition 2. *If $\mathbf{K} \in \mathcal{Rng} \cup \{\mathbb{N}, \mathbb{N} \setminus \{0\}\}$, then for each $\tilde{x}_1, \dots, \tilde{x}_p \in \mathbf{K}$ with $D(\tilde{x}_1, \dots, \tilde{x}_p) = 0$, there exists a unique tuple $(\tilde{x}_{p+1}, \dots, \tilde{x}_n) \in \mathbf{K}^{n-p}$ such that the tuple $(\tilde{x}_1, \dots, \tilde{x}_p, \tilde{x}_{p+1}, \dots, \tilde{x}_n)$ solves T .*

Conditions 1 and 2 imply that for each $\mathbf{K} \in \mathcal{Rng} \cup \{\mathbb{N}, \mathbb{N} \setminus \{0\}\}$, the equation $D(x_1, \dots, x_p) = 0$ and the system T have the same number of solutions in \mathbf{K} .

Let α, β , and γ denote variables.

Lemma 8. ([19, p. 100]) *For each positive integers x, y, z , $x + y = z$ if and only if*

$$(zx + 1)(zy + 1) = z^2(xy + 1) + 1$$

Corollary 2. *We can express the equation $x + y = z$ as an equivalent system \mathcal{F} , where \mathcal{F} involves x, y, z and 9 new variables, and where \mathcal{F} consists of equations of the forms $\alpha + 1 = \gamma$ and $\alpha \cdot \beta = \gamma$.*

Proof. The new 9 variables express the following polynomials:

$$zx, \quad zx + 1, \quad zy, \quad zy + 1, \quad z^2, \quad xy, \quad xy + 1, \quad z^2(xy + 1), \quad z^2(xy + 1) + 1$$

□

Lemma 9. (cf. [25, p. 110, Lemma 4]). *Let $D(x_1, \dots, x_p) \in \mathbb{Z}[x_1, \dots, x_p]$. Assume that $\deg(D, x_i) \geq 1$ for each $i \in \{1, \dots, p\}$. We can compute a positive integer $n > p$ and a system $T \subseteq E_n$ which satisfies the following two conditions:*

Condition 3. *For every positive integers $\tilde{x}_1, \dots, \tilde{x}_p$,*

$$D(\tilde{x}_1, \dots, \tilde{x}_p) = 0 \iff \exists \tilde{x}_{p+1}, \dots, \tilde{x}_n \in \mathbb{N} \setminus \{0\} (\tilde{x}_1, \dots, \tilde{x}_p, \tilde{x}_{p+1}, \dots, \tilde{x}_n) \text{ solves } T$$

Condition 4. *If positive integers $\tilde{x}_1, \dots, \tilde{x}_p$ satisfy $D(\tilde{x}_1, \dots, \tilde{x}_p) = 0$, then there exists a unique tuple $(\tilde{x}_{p+1}, \dots, \tilde{x}_n) \in (\mathbb{N} \setminus \{0\})^{n-p}$ such that the tuple $(\tilde{x}_1, \dots, \tilde{x}_p, \tilde{x}_{p+1}, \dots, \tilde{x}_n)$ solves T .*

Conditions 3 and 4 imply that the equation $D(x_1, \dots, x_p) = 0$ and the system T have the same number of solutions in positive integers.

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

5

Proof. Let the system T be given by Lemma 7. We replace in T each equation of the form $1 = x_k$ by the equation $x_k \cdot x_k = x_k$. Next, we apply Corollary 2 and replace in T each equation of the form $x_i + x_j = x_k$ by an equivalent system of equations of the forms $\alpha + 1 = \gamma$ and $\alpha \cdot \beta = \gamma$. \square

Theorem 7. *Hypothesis 3 implies that there is an algorithm which takes as input a Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set.*

Proof. It follows from Lemma 9. \square

Open Problem 1. *Is there an algorithm which takes as input a Diophantine equation, and returns an integer such that this integer is greater than the moduli of integer (non-negative integer, positive integer) solutions, if the solution set is finite?*

Matiyasevich's conjecture on finite-fold Diophantine representations ([14]) implies a negative answer to Open Problem 1, see [13, p. 42].

The statement $\forall n \in \mathbb{N} \setminus \{0\} \Phi_n$ implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [11, p. 300].

4 Brocard's problem

Let \mathcal{A} denote the following system of equations:

$$\left\{ \begin{array}{l} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{array} \right.$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

Fig. 2 Construction of the system \mathcal{A}

Lemma 10. *For every $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:*

$$\begin{aligned} x_2 &= x_1! \\ x_3 &= (x_1!)! \\ x_5 &= x_1! + 1 \\ x_6 &= (x_1! + 1)! \end{aligned}$$

Proof. It follows from Lemma 2. \square

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

6

It is conjectured that $x! + 1$ is a perfect square only for $x \in \{4, 5, 7\}$, see [26, p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x! + 1 = y^2$, see [17].

Theorem 8. *If the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then the statement Ψ_6 guarantees that each such solution (x_1, x_4) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$.*

Proof. Suppose that the antecedent holds. Let positive integers x_1 and x_4 satisfy $x_1! + 1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 10, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 . Since $\mathcal{A} \subseteq B_6$, the statement Ψ_6 implies that $x_6 = (x_1! + 1)! \leq g(6) = g(5)!$. Hence, $x_1! + 1 \leq g(5) = g(4)!$. Consequently, $x_1 < g(4) = 24$. If $x_1 \in \{1, \dots, 23\}$, then $x_1! + 1$ is a perfect square only for $x_1 \in \{4, 5, 7\}$. \square

5 Are there infinitely many prime numbers of the form $n^2 + 1$?

Let \mathcal{B} denote the following system of equations:

$$\left\{ \begin{array}{l} x_2! = x_3 \\ x_3! = x_4 \\ x_5! = x_6 \\ x_8! = x_9 \\ x_1 \cdot x_1 = x_2 \\ x_3 \cdot x_5 = x_6 \\ x_4 \cdot x_8 = x_9 \\ x_5 \cdot x_7 = x_8 \end{array} \right.$$

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .

Fig. 3 Construction of the system \mathcal{B}

Lemma 11. *For every integer $x_1 \geq 2$, the system \mathcal{B} is solvable in positive integers x_2, \dots, x_9 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \dots, x_9 are uniquely determined by the following equalities:*

$$\begin{aligned} x_2 &= x_1^2 \\ x_3 &= (x_1^2)! \\ x_4 &= ((x_1^2)!)! \\ x_5 &= x_1^2 + 1 \\ x_6 &= (x_1^2 + 1)! \\ x_7 &= \frac{(x_1^2)! + 1}{x_1^2 + 1} \\ x_8 &= (x_1^2)! + 1 \\ x_9 &= ((x_1^2)! + 1)! \end{aligned}$$

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

7

Proof. By Lemma 2, for every integer $x_1 \geq 2$, the system \mathcal{B} is solvable in positive integers x_2, \dots, x_9 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 11 follows from Lemma 6. \square

Lemma 12. *There are only finitely many tuples $(x_1, \dots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ which solve the system \mathcal{B} and satisfy $x_1 = 1$.*

Proof. If a tuple $(x_1, \dots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ solves the system \mathcal{B} and $x_1 = 1$, then $x_1, \dots, x_9 \leq 2$. Indeed, $x_1 = 1$ implies that $x_2 = x_1^2 = 1$. Hence, for example, $x_3 = x_2! = 1$. Therefore, $x_8 = x_3 + 1 = 2$ or $x_8 = 1$. Consequently, $x_9 = x_8! \leq 2$. \square

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [15, pp. 37–38].

Theorem 9. *The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \geq 2$ such that $x_1^2 + 1$ is prime and greater than $g(7)$, then there are infinitely many primes of the form $n^2 + 1$.*

Proof. Suppose that the antecedent holds. By Lemma 11, there exists a unique tuple $(x_2, \dots, x_9) \in (\mathbb{N} \setminus \{0\})^8$ such that the tuple (x_1, x_2, \dots, x_9) solves the system \mathcal{B} . Since $x_1^2 + 1 > g(7)$, we obtain that $x_1^2 \geq g(7)$. Hence, $(x_1^2)! \geq g(7)! = g(8)$. Consequently,

$$x_9 = ((x_1^2)! + 1)! \geq (g(8) + 1)! > g(8)! = g(9)$$

Since $\mathcal{B} \subseteq B_9$, the statement Ψ_9 and the inequality $x_9 > g(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \dots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemmas 11 and 12, there are infinitely many primes of the form $n^2 + 1$. \square

6 Are there infinitely many prime numbers of the form $n! + 1$?

It is conjectured that there are infinitely many primes of the form $n! + 1$, see [2, p. 443] and [22].

Theorem 10. *The statement Ψ_9 proves the following implication: if there exists an integer $x_1 \geq g(6)$ such that $x_1! + 1$ is prime, then there are infinitely many primes of the form $n! + 1$.*

Proof. We leave the analogous proof to the reader. \square

7 The twin prime conjecture and Dickson's conjecture

Let C denote the following system of equations:

$$\left\{ \begin{array}{lcl} x_1! & = & x_2 \\ x_2! & = & x_3 \\ x_4! & = & x_5 \\ x_6! & = & x_7 \\ x_7! & = & x_8 \\ x_9! & = & x_{10} \\ x_{12}! & = & x_{13} \\ x_{15}! & = & x_{16} \\ x_2 \cdot x_4 & = & x_5 \\ x_5 \cdot x_6 & = & x_7 \\ x_7 \cdot x_9 & = & x_{10} \\ x_4 \cdot x_{11} & = & x_{12} \\ x_3 \cdot x_{12} & = & x_{13} \\ x_9 \cdot x_{14} & = & x_{15} \\ x_8 \cdot x_{15} & = & x_{16} \end{array} \right.$$

Lemma 2 and the diagram in Figure 4 explain the construction of the system C .

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

8

Fig. 4 Construction of the system C

Lemma 13. For every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$\begin{aligned}
 x_1 &= x_4 - 1 \\
 x_2 &= (x_4 - 1)! \\
 x_3 &= ((x_4 - 1)!)! \\
 x_5 &= x_4! \\
 x_6 &= x_9 - 1 \\
 x_7 &= (x_9 - 1)! \\
 x_8 &= ((x_9 - 1)!)! \\
 x_{10} &= x_9! \\
 x_{11} &= \frac{(x_4 - 1)! + 1}{x_4} \\
 x_{12} &= (x_4 - 1)! + 1 \\
 x_{13} &= ((x_4 - 1)! + 1)! \\
 x_{14} &= \frac{(x_9 - 1)! + 1}{x_9} \\
 x_{15} &= (x_9 - 1)! + 1 \\
 x_{16} &= ((x_9 - 1)! + 1)!
 \end{aligned}$$

Proof. By Lemma 2, for every $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$, the system C is solvable in positive integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

$$(x_4 + 2 = x_9) \wedge (x_4|(x_4 - 1)! + 1) \wedge (x_9|(x_9 - 1)! + 1)$$

Hence, the claim of Lemma 13 follows from Lemma 6. \square

Lemma 14. There are only finitely many tuples $(x_1, \dots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ which solve the system C and satisfy

$$(x_4 \in \{1, 2\}) \vee (x_9 \in \{1, 2\})$$

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

9

Proof. If a tuple $(x_1, \dots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}$ solves the system C and

$$(x_4 \in \{1, 2\}) \vee (x_9 \in \{1, 2\})$$

then $x_1, \dots, x_{16} \leq 7!$. Indeed, for example, if $x_4 = 2$ then $x_6 = x_4 + 1 = 3$. Hence, $x_7 = x_6! = 6$. Therefore, $x_{15} = x_7 + 1 = 7$. Consequently, $x_{16} = x_{15!} = 7!$. \square

Theorem 11. *The statement Ψ_{16} proves the following implication: (*) if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes.*

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > g(14)$. Hence, $x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}$. By Lemma 13, there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0\})^{14}$ such that the tuple (x_1, \dots, x_{16}) solves the system C . Since $x_9 > g(14)$, we obtain that $x_9 - 1 \geq g(14)$. Therefore, $(x_9 - 1)! \geq g(14)! = g(15)$. Hence, $(x_9 - 1)! + 1 > g(15)$. Consequently,

$$x_{16} = ((x_9 - 1)! + 1)! > g(15)! = g(16)$$

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16} > g(16)$ imply that the system C has infinitely many solutions in positive integers x_1, \dots, x_{16} . According to Lemmas 13 and 14, there are infinitely many twin primes. \square

Let $\mathbb{P}(x)$ denote the predicate " x is a prime number". Dickson's conjecture ([15, p. 36], [27, p. 109]) implies that the existential theory of $(\mathbb{N}, =, +, \mathbb{P})$ is decidable, see [27, Theorem 2, p. 109]. For a positive integer n , let Θ_n denote the following statement: *for every system $\mathcal{S} \subseteq \{x_i + 1 = x_j : i, j \in \{1, \dots, n\}\} \cup \{\mathbb{P}(x_i) : i \in \{1, \dots, n\}\}$ the solvability of \mathcal{S} in non-negative integers is decidable*.

Lemma 15. *If the existential theory of $(\mathbb{N}, =, +, \mathbb{P})$ is decidable, then the statements Θ_n are true.*

Proof. For every non-negative integers x and y , $x + 1 = y$ if and only if

$$\exists u, v \in \mathbb{N} ((u + u = v) \wedge \mathbb{P}(v) \wedge (x + u = y))$$

□

Theorem 12. *The conjunction of the implication (*) and the statement $\Theta_{g(14)+2}$ implies that the twin prime conjecture is decidable.*

Proof. By the statement $\Theta_{g(14)+2}$, we can decide the truth of the sentence

$$\exists x_1 \dots \exists x_{g(14)+2} \left(\left(\forall i \in \{1, \dots, g(14) + 1\} x_i + 1 = x_{i+1} \right) \wedge \mathbb{P}(x_{g(14)}) \wedge \mathbb{P}(x_{g(14)+2}) \right) \quad (2)$$

If sentence (2) is false, then the twin prime conjecture is false. If sentence (2) is true, then there exists a twin prime greater than $g(14)$. In this case, the twin prime conjecture follows from Theorem 11. \square

8 A hypothesis which implies that any prime number $p > 24$ proves that there are infinitely many prime numbers

For a positive integer n , let $\Gamma(n)$ denote $(n - 1)!$. Let $\lambda(5) = \Gamma(5)$, and let $\lambda(n + 1) = \Gamma(\lambda(n))$ for every integer $n \geq 5$. For an integer $n \geq 5$, let \mathcal{J}_n denote the following system of equations:

$$\left\{ \begin{array}{rcl} \forall i \in \{1, \dots, n - 1\} \setminus \{3\} \Gamma(x_i) & = & x_{i+1} \\ x_1 \cdot x_1 & = & x_4 \\ x_2 \cdot x_3 & = & x_5 \end{array} \right.$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system \mathcal{J}_n .

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

10

Fig. 5 Construction of the system \mathcal{J}_n

Observation 3. For every integer $n \geq 5$, the system \mathcal{J}_n has exactly two solutions in positive integers, namely $(1, \dots, 1)$ and $(5, 24, 23!, 25, \lambda(5), \dots, \lambda(n))$.

For an integer $n \geq 5$, let Δ_n denote the following statement: if a system $\mathcal{S} \subseteq \{\Gamma(x_i) = x_k : i, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$ has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq \lambda(n)$.

Hypothesis 4. The statements $\Delta_5, \dots, \Delta_{14}$ are true.

Lemmas 3 and 6 imply that the statements Δ_n have essentially the same consequences as the statements Ψ_n .

Theorem 13. The statement Δ_6 implies that any prime number $p > 24$ proves that there are infinitely many prime numbers.

Proof. It follows from Lemmas 3 and 6. We leave the details to the reader. \square

9 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [10, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [10, p. 1].

Open Problem 2. ([10, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \geq 5$, see [9, p. 23].

Theorem 14. ([24]). An unproven inequality stated in [24] implies that $2^{2^n} + 1$ is composite for every integer $n \geq 5$.

Let

$$H_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{2^{2^{x_i}} = x_k : i, k \in \{1, \dots, n\}\}$$

Lemma 16. The following subsystem of H_n

$$\left\{ \begin{array}{rcl} x_1 \cdot x_1 & = & x_1 \\ \forall i \in \{1, \dots, n-1\} \quad 2^{2^{x_i}} & = & x_{i+1} \end{array} \right.$$

has exactly one solution $(x_1, \dots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(h(1), \dots, h(n))$.

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

11

For a positive integer n , let Γ_n denote the following statement: *if a system $S \subseteq H_n$ has only finitely many solutions in positive integers x_1, \dots, x_n , then each such solution (x_1, \dots, x_n) satisfies $x_1, \dots, x_n \leq h(n)$.* The statement Γ_n says that for subsystems of H_n the largest known solution is indeed the largest possible.

Hypothesis 5. *The statements $\Gamma_1, \dots, \Gamma_{13}$ are true.*

The truth of the statement $\forall n \in \mathbb{N} \setminus \{0\} \Gamma_n$ is doubtful because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [11, p. 300].

Lemma 17. *For every positive integer n , the system H_n has a finite number of subsystems.*

Theorem 15. *Every statement Γ_n is true with an unknown integer bound that depends on n .*

Proof. It follows from Lemma 17. □

Theorem 16. *The statement Γ_{13} proves the following implication: if $z \in \mathbb{N} \setminus \{0\}$ and $2^{2^z} + 1$ is composite and greater than $h(12)$, then $2^{2^z} + 1$ is composite for infinitely many positive integers z .*

Proof. Let us consider the equation

$$(x+1)(y+1) = 2^{2^z} + 1 \quad (3)$$

in positive integers. By Lemma 5, we can transform equation (3) into an equivalent system \mathcal{G} which has 13 variables (x, y, z , and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2^\alpha} = \gamma$, see the diagram in Figure 6.

Fig. 6 Construction of the system \mathcal{G}

Since $2^{2^z} + 1 > h(12)$, we obtain that $2^{2^{2^z+1}} > h(13)$. By this, the statement Γ_{13} implies that the system \mathcal{G} has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers. □

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

12

10 Subsets of \mathbb{N} whose infinitude is unconditionally equivalent to the halting of a Turing machine

The following lemma is known as Richert's lemma.

Lemma 18. ([6], [18], [20, p. 152]). *Let $\{m_i\}_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leq 2m_i$ holds for all $i > k$. Suppose there exists a non-negative integer b such that the numbers $b+1, b+2, b+3, \dots, b+m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\{m_1, \dots, m_k\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \dots\}$.*

Let \mathcal{T} denote the set of all positive integers i such that every integer $j \geq i$ is expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \dots\}$. Obviously, $\mathcal{T} = \emptyset$ or $\mathcal{T} = [d, \infty) \cap \mathbb{N}$ for some positive integer d .

Corollary 3. *If the sequence $\{m_i\}_{i=1}^{\infty}$ is computable and the algorithm in Figure 7 terminates, then almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \dots\}$. In particular, if the sequence $\{m_i\}_{i=1}^{\infty}$ is computable and the algorithm in Figure 7 terminates, then the set \mathcal{T} is infinite.*

Fig. 7 The algorithm which uses Richert's lemma

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

13

Theorem 17. ([8, Theorem 2.3]). *If there exists $\varepsilon > 0$ such that the inequality $m_{i+1} \leq (2 - \varepsilon) \cdot m_i$ holds for every sufficiently large i , then the algorithm in Figure 7 terminates if and only if almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \dots\}$.*

Corollary 4. *If there exists $\varepsilon > 0$ such that the inequality $m_{i+1} \leq (2 - \varepsilon) \cdot m_i$ holds for every sufficiently large i , then the algorithm in Figure 7 terminates if and only if the set \mathcal{T} is infinite.*

We show how the algorithm in Figure 7 works for a concrete sequence $\{m_i\}_{i=1}^{\infty}$. Let $[\cdot]$ denote the integer part function. For a positive integer i , let $t_i = \frac{(i+19)^i + 19}{(i+19)! \cdot 2^i + 19}$, and let $m_i = [t_i]$.

Lemma 19. *The inequality $m_{i+1} \leq 2m_i$ holds for every positive integer i .*

Proof. For every positive integer i ,

$$\frac{m_i}{m_{i+1}} = \frac{[t_i]}{[t_{i+1}]} > \frac{t_i - 1}{t_{i+1}} = \frac{t_i}{t_{i+1}} - \frac{1}{t_{i+1}} \geq \frac{t_i}{t_{i+1}} - \frac{1}{t_2} = \\ 2 \cdot \frac{i+20}{i+19} \cdot \left(1 - \frac{1}{i+20}\right)^{i+20} - \frac{21! \cdot 2^{21}}{21^{21}} > 2 \cdot \left(1 - \frac{1}{21}\right)^{21} - \frac{21! \cdot 2^{21}}{21^{21}} = \frac{4087158528442715204485120000}{5842587018385982521381124421}$$

The last fraction was computed by *MuPAD* and is greater than $\frac{1}{2}$. \square

Theorem 18. *The algorithm in Figure 7 terminates for the sequence $\{m_i\}_{i=1}^{\infty}$.*

Proof. By Lemma 19, we take $k = 2$ as the initial value of k . The following *MuPAD* code

```
k:=2:
repeat
C:={floor((i+19)^(i+19)/((i+19)!*2^(i+19))) $i=1..k+1}:
A:={floor((i+19)^(i+19)/((i+19)!*2^(i+19))) $i=1..k}:
B:={A[1]}:
for i from 2 to nops(A) do
B:=B union {A[i]} union {B[j]+A[i] $j=1..nops(B)}:
end_for:
G:={y $y=B[1]-1..B[nops(B)]+1} minus B:
H:={G[n+1]-G[n] $n=1..nops(G)-1}:
k:=k+1:
until H[nops(H)]>C[nops(C)] end_repeat:
print(Unquoted, "Almost all positive integers are expressible"):
print(Unquoted, "as a sum of one or more distinct elements of"):
print(Unquoted, "the set {m_1,m_2,m_3,...}. The set T is infinite."):
```

implements the algorithm in Figure 7 because *MuPAD* automatically orders every finite set of integers and the inequality $H[nops(H)] > C[nops(C)]$ holds true if and only if the set B contains m_{k+1} consecutive integers. The author checked that the execution of the code terminates. \square

MuPAD is a general-purpose computer algebra system. *MuPAD* is no longer available as a stand-alone computer program, but only as the *Symbolic Math Toolbox* of *MATLAB*. Fortunately, the presented code can be executed by *MuPAD Light*, which was offered for free for research and education until autumn 2005.

References

[1] C. H. Bennett, *Chaitin's Omega*, in: *Fractal music, hypercards, and more ...* (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307–319.

For which sets $X \subseteq \mathbb{N}$ the infinity of X is equivalent to the existence in X ...

14

- [2] C. K. Caldwell and Y. Gallot, *On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$* , Math. Comp. 71 (2002), no. 237, 441–448, <http://doi.org/10.1090/S0025-5718-01-01315-1>.
- [3] C. S. Calude, H. Jürgensen, S. Legg, *Solving problems with finite test sets*, in: Finite versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Păun, eds.), 39–52, Springer, London, 2000.
- [4] N. C. A. da Costa and F. A. Doria, *On the foundations of science (LIVRO): essays, first series*, E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
- [5] M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution*; in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., Providence, RI, 1976, 323–378, <http://dx.doi.org/10.1090/pspum/028.2>; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 269–324.
- [6] R. E. Dressler, A. Mąkowski, T. Parker, *Sums of distinct primes from congruence classes modulo 12*, Math. Comp. 28 (1974), 651–652.
- [7] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [8] T. Kløve, *Sums of distinct elements from a fixed set*, Math. Comp. 29 (1975), 1144–1149.
- [9] J.-M. De Koninck and F. Luca, *Analytic number theory: Exploring the anatomy of integers*, American Mathematical Society, Providence, RI, 2012.
- [10] M. Křížek, F. Luca, L. Somer, *17 lectures on Fermat numbers: from number theory to geometry*, Springer, New York, 2001.
- [11] Yu. Matiyasevich, *Existence of noneffectivizable estimates in the theory of exponential Diophantine equations*, J. Sov. Math. vol. 8, no. 3, 1977, 299–311, <http://dx.doi.org/10.1007/bf01091549>.
- [12] Yu. Matiyasevich, *Hilbert's tenth problem*, MIT Press, Cambridge, MA, 1993.
- [13] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done*; in: Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 1–47, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000, <http://dx.doi.org/10.1090/conm/270>.
- [14] Yu. Matiyasevich, *Towards finite-fold Diophantine representations*, J. Math. Sci. (N. Y.) vol. 171, no. 6, 2010, 745–752, <http://dx.doi.org/10.1007%2Fs10958-010-0179-4>.
- [15] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [16] P. Odifreddi, *Classical recursion theory: the theory of functions and sets of natural numbers*, North-Holland, Amsterdam, 1989.
- [17] M. Overholt, *The Diophantine equation $n! + 1 = m^2$* , Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [18] H.-E. Richert, *Über Zerlegungen in paarweise verschiedene Zahlen*, Norsk Mat. Tidsskr. 31 (1949), 120–122.
- [19] J. Robinson, *Definability and decision problems in arithmetic*, J. Symbolic Logic 14 (1949), no. 2, 98–114, <http://dx.doi.org/10.2307/2266510>; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 7–23.
- [20] W. Sierpiński, *Elementary theory of numbers*, 2nd ed. (ed. A. Schinzel), PWN – Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.

- [21] Th. Skolem, *Diophantische Gleichungen*, Julius Springer, Berlin, 1938.
- [22] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, A002981, *Numbers n such that $n! + 1$ is prime*, <http://oeis.org/A002981>.
- [23] A. Tyszka, *Conjecturally computable functions which unconditionally do not have any finite-fold Diophantine representation*, Inform. Process. Lett. 113 (2013), no. 19–21, 719–722, [http://dx.doi.org/10.1016/j.IPL.2013.07.004](http://dx.doi.org/10.1016/j IPL.2013.07.004).
- [24] A. Tyszka, *Is there a computable upper bound for the height of a solution of a Diophantine equation with a unique solution in positive integers?*, Open Comput. Sci. 7 (2017), no. 1, 17–23, <http://doi.org/10.1515/comp-2017-0003>.
- [25] A. Tyszka, *A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions*, Open Comput. Sci. 8 (2018), no. 1, 109–114, <http://dx.doi.org/10.1515/comp-2018-0012>.
- [26] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [27] A. R. Woods, *Some problems in logic and number theory, and their connections*, Ph.D. thesis, University of Manchester, Manchester, 1981, <http://staffhome.ecm.uwa.edu.au/~00017049/thesis/WoodsPhDThesis.pdf>; reprinted in: *New studies in weak arithmetics* (eds. P. Cégielski, C. Cornaros, C. Dimitracopoulos), CSLI Lecture Notes, vol. 211, 271–388, CSLI Publ., Stanford, CA, 2013.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl