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On sets X C N for which we know an algorithm that computes a
threshold number #(X) € N such that X is infinite if and only if X
contains an element greater than #(X)

Apoloniusz Tyszka

Abstract

We define computable functions g,z : N \ {0} — N\ {0}. For an integer n > 3, let ¥, denote the fol-
lowing statement: if a system S C {x,-! =x:(ke{l,...,nHAG # k)}U{x,--xj =x 0, j,kedl,.. .,n}}
has only finitely many solutions in positive integers xi, ..., X,, then each such solution (x, ..., x,) sat-
isfies xi,...,x, < g(n). For a positive integer n, let I', denote the following statement: if a system
S C {x,- “Xj=x 1Lk € {1,...,n}} U {sz, =x: Lke€ {1,...,n}} has only finitely many solu-
tions in positive integers X1, . . ., X, then each such solution (x1, ..., x,) satisfies x1, ..., X, < h(n). We
prove: (1) if the equation x! + 1 = y? has only finitely many solutions in positive integers, then the
statement W guarantees that each such solution (x, y) belongs to the set {(4,5), (5, 11),(7,71)}, (2) the
statement Wy proves the following implication: if there exists a positive integer x such that x*> + 1 is
prime and x> + 1 > g(7), then there are infinitely many primes of the form n” + 1, (3) the statement ¥y
proves the following implication: if there exists an integer x > g(6) such that x! + 1 is prime, then
there are infinitely many primes of the form n! + 1, (4) the statement ¥ ¢ proves the following implica-
tion: if there exists a twin prime greater than g(14), then there are infinitely many twin primes, (5) the
statement I'j3 proves the following implication: if n € N\ {0} and 22}1 + 1 is composite and greater

than /(12), then 22n + 1 is composite for infinitely many positive integers n.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation, composite Fermat numbers,
Dickson’s conjecture, halting of a Turing machine, prime numbers of the form n? + 1, prime numbers of
the form n! + 1, Richert’s lemma, twin prime conjecture.
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1 Introduction

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture
states that there are infinitely many twin primes, see [15} p. 39]. The following statement
(1) "For every non-negative integer n there exist prime exist numbers p and g
such that p + 2 = g and p € [107, 10" * Ly
is a I1; statement which strengthens the twin prime conjecture, see [3} p. 43], cf. [5, pp. 337-338]. State-
ment (1) is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathematical
conjectures can be settled indirectly by proving stronger I1; statements, see [1].

In this article, we study sets X C N for which we know an algorithm that computes a threshold
number #(X) € N such that X is infinite if and only if X contains an element greater than #(X). If X
is computable, then this property implies that the infinity of X is equivalent to the halting of a Tur-
ing machine. If a set X €N is empty or infinite, then any non-negative integer m is a threshold num-
ber of X. If a set X C N is non-empty and finite, then the all threshold numbers of X form the set
{max(X), max(X) + 1, max(X) + 2,...}.

Theorem 1. (/4| p. 35]). There exists a polynomial D(x1, . .., X,;) with integer coefficients such that if ZFC
is arithmetically consistent, then the sentences "The equation D(xy, ..., X,) = 0 is solvable in non-negative

integers" and "The equation D(xi,...,Xx,) = 0 is not solvable in non-negative integers are not provable
in ZFC.
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Let Y denote the set of all non-negative integers k such that the equation D(x,...,x;) = 0 has no
solutions in {0, ..., k}". Since the set {0,...,k}" is finite, we know an algorithm which for every n € N
decides whether or not n € Y. Let y: N”*! — N be a computable bijection, and let & C N”"*! be the
solution set of the equation D(xi, ..., X») + 0 - x,+1 = 0. Theorem [I]implies Theorems 2] and 3]

Theorem 2. If ZFC is arithmetically consistent, then for every n € N the sentences "n is a threshold number
of Y" and "n is not a threshold number of Y" are not provable in ZFC.

Theorem 3. We know an algorithm which for every n € N decides whether or not n € y(E). The set y(E)
is empty or infinite. In both cases, every non-negative integer n is a threshold number of y(&). If ZFC

is arithmetically consistent, then the sentences "y(E) is empty", "y(&) is not empty", "y(&) is finite", and
"y(&) is infinite" are not provable in ZFC.

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recur-
sively enumerable, see [[16, p. 234].

Corollary 1. If an algorithm Alg; for every recursive set R C N finds a non-negative integer Alg;(R),
then there exists a finite set W C N such that ‘W N [Algy(W) + 1,00) # 0. If an algorithm Alg;, for
every recursively enumerable set R C N finds a non-negative integer A1g,(R), then there exists a finite set
W C N such that W N [Algy (‘W) + 1, 00) # 0.

2 Basic definitions and lemmas

Let f(1) =2, f(2) =4, and let f(n+ 1) = f(n)! for every integer n > 2. Let h(1) = 1, and let h(n + 1) =
h
22 ®) for every positive integer n. Let g(3) = 4, and let g(n + 1) = g(n)! for every integer n > 3. For an

integer n > 3, let U,, denote the following system of equations:

Vie{l,...,n—l}\{2}x,~! = Xi+1
X]1 X2 = X3
X2-X2 = X3

The diagram in Figure 1 illustrates the construction of the system U,,.

X1
[} X1 X = X3
!
squaring ! !
> > s > >
X2 X3 X4 Xn—-1 Xn

Fig. 1 Construction of the system U,

Lemma 1. For every integer n > 3, the system U, has exactly two solutions in positive integers, namely
(L.... 1) and (2,2,8(3).....gm)).

Let
Bn:{xi!:xk: (i,ke{1,...,n})/\(i¢k)}U{xi-xj:xk: i,j,ke{l,...,n}}

For an integer n > 3, let ¥, denote the following statement: if a system S C B, has only finitely many
solutions in positive integers xi, ..., Xy, then each such solution (x1, ..., x,) satisfies x1, ..., x, < g(n). The
statement ¥, says that for subsystems of B, the largest known solution is indeed the largest possible.

Hypothesis 1. The statements VY3, ...,V ¢ are true.
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Theorem 4. Every statement P, is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B, has a finite number of subsystems. O
Theorem 5. For every statement V,,, the bound g(n) cannot be decreased.
Proof. 1t follows from Lemma [I] because U, C B,,. O
Lemma 2. For every positive integers x and y, x! -y = y! if and only if
(x+l=yVvx=y=1
Lemma 3. For every positive integers x and y, x - I'(x) = I'(y) if and only if
(x+l=y)vix=y=1
Lemma 4. For every positive integers x and y, x + 1 =y if and only if
A #At-y=yh)
Lemma 5. For every non-negative integers b and ¢, b + 1 = c if and only if 22b . 22b = 22C.

Lemma 6. (Wilson’s theorem, [[7, p. 89]). For every integer x > 2, x is prime if and only if x divides
x=-D!'+1.
3 Heuristic arguments against the statement Vn € N \ {0, 1,2} ¥,

Let
Go=1{xi-xj=xc: i,,ke{l,...,n)}U{x;+1=x: i,ke{l,...,n}}

Hypothesis 2. (/25| p. 109]. If a system S C G, has only finitely many solutions in non-negative integers

X1, ..., X, then each such solution (xi,..., x,) satisfies xi, ..., X, < h(2n).
Hypothesis 3. If a system S C G, has only finitely many solutions in positive integers xi, .. ., X, then each
such solution (xy, ..., x,) satisfies x1,...,x, < f(2n).

Observations [[]and [2] heuristically justify Hypothesis 3]

Observation 1. (c¢f. [25] p. 110, Observation 1]). For every system S C G, which involves all the variables
X1,...,Xn, the following new system

( g {x,--x,-=xk}]um!=yk:ke{l,...,n}}u U 0#x v me=y)

Xi*Xj=Xk€ES Xi+1=xeS
is equivalent to S. If the system S has only finitely many solutions in positive integers xi, ..., X,, then the
new system has only finitely many solutions in positive integers X1, ..., Xy, Y1» -+ - Yn-
Proof. 1t follows from Lemma 4] O

Observation 2. The equation x1! = x1 has exactly two solutions in positive integers, namely x; = 1 and

_ xl! X1
x1 = f(Q1). The system{ X o

(f(1), £(2)). For every integer n > 3, the following system

has exactly two solutions in positive integers, namely (1, 1) and

X1! = X1
X1 - X1 X2
Vie(2,...,n—1} x;!

Xi+1

has exactly two solutions in positive integers, namely (1,...,1) and (f(1),..., f(n)).
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For a positive integer n, let ®,, denote the following statement: if a system
Scixi-xj=x: L pke{l,...,nUlx! =xc: i,ke{l,...,nJU{l #x: kell,...,n}}
has only finitely many solutions in positive integers X\, . . . , Xn, then each such solution (x1, ..., x,) satisfies
X1y .y Xp < f(n).
Theorem 6. The statement ¥n € N \ {0} @, implies Hypothesis 3]
Proof. 1t follows from Lemma O
Let Rng denote the class of all rings K that extend Z, and let
E,={1=x: ke{l,...,n)}U{xi+x;=xc: i, ,ke{l,....nU{x;-xj=x¢: i, j,kefl,...,n}}

Th. Skolem proved that every Diophantine equation can be algorithmically transformed into an equivalent
system of Diophantine equations of degree at most 2, see [21} pp. 2-3] and [12, pp. 3—4]. The following
result strengthens Skolem’s theorem.

Lemma 7. (/23 p. 720]). Let D(xy,...,xp) € Z[x1,...,xpl. Assume that deg(D,x;) > 1 for each
ie{l,...,p}. We can compute a positive integer n > p and a system T C E, which satisfies the follow-
ing two conditions:

Condition 1. IfK € Rng U {N, N\ {0}}, then
Vi1 % €K (DG, %) =0 &= Axper... By € K (Ris. ., 5o pats ..o, Xy) solves T)

Condition 2. IfK € Rng U{N, N\ {0}, then for each %1, ...,%, € Kwith D(X,...,%,) = 0, there exists
a unique tuple (%41, ..., %,) € K"™F such that the tuple (%1, ...,%Xp, Xps1,...,X,) solves T.

Conditions 1 and 2 imply that for each K € Rng U {N, N\ {0}}, the equation D(xy,...,x,) =0 and the
system T have the same number of solutions in K.

Let @, B, and y denote variables.

Lemma 8. (/19 p. 100]) For each positive integers x,y,z, x +y = z if and only if
(zx+ Dy+ 1) =22(xy+ 1)+ 1

Corollary 2. We can express the equation x +y = z as an equivalent system ¥, where F involves x,y,z
and 9 new variables, and where & consists of equations of the forms a + 1 =yand a - = .

Proof. The new 9 variables express the following polynomials:

o, o+l 7y, o+l A oxy, xy+l, POy+1), POy+1)+1

O

Lemma 9. (¢f. p. 110, Lemma 4]). Let D(x1,...,xp) € Z[x1,...,Xp]. Assume that deg(D, x;) > 1
foreachi€{l,...,p}. We can compute a positive integer n > p and a system T C G, which satisfies the
following two conditions:

Condition 3. For every positive integers X1, . .., Xp,
D(%y,...,%)) =0 & d%p41,..., %, e N\ {0} (X1,...,Xp, Xps1,...,X,) solves T

Condition 4. If positive integers X1,..., X, satisfy D(X1,...,X,) =0, then there exists a unique tuple
(Xp+1s-- ., Xn) € W\ {0 such that the tuple (%1, ..., X,, Xps1,..., %) solves T.

Conditions 3 and 4 imply that the equation D(xy, ..., x,) = 0 and the system T have the same number of
solutions in positive integers.
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Proof. Let the system T be given by Lemma|[7] We replace in T each equation of the form 1 = x; by the
equation x - x; = x;. Next, we apply Corollary [2| and replace in T’ each equation of the form x; + x; = x;
by an equivalent system of equations of the forms ¢+ 1 =yand -8 =y. O

Theorem 7. Hypothesis|3|implies that there is an algorithm which takes as input a Diophantine equation,
and returns an integer such that this integer is greater than the solutions in positive integers, if these
solutions form a finite set.

Proof. It follows from Lemma 9] m]

Open Problem 1. Is there an algorithm which takes as input a Diophantine equation, and returns an
integer such that this integer is greater than the moduli of integer (non-negative integer, positive integer)
solutions, if the solution set is finite?

Matiyasevich’s conjecture on finite-fold Diophantine representations ([14]) implies a negative answer
to Open Problem [T} see [13| p. 42].

The statement Vn € N \ {0} @, implies that there is an algorithm which takes as input a factorial Dio-
phantine equation, and returns an integer such that this integer is greater than the solutions in positive
integers, if these solutions form a finite set. This conclusion is a bit strange because a computable upper
bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite
number of solutions, see [[11}, p. 300].

4 Brocard’s problem

Let A denote the following system of equations:

x1! = x
X! = x3
)CS! = X6
X4+X4 = X5
X3:X5 = Xe

Lemma 2] and the diagram in Figure 2 explain the construction of the system A.

! X +1 X5 squaring
X] —— - m === == - X4
or X, = X5 = 1

v v

X3 | X3 X5 = X6 | Xg

Fig. 2 Construction of the system A

Lemma 10. For every x1,x4 € N\ {0, 1}, the system A is solvable in positive integers x», x3, X5, X¢ if
and only if x;! +1 = xi. In this case, the integers x», X3, X5, Xg are uniquely determined by the following

equalities:
x2 = xp!
X3 = (x1 !)!
x5 = xp!+1
X6 = (x!+1)!

Proof. 1t follows from Lemma O
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It is conjectured that x! + 1 is a perfect square only for x € {4,5,7}, see [26} p. 297]. A weak form of
Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y?, see [17].

Theorem 8. If the equation x|!+1 = xi has only finitely many solutions in positive integers, then the
statement WYq guarantees that each such solution (x1, x4) belongs to the set {(4,5), (5, 11),(7,71)}.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;! + 1 = xi. Then,

x1, x4 € N\ {0, 1}. By Lemma[I0, the system A is solvable in positive integers x7, x3, Xs, X¢. Since A C B,
the statement W¢ implies that xg = (x1! + 1)! < g(6) = g(5)!. Hence, x1! + 1 < g(5) = g(4)!. Consequently,
x; <g@)=24.1f x; € {1,...,23}, then x;! + 1 is a perfect square only for x| € {4,5,7}. O

5 Are there infinitely many prime numbers of the form »n> + 1?

Let B denote the following system of equations:

XZ! = X3
x3! = x4
)C5! = X6
xg! = xo
XX = X
X3+ X5 = X6
Xq4-Xg = X9
X5:-X7 = X8

Lemmal2] and the diagram in Figure 3 explain the construction of the system B.

squaring x; +1 Xs !
X ————————— ) ---mmmmmm > > X6

or x, =x5=1
X3 X5 = Xg
X5+ X7 = X3

X3 F======mmmm== » Xg
or x3=xg=1

v v

X4 | X4 - Xg = Xo | Xog

Fig. 3 Construction of the system 8

Lemma 11. For every integer x1 > 2, the system B is solvable in positive integers x3, . .., x9 if and only if
x% + 1 is prime. In this case, the integers xy, ..., X9 are uniquely determined by the following equalities:

X, = xf

X3 = (x%)!

xo= (D!

X5 = x% +1

x6 = (x7+ D!

o = (x%z)! +1

xp+1
xg = (D)+1

X9 = (D) +1)!
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Proof. By Lemmal[2] for every integer x; > 2, the system 3 is solvable in positive integers x», . . ., xg if and
only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemmafollows from Lemma@ ]
Lemma 12. There are only finitely many tuples (xi,...,x9) € (N\ {0})? which solve the system B and
satisfy x; = 1.

Proof. 1f a tuple (xq,...,x9) € N\ {0})? solves the system B and x; = 1, then xq,...,x9 < 2. Indeed,
x1 = 1 implies that x, = x% = 1. Hence, for example, x3 = xp! = 1. Therefore, xg = x3+1 =2 or xg = 1.
Consequently, xg = xg! < 2. O

Edmund Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
(15} pp. 37-38].

Theorem 9. The statement Yy proves the following implication: if there exists an integer x| > 2 such that
x% + 1 is prime and greater than g(7), then there are infinitely many primes of the form n*> + 1.

Proof. Suppose that the antecedent holds. By Lemmalldl there exists a unique tuple
(x2,...,x9) € (N\ {O})® such that the tuple (xi,x2,...,Xx9) solves the system $. Since x% +1>g(7),
we obtain that x% > g(7). Hence, (x%)! > g(7)! = g(8). Consequently,

x9 = (D! + D! > (28) + 1! > ¢(8)! = g(9)

Since B C By, the statement Wg and the inequality x9 > g(9) imply that the system B has infinitely many
solutions (xp, ..., x9) € (N \ {0})°. According to Lemmas [[T]and[12] there are infinitely many primes of the
form n? + 1. m]

6 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443] and [22].

Theorem 10. The statement Yy proves the following implication: if there exists an integer x; > g(6) such
that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. We leave the analogous proof to the reader. m|

7 The twin prime conjecture and Dickson’s conjecture

Let C denote the following system of equations:

xl! = X2
X! = x3
X4! = X5
X! = x7
X7! = X3
xo! = Xy
x2! = xi3
xis! = xi6
X2X4 = X5
X5:X6 = X7
X7+X9 = X10
X4-X11 = X12
X3-X12 = X13
X9 - X14 = Xi5
X8+ X15 = Xl

Lemmal2] and the diagram in Figure 4 explain the construction of the system C.
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— Xs — X10
X2 X4 = X5 | & X7 * X9 = X10 e
| |
+1 X4 +1 X6 +1
DI e o b Y Xog
OI')C1:X4:1 OI')C4:)C6:1 OI‘X6:)C9:1
! !
+1 +1
X)F========mm=== » X12 X7 F=======mmm== » X15
OI'X2:X12:1 orx7=x15:1
! ! ! !
Fig. 4 Construction of the system C
Lemma 13. For every x4,x € N\{0,1,2}, the system C is solvable in positive integers

X1, X2, X3, X5, X6, X7, X8, X10> X11, X12, X13, X14, X15, X16 if and only if x4 and x9 are prime and x4 + 2 = x9. In
this case, the integers x1, X3, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 are uniquely determined by the
following equalities:

X1 = X4 -1

X = (-1

x3 = (g —DH!

xXs = xg4!

X6 = Xx9—1

x7 = (x—1)!

xg = ((xo—DH!
X10 = Xo!

oy = Gazliel
X2 = (X4 - 1)! +1
x1i3 = (u-Dr+ D!
s = @Dl
X15 = (X9 - 1)! +1
X16 = ((Xg - 1)! + 1)!

Proof. By Lemma@ for every x4, x9 € N\ {0, 1, 2}, the system C is solvable in positive integers xi, x, X3,
X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 if and only if

(x4 +2 = X9) A (x4|(x4 — D!+ 1) A (x9|(x9 — D!+ 1)

Hence, the claim of Lemma [13]|follows from Lemma[6] i

Lemma 14. There are only finitely many tuples (x1,...,x16) € (N \ {ON'6 which solve the system C and

satisfy
(x4 €{1,2D) V (x9 € {1,2})
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Proof. If atuple (xq,...,x16) € (N\ {O})16 solves the system C and
(xg €{1,2}) V (x9 € {1,2})

then xp, ..., x;¢ < 7!. Indeed, for example, if x4 = 2 then x¢ = x4 + 1 = 3. Hence, x7 = x¢! = 6. Therefore,
x15 = x7 + 1 = 7. Consequently, x;6 = x15! = 7. O

Theorem 11. The statement ¥4 proves the following implication: (*) if there exists a twin prime greater
than g(14), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x4 and x9 such that
X9 = x4 +2 > g(14). Hence, x4,x9 € N\{0,1,2}. By Lemma @ there exists a unique tuple
(x1, x2, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16) € (N \ {0})14 such that the tuple (x1,...,x16) solves
the system C. Since x9 > g(14), we obtain that xg9 — 1 > g(14). Therefore, (x9 — 1)! > g(14)! = g(15).
Hence, (xg — 1)! + 1 > g(15). Consequently,

X16 = ((xo = D! + 1) > g(15)! = g(16)

Since C C Bjg, the statement ¥ ¢ and the inequality x;¢ > g(16) imply that the system C has infinitely many
solutions in positive integers xi, ..., xj6. According to Lemmas [I3]and[14] there are infinitely many twin
primes. O

Let P(x) denote the predicate "x is a prime number". Dickson’s conjecture ([15, p. 36], [27, p. 109])
implies that the existential theory of (N, =, +, P) is decidable, see Theorem 2, p. 109]. For a positive
integer n, let ®, denote the following statement: for every system S C {x; + 1 = x; : i,j € {1,...,n}} U
{P(x;) : i €{l,...,n}} the solvability of S in non-negative integers is decidable.

Lemma 15. [f the existential theory of (N, =, +,P) is decidable, then the statements ®,, are true.
Proof. For every non-negative integers x and y, x + 1 = y if and only if
du,veN (u+u=v) APWAX+u=y))
O

Theorem 12. The conjunction of the implication (*) and the statement ®g(14)42 implies that the twin prime
conjecture is decidable.

Proof. By the statement @g(14)+2, we can decide the truth of the sentence
Axy . Axgaan (Vi€ (1,0, g(04) + 1) X+ 1= xi41) A POrg4) A P(xg1a02)) )
If sentence (2) is false, then the twin prime conjecture is false. If sentence (2) is true, then there exists a

twin prime greater than g(14). In this case, the twin prime conjecture follows from Theorem TT} O

8 A hypothesis which implies that any prime number p > 24 proves that
there are infinitely many prime numbers

For a positive integer n, let I'(n) denote (n — 1)!. Let A(5) = I'(5), and let A(n + 1) = I'(A(n)) for every
integer n > 5. For an integer n > 5, let J,, denote the following system of equations:

Viefl,...,n=D\ {38} T(x) = xin
X1X1 = X4
X2+X3 = X5

Lemma 3]and the diagram in Figure 5 explain the construction of the system 7.
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X1

or x2:x4:1

I r

X3V | X2 X3 = X5 > o o o > >
X5 X6 Xn—1 X

Fig. 5 Construction of the system 7},

Observation 3. For every integer n > 5, the system J,, has exactly two solutions in positive integers, namely
(1,...,1) and (5,24,23!,25, A(5), . . ., A(n)).

For an integer n > 5, let A, denote the following statement: if a system S C {F(xi) = x; : I,k €

{1,... ,n}} U {x,- Xj=xc i kedl, ..., n}} has only finitely many solutions in positive integers Xy, . . ., Xp,
then each such solution (x1, ..., x,) satisfies xy, ..., X, < A(n).

Hypothesis 4. The statements As, . .., A4 are true.

Lemmas [3] and [6] imply that the statements A, have essentially the same consequences as the state-
ments ¥,,.

Theorem 13. The statement Ag implies that any prime number p > 24 proves that there are infinitely many
prime numbers.

Proof. It follows from Lemmas [3]and [§] We leave the details to the reader. o

9 Are there infinitely many composite Fermat numbers?

n n
Integers of the form 22" 4+ 1 are called Fermat numbers. Primes of the form 22 + 1 are called Fermat

n
primes, as Fermat conjectured that every integer of the form 227 4+ 1is prime, see [10, p. 1]. Fermat

20 21 22 23 24
correctly remarked that 2« +1=3,2 +1=5,2 +1=17,2¢ +1=257,and2* + 1 = 65537 are
all prime, see p. 1.

Open Problem 2. ([lI0, p. 159]). Are there infinitely many composite numbers of the form 22n +1?
Most mathematicians believe that 2211 + 1 is composite for every integer n > 5, see [9] p. 23].

. . . L on . .
Theorem 14. (/24)]). An unproven inequality stated in [24] implies that 2° + 1 is composite for every
integer n > 5.

Let X
Hy={xi-xj=xc: ivjkell.nfuf2?" =x:ike(l....n)

Lemma 16. The following subsystem of H,

X1-X1 = X1
. 2Xi
Yiell,...,n—1}2 = X4

has exactly one solution (x1, ..., x,) € N\ {0})", namely (h(1),..., h(n)).
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For a positive integer n, let I',, denote the following statement: if a system S C H, has only finitely many
solutions in positive integers xi, . . ., X, then each such solution (xy, ..., x,) satisfies x1, ..., X, < h(n). The
statement I, says that for subsystems of H,, the largest known solution is indeed the largest possible.

Hypothesis 5. The statements 'y, ...,I'13 are true.

The truth of the statement Vn € N\ {0} I, is doubtful because a computable upper bound on
non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of
solutions, see [11}, p. 300].

Lemma 17. For every positive integer n, the system H, has a finite number of subsystems.
Theorem 15. Every statement I',, is true with an unknown integer bound that depends on n.

Proof. 1t follows from Lemma [I7] o

Z
Theorem 16. The statement I'13 proves the following implication: if z € N\ {0} and 22° 4 1is composite
Z
and greater than h(12), then 22° 4 1is composite for infinitely many positive integers z.

Proof. Let us consider the equation
Z
G+ Dy+1) =22 +1 (3)

in positive integers. By Lemma [5] we can transform equation (3) into an equivalent system G which has
13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms « - 5 = y and

22a = v, see the diagram in Figure 6.

X x+1 y+1 y

()}
5
=
Qo

. . - . .

22( ) 22( ) 5 22( ) 22( )
g

22x squaring , 22x+ | 22y+ e squaring 22y
22() N 22 22
Z 2 2<°+1
squaring e
22 > 2271

Fig. 6 Construction of the system G
oz 0% . o
Since 2 + 1 > h(12), we obtain that 2 > h(13). By this, the statement I'j3 implies that the system G
has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat
numbers. |
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10 Subsets of N whose infinitude is unconditionally equivalent to the halting
of a Turing machine

The following lemma is known as Richert’s lemma.

Lemma 18. (/l6l], /18], [20, p. 152]). Let {m;}2, be an increasing sequence of positive integers such that for
some positive integer k the inequality miy1 < 2m; holds for all i > k. Suppose there exists a non-negative
integer b such that the numbers b+ 1, b+2, b+3, ..., b+ my are all expressible as sums of one or
more distinct elements of the set {my, ..., my}. Then every integer greater than b is expressible as a sum of
one or more distinct elements of the set {my,my,ms, . ..}.

Let 7 denote the set of all positive integers i such that every integer j > i is expressible as a sum of
one or more distinct elements of the set {m,my, ms,...}. Obviously, 7 =0 or 7 = [d, ) NN for some
positive integer d.

Corollary 3. If the sequence {m;}2, is computable and the algorithm in Figure 7 terminates, then almost
all positive integers are expressible as a sum of one or more distinct elements of the set {my,my,m3, ...}. In

particular, if the sequence {m;}° | is computable and the algorithm in Figure 7 terminates, then the set T is

infinite.

/ Input the smallest integer k > 2 such that /

the inequality m; , | < 2m; holds for all i >k

1
|k:=k+1|‘

A::{ml,...,mk}

1
B = {ml}

i:

B:= Bu{mi}U{B[j] +mj:je {1,...,card(B)}}

| G := (Imin(B) — 1, max(B) + 11N N) \ B|

I}

[H:=[Gln+11-Glnl: ne(l,... card(G) - 1}]|

I}

Is max(H) >my , 1?

No

set B contains my , | consecutive integers

(The answer is "YES” if and only if the )
Yes

ore distinct elements of the set {ml,mz,m3, .. } The set 7 is infinite.'

Fig. 7 The algorithm which uses Richert’s lemma

/ Print "Almost all positive integers are expressible as a sum of one or /
m 1]
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Theorem 17. ([8l Theorem 2.3]). If there exists & > 0 such that the inequality m;y1 < (2 — €) - m; holds for
every sufficiently large i, then the algorithm in Figure 7 terminates if and only if almost all positive integers
are expressible as a sum of one or more distinct elements of the set {my, my,ms,...}.

Corollary 4. If there exists € > 0 such that the inequality m;y < (2 — &) - m; holds for every sufficiently
large i, then the algorithm in Figure 7 terminates if and only if the set T is infinite.

We show how the algorithm in Figure 7 works for a concrete sequence {m;}°,. Let [-] denote the integer

part function. For a positive integer i, let t; = and let m; = [1;].

Lemma 19. The inequality m;.1 < 2m; holds for every positive integer i.
Proof. For every positive integer i,

mi_[ti]>tl~—1_t,- 1 >l‘,‘ 1

= = > =
Mmiy1 [ti] fivl tir1i tiy1 Ly B

i+20 L ] 1 1\ 211-221  4087158528442715204485120000
i+19 i+20 212! 21 2121 5842587018385982521381124421

The last fraction was computed by MuPAD and is greater than % |
Theorem 18. The algorithm in Figure 7 terminates for the sequence {m;};" |.
Proof. By Lemma[I9] we take k = 2 as the initial value of k. The following MuPAD code

k:=2:

repeat

C:={floor((i+19)A(i+19)/((i+19)!*2A(i+19))) $i=1..k+1}:
A:={floor((i+19)A(i+19)/((i+19)!*2A(i+19))) $i=1..k}:

B:={A[1]}:

for i from 2 to nops(A) do

B:=B union {A[i]} union {B[j]+A[i] $j=1..nops(B)}:

end_for:

G:={y $y=B[1]-1..B[nops(B)]+1} minus B:

H:={G[n+1]-G[n] $n=1..nops(G)-1}:

k:=k+1:

until H[nops(H)]>C[nops(C)] end_repeat:

print (Unquoted, "Almost all positive integers are expressible"):
print (Unquoted, "as a sum of one or more distinct elements of"):
print (Unquoted, "the set {m_1,m_2,m_3,...}. The set T is infinite."):

implements the algorithm in Figure 7 because MuPAD automatically orders every finite set of integers
and the inequality H[nops (H) ]>C[nops(C) ] holds true if and only if the set B contains my; consecutive
integers. The author checked that the execution of the code terminates. m|

MuPAD is a general-purpose computer algebra system. MuPAD is no longer available as a stand-alone
computer program, but only as the Symbolic Math Toolbox of MATLAB. Fortunately, the presented code
can be executed by MuPAD Light, which was offered for free for research and education until autumn 2005.
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