

1 Article

2

Spatial assessment of degraded lands for biofuel 3 production in Indonesia

4 Wanggi Jaung ^{1,*}, Edi Wiraguna ^{2,3}, Beni Okarda ⁴, Yustina Artati ⁴, Chun Sheng Goh ^{5,6},
5 Ramdhoni Syahru ³, Budi Leksono ⁷, Lilik Budi Prasetyo ³, Soo Min Lee ⁸ and Himlal Baral ⁴

6

7 ¹ Department of Biological Sciences, National University of Singapore, Singapore; dbsjw@nus.edu.sg8 ² University of Western Australia, Perth, Australia; ediwiraguna@gmail.com9 ³ Bogor Agricultural University, Bogor, Indonesia; ediwiraguna@gmail.com;

10 syahru.ramdhoni10@apps.ipb.ac.id; lbprastdp@yahoo.com

11 ⁴ Center for International Forestry Research, Bogor, Indonesia; b.okarda@cgiar.org; y.artati@cgiar.org;
h.baral@cgiar.org12 ⁵ Institute for the Advanced Studies for Sustainability, United Nations University, Tokyo, Japan;
gochunsheng@unu.edu13 ⁶ Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan;
gochunsheng@unu.edu14 ⁷ Center for Forest Biotechnology and Tree Improvement Research and Development, Yogyakarta,
Indonesia; boedyleksono@yahoo.com15 ⁸ National Institute of Forest Science, Seoul, Republic of Korea; lesoomin@korea.kr

16 * Correspondence: dbsjw@nus.edu.sg; Tel.: +65-9043-7565

22

23 **Abstract:** This study spatially estimates degraded lands in Indonesia that have limited functions for
24 food production, carbon storage, and conservation of biodiversity and native vegetation, and
25 examines their suitability to grow biodiesel species (*Calophyllum inophyllum*, *Pongamia pinnata* and
26 *Reutealis trisperma*) and biomass species (*Calliandra calothrysus* and *Gliricidia sepium*). Results showed
27 that Indonesia has ~3.5 million ha of degraded lands potentially suitable for these species. With the
28 all-five-species scenario, these lands had the potential to produce 1,105 PJ yr⁻¹ of biomass and 3 PJ
29 yr⁻¹ of biodiesel. With the biodiesel-only-species scenario, these lands showed the potential to
30 produce 10 PJ yr⁻¹ of biodiesel. Despite this energy potential, however, the land sizes were too small
31 to support economies of scale for biofuel production. The study findings contribute to identifying
32 lands with limited functions, modeling biofuel-species growth on regional lands and estimating
33 carbon stocks of restored degraded lands in Indonesia.

34

35 **Keywords:** degraded land; biodiesel; biomass; energy; Indonesia

36

1. Introduction

37

38 Bioenergy production from degraded lands might help society meet increasing energy
39 demands and secure a new source of renewable energy for its sustainability. These potential
40 benefits have attracted global attention to the feasibility of using degraded lands to produce
41 bioenergy [1]. In Indonesia, for example, energy demand is growing rapidly due to its urbanization,
42 economic growth and population increase [2]. For these reasons, the government of Indonesia set
43 ambitious targets in 2015 to increase its biodiesel and bioethanol consumption to 30% and 20%,
44 respectively, of total energy consumption by 2025 (Presidential Regulation No. 12/2015) [3]. Current
45 biofuel production in Indonesia, however, is far from meeting these targets. In 2016, biofuel
production was only 0.05% (or 3.66 billion liters) of the total fuel consumption for the year (or 70

46 billion liters) [3]. According to the Indonesian National Energy Council [4], moreover, its average
47 energy demand would increase by around 4.9% per year from 2015 to 2025. This surge in expected
48 demand has increased interest in the feasibility of using degraded lands to provide a new source of
49 renewable energy in Indonesia [5-8].

50 In order to realize these potential benefits, however, bioenergy production must be sustainable
51 in various ways. The expansion of biofuel production can result in reduced food production, which
52 is particularly the case for palm oil. Indonesia is the largest palm oil producer and exporter in the
53 world, and palm oil is a major feedstock for the production of liquid biofuels in the country [9]. In
54 addition, the expansion of biofuel production through conversion of rainforests and peatlands
55 would release large amounts of carbon from both aboveground and belowground reservoirs and
56 create a biofuel carbon debt [10-11]. Such expansion could also threaten—or destroy—rich
57 biodiversity and native ecosystems in these lands [12]. Thus, for renewable energy to be
58 sustainable, biofuel production from degraded lands should avoid compromising food production,
59 carbon stocks, biodiversity and native vegetation. In many studies on degraded lands, however,
60 data on the availability of such lands and their feasibility to deliver sustainable biofuel cannot be
61 compared directly due to the diverging definitions of degraded lands used [1] and because of the
62 many potential biofuel species available in Indonesia [5-8].

63 To reduce this knowledge gap, this study: (1) assesses degraded lands that have limited
64 functions to produce food, to sequester carbon stocks on land, and to maintain vegetation and
65 biodiversity, by adopting the definition of degraded lands from the Indonesia Climate Change
66 Center (ICCC)[5]; and (2) examines the suitability of the degraded lands to grow key species for
67 biodiesel production (*Calophyllum inophyllum*, *Pongamia pinnata* and *Reutealis trisperma*) and biomass
68 production (*Calliandra calothrysus* and *Gliricidia sepium*). Indeed, biofuel production from degraded
69 lands needs to overcome various obstacles as well, including improving the capacity of refineries,
70 building business models for landowners and refineries, securing the property rights of the land,
71 resolving potential conflicts among stakeholders, encouraging smallholder participation, competing
72 with low-price fuels, and mitigating potential invasion by biofuel species [5,7,8,13-15]. However,
73 investigation of these challenges first requires an understanding of the degraded lands available for
74 biofuel production and potential biofuel species. Thus, this study analyzes these lands and species
75 and estimates their potential energy production.

76 2. Species and land for biofuel production in Indonesia

77 2.1. Potential biofuel species in Indonesia

78 While many energy crops exist in Indonesia, here we assessed five tree species with the potential
79 for biodiesel production (i.e. *C. inophyllum*, *P. pinnata* and *R. trisperma*) or biomass production (i.e. *C.*
80 *calothrysus* and *G. sepium*) on degraded lands [8, 17-21]. These species are native to Indonesia and
81 tolerant to lands with harsh conditions that are normally unsuitable for agriculture; thus, these
82 species have the capacity to not compete with food production (Table 1). The study intentionally
83 excluded bamboo and other non-woody species as it mainly focuses on tree species for bioenergy
84 production. Oil palm was excluded due to its large potential to compromise food production.
85
86
87
88
89
90
91
92
93

94

Table 1. Potential biofuel species in Indonesia.

Species	Indonesian name	Tolerable condition	Local use	Biomass type	Food consumption
<i>C. calothrysus</i> ¹	Kaliandra	Drought Acidic soil Sandy soil	Firewood and animal feedstock	Wood	No
<i>C. inophyllum</i> ²	Nyamplung	Salinity Sandy soil	Wood, medicine, and cosmetics	Seed oil	No
<i>G. sepium</i> ³	Gamal	Acidic soil	Firewood, animal feedstock, medicine	Wood or seed oil	No
<i>P. pinnata</i> ⁴	Malapari	Salinity Water logging Drought	Wood, firewood and medicine	Seed oil	No
<i>R. trisperma</i> ⁵	Kemiri sunan	Sloping land	Pesticide and fertilizer	Seed oil	No

95

¹ [19, 22-25].

96

² [11, 20, 26-28].

97

³ [23, 29-32].

98

⁴ [16, 33-37].

99

⁵ [24, 38-40].

100 *C. calothrysus* is a fast-growing shrub of 5–6 m height [24]. In Indonesia, it is called “kaliandra”
 101 and is used for firewood and land restoration due to its fast growth and good adaptability to a wide
 102 range of habitats [18, 23]. The shrub is also used for animal feed [25, 41]. It grows in various soil types,
 103 including sandy clays and acid soil [22, 42]. There is emerging interest in biofuel production from *C. calothrysus*
 104 since it is highly cellulosic (46–48%), fast-growing, suitable for a short rotation and
 105 adaptable to diverse habitats [18, 22-23, 43-44].

106 *C. inophyllum* is a medium-to-large tree of 8–20 m height [17]. Called “nyamplung” in Indonesia,
 107 the tree is used for its wood (e.g. building canoes) and seed oil (medicines and cosmetics) [17, 26].
 108 The oil is slightly toxic for human consumption [17]. As it tolerates windy and sandy conditions, its
 109 major habitats include coastal areas, but it also grows inland at high elevations [11, 26]. Several
 110 studies have analyzed biofuel production from *C. inophyllum* oil because this species can yield up
 111 to 20 tons of inedible oil per hectare [17, 19-20, 26-28].

112 *G. sepium* is a medium-sized species of 2–15 m height [24]. In Indonesia, it is called “gamal” and
 113 is used for firewood, cattle feedstock and medicine [23, 31-32]. Its leaves, fruits, seeds, roots and bark
 114 can be toxic for human consumption [32, 45]. It tolerates various soil types, including slightly saline
 115 and clay soils [32]. There is interest in biofuel production from *G. sepium* as it not only grows fast and
 116 tolerates harsh soil conditions, but also has low moisture content, high energy potency, and high
 117 carbon and volatile content [23, 32].

118 *P. pinnata* is a fast-growing leguminous tree of 12–15 m height [46]. In Indonesia, it is called
 119 “malapari” and is used for wood, firewood and medicine [33-34, 37]. However, all parts of the plant
 120 are toxic for human consumption [47]. It tolerates salinity and drought and grows in a wide range of
 121 habitats from humid tropical and subtropical regions to cooler and semiarid zones [48]. Many studies

122 have analyzed biofuel production from *P. pinnata* as it is nitrogen-fixing, tolerates various habitats
123 and has a high oil yield [16, 37, 48-49].

124 *R. trisperma* is a tree of 10–15 m height [50]. In Indonesia, it is called “kemiri sunan” and is used
125 as a natural pesticide and fertilizer [40]. It is also used for land rehabilitation owing to its capacity to
126 mitigate land erosion. Although one tree can yield about 25–30 kg of seeds per year, they are toxic
127 and inedible [50-51]. There is interest in biofuel production from *R. trisperma* oil because of its high
128 oil yield [40, 52-53].

129

130 *2.2. Lands available for producing biomass in Indonesia*

131 Several studies analyze available lands for biofuel production in Indonesia (Table 2). The studies
132 employ different definitions of lands (e.g. degraded or suitable lands) and various methodologies
133 (e.g. spatial or policy analysis), resulting in different land estimates. Several studies investigate
134 degraded land for palm oil plantations. Colchester et al. (2006) indicate there are about 27 million
135 hectares (Mha) of unproductive degraded forestlands in Indonesia [54]. Gingold et al. (2012) show
136 about 7 Mha of degraded lands in the provinces of West and Central Kalimantan [55]. Harahap et al.
137 (2017) demonstrate about 20.9 Mha of degraded land in Indonesia [9]. Other studies investigate non-
138 palm-oil species for potential biofuel production in Indonesia. ICCC (2014) identifies about 23.78 Mha
139 of degraded lands suitable for bioethanol species, such as sugarcane, cassava, sweet sorghum, corn
140 and sago [5]. Milbrandt and Overend (2009) identify about 3.7 Mha of marginal lands for biomass
141 production [56]. Nijssen et al. (2012) suggest approximately 30 Mha of lands with degraded soils for
142 production of grasses and woody crops [57]. Wulandari et al. (2014) show about 0.9 Mha of
143 potentially suitable lands on which to grow *R. trisperma* in the province of West Java [6]. None of
144 these studies, however, examine the availability of lands that are degraded but potentially suitable
145 for growing *C. calothrysus*, *C. inophyllum*, *G. sepium*, *P. pinnata* or *R. trisperma* in Indonesia. Although
146 Wulandari et al. (2014) analyze *R. trisperma*, the study only focuses on the province of West Java, and
147 its objective is to estimate all suitable lands, including nondegraded lands [6]. Thus, our study
148 contributes to analyzing the potential growth of multiple biofuel species on degraded lands at a
149 national level in Indonesia.

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

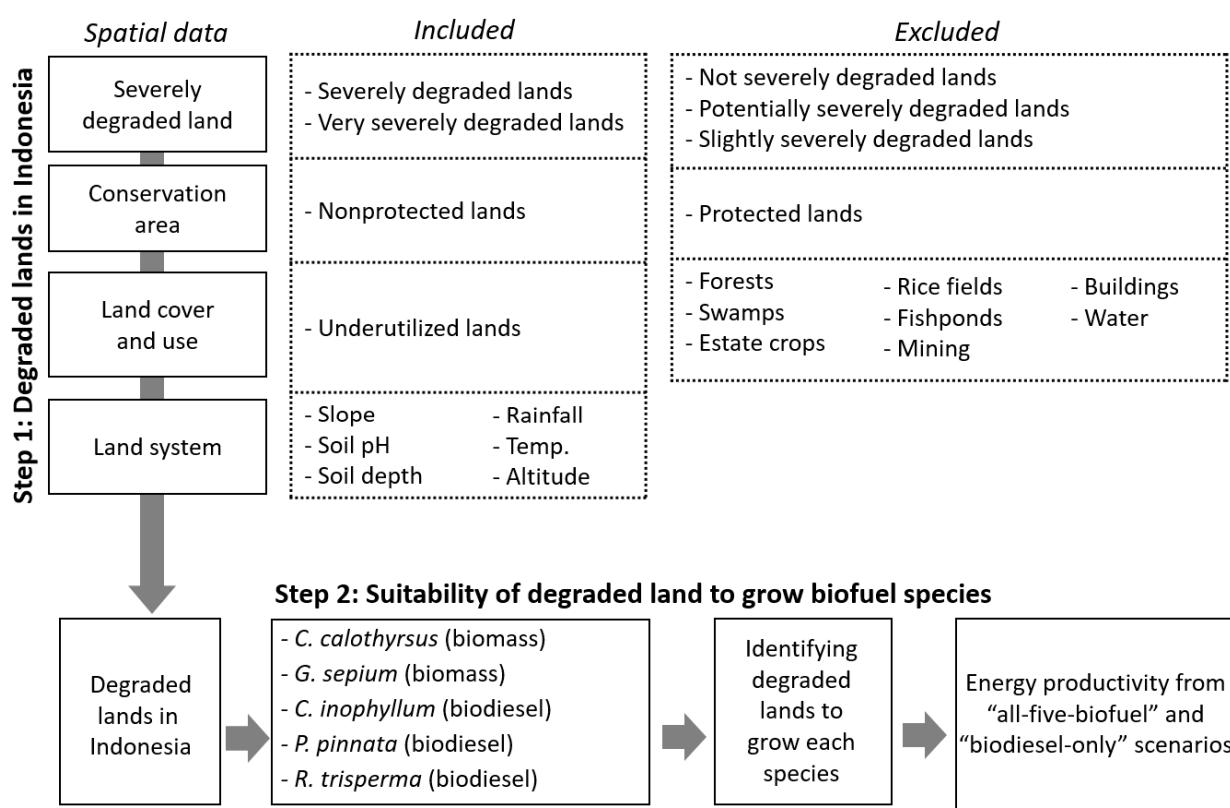
Table 2. Studies on potential lands for biofuel production in Indonesia.

Study	Land condition	Land location	Area (Mha)	Biofuel species	Potential energy production	Method
[54]	Unproductive forestlands degraded by logging, cultivation and other activities	Indonesia	27	Palm oil	NA	Information from Dept. of Agriculture
[55]	Degraded lands that support sustainable palm oil production environmentally, economically, legally and socially	West and Central Kalimantan	7	Palm oil	NA	Spatial analysis and field survey
[9]	Administratively available lands; coherence to biofuel, agriculture, climate and forestry policies	Indonesia	21	Palm oil	NA	Policy analysis
[56]	Degraded lands that have poor climate, poor physical characteristics or difficult cultivation	Indonesia as a part of APEC countries	3.7	Biomass production potential	15 million tons of biomass per year/ 6 cubic hectometers of ethanol	Spatial analysis
[57]	Lands that have degraded soils	Indonesia as part of a global study	30	Grasses and woody crops	About 7,000 PJ yr ⁻¹ from grasses/ about 5,000 PJ yr ⁻¹ from woody crops	Spatial analysis
[6]	Lands with suitable climates and ecological conditions	West Java	0.9	<i>R. trisperma</i>	NA	Spatial analysis
[5]	Degraded lands that exclude high-carbon lands, lands with concessions and new permits, and lands with high slope and altitude	Indonesia	24	Bioethanol crops	NA	Spatial analysis

173

APEC: Asia-Pacific Economic Cooperation; Mha: million hectares; NA: not applicable.

174


175

176

177

178 3. Materials and Methods

179 The study methods consisted of two steps. The first step identified degraded lands in Indonesia.
 180 The second step analyzed the suitability of growing five biofuel species on the degraded lands and
 181 estimated their potential energy production (Figure 1).
 182

183
 184 **Figure 1.** Research methods used to estimate degraded lands in Indonesia and their suitability to grow biofuel
 185 species.

186 3.1. Identification of degraded lands in Indonesia

187 The first step of the study identified degraded lands in Indonesia. The analysis employed four
 188 types of geographic information system (GIS) data to identify potentially degraded land in Indonesia
 189 using an overlaying analysis. These data included severely degraded land data, conservation area
 190 data, land cover data and land system data (Figure 1). Degraded lands were identified by overlaying
 191 these spatial data based on inclusion and exclusion criteria as described below.

192 First, severely degraded land data [58] were used to define the initial scope of degraded lands
 193 in Indonesia. The data were developed by the Directorate General of Watershed Management and
 194 Social Forestry, under the Ministry of Environment and Forestry of Indonesia, based on technical
 195 guidelines for the development of spatial data on severely degraded land (Petunjuk Teknis
 196 Penyusunan Data Spasial Lahan Kritis) set out in Regulation No. P.4/V-SET/2013. These severely
 197 degraded lands indicate the degree of land degradation in Indonesia in terms of land cover, slope,
 198 potential erosion, land productivity and land management. The regulation categorizes land
 199 degradation as follows: (1) not severe, (2) potentially severe, (3) slightly severe, (4) severe and (5) very
 200 severe. Of these categories, this study selected the categories of “severe” and “very severe” to identify
 201 the initial scope of degraded lands.

202 Second, conservation area data [59] were used to exclude protected and conserved forests that
 203 prohibit production activities on degraded lands. The data were used to identify protected forest
 204 (Hutan Lindung) and conservation forest (Hutan Konservasi) defined by the Basic Forestry Law, UU
 205 No. 41, 1999. The law defines protected forest as an area that protects life-support systems by

206 regulating water cycles, maintaining soil fertility, and preventing floods, erosion and salt water
207 intrusion. Conservation forest is defined as an area that protects life-support systems by preserving
208 biodiversity and utilizing bio-natural resources and ecosystems sustainably.

209 Third, land cover data [60] were utilized to exclude lands that are used for other purposes and
210 not feasible for biomass production, such as crop estates, forests, swamps, paddy fields, mining areas,
211 fish ponds, water bodies and built-up areas. The data were collected from the Indonesian Ministry of
212 Environment and Forestry. Land cover is classified into 23 classes based on the physiognomy or
213 appearance of biophysical cover, which is visually distinguished using the available cloud-free
214 Landsat imagery. Visual classification is carried out by a digitizing on-screen technique using the key
215 elements of image interpretation [61].

216 Fourth, land system data [62] were used to obtain information on slope, pH, rainfall, soil depth,
217 temperature and altitude of the degraded lands. The data were built by the Regional Physical
218 Planning Programme for Transmigration (RePPPProT). Land systems are natural ecosystems in which
219 rocks, climate, hydrology, topography, soils and organisms are correlated in a specific way [62]. In
220 addition, missing data of the systems at a regional level were collected from the Land Resources
221 Department (1989).

222

223 3.2. Suitability of degraded lands to grow biofuel species

224 The second step of the study analyzed the suitability of the degraded lands to grow potential
225 biofuel species and estimated their energy production. Five biofuel species were analyzed: *C. calothrysus*,
226 *C. inophyllum*, *G. sepium*, *P. pinnata* and *R. trisperma* (Table 3). The study categorized
227 suitable lands as highly and moderately suitable lands by modelling:

228
$$H_{score} = HS_{altitude} + HS_{rainfall} + HS_{temp} + HS_{slope} + HS_{soil\ pH} + HS_{soil\ depth}$$

229
$$M_{score} = MS_{altitude} + MS_{rainfall} + MS_{temp} + MS_{slope} + MS_{soil\ pH} + MS_{soil\ depth} \quad (1)$$

230 H_{score} and M_{score} were total scores of criteria for highly and moderately suitable lands, respectively.
231 HSs were dummy variables of highly suitable (HS) land criteria for altitude, annual rainfall,
232 temperature, slope, soil pH and soil depth of the biofuel species, whose values were 1 for a land
233 meeting the species criteria and 0 for a land not meeting the criteria. Similarly, MSs were dummy
234 variables of moderately suitable (MS) land criteria for altitude, annual rainfall, temperature, slope,
235 soil pH and soil depth of the biofuel species. Highly and moderately suitable lands were determined
236 only when H_{score} and M_{score} were 6, which indicates that a land meets all six criteria for the growth of
237 biofuel species. Values of all dummy variables (HCs and MCs) were estimated by applying Monte
238 Carlo analysis (e.g. [13]) to the spatial analysis results (Step 1 results in Figure 1) based on Gaussian
239 distribution. The averages of 1,000 simulation results were used to estimate probabilities of each land
240 to meet the growth criteria for all five biofuel species. The total areas of these suitable lands for these
241 species were calculated by multiplying these probabilities and sizes of the lands.

242

243

244

245

246

247

248

249

250

251

252

253

Table 3. Criteria for highly and moderately suitable lands.

Attributes ¹	<i>C. calothrysus</i>		<i>C. inophyllum</i>		<i>P. pinnata</i>	
	Highly suitable	Moderately suitable	Highly suitable	Moderately suitable	Highly suitable	Moderately suitable
Annual rainfall (mm)	2,000–4,000	750–2,000 4,000–5,000	2,000–4,000	750–2,000 4,000–5,000	500–2,000	400–500 2,000–2,500
Temperature (°C)	22–30	18–22 30–34	28–35	10–28 35–42	16–40	10–16 40–50
Altitude (m)	0–1800	0–1800	0–200	0–200	0–1,200	0–1,200
Soil pH	5.0–6.0	4.5–5.0 6.0–7.5	5.5–7.0	5.0–5.5 7.0–8.0	6.5–8.5	6.0–6.5 8.5–9.0
Soil depth (cm)	50–150	20–50	20–50	20–50	>150	50–150
Soil slope (%)	<80 ²	<80	<30 ³	<30	<20 ⁴	<20

Attributes	<i>G. sepium</i>		<i>R. trisperma</i>	
	Highly suitable	Moderately suitable	Highly suitable	Moderately suitable
Annual rainfall (mm)	1,200–2,300	600–1,200 2,300–3,500	1,500–2,500 ⁷	700–2,500
Temperature (°C)	15–30	12–15 30–44	24–30	18–30 ⁷
Altitude (m)	0–1,600	0–1,600	0–700	0–700
Soil pH	5.5–6.2	4.5–5.5 6.2–8.0	5.4–7.1	>7.1
Soil depth (cm)	>150	50–150	>100	50–100
Soil slope	<40 ⁵	<40	<8 ⁶	8–25

(%)	
255	¹ [23, 41, 63].
256	² [64].
257	³ Personal communication with Budi Leksono.
258	⁴ [65].
259	⁵ [66] Stewart (1996).
260	⁶ [6].
261	⁷ [67].
262	
263	To analyze land sizes and parcel numbers, the degraded lands were categorized into small,
264	medium and large sizes. Size categories were developed based on the literature on palm oil
265	production [55, 68]. In palm oil production, smallholder lands are up to 50 ha [68]; this criterion was
266	used to categorize small-sized lands for biofuel species production. For industrial palm oil
267	production, 5,000 ha is considered to be the minimum land size [55]; this criterion was used to define
268	large-sized lands for biofuel species production. In this study, therefore, “small-sized lands” were
269	lands smaller than 50 ha; “medium-sized lands” were lands bigger than 50 ha but smaller than 5,000
270	ha; and “large-sized lands” were lands bigger than 5,000 ha. After categorizing the lands with their
271	sizes, the numbers of land parcels were estimated for each land size.
272	To analyze energy productivity from degraded lands suitable for the selected biofuel species,
273	we developed and investigated two scenarios: (1) the all-five-species scenario, and (2) the biodiesel-
274	only-species scenario. The all-five-species scenario analyzed all five of the biofuel species, including
275	those for biodiesel production (<i>C. inophyllum</i> , <i>P. pinnata</i> and <i>R. trisperma</i>) and those for biomass
276	production (<i>C. calothrysus</i> and <i>G. sepium</i>). The scenario estimated potential energy productivity from
277	each species assuming that their biomass or seed yields would be lower on moderately suitable land
278	compared with highly suitable land (Table 4). Later, we chose only one species with the highest
279	energy productivity when multiple species were suitable on the same degraded lands so that energy
280	productivity could be maximized from these lands. The biodiesel-only-species scenario was treated
281	using identical analytical procedures, but it only examined those species intended for biodiesel
282	production.
283	
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	

305

Table 4. Energy productivity of five potential biofuel species in Indonesia.

Attributes	<i>C. inophyllum</i>		<i>R. trisperma</i>		<i>P. pinnata</i>	
	Highly suitable	Moderately suitable	Highly suitable	Moderately suitable	Highly suitable	Moderately suitable
Biofuel type	Biodiesel	Biodiesel	Biodiesel	Biodiesel	Biodiesel	Biodiesel
Energy productivity (TJ/ha/yr)	0.417	0.111	0.040	0.010	0.064	0.006
Caloric value (MJ/kg)	40.10 ¹	40.10	35.50 ³	35.50	35.56 ⁵	35.56
Biodiesel yield (kg/ha/yr)	10,400 ²	2,773	8,000 ⁴	6,000	1,800 ⁶	180

Attributes	<i>C. calothrysus</i>		<i>G. sepium</i>	
	Highly suitable	Moderately suitable	Highly suitable	Highly suitable
Biofuel type	Biomass	Biomass	Biomass	Biomass
Energy productivity (TJ/ha/yr)	0.704	0.264	0.089	0.034
Caloric value (MJ/kg)	17.60 ⁷	17.60	16.85 ⁸	16.85
Biomass yield (kg/ha/yr)	40,000 ⁸	15,000	5,300 ⁹	2,000

306

¹ [68].

307

² It was assumed that seed yield per tree would be 150 kg on highly suitable land and 40 kg on moderately suitable land, and 133 trees could be planted per hectare (e.g. maximum 20 tons of seed yield per ha = about 133 trees × 150 kg of seeds) following [28]. It was also assumed that 65% of seed is oil, and 80% of the oil could be converted to biodiesel [69].

311

³ [50].

312

⁴ [53].

313

⁵ [46].

314

⁶ It was assumed that oil yield per hectare would be 2,250 kg for highly suitable land and 225 kg for moderately suitable land [70, 71], and that 80% of oil could be converted to biodiesel [69].

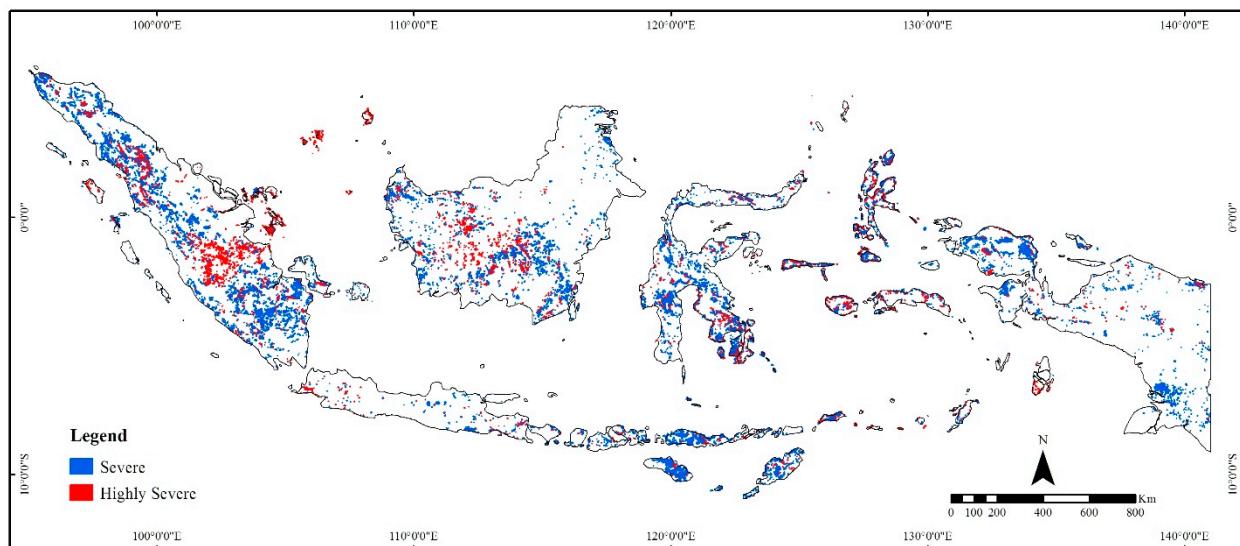
316

⁷ Based on 4,205 kcal/kg for *C. calothrysus* and 4,027 kcal/kg for *G. sepium* [23].

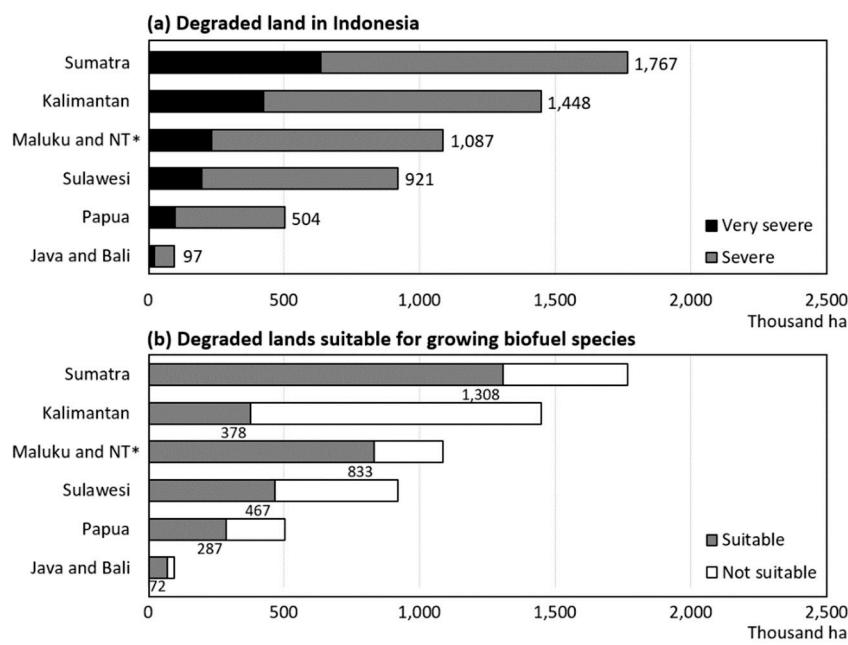
317

⁸ [24, 44]

318


⁹ Stewart et al. (1996).319

3. Results

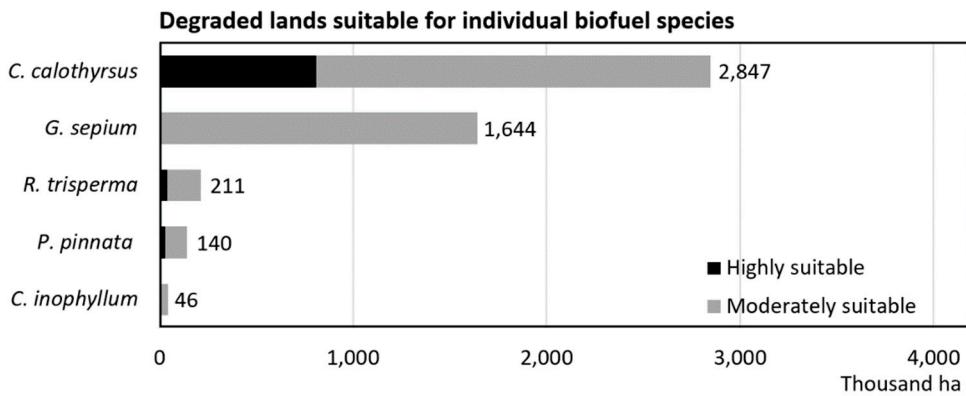

320

3.1. Degraded lands in Indonesia

321 The study results showed that Indonesia has about 5.8 Mha of degraded lands that have limited
 322 ability to produce food, to sequester carbon on land, and to maintain vegetation and biodiversity
 323 (Figures 2 and 3). Of them, 72% were categorized as severely degraded lands and 28% as very
 324 severely degraded lands. The largest area of degraded lands was located in Sumatra, totaling about
 325 1.8 Mha. The second largest area of lands was in Kalimantan, totaling about 1.5 Mha. The smallest
 326 areas of land were in the Java and Bali regions, totaling about 0.1 Mha of degraded lands.

327
 328 **Figure. 2.** Spatial distribution of degraded lands in Indonesia that have limited functions for food production,
 329 carbon storage, and conservation of biodiversity and native vegetation.

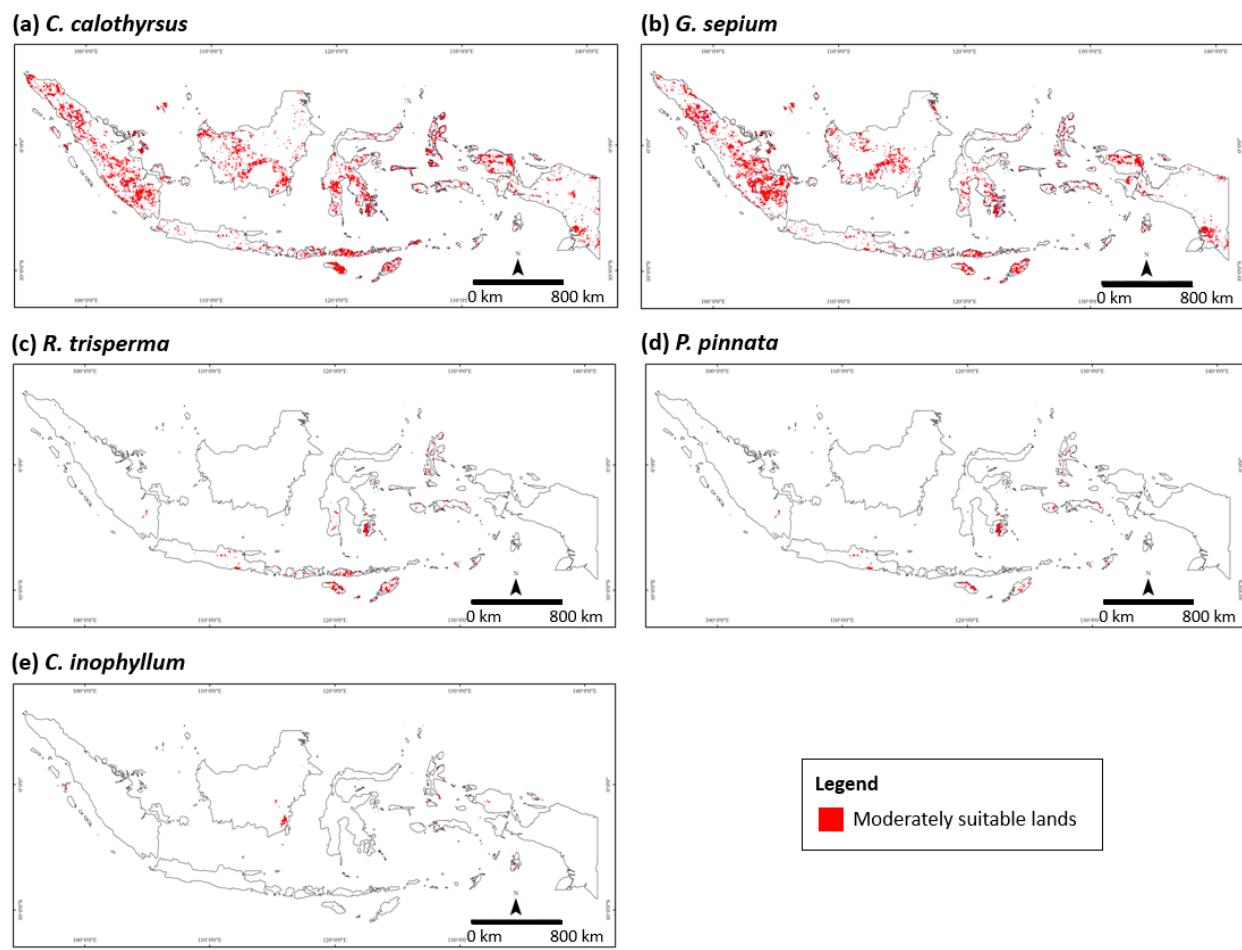
330
 331 **Figure 3.** Distribution of degraded lands and lands suitable for growing biofuel species.
 332 (* Nusa Tenggara)


333 Note: (a) degraded lands in Indonesia identified as having limited functions for food production, carbon
 334 storage, and conservation of biodiversity and native vegetation; and (b) degraded lands identified as suitable
 335 for cultivating at least one of the following: *C. calothrysus*, *G. sepium*, *C. inophyllum*, *P. pinnata* and *R. trisperma*.
 336

337 *3.2. Suitability of degraded lands to grow biofuel species*

338 Of the degraded lands identified, about 3.5 Mha (or 57%) had the potential to grow at least one
 339 of the five biofuel species (Figure 3). The distribution of suitable lands was slightly different from the

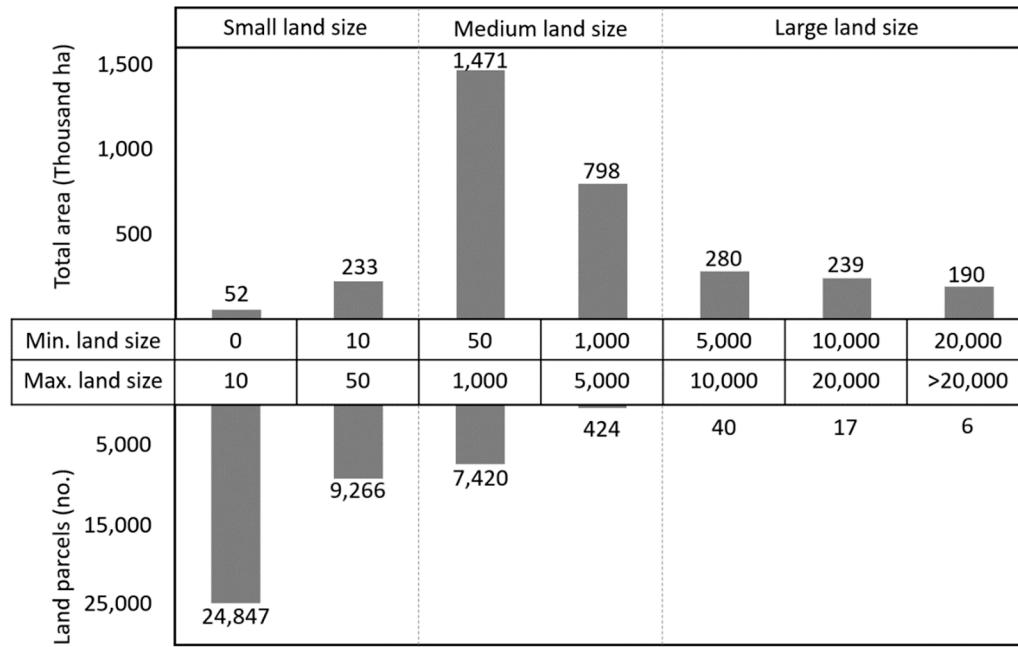
340 distribution of degraded lands in general. For instance, Maluku and Nusa Tenggara had a larger
 341 suitable land area than Kalimantan. Of these degraded lands, 2.85 Mha were suitable for *C.*
 342 *calothrysus*, 1.64 Mha for *G. sepium*, 0.21 Mha for *R. trisperma*, 0.14 Mha for *P. pinnata* and 0.05 Mha for
 343 *C. inophyllum* (Figures 4 and 5). For many of these species, the area of highly suitable lands was
 344 significantly smaller than that of moderately suitable lands. Moreover, the lands suitable for biomass
 345 species (*C. calothrysus* and *G. sepium*) were approximately 11 times larger (or 4.49 Mha) than the lands
 346 suitable for biodiesel species (*C. inophyllum*, *P. pinnata* and *R. trisperma*) (or 0.4 Mha).
 347


348

349

350 **Figure 4.** Total area of degraded lands in Indonesia identified as suitable for growing individual biofuel
 351 species.

352


353

354

355 **Figure 5.** Comparison of degraded lands in Indonesia that are moderately suitable for cultivating C.
 356 *calothrysus*, *G. sepium*, *R. trisperma*, *P. pinnata* and *C. inophyllum*,

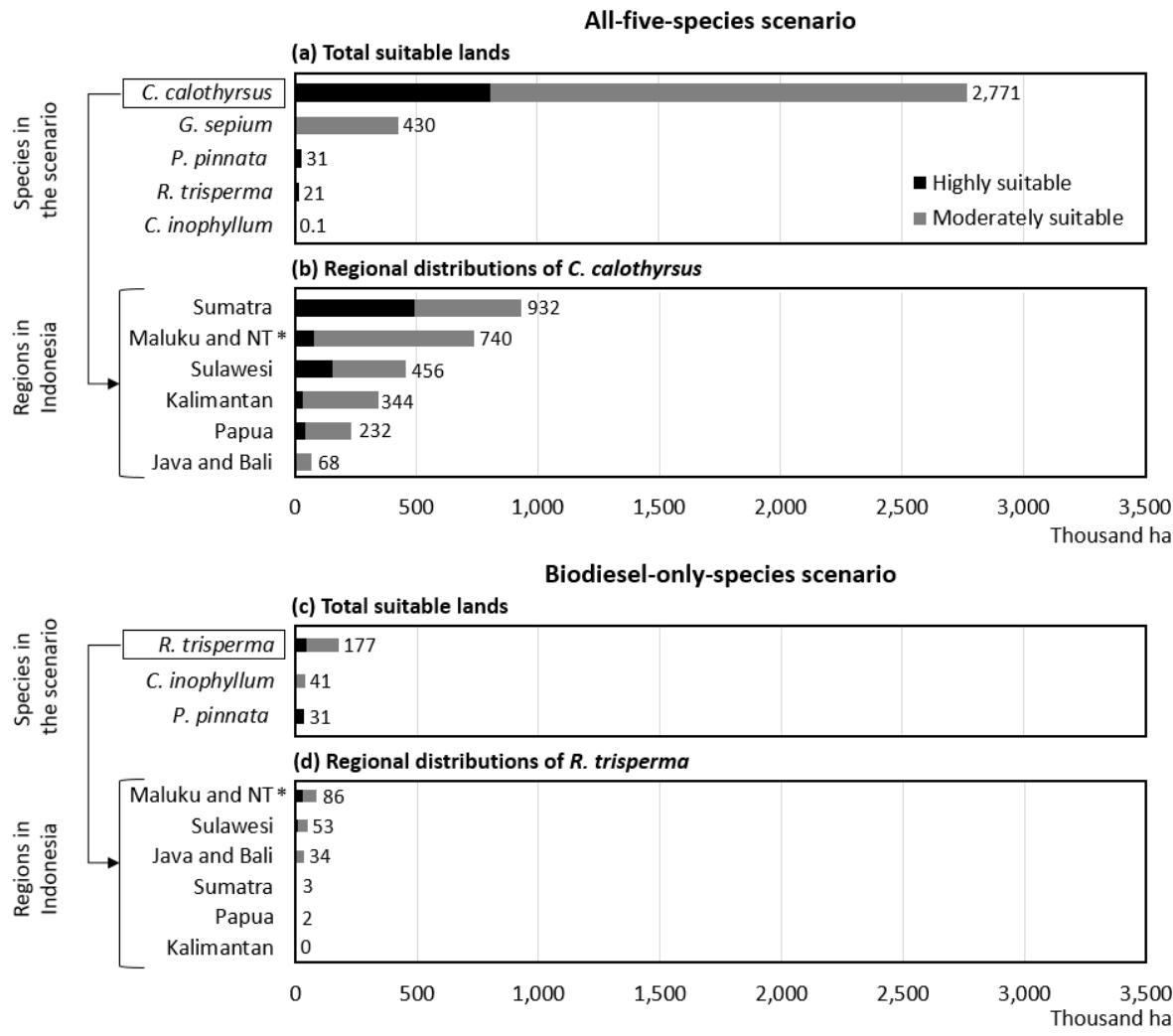
357
 358 The degraded lands were analyzed in terms of their sizes and numbers of parcels (Figure 6).
 359 Small-sized lands (less than 50 ha) consisted of 81% of the total number of land parcels, but their areas
 360 were only 8% of the lands. Medium-sized lands (between 50 and 5,000 ha) represented 19% of the
 361 total number of parcels, but their total area comprised 70% of the lands. Large-sized lands (larger
 362 than 5,000 ha) consisted of only 0.1% of the total number of land parcels, but their total area
 363 represented 22% of the degraded lands.

364

365

366 **Figure 6.** Total areas and number of land parcels for small, medium and large-sized degraded lands in
 367 Indonesia suitable for at least one of the biofuel or biomass species (*C. calothrysus*, *G. sepium*, *C. inophyllum*, *P.*
 368 *pinnata* and *R. trisperma*).

369


370 3.3. Hypothetical maximum energy productivity

371 The all-five-species scenario, assessing all the biofuel species, resulted in the identification of
 372 suitable lands for *C. calothrysus*, *P. pinnata*, *R. trisperma*, *G. sepium* and *C. inophyllum* (Figure 7). Of the
 373 species assessed, *C. calothrysus* was the one that could grow well on the largest area of suitable lands
 374 (2.8 Mha) because it not only was the most suitable to the degraded lands (Figure 4), but also had the
 375 highest potential energy productivity compared with the other species (Table 4). Suitable lands for
 376 this species were largely located in Sumatra (0.93 Mha), and the smallest areas were identified in Java
 377 and Bali (0.07 Mha). Suitable lands identified for the other species in this scenario were smaller in
 378 area: *G. sepium* had 430,002 ha; *P. pinnata* had 30,559 ha; *R. trisperma* had 21,013 ha; and *C. inophyllum*
 379 only had 132 ha. This scenario resulted in about 1.105 EJ yr⁻¹ of hypothetical maximum energy
 380 productivity (Table 5). The energy productivity from biomass was about 1.102 EJ yr⁻¹ (99%), while
 381 that from biodiesel was only about 0.003 EJ yr⁻¹.

382

383

384

385
 386 **Fig. 7.** Total area of degraded lands in Indonesia identified as suitable for the all-five-species and biodiesel-
 387 only-species scenarios.

388 (* Nusa Tenggara)

389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404

405

Table 5. Potential energy production (TJ yr⁻¹) of selected biofuel species from degraded lands in Indonesia.

Species	Type	Highly	Moderately	Total
		suitable	suitable	
All-five-species scenario				1,104,598
a) Biomass total		568,867	532,921	1,101,787
<i>C. calothrysus</i>	Biomass	568,494	518,443	1,086,937
<i>G. sepium</i>	Biomass	373	14,478	14,851
b) Biodiesel total			2,796	15
<i>R. trisperma</i>	Biodiesel	1,956	0	1,956
<i>P. pinnata</i>	Biodiesel	841	0	841
<i>C. inophyllum</i>	Biodiesel	0	15	15
Biodiesel-only-species scenario				9,661
a) Biodiesel total		3,852	5,809	9,661
<i>C. inophyllum</i>	Biodiesel	229	4,448	4,678
<i>R. trisperma</i>	Biodiesel	1,655	1,361	3,016
<i>P. pinnata</i>	Biodiesel	1,967	0	1,967

406

407
408
409
410
411
412
413
414

The biodiesel-only-species scenario, assessing biodiesel species only, resulted in the identification of suitable lands for *R. trisperma*, *C. inophyllum* and *P. pinnata* (Figure 7). Of them, *R. trisperma* was the species with the biggest potential, having about 0.18 Mha of suitable lands. These lands were distributed across several regions in Indonesia, but no suitable land was found in Kalimantan. In this scenario, *C. inophyllum* and *P. pinnata* had only 40,625 ha and 30,739 ha of suitable lands, respectively. The scenario resulted in about 0.01 EJ yr⁻¹ of hypothetical maximum energy productivity (Table 5).

415

4. Discussion

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

The study results showed that degraded lands in Indonesia might support bioenergy production by growing biodiesel species (by growing *C. inophyllum*, *P. pinnata* and *R. trisperma*) and biomass species (by growing *C. calothrysus* and *G. sepium*). Indonesia potentially had about 3.5 Mha of severely degraded lands that not only have limited functions for food production, carbon storage, and conservation of biodiversity and native vegetation, but also might support the growth of these biofuel species. These degraded lands were smaller in area than other types of degraded lands identified in Indonesia, such as lands with degraded soils (about 30 Mha) [57], unproductive degraded forest lands (about 27 Mha) [54], degraded lands including forest covers with low carbon stocks (about 24 Mha) [5], degraded lands administratively available for biofuel production (about 21 Mha) [9], degraded lands for palm oil production in West and Central Kalimantan (about 7 Mha) [55] and degraded lands that have poor climate, poor physical characteristics or degraded lands on which cultivation is difficult (about 3.7 Mha) [56]. Moreover, the estimated biomass energy productivity from *C. calothrysus* and *G. sepium* (about 1.1 EJ yr⁻¹) in our study was smaller than the expected biomass energy from woody crops (about 5 EJ yr⁻¹) and grasses (about 7 EJ yr⁻¹) from degraded soil lands in Indonesia [57]. These differences stem from different definitions, different methods, different spatial data, and different species analyses among the studies.

432 Although the two scenarios analyses showed their potential support for increasing the supply
433 of biodiesel in Indonesia, however, there are still challenges to apply these scenarios to achieving the
434 biodiesel consumption target of 30% of total energy consumption by 2025 (Presidential Regulation
435 No. 12/2015) in Indonesia. First, these lands might be limited in their ability to support economies of
436 scale for biofuel production and only reflect a hypothetical maximum land area. The sizes of many
437 degraded lands were smaller than 5,000 ha, which is considered the minimum land size on which
438 economies of scale from palm oil production can be achieved [55]. Although palm oil is not solely
439 used for biofuel production, lessons from palm oil production would support growth of other biofuel
440 species since palm oil has been used as a dominant biofuel species in Indonesia [9]. Thus, the sizes of
441 these degraded lands must be considered in analyzing their potential business models for bioenergy
442 production in Indonesia.

443 In addition, the study results indicate the maximum energy productivity, as the study assumed
444 that all degraded lands would be utilized for biofuel production by growing the five biofuel species.
445 In reality, however, this bioenergy production would be discounted by many socioeconomic factors,
446 such as the cost-benefit of the production to farmers and refineries [5, 13, 15], higher opportunity
447 costs for bioenergy production compared with palm oil production [55], competition with low-price
448 energy such as gasoline [4] and conflicted stakeholder interests [54]. Further this energy would be
449 reduced further when it is converted into other types of energy, such as electricity, for final
450 consumption. These factors are likely to reduce the biofuel production estimates from the study so
451 that these factors must be analyzed further to understand how many of these degraded lands might
452 in reality support bioenergy production in Indonesia.

453 Despite these challenges, the study findings might still contribute to analysis of potential biofuel
454 species in Indonesia and the investigation of carbon sequestration from bioenergy production from
455 degraded lands. First, the study results support identifying and comparing potential species for
456 biodiesel production (e.g. *C. inophyllum*, *P. pinnata* and *R. trisperma*) and biomass production (e.g. *C.*
457 *calothrysus* and *G. sepium*). For instance, *C. calothrysus* was more suitable on degraded lands
458 compared with the other biofuel species in this study. Among the biodiesel species, *R. trisperma* had
459 better suitability than *P. pinnata* and *C. inophyllum*. The identified lands suitable for these species
460 would serve as input data for analyzing their potential growth on degraded lands by applying more
461 sophisticated plant growth modeling (e.g. Bryan et al., 2010). Moreover, suitable lands for these five
462 species can be reference data for studies on other biofuel species in Indonesia, such as sugarcane,
463 cassava, sweet sorghum, corn and sago [5].

464 Second, the study findings might support investigating potential carbon sequestration from
465 bioenergy production from degraded lands. The locations and sizes of the suitable lands support the
466 modeling of carbon sequestration by the five species from above and below ground on degraded
467 lands. Such carbon modeling would support analyzing net-positive carbon sequestration of the
468 bioenergy production from degraded lands. Other required studies that the study findings might
469 support are analyses of: conventionally consumed biomass species in Indonesia that might be
470 replaced with biomass production from *C. calothrysus* and *G. sepium*; increased carbon stocks by
471 avoiding the harvests of replaced biomass species; impacts of climate changes on the growth of the
472 five biofuel species on degraded lands and their capacities to store carbon stocks; saved carbon stocks
473 from other uses of biomass from degraded lands; carbon emissions from diesel blended with
474 biodiesel from *C. inophyllum*, *P. pinnata* and *R. trisperma*; and impacts of forest restoration of degraded
475 lands on national carbon emissions in Indonesia as well as a scheme of reducing emissions from
476 deforestation and forest degradation (REDD+) in Indonesia (e.g. [5]).

477

478

479

480

481

482

483

484 5. Conclusions

485 The study identified 3.5 Mha of degraded lands in Indonesia that not only might avoid
486 compromising food production, carbon storage, biodiversity and native vegetation, but also might
487 support bioenergy production by growing biodiesel species (*C. inophyllum*, *P. pinnata* and *R.
488 trisperma*) and biomass species (*C. calothrysus* and *G. sepium*). The study results revealed both
489 opportunities and challenges for bioenergy production from these degraded lands in Indonesia. The
490 two-scenario analysis showed that maximum biomass energy production from *C. calothrysus* and *G.
491 sepium* might support increasing the biofuel supply in Indonesia. However, the sizes of degraded
492 lands were rather too small to support economies of scale for biofuel production, and the study
493 results would be discounted by many socioeconomic factors in reality. The study findings support
494 future studies on modeling the growth of biofuel species on degraded lands, comparing diverse
495 potential biofuel species and modeling carbon sequestration from restoration of degraded lands.
496

497
498
499
500
501

502 **Author Contributions:** conceptualization, B.O., E.W., and H.B.; methodology, B.O., E.W., R.S., and W.J.;
503 software, B.O., E.W., R.S., and W.J.; validation, W.J.; formal analysis, E.W., B.O., R.S., and W.J.; investigation,
504 B.O., Y.A., and W.J.; resources, B.L., and L.B.P.; data curation, B.O., R.S., E.W., and W.J.; writing—original draft
505 preparation, E.W.; writing—review and editing, W.J., C.S.G., H.B., and B.L.; visualization, W.J., B.O., and R.S.;
506 supervision, H.B.; project administration, Y.A., and H.B.; funding acquisition, S.M.L. All authors contributed to
507 the manuscript, read the final draft, and approved it.

508 **Funding:** This research was funded by the National Institute of Forest Science (NIFoS), Republic of Korea

509 **Acknowledgments:** Chun Sheng Goh is a JSPS International Research Fellow supported by Japan Society for the
510 Promotion of Science.

511 **Conflicts of Interest:** The authors declare no conflict of interest.

512

513 **References**

514 1. Lewis, S. & Kelly, M. 2014. Mapping the potential for biofuel production on marginal lands: Differences in
515 definitions, data and models across scales. *ISPRS International Journal of Geo-Information*, 3(2), 430-459.

516 2. IRENA [International Renewable Energy Agency]. 2017. Renewable energy prospects: Indonesia, a REmap
517 analysis. International Renewable Energy Agency, Abu Dhabi.

518 3. GAIN [Global Agriculture Information Network]. 2017. Indonesia biofuels annual 2017. USDA Foreign
519 Agricultural Service, Jakarta, Indonesia.

520 4. DEN [Dewan Energi National]. 2017. Indonesia Energy Outlook 2016. Jakarta, Indonesia.

521 5. ICCC [Indonesia Climate Change Center]. 2014. Crops to energy on degraded land as a step toward energy
522 independence, carbon sink agriculture and protection of REDD+ designated areas, Jakarta, Indonesia.

523 6. Wulandari, W. S., Darusman, D., Kusmana, C. & Widiatmaka. 2014. Land suitability analysis of biodiesel
524 crop Kemiri Sunan (*Reutealis trisperma* (Blanco) Airy Shaw) in the Province of West Java, Indonesia.
525 *Journal of Environment and Earth Science*, 4 (21):27-37.

526 7. Baral, H. & Lee, S. M. 2016. Sustainable bioenergy systems to restore and valorize degraded land. Center
527 for International Forestry Research, Bogor, Indonesia.

528 8. Borchard, N., Artati, Y., Lee, S. M. & Baral, H. 2017. Sustainable forest management for land rehabilitation
529 and provision of biomass-energy. Center for International Forestry Research, Bogor, Indonesia.

530 9. Harahap, F., Silveira, S., & Khatiwada, D. 2017. Land allocation to meet sectoral goals in Indonesia – An
531 analysis of policy coherence. *Land Use Policy*, 61, 451-465.

532 10. Fargione, J., Hill, J., Tilman, D. & Polasky, S. 2008. Land clearing and the biofuel carbon debt. *Science*, 319,
533 1235.

534 11. Goh, C. S., Wicke, B., Potter, L., Faaij, A., Zoomers, A. & Junginger, M. 2017. Exploring under-utilised low
535 carbon land resources from multiple perspectives: Case studies on regencies in Kalimantan. *Land Use
536 Policy*, 60, 150-168.

537 12. Danielsen, F., Beukema, H., Burgess, N. D., Parish, F., Brühl, C. A., Donald, P. F., et al. 2009. Biofuel
538 plantations on forested lands: Double jeopardy for biodiversity and climate. *Conservation Biology*, 23(2),
539 348-358.

540 13. Bryan, B. A., Ward, J., & Hobbs, T. 2008. An assessment of the economic and environmental potential of
541 biomass production in an agricultural region. *Land Use Policy*, 25(4), 533-549.

542 14. Richardson, D. M. & Blanchard, R. 2011. Learning from our mistakes: Minimizing problems with invasive
543 biofuel plants. *Current Opinion in Environmental Sustainability*, 3(1), 36-42.

544 15. Maraseni, T. N., & Cockfield, G. 2015. The financial implications of converting farmland to state-supported
545 environmental plantings in the Darling Downs region, Queensland. *Agricultural Systems*, 135, 57-65.

546 16. Scott, P. T., Pregelj, L., Chen, N., Hadler, J. S., Djordjevic, M. A. & Gresshoff, P. M. 2008. *Pongamia pinnata*:
547 An untapped resource for the biofuels industry of the future. *Bioenergy Research*, 1, 2-11.

548 17. Ong, H., Mahlia, T., Masjuki, H. & Norhasyima, R. 2011. Comparison of palm oil, *Jatropha curcas* and
549 *Calophyllum inophyllum* for biodiesel: A review. *Renewable and Sustainable Energy Reviews*, 15, 3501-
550 3515.

551 18. Syamsuwida, D., Kurniaty, R., Putri, K. P. & Suita, E. 2014. *Kaliandra* (*Calliandra calothrysus*) as a timber
552 for energy: In a point of view of seeds and seedlings procurement. *Energy Procedia*, 47, 62-70.

553 19. Fadhlullah, M., Widiyanto, S. N. B. & Restiawaty, E. 2015. The potential of nyamplung (*Calophyllum
554 inophyllum* L.) seed oil as biodiesel feedstock: Effect of seed moisture content and particle size on oil yield.
555 *Energy Procedia*, 68, 177-185.

556 20. Leksono, B., Windyadni, E. & Hasnah, T. M. 2015. Growth, flowering, fruiting and biofuel content of
557 *Calopyllum inophyllum* in provenance seed stand. Paper presented at the Proceeding of International
558 Conference of Indonesia Forestry Researchers III-2015, Bogor, Indonesia.

559 21. Hambali, E., Nisya, F. N., Thahar, A., Nuryanti, A. & Wijaya, H. 2016. Potential of biomass as bioenergy
560 feedstock in Indonesia. *Journal of the Japan Institute of Energy*, 95(8), 629-638.

561 22. Adaganti, S. Y., Yaliwal, V. S., Kulkarni, B. M., Desai, G. P. & Banapurmath, N. R. 2014. Factors affecting
562 bioethanol production from lignocellulosic biomass (*Calliandra calothrysus*). *Waste and Biomass
563 Valorization*, 5(6), 963-971.

564 23. Amirta, R., Yuliansyah, A. E. M., Ananto, B. R., Setiyono, B., Haqiqi, M. T., Septiana, H. A., et al. 2016. Plant
565 diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast
566 growing wood species for energy production. *Nusantara Bioscience*, 8(1), 22-31.

567 24. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Anthony, S. 2009. Agroforestry Database: a tree reference
568 and selection guide version 4.0. World Agroforestry Centre, Kenya.

569 25. Palmer, B., Macqueen, D. & Gutteridge, R. 1994. 2.4 *Calliandra calothyrsus* - a multipurpose tree legume for
570 humid locations. Forage Tree Legumes in Tropical Agriculture, 65.

571 26. Bustomi, S., Rostiwiati, T., Sudradjat, R., Kosasih, A. S., Anggraeni, I., Leksono, B., et al. 2008. Nyamplung
572 (Calophyllum inophyllum L.) sumber energi biofuel yang potensial. Kementerian Kehutanan, Jakarta,
573 Indonesia.

574 27. Chandra, B. B., Setiawan, F., Gunawan, S. & Widjaja, T. 2013. Pemanfaatan Biji Buah Nyamplung
575 (Calophyllum Inophyllum) Sebagai Bahan Baku Pembuatan Biodiesel. Jurnal Teknik ITS, 2, B13-B15.

576 28. Leksono, B., Windyarini, E. & Hasnah, T. M. 2014. Budidaya Tanaman Nyamplung (Calophyllum
577 inophyllum) untuk Bioenergi dan Prospek Pemanfaatan Lainnya. IPB Press, Jakarta, Indonesia.

578 29. Atabani, A., Silitonga, A., Ong, H., Mahlia, T., Masjuki, H., Badruddin, I. A. & Fayaz, H. 2013. Non-edible
579 vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production,
580 characteristics, engine performance and emissions production. Renewable and Sustainable Energy
581 Reviews, 18, 211-245.

582 30. Bhattacharya, S., Salam, P. A., Pham, H. & Ravindranath, N. 2003. Sustainable biomass production for
583 energy in selected Asian countries. Biomass and Bioenergy, 25, 471-482.

584 31. Dahlanuddin, Yanuarianto, O., Poppi, D. P., McLennan, S. R. & Quigley, S. P. 2014. Liveweight gain and
585 feed intake of weaned Bali cattle fed grass and tree legumes in West Nusa Tenggara, Indonesia. Animal
586 Production Science, 54(7), 915-921.

587 32. Knothe, G., de Castro, M. E. G. & Razon, L. F. 2015. Methyl esters (biodiesel) from and fatty acid profile of
588 *Gliricidia sepium* seed oil. Journal of the American Oil Chemists' Society, 92(5), 769-775.

589 33. Al Muqarrabun, L. M. R., Ahmat, N., Ruzaina, S. A. S., Ismail, N. H. & Sahidin, I. 2013. Medicinal uses,
590 phytochemistry and pharmacology of *Pongamia pinnata* (L.) Pierre: A review. Journal of
591 Ethnopharmacology, 150(2), 395-420.

592 34. Aminah, A. A. M., Supriyanto, A. S. & Siregar, I. Z. 2017. Genetic diversity of *Pongamia pinnata* (*Millettia*
593 *pinnata*, aka. malapari) populations in Java Island, Indonesia. Biodiversitas, 18(2), 677-681.

594 35. Aunillah, A. & Pranowo, D. 2012. Karakteristik biodiesel kemiri sunan [Reutealis trisperma (Blanco) Airy
595 Shaw] menggunakan proses transesterifikasi dua tahap. Jurnal Tanaman Industri dan Penyegar, 3, 193-
596 200.

597 36. Hendra, D. 2014. Pembuatan Biodiesel Dari Biji Kemiri Sunan. Jurnal Penelitian Hasil Hutan, 32, 37-45.

598 37. Syamsuwida, D., Putri, K. P., Kurniaty, R. & Aminah, A. 2015. Seeds and seedlings production of bioenergy
599 tree species Malapari (*Pongamia pinnata* (L.)Pierre). Energy Procedia, 65, 67-75.

600 38. Fuwape, J. A. & Akindele, S. O. 1997. Biomass yield and energy value of some fast-growing multipurpose
601 trees in Nigeria. Biomass and Bioenergy, 12, 101-106.

602 39. Herman, M., Syakir, M., Pranowo, D. & Saefudin, S. 2013. Kemiri Sunan (Reutealis trisperma (Blanco) Airy
603 Shaw) Tanaman Penghasil Minyak Nabati dan Konservasi Lahan, Jakarta, Indonesia.

604 40. Riayatsyah, T. M. I., Ong, H. C., Chong, W. T., Aditya, L., Hermansyah, H. & Mahlia, T. M. I. 2017. Life
605 cycle cost and sensitivity analysis of *Reutealis trisperma* as non-edible feedstock for future biodiesel
606 production. Energies, 10(7), 877.

607 41. Wulandari, W. S. 2015. Strategi Pengembangan Biodiesel Kemiri Sunan (Reutealis Trisperma (Blanco) Airy
608 Shaw) Di Jawa Barat. Institut Pertanian Bogor, Bogor, Indonesia.

609 42. Herdiawan, I. & Sutedi, E. 2015. Productivity of *Calliandra calothyrsus*, *Indigofera zollingeriana* and *Gliricidia*
610 *sepium* on acid soil in the greenhouse. Indonesian Journal of Animal and Veterinary Sciences, 20(2), 105-
611 114.

612 43. Fanish, S. A. & Priya, R. S. 2013. Review on benefits of agroforestry system. International Journal of
613 Education and Research, 1(1), 1-12.

614 44. Yaliwal, V. S., Adaganti, S. Y., Kulkarni, B. M. & Desai, G. P. 2014. Production of renewable and sustainable
615 fuel from *Calliandra calothyrsus* and its utilisation in compression ignition engines. International Journal of
616 Sustainable Engineering, 7(1), 41-54.

617 45. Lim, T. K. 2014. *Gliricidia sepium*. In Lim T. K. (Ed.), Edible medicinal and non-medicinal plants (Vol. 7, 806-
618 816). Springer Netherlands, Dordrecht, Netherlands.

619 46. Dwivedi, G. & Sharma, M. P. 2014. Prospects of biodiesel from *Pongamia* in India. Renewable and
620 Sustainable Energy Reviews, 32, 114-122.

621 47. Sangwan, S., Rao, D. V. & Sharma, R. A. 2010. A review on Pongamia Pinnata (L.) Pierre: A great versatile
622 leguminous plant. *Nature and Science*, 8(11), 130-139.

623 48. Jiang, Q., Yen, S.-H., Stiller, J., Edwards, D., Scott, P. T. & Gresshoff, P. M. 2012. Genetic, biochemical, and
624 morphological diversity of the legume biofuel tree Pongamia pinnata. *Journal of Plant Genome Sciences*,
625 1(3), 54-67.

626 49. Siregar, N. & Djam'an, D. F. 2017. Pengaruh bahan tanaman terhadap keberhasilan setek kranji (Pongamia
627 pinnata). *Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia*, 3(1), 23-27.

628 50. Kumar, K. R., Chandrika, K., Prasanna, K. T. & Gowda, B. 2015. Biodiesel production and characterization
629 from non-edible oil tree species *Aleurites trisperma* Blanco. *Biomass Conversion and Biorefinery*, 5(3), 287-
630 294.

631 51. Yohana, E., Yulianto, M. E., Ikhsan, D., Nanta, A. M. & Puspitasari, R. 2016. The development of the super-
632 biodiesel production continuously from Sunan pecan oil through the process of reactive distillation. *The AIP Conference Proceedings*, 1737 (1), 1-10.

633 52. Holilah, H., Prasetyoko, D., Oetami, T. P., Santosa, E. B., Zein, Y. M., Bahruji, H., et al. 2015. The potential
634 of *Reutealis trisperma* seed as a new non-edible source for biodiesel production. *Biomass Conversion and
635 Biorefinery*, 5(4), 347-353.

636 53. Pranowo, D. & Herman, M. 2016. Potensi pengembangan kemiri sunan (*Reutealis trisperma* (Blanco) Airy
637 Shaw) di lahan terdegradasi. *Perspektif*, 14(2), 87-101.

638 54. Colchester, M., Jiwan, N., Andiko, Sirait, M., Firdaus, A. Y., Surambo, A., et al. 2006. Promised Land: Palm
639 Oil and Land Acquisition in Indonesia- Implications for Local Communities and Indigenous Peoples:
640 Moreton-in-Marsh, Forest Peoples Programme, Perkumpulan Sawit Watch, HuMA and the World
641 Agroforestry Centre.

642 55. Gingold, B., Rosenbarger, A., Muliastri, Y., Stolle, F., Sudana, I. M., Manessa, M. D. M., et al. 2012. How to
643 identify degraded land for sustainable palm oil in Indonesia. *World Resources Institute*, Washington, DC.

644 56. Milbrandt, A., & Overend, R. P. 2009. Assessment of biomass resources from marginal lands in APEC
645 economies: National Renewable Energy Laboratory (NREL), Golden, CO.

646 57. Nijzen, M., Smeets, E., Stehfest, E. & Vuuren, D. P. 2012. An evaluation of the global potential of bioenergy
647 production on degraded lands. *GCB Bioenergy*, 4, 130-147.

648 58. DPEPDA [Direktorat Perencanaan dan Evaluasi Pengendalian Daerah Aliran Sungai]. 2015. Peta Digital
649 Lahan Kritis Tahun 2011. Sub Direktorat Pemolaan Pengelola Daerah Aliran Sungai. Jakarta, Indonesia.

650 59. DPPKH [Direktorat Pengukuhan dan Penatagunaan Kawasan Hutan] 2015. Peta Digital Kawasan Hutan
651 Tahun 2014. Sub Direktorat Pengukuhan Kawasan Hutan Wilayah I dan II. Jakarta, Indonesia.

652 60. DIPSH [Direktorat Inventarisasi dan Pemantauan Sumberdaya Hutan] 2015. Peta Digital Penutupan lahan
653 Tahun 2014. Sub Direktorat Pemantauan Sumberdaya Hutan. Jakarta, Indonesia

654 61. MoF [Ministry of Forestry of Indonesia]. 2003. Pembakuan Standar Penafsiran Citra Satelit Resolusi
655 Sedang. Badan Planologi Kehutanan Departemen Kehutanan dan Badan Informasi Geospasial (BIG).
656 Jakarta, Indonesia.

657 62. RePPPProT [Regional Physical Planning Program for Transmigration]. 1990. The land resources of
658 Indonesia: A national overview. Government of Republic of Indonesia: Ministry of Transmigration,
659 Directorate General of Settlement Preparation, and BAKOSURTANAL. Land Resources Department,
660 Natural Resources Institute, Overseas Development Administration, Foreign and Commonwealth Office,
661 United Kingdom.

662 63. FAO [Food and Agriculture Organization of the United Nations]. 2007. Ecocrop. Retrieved 27 July 2017
663 from <http://ecocrop.fao.org/ecocrop/srv/en/cropSearchForm>

664 64. Ad Hoc Pallel of the Advisory Committee on Technology Innovation Board on Science and Technology for
665 International DevelopMent Office of International Affairs National Research Council. 1983. Innovations in
666 Tropical Reforestation: *Calliandra* A Versatile Small Tree for the Humid Tropics. Washington, D.C.:
667 NATIONAL ACADEMY PRESS.

668 65. Miyake, S., Smith, C., Peterson, A., McAlpine, C., Renouf, M., & Waters, D. 2015. Environmental
669 implications of using 'underutilised agricultural land' for future bioenergy crop production. *Agricultural
670 Systems*, 139, 180-195.

671 66. Stewart, J. L., Allison, G. E. & Simons, A. J. 1996. *Gliricidia sepium*: genetic resources for farmers. Oxford
672 Forestry Institute, University of Oxford, United Kingdom.

673

674 67. CABI. 2018. *Reutealis trisperma* (Philippine tung). Retrieved from
675 <https://www.cabi.org/isc/datasheet/4125>.

676 68. Lee, J. S. H., Abood, S., Ghazoul, J., Barus, B., Obidzinski, K. & Koh, L. P. 2014. Environmental impacts of
677 large-scale oil palm enterprises exceed that of smallholdings in Indonesia. *Conservation Letters*, 7(1), 25-
678 33.

679 69. Ong, H. C., Masjuki, H. H., Mahlia, T. M. I., Silitonga, A. S., Chong, W. T. & Yusaf, T. 2014. Engine
680 performance and emissions using *Jatropha curcas*, *Ceiba pentandra* and *Calophyllum inophyllum*
681 biodiesel in a CI diesel engine. *Energy*, 69, 427-445.

682 70. Mohibbe Azam, M., Waris, A. & Nahar, N. M. 2005. Prospects and potential of fatty acid methyl esters of
683 some non-traditional seed oils for use as biodiesel in India. *Biomass and Bioenergy*, 29(4), 293-302.

684 71. Kumar, A. & Sharma, S. 2011. Potential non-edible oil resources as biodiesel feedstock: An Indian
685 perspective. *Renewable and Sustainable Energy Reviews*, 15(4), 1791-1800.

686 Atabani, A. E. & César, A. d. S. 2014. *Calophyllum inophyllum* L. – A prospective non-edible biodiesel
687 feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine
688 performance. *Renewable and Sustainable Energy Reviews*, 37, 644-655.