

1 *Review*

2 **Mitochondrial quality control mechanisms and the PHB (prohibitin) complex**

3 **Blanca Hernando-Rodríguez** ^{1,2} and **Marta Artal-Sanz** ^{1,2,*}

4 ¹ Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de
5 Andalucía/Universidad Pablo de Olavide, Seville, Spain

6 ² Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville,
7 Spain

8 * Correspondence: martsan@upo.es; Tel.: +34- 954 978-323

9

10 **Abstract:** Mitochondrial functions are essential for life, critical for development, maintenance of
11 stem cells, adaptation to physiological changes, responses to stress and aging. The complexity of
12 mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing
13 to the need of stoichiometrically assemble the OXPHOS system for ATP production. It requires, in
14 addition, the import of thousands of proteins from the cytosol to keep optimal mitochondrial
15 function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis,
16 while it is itself essential for the synthesis of membrane lipids.

17 To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to
18 ensure that mitochondrial function meets cell, tissue and organismal demands. Herein, we give an
19 overview of mitochondrial mechanisms that are activated in response to stress, including
20 mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPR^{mt}). We
21 then discuss the role of these stress responses in aging, with particular focus on *Caenorhabditis*
22 *elegans*. Finally, we review observations that point to the mitochondrial PHB (prohibitin) complex
23 as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and
24 degradation, and responding to mitochondrial stress. Understanding how mitochondria responds
25 to stress and how such responses are regulated is pivotal to combat aging and disease.

26 **Keywords:** mitochondria; stress response; mitophagy; mitochondrial dynamics; mitochondrial
27 unfolded protein response (UPR^{mt}); quality control; prohibitins; PHB complex; PHB-1; PHB-2

28

29 **1. Introduction**

30 Mitochondria are essential organelles initially characterized by their role in energy metabolism,
31 carrying out the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). However,
32 nowadays we know that mitochondria are acting within an integrated network, communicating with
33 the rest of cellular organelles [1]. Mitochondria are tightly connected with the endoplasmic reticulum
34 (ER) [2] but also with lysosomes, lipid droplets and peroxisomes [3-5]. In particular, mitochondria
35 are essential for Ca²⁺ homeostasis and Fe-S cluster biogenesis, two processes involved in health [6, 7].
36 Furthermore, mitochondria are involved in the synthesis of critical metabolites like Acetyl-CoA,
37 citrate, succinate, α-ketoglutarate, fumarate and malate among others, that act as second messengers
38 and regulate diverse aspects of the cell function [8].

39 A decline in mitochondrial quality and activity is associated with normal aging and correlates
40 with development of a wide range of age-related diseases [9]. Mitochondrial functions respond and
41 adapt to different circumstances, stages of development, proliferation, tissue-specific functions and
42 temperature changes. They are coordinated by the nucleus through signaling mechanisms in order
43 to cover the energetic needs of the cells, this communication is called anterograde regulation.
44 Mitochondria can also communicate with the nucleus and modulate genetic expression of nuclear

45 encoded genes. This phenomenon is known as the retrograde response. Through this mito-nuclear
46 communication cellular homeostasis is ensured, different stress responses are activated and
47 organismal functions and lifespan are maintained [10].

48 Most mitochondrial proteins are synthesized as precursors in the cytosol and subsequently
49 imported through the mitochondrial import machinery; the translocase of the outer membrane, TOM
50 complex, and the translocase of the inner membrane, TIM complex. Because some subunits of the
51 electron transport chain (ETC) are encoded in the mitochondrial DNA (mtDNA) [11], imbalances
52 between subunits of the oxidative phosphorylation (OXPHOS) that need to be assembled in
53 membrane complexes, generate accumulation of hydrophobic proteins within the mitochondria
54 causing proteotoxic stress. The mitochondrial protein import machinery plays an important role as
55 regulatory hub under normal and stress conditions [11]. In addition, lipid composition of
56 mitochondrial membranes is essential for the good functioning of the organelles. The majority of
57 lipids are synthesized in the endoplasmic reticulum (ER) and extensive exchange of lipids and their
58 precursors occurs between the ER and mitochondria as well as between mitochondrial membranes
59 [12].

60 Mitochondrial prohibitins, PHB-1 and PHB-2, belong to the SPFH
61 (stomatin/prohibitin/flotillin/HflKC) family of proteins [13]. SPFH-family members present across
62 prokaryotic and eukaryotic life [14], are membrane-anchored and perform diverse cellular functions
63 in different organelles. Within mitochondria, the PHB complex has been associated to mtDNA
64 maintenance, protein synthesis and degradation, assembly of the OXPHOS system, maintenance of
65 cristae structure, and apoptosis [15]. This diversity of phenotypes associated to PHB depletion could
66 reflect different consequences of losing one unique biochemical function that remains to be fully
67 clarified. Prohibitin deficiency shortens lifespan in wild-type *Caenorhabditis elegans* but dramatically
68 extends lifespan in a variety of metabolically compromised animals [16], linking prohibitin functions
69 in mitochondria with cellular metabolism [17]. Lack of PHB complexes induces a strong
70 mitochondrial stress response, the so-called mitochondrial unfolded protein response (UPR^{mt}) [18-
71 21], through a non-canonical mechanism [21]. Interestingly, under conditions where lifespan is
72 drastically increased upon PHB depletion, the PHB-mediated induction or the UPR^{mt} is suppressed
73 [20], suggesting that metabolic stress confers protection against PHB depletion and different
74 signaling mechanisms might be at play.

75 Our knowledge of the different retrograde signaling pathways that evolved in different
76 organisms and in response to different insults is continuously increasing, which will help
77 understanding the complex relation between mitochondrial function, stress responses and longevity.
78 In this review, we will revise the main mitochondrial stress response pathways and its impact on
79 aging, with particular focus on the UPR^{mt} and the mechanisms described in *C. elegans*. In the last
80 section, we review the literature that points to PHBs as important players of mitochondrial quality
81 control systems responding to mitochondrial stress, functioning in the stabilization of mitochondrial
82 membrane proteins, in membrane biology, and in mitochondrial degradation.

83 Understanding how mitochondria responds to internal and external stimuli is of importance to
84 understand how organisms respond to stress and the mechanisms behind the role of mitochondrial
85 in health, aging and disease.

86 2. Mitochondrial stress responses

87 Proper mitochondrial activity is preserved through regulation of mitochondrial dynamics,
88 fusion and fission, modulation of mitophagy and maintenance of mitochondrial homeostasis through
89 activation of the mitochondrial unfolded protein response, UPR^{mt}.

90 2.1. Mitochondrial dynamics Subsection

91 Mitochondrial dynamics modulate number, morphology and functioning of the mitochondria
92 in order to adapt to the actual energy demand and to the availability of resources. Under conditions
93 of high energy demand and low energy supply, such as starvation, mitochondrial fusion is very
94 active, mitochondrial show elongated morphology and ATP production is more efficient. On the

95 contrary, in situations of low energy demand and high energy supply, such as high levels of nutrients,
96 mitochondrial fission is activated leading to fragmented mitochondria with decreased ATP
97 production and elevated ROS production [22].

98 Mitochondrial dynamics are important for stress responses as damaged mitochondria can fuse
99 for the exchange of material and mitochondrial fission allows segregation of damaged mitochondria
100 and is necessary for mitophagy.

101 Mitochondrial fission requires the dynamin-related protein DRP-1 that controls the scission of
102 the mitochondrial outer membrane [23] and mitochondrial fusion requires the mitofusin FZO-1 for
103 outer membrane fusion [24] and the homologue of OPA1, EAT-3 for inner membrane fusion [25].
104 Importantly, mutants of genes involved in mitochondrial dynamics have altered mitochondrial
105 function [26] and influence aging in *C. elegans* [27, 28].

106 2.2. *Mitophagy*

107 To counteract the accumulation of defective mitochondria, cells activate mitophagy, a
108 mechanism by which defective mitochondria are selectively detected and degraded [29]. Mitophagy
109 can be ubiquitin dependent or ubiquitin independent [30]. Even though the majority of studies
110 revealing molecular processes involved in mitophagy have been performed in yeast and mammalian
111 cells, it is known that in *C. elegans* the ubiquitin dependent pathway is regulated by the phosphatase
112 and tensin homologue (PTEN)-induced putative kinase 1, PINK-1, and the cytosolic E3 ubiquitin
113 ligase homologue of human parkin (PARK2), PDR-1 [31]. In addition, the mitophagy receptor DCT-
114 1, a putative orthologue of the mammalian NIX/BNIP3, has been shown to act in the same pathway
115 as PINK-1 and PDR-1 to regulate mitophagy in nematodes. DCT-1 is ubiquitinated by PDR-1 and its
116 ubiquitination is dependent on PINK-1 [31].

117 Under basal conditions, PINK1 is imported through the translocase of the outer membrane,
118 TOM, and the translocase of the inner membrane, TIM, where it is cleaved and subsequently
119 degraded. On the contrary, when mitochondria are depolarized, PINK1 cannot be imported to the
120 inner mitochondrial membrane (IMM) and it is stabilized in the outer mitochondrial membrane
121 (OMM) [32]. The accumulation and auto-phosphorylation of PINK-1 facilitates the recruitment of
122 Parkin/PDR-1 to the mitochondria and induces its E3 ubiquitin ligase activity. Once active, Parkin
123 ubiquitinates outer mitochondrial membrane proteins, recruiting autophagy adapter proteins to
124 mitochondria and targeting mitochondria to selective autophagy [33].

125 Mitophagy is a conserved mechanism to prevent transmission of paternal mtDNA to the
126 progeny and thus, prevent heteroplasmy [34-36]. This mechanism is conserved through evolution
127 and appears to be necessary as mice with high heteroplasmy have altered metabolism and reduced
128 cognitive functions [37]. However, the mechanism through which paternal mitochondria are
129 degraded remains still elusive [38]. While mitochondria from worm sperm are not ubiquitinated [35],
130 ubiquitin chains play a role as degradative signal in flies [39]. The mitochondrial endonuclease G is
131 important for elimination of paternal mitochondria both, in worms and flies [40, 41]. However,
132 different mechanisms, species specific, are involved in the transmission of only maternal mtDNA and
133 further investigation is needed.

134 Mitophagy has been described as a common longevity assurance process as depletion of
135 mitophagy components, while it does not affect lifespan of wild type animals, it shortens the
136 enhanced lifespan of insulin mutants as well as lifespan of mitochondrial defective mutants [31].
137 Disruption of mitophagy leads to pronounced mitochondrial defects, such as distorted mitochondrial
138 network, mitochondrial membrane depolarization, reduced ATP levels, elevated oxygen
139 consumption and elevated ROS levels [31]. Interestingly, DCT-1 expression is regulated by both
140 transcription factors, DAF-16 and SKN-1. Compared to wild type, insulin mutants *daf-2(e1370)* have
141 increased levels of mitophagy which are reduced in the absence of SKN-1 [31]. In addition, mitophagy
142 is protective against pathogen infection: upon *Pseudomonas aeruginosa* infection, there is induction of
143 hypoxia response and mitophagy and depletion of PINK-1 leads to increased lethality to *Pseudomonas*

144 treatment [42]. In addition, mitochondrial dysfunction confers protection from rotenone-induced
145 neurodegeneration in a non-autonomous cell manner via p38MAPK/ATF-7. The authors proposed
146 that p38MAPK-mediated immunity activates mitophagy to confer neuroprotection [43]. Moreover,
147 mitophagy is required for lifespan extension under iron starvation [44] showing again the protective
148 role of mitophagy.

149 *2.3. The mitochondrial unfolded protein response, UPR^{mt}*

150 Even though originally discovered in mammalian cells, the mitochondrial unfolded protein
151 response signaling pathway has been extensively studied in the nematode *C. elegans*. For an overview
152 of the mammalian UPR^{mt} we direct the readers to a recent review [45], in this work we review in
153 detail the components of the mitochondrial stress response described in *C. elegans* (Figure 1).

154

155

156 **Figure 1. The mitochondrial unfolded protein responses, UPR^{mt}.** In order to maintain mitochondrial
157 proteostasis, the UPR^{mt} is activated and induces the expression of mitochondrial chaperones and
158 proteases. In *C. elegans*, unfolded proteins within the mitochondrial matrix are cleaved by the
159 mitochondrial protease, ClpP, and the resulting peptides are exported to the cytoplasm through the
160 mitochondrial ATP-binding cassette (ABC) transporter, HAF-1. The accumulation of peptides in the
161 cytosol leads to the nuclear import of the transcription factors ATFS-1, that together with DVE-1 and
162 UBL-5, induce the expression of genes involved in restoring mitochondrial homeostasis. In addition,
163 mitochondrial stress causes changes in chromatin structure. In particular, mitochondrial stress
164 induces the histone methyltransferase MET-2 and the nuclear co-factor LIN-65 for the di-methylation
165 of the histone H3K9. Moreover, two demethylases, JMJD-1.2 and JMJD-3.1, have been shown
166 necessary for the induction of the UPR^{mt}.

167

168 Under stress conditions like depletion of mtDNA [46], loss of mitochondrial membrane
169 potential, imbalance between nuclear encoded proteins and mitochondrial encoded proteins [47] or
170 accumulation of unfolded proteins within the mitochondria, there is activation of a retrograde
171 signaling whereby the nucleus is informed to induce a transcriptional program aimed at restoring
172 mitochondrial function. This response is known as the unfolded protein response of the
173 mitochondria, UPR^{mt}, and it is activated to maintain mitochondrial proteostasis by inducing the

174 expression of mitochondrial chaperones and proteases that control protein folding, assembly and
175 degradation.

176 Accumulated unfolded and/or unassembled proteins in the mitochondrial matrix are cleaved by
177 the mitochondrial protease, ClpP [48] and the resulting peptides are exported to the cytoplasm
178 through the mitochondrial ATP-binding cassette (ABC) transporter, HAF-1 [49]. The accumulation
179 of the peptides in the cytosol leads to the nuclear import of the transcription factors ATFS-1 [50]. Once
180 in the nucleus, ATFS-1 together with DVE-1 and UBL-5 [48, 51], induce the expression of genes
181 involved in restoring the mitochondrial homeostasis such as mitochondrial chaperones (*hsp-6* and
182 *hsp-60*), proteases (*clpp-1*, *lomp-1*, *spg-7* and *ymel-1*), the fission factor *drp-1* and mitochondrial
183 transporters (*tim-23* and *tim-17*) [50, 52].

184 Moreover, ATFS-1 induces the expression of glycolysis related genes, promoting an alternative
185 form of ATP production, and negatively regulates the expression of multiple tricarboxylic acid (TCA)
186 cycle and oxidative phosphorylation (OXPHOS) genes. Interestingly, in addition to the nuclear
187 localization signal (NLS), ATFS-1 presents a mitochondrial targeting sequence (MTS) and is normally
188 imported to the mitochondria where it is degraded by the Lon protease. During stress, even though
189 the majority of ATFS-1 is translocated to the nucleus due to the defective mitochondrial import, a
190 percentage of ATFS-1 also accumulates inside the mitochondria and binds mitochondrial DNA
191 (mtDNA) where it limits mitochondria-encoded mRNA accumulation [52]. Thus, in addition to
192 promote mitochondrial protein homeostasis, the transcription factor ATFS-1 has been proposed to
193 act as a metabolic regulator and to assist in the complete recovery from mitochondrial dysfunction.

194 Furthermore, studies from different labs have shown protective roles for mitophagy and the
195 UPR^{mt} during bacterial infection [52-56]. Exposure to *Pseudomonas aeruginosa* induces an innate
196 immune response similar to the response induced by mitochondrial dysfunction, i.e. induction of
197 transcription of mitochondrial chaperones and secreted lysozymes. ATFS-1 appears as a key
198 regulator of the protective innate immunity and worms with hyper-activation of ATFS-1 have better
199 clearance of *Pseudomonas* from the intestine and enhanced survival [54, 55].

200 Besides changes in the genetic expression, mitochondrial stress causes wide-spread changes in
201 chromatin structure [57, 58]. Mitochondrial stress causes global condensation of the chromatin as
202 shown by a reduced size of nuclei upon depletion of the nuclear-encoded cytochrome C oxidase
203 subunit CCO-1 [58]. The histone methyltransferase MET-2 and the nuclear co-factor LIN-65, that
204 together trigger the di-methylation of the histone H3K9, are required for the induction of the UPR^{mt}.
205 Although those changes globally cause genetic repression, they are needed for DVE-1 to translocate
206 to the nucleus and to bind to the opened free regions [58]. It could be that DVE-1 is passively forced
207 to bind loose regions of the chromatin or could be that other chromatin modifier factors are involved
208 in the mechanism. By RNA-seq Tian *et al.* demonstrated that the majority of genetic changes elicited
209 by *cco-1(RNAi)* required *met-2* and *lin-65* [58].

210 In addition, two conserved demethylases, the jumonji family proteins JMJD-1.2 and JMJD-3.1,
211 have been shown necessary for the induction of the UPR^{mt} upon depletion of *cco-1*, probably by
212 removing the repressive H3K27 methylation marks from coding regions in UPR^{mt}-related genes [57].
213 Interestingly, overexpression of the two demethylases is sufficient for both phenotypes, albeit core
214 components of the UPR^{mt} are required [57]. Importantly, *cco-1(RNAi)* induces the expression of *jmjd-1.2*
215 and *jmjd-3.1*, placing them down-stream of mitochondrial defects [57]. Further studies are needed
216 to understand the complex relation between mitochondrial dysfunction and epigenetic changes as
217 JMJD3 and PHF8, the mammalian homologues of JMJD-3.1 and JMJD-1.2 respectively, belong to the
218 family of 2-oxoglutarate dependent oxygenases [59] and could be induced by high levels of
219 intermediates of TCA cycle.

220 Strikingly, the mitochondrial stress response can be activated in a cell non-autonomous manner:
221 perturbing mitochondrial function in the nervous system induces the UPR^{mt} in peripheral tissues [60-
222 62]. The induction of the mitochondrial stress responses caused by neuronal mitochondrial
223 dysfunction needs the UPR^{mt} components both in neurons and periphery cells. Additionally, by

224 performing a large scale CRISPR-Cas9 screen targeting 103 neuropeptide genes, Shao *et al.* described
225 FLP-2 as a possible mediator of this non-autonomous mechanism from the sensory neurons ASK,
226 AWA and AWC, to the peripheral tissues, passing through the interneuron AIA [61]. Moreover,
227 Berendzen *et al.* reported dense core vesicle secretion to be essential for the induction of the UPR^{mt} in
228 peripheral tissues in a Huntington disease model (PolyQ40). More specifically, they identified
229 serotonin as the only amine to be required for the communication between the affected neurons and
230 the peripheral tissues [62]. A recent study has involved retromer dependent Wnt signaling in the cell
231 non-autonomous response [63]. The authors described that VPS-35, a component of the retromer
232 complex, is required for the polyQ40 non-autonomous induction of mitochondrial stress. Retromer
233 complex regulates, in addition, the retrieval of cargo for efficient recycling of signaling receptors to
234 allow proper transcellular signal transduction. They identified the Wnt secretion factor MIG-14 and
235 the Wnt ligand EGL-20 to be necessary for the peripheral UPR^{mt}. Furthermore, neuronal expression
236 of EGL-20 is sufficient to induce UPR^{mt} in peripheral tissues even in the absence of mitochondrial
237 stress. Interestingly, serotonin is required for this induction. Nevertheless, serotonin is not sufficient
238 for the cell non-autonomous induction of the UPR^{mt} and not all mitochondrial perturbations induce
239 the cell non-autonomous response, thus further investigation is needed to define other possible
240 secreted factors and the exact molecular mechanism(s).

241 A recent study identified the sphingosine kinase SPHK-1 as an early indicator of the UPR^{mt}
242 activation [64]. Previously, Liu *et al.* identified that proper synthesis of sphingolipid was required for
243 activation of UPR^{mt}, as knock down of *sptl-1* suppressed the response elicited upon treatment with
244 antimycin A. [54] More in particular, they reported that animal defective in ceramide biosynthesis
245 are deficient in mitochondrial surveillance [54]. Being ceramide a precursor of sphingosine (SPH),
246 Kim and Sieburth assessed the role of SPH and its derivate sphingosine 1 phosphate (S1P) in the
247 mitochondrial stress response [64]. In this study, they showed that SPHK-1 associates with
248 mitochondria upon mitochondrial stress and transforms SPH in S1P. The production of S1P rapidly
249 activates the UPR^{mt} even if mitochondrial insults are transient. In addition, expression of SPHK-1 in
250 the intestine is required for the cell non-autonomous activation of the UPR^{mt}.

251 2.4. Cytosolic responses reacting to mitochondrial proteotoxic stress

252 In addition to the UPR^{mt}, which acts mainly at a transcriptional level, recent studies have
253 identified different cytosolic responses reacting to mitochondrial proteotoxic stress. The
254 mitochondrial precursor over-accumulation stress (mPOS) [65] and the UPR activated by
255 mistargeting of proteins (UPR^{am}) [66] result in a simultaneous inhibition of cytosolic protein synthesis
256 and an increment of proteasomal activity. The two responses coordinate the inhibition of cap-
257 dependent translation by down-regulating ribosomal proteins, the mTOR pathway and mRNA
258 turnover. These responses have only been described in the yeast *Saccharomyces cerevisiae* and further
259 investigation is required to decipher the exact mechanism. However, in worms an attenuation of
260 protein synthesis has been demonstrated. By performing RNAi screen focusing on kinases and
261 phosphatases, Baker *et al.* identified GCN-2 as a component that when knocked down further
262 increases the UPR^{mt} of *clk-1* mutants. Under mitochondrial stress, the kinase GCN-2 phosphorylates
263 the translation initiation factor eIF2 α in order to reduce protein translation, which is crucial for
264 maintenance of mitochondrial functions [67]. Interestingly, this cytosolic response acts in parallel to
265 the ATFS-1, as depletion of *atfs-1* does not modulate phosphorylation levels of eIF2 α under
266 mitochondrial stress. These results support a role for translation attenuation in promoting
267 mitochondrial protein homeostasis, as it has been previously shown for the endoplasmic reticulum
268 homeostasis [68].

269 The mitochondrial to cytosol stress response (MCSR) is an additional mechanism to restore
270 proteostasis and to reduce the proteotoxic effect in worms [69]. Kim *et al.* observed that mitochondrial
271 disruption by depleting *hsp-6* expression, in addition of causing mitochondrial stress, it induces
272 cytosolic chaperone expression. This genetic manipulation triggers a restructuring of fat metabolism,
273 resulting in accumulation of lipids and cardiolipin and inhibition of ceramide synthesis. Interestingly,

274 treating worms with perhexiline (PHX), an inhibitor of the carnitine palmitoyltransferase, which
275 blocks fatty acid oxidation and provokes accumulation of fatty acid, induces the MCSR. On the
276 contrary, high levels of ceramide blocks the MCSR. Thus, the shift in fat metabolism facilitates
277 crosstalk between mitochondria and cytosol in order to improve cytosolic protein homeostasis, as it
278 slows the progression of motility defects in polyQ-expressing animals. Interestingly, the MCSR needs
279 the cooperation of DVE-1 and HSF-1 to induce the cytosolic response upon mitochondrial
280 perturbations [69].

281 **3. Mitochondrial unfolded protein response and its impact on aging**

282 Mitochondrial function is key for organisms' survival, playing a central role in metabolic
283 homeostasis, however the link between mitochondrial dysfunction and aging is more complicated
284 than initially thought. Although many mitochondrial perturbations that induce the UPR^{mt} have been
285 shown to extend lifespan in yeast, worms, flies and mice [70-73], the exact link between UPR^{mt}
286 activation and longevity remains unclear and controversial [19].

287 In *C. elegans* two studies performing RNAi screens reported that animals with mitochondrial
288 dysfunction are long-lived [71, 74]. Depletion of genes involved in respiration and ATP production,
289 such as *atp-3*, *nuo-2*, *cyc-1*, *cco-1*, *clk-1* and *isp-1*, leads to reduced growth rate and body size, slowed
290 behavioral rates and enhanced lifespan [71, 74]. Importantly, lack of these genes extends lifespan in
291 an insulin independent manner.

292 Interestingly, depletion of mitochondrial components only during development is sufficient to
293 enhance lifespan, whereas reduction of gene expression during adulthood, even though it decreases
294 ATP production, it does not affect lifespan [47, 60, 74, 75]. In addition, it is worth noting that some
295 disruption of mitochondrial function specifically in the neurons, not only induced the UPR^{mt} in the
296 intestine, but was also able to increase lifespan [60, 61]. However, not all mitochondrial perturbation
297 in the nervous systems affects lifespan in the same manner [61-63], so further investigation is needed
298 in order to study how different disruptions of mitochondrial function affect metabolic and aging
299 rates.

300 Intriguingly, proper expression of core components of the mitochondrial stress response, such
301 as UBL-5, HAF-1, DVE-1, ATFS-1, JMJD-1.2, JMJD-3.1, MET-2, LIN-65 and GCN-2, are needed for the
302 enhanced lifespan of mitochondrial defective mutants [47, 50, 57, 58, 60, 67]. Interestingly, JMJD-1.2
303 and JMJD-3.1 are required not only during development but throughout the entire life for the UPR^{mt}
304 mediated enhancement of lifespan [57]. Indeed, over-expression of the two demethylases is sufficient
305 to prolong lifespan [57]. In the same direction, lifespan increment upon mitochondrial stress requires
306 *lin-65* and *met-2* [58]. However, chromatin reorganization appeared to act synergistically with
307 induction of the UPR^{mt} to regulate lifespan as only by combining loss of *met-2* with *atfs-1*(RNAi) the
308 enhanced lifespan of *cco-1* depleted worms is reduced to wild type levels [58]. This suggests that
309 mitochondrial perturbation early in life establishes an epigenetic memory that ensures the protection
310 from future insults and maintains the beneficial effects throughout lifespan [57].

311 Nevertheless, while a number of mitochondrial perturbations induce the UPR^{mt} and increase
312 lifespan, there are also evidences that the UPR^{mt} may not be sufficient by itself to extend lifespan [19].
313 After performing an RNAi screen looking for inducers of the mitochondrial stress response, they
314 found that depletion of half of the candidates extends lifespan while depletion of about 30% of the
315 candidates reduces it. Among the last candidates, they described mostly genes involved in
316 mitochondrial import, such as TOMM-22, DNJ-21, TIN-44, TIMM-17B.1 and TIMM-23 [19]. In
317 addition, authors show that a gain-of-function mutation in *atfs-1* does not extend lifespan [19].

318 Through RNAi dilution experiments, Rea *et al.* described that mild knockdown of ETC genes
319 extends lifespan while too strong knockdown reduces lifespan [75]. Along this line, the lack of
320 correlation of UPR^{mt} induction and lifespan could be at least partially explained by the mitochondrial
321 threshold effect [76], with strong induction reflecting irreparable damage and short lifespan, while
322 milder induction could trigger cellular defense mechanisms resulting in lifespan extension.

323 Mitochondria are also a major source of ROS, what have been determined as the primary cause
324 of damage in macromolecules such as DNA, proteins and lipids. The mitochondrial free radical
325 theory of aging states that aging is the result of accumulation of oxidative damage caused by free
326 radicals generated as by-products of normal metabolism, mainly from mitochondria [77].
327 Nevertheless, this theory is in continuous re-evaluation during the last decade due to new insights
328 that suggest a more complex relation between free radicals and aging [78]. Knockout of the
329 mitochondrial superoxide dismutase SOD-2 in *C. elegans* increases oxidative stress and prolongs
330 lifespan [79]. The new proposal is that ROS generation, instead of being the initial prompt of the
331 aging process, represents a stress signal in response to age-dependent damage, initiating different
332 molecular mechanisms in order to alleviate damage. However, ROS accumulation reaches a level at
333 which it becomes toxic and starts to contribute to damage [78].

334 It seems that when the mitochondrial stress is too high, the protective effects of UPR^{mt} are
335 insufficient to counteract the damage, thus the beneficial adaptive response becomes maladaptive.

336 4. Mitochondrial prohibitins, key players in mitochondrial quality control mechanisms

337 Prohibitins are strongly evolutionarily conserved mitochondrial proteins whose true
338 biochemical function still remains unknown [15, 80]. Its high degree of conservation suggests an
339 important cellular function; however, prohibitin deletion does not cause any observable growth
340 phenotype in the unicellular yeast *S. cerevisiae* [81]. By contrast, prohibitins are required for
341 embryonic development in *C. elegans* [82] and in mice [83], while their postembryonic depletion by
342 RNAi in *C. elegans* causes severe germline defects [82] suggesting an essential role in cell proliferation.
343 The prohibitin (PHB) family is composed of two subunits PHB1 (32 KDa) and PHB2 (34 KDa), that
344 physically associate with each other to form a large multimeric complex of approximately 1 MDa
345 [84]. PHB2 has a N-terminal trans-membrane domain and the N-terminal of PHB1 is expected to be
346 membrane associated. Both proteins contain the conserved PHB domain, common to other scaffold
347 proteins such as stomatin and flotillin, and a coil-coiled C-terminal domain responsible for the
348 interaction between PHB1 and PHB2 [85]. Approximately 14 heterodimers become associated and
349 form a ring-like structure in the inner mitochondrial membrane (IMM), projected into the
350 mitochondrial intermembrane space [84]. Loss of either of the subunits leads to the absence of the
351 whole complex, both in unicellular and multicellular eukaryotes [82, 86].

352 The PHB complex has been assigned a variety of putative functions within mitochondria. In the
353 sections below, we summarize all genetic and physical interactions described for the PHB complex
354 that support a prominent role for this complex in mitochondrial quality control, participating in
355 mitochondrial biogenesis and degradation (Figure 2) and responding to mitochondrial stress.

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

Figure 2. The role of the PHB complex in mitochondrial homeostasis and turnover. Interactions involved in mitochondrial biogenesis are depicted in the left side, those involved in mitophagy in the right side. Both, physical and genetic interactions described for the PHB complex are depicted. PHB complex is involved in organization and stability of mitochondrial nucleoids together with ATAD3 in human cells. In yeast, as well as in mammals, prohibitins stabilize newly synthesized mitochondrial translation products of the electron transport chain (ETC), physically interacting with complex I and complex IV, acting as a holdase-unfoldase type of chaperone. In addition, PHB interacts with mitochondrial m-AAA proteases in yeast, suggesting a role for the PHB complex in protecting newly imported proteins from degradation by m-AAA protease. In a proteomic analysis, in mouse embryonic fibroblasts (MEF), PHB2 was found to interact with several proteins of the IMM involved in the import of nuclear-encoded proteins such as the translocase subunits TIM22 and TIM23, and components of the Pam import motor, Pam16 and DNAJC19/Pam18/Tim14p, that helps mtHSP70 to pull polypeptides into the mitochondrial matrix. In synthetic lethal screens in yeast, PHB proteins have been genetically linked to MICOS and ERMES complexes. Therefore, PHB might belong to the ER-mitochondria organizing network linking the ER and the two mitochondrial membranes to maintain membrane architecture, mtDNA, as well as ion, protein and lipid homeostasis. Finally, binding of LC3 to PHB2 would ensure mitochondrial clearance by recruiting the autophagic machinery to the IMM following proteasome-mediated degradation of the OMM.

375

376

4.1. The PHB complex in mitochondrial turnover

377

378

379

Several lines of research point to a critical role for PHB proteins in mitochondrial biogenesis. Both PHB subunits have been involved in the organization and stability of mitochondrial nucleoids together with mtDNA-binding proteins, TFAM and mtSSB, as well as metabolic enzymes [87-89]. In

380 addition, PHB proteins have been found interacting with ATAD3 in human cells [90], another
381 mtDNA interacting protein. The authors showed that depletion of either PHB or ATAD3 results in
382 dramatically reduced mitochondrial protein synthesis, supporting the notion that mitochondrial
383 nucleoids and mitochondrial transcription are linked to translation. ATAD3 has been shown to
384 control cristae structure, influencing mtDNA replication and cholesterol levels, connecting
385 mitochondria with the endoplasmic reticulum (ER) in cholesterol transport [91-93].

386 In yeast, prohibitins were shown to stabilize newly synthesized mitochondrial translation
387 products of the electron transport chain (ETC) [94]. Direct binding to complex IV subunits of the ETC
388 was observed, and a role in protein complex assembly, acting as a holdase-unfoldase type of
389 chaperone, was proposed [94]. Later, PHB2 was shown to interact with sphingosine-1-phosphate to
390 regulate complex IV assembly in mice mitochondria [95]. Also in mammals, the PHB complex has
391 been suggested as assistant for incompletely assembled complex I subunits of the ETC [96]. A genetic
392 and physical interaction of prohibitins with mitochondrial m-AAA proteases in yeast, suggests a role
393 for the PHB complex in protecting newly imported proteins from degradation by m-AAA protease
394 [97]. Moreover, a genetic interaction with Atp23, a processing peptidase and chaperone for the F1FO-
395 ATP Synthase, in yeast, further supports a role for the PHB complex in ETC biogenesis [98]. In
396 addition, PHB proteins are also important for the formation of respiratory super-complexes together
397 with stomatin-like protein 2 (SLP2) in mammalian cells [99, 100]. In a proteomic analysis in mouse
398 embryonic fibroblasts (MEF), PHB2 was also found to interact with SLP2 [101]. In this same study,
399 additional interactions of PHB2 were detected, including several proteins of the mitochondrial inner
400 membrane involved in the import of nuclear-encoded proteins such as the translocase subunits
401 TIM22 and TIM23, and components of the Pam import motor, Pam16 and DNAJC19/DNJ-21/Tim14p,
402 that helps mtHSP70 to pull polypeptides into the mitochondrial matrix. Interaction with the AAA
403 proteases SPG7, AFG3L1/2 and YME1L was also detected, as well as with OXPHOS and ATP
404 synthase subunits [101].

405 In addition to their relevant role in mtDNA maintenance, mitochondrial protein synthesis,
406 degradation and assembly, strong genetic interactions of prohibitins with genes modulating
407 mitochondrial phospholipid biosynthesis, in particular cardiolipin (CL) and
408 phosphatidylethanolamine (PE) have been observed in yeast [81, 102, 103], suggesting a role for the
409 PHB complex as a membrane organizer affecting the distribution of CL and PE by clustering them at
410 distinct sites of the IMM. Further substantiating the functional link between PHB complexes and
411 mitochondrial membrane lipids, lack of PHB complexes altered cardiolipin acylation in MEFs, while
412 the transcriptional response of PHB2-deficient cells showed altered lipid metabolism, most
413 prominently cholesterol biosynthesis [101]. This alterations in CL, PE and cholesterol may affect
414 membrane protein and mtDNA stability. Prohibitins are required for the formation of mitochondrial
415 cristae, by stabilizing long forms of the dynamin-like GTPase OPA1, an essential component of the
416 mitochondrial fusion machinery [83], which could explain the fragmentation of the mitochondrial
417 network that occurs upon depletion of PHB proteins in nematodes and MEFs [82, 83]. Loss of PHB
418 complexes in mice neuronal cells results in aberrant cristae morphogenesis that cannot be rescued by
419 stabilization of long OPA1 isoforms, suggesting a more direct role of the PHB complex in keeping the
420 structure of the IMM.

421 Intracellular organelles maintain their homeostasis through the continuous exchange of lipids
422 and Ca^{2+} . In yeast, the ERMES (ER mitochondria encountered structures) complex is involved in the
423 transport of phospholipids and Ca^{2+} between the ER and mitochondria [104]. Another mitochondrial
424 complex named MINOS, MitOS or MICOS has been identified associated to the IMM and it has been
425 proposed to form the central core of a large organizing system named ERMIONE, which includes the
426 ERMES complex, PHB ring-like structures, the TOM and TIM translocases, and Mdm31/32 proteins
427 required for mtDNA maintenance [105]. PHB proteins have been genetically linked to MICOS and
428 ERMES complexes in synthetic lethal screens in yeast [81, 102, 104]. Therefore, PHB might belong to
429 the ER-mitochondria organizing network linking the ER and the two mitochondrial membranes to
430 maintain membrane architecture, mtDNA, as well as ion, protein and lipid homeostasis, explaining

431 the variety of phenotypes observed upon PHB depletion in different model systems. Apart from the
432 ER, mitochondria are in constant exchange with other organelles, including peroxisomes, lysosomes
433 and lipid droplets [3, 4]. Interestingly, PHB subunits have been found as transient interactors of the
434 peroxisomal importomer [106], as well as in lipid droplets and lipid rafts preparations [107, 108].

435 Regarding mitochondrial degradation, PHB proteins have been found in a variety of systems to
436 be poly-ubiquitinated during spermiogenesis, suggesting a possible role in elimination of paternal
437 mitochondria [109-111]. Recently, PHB2 has been reported as a mitochondrial receptor essential for
438 Parkin mediated mitophagy, in mammalian cells. PHB2 contains a LC3-interacting domain. In
439 response to a mitochondrial uncoupling agent and following proteasome-mediated degradation of
440 the OMM, binding of LC3 to PHB2 would ensure mitochondrial clearance by recruiting the
441 autophagic machinery to the IMM [36]. Proximity of LC3 to PHB2 has also been reported in PINK1
442 and Parkin independent mitophagy [112].

443 4.2. The PHB complex responds to mitochondrial stress

444 PHB protein levels respond to different mitochondrial stress conditions suggesting an important
445 role for the PHB complex in mitochondrial homeostasis. In mammals and in *C. elegans*, the level of
446 PHB proteins increase in response to an imbalance in the synthesis of mitochondrial- and nuclear-
447 encoded mitochondrial proteins as a result of inhibition of mitochondrial translation [82, 113].
448 Depletion of assembly factors of the ETC cause proteotoxic stress by the accumulation of
449 unassembled subunits. In yeast, protein levels of the PHB complex increase in mutants with
450 compromised biogenesis of cytochrome c oxidase. Mss51p is a COX1 mRNA-specific processing
451 factor, translational activator and chaperone [114], which deletion results in increased PHB complex
452 [94]. Similarly, in yeast cells mutant for Shy1p/SURF1, a complex IV assembly factor causing Leigh
453 syndrome in humans when mutated, the PHB complex is overexpressed [115]. All these observations
454 point to a critical role for the PHB complex in situations of mitochondrial proteotoxicity, plausibly to
455 hold and protect mitochondrial membranes from unassembled hydrophobic ETC subunits.

456 In addition, high level expression of both proteins is consistently seen in primary human tumors,
457 and thus, responding to situations of altered metabolism and/or high proliferation [113]. Prohibitins
458 have been shown to accumulate in response to several stresses, including chemotherapeutic agents,
459 the UPR^{ER} inducer tunicamycin and nutrient starvation, while PHB knock-down sensitized
460 melanoma cells [116]. Several reports suggest PHB proteins as potential druggable targets to halt
461 cancer proliferation and metastasis, while small molecules exhibiting antitumor effects have been
462 shown to target prohibitins [117, 118].

463 4.3. The PHB complex and lifespan

464 PHBs have been related to several age-related diseases like cancer, neurodegenerative and
465 metabolic disorders [116, 117, 119-122]. Loss of PHB decreases resistance to apoptosis [83] and
466 accelerates aging in yeast [123] and mammalian cells [124-126]. In mice, treatment with the NAD(+)
467 precursor nicotinamide riboside (NR) extends lifespan and enhances the self-renewal capacity of
468 muscle stem cells through induction of PHB proteins and the UPR^{mt} [127].

469 Strikingly, PHB depletion shows opposite aging phenotypes across phyla. Originally described
470 in *C. elegans*, lack of PHB decreases the lifespan of wild type animals, whereas it extends lifespan in
471 a variety of compromised conditions such as in mitochondrial mutants, in fat metabolism mutants,
472 in dietary restricted mutants and in mutants defective in either of the two diapause signaling
473 pathways, TGF-β signaling and insulin/IGF-1 signaling [16, 20]. Similarly, PHB depletion causes
474 lifespan extension in *S. cerevisiae* in response to caloric restriction [128].

475 Lack of PHB induces a very strong UPR^{mt} in *C. elegans* [18-21]. Interestingly, PHB depletion
476 induces the UPR^{mt} in a background dependent manner. While the UPR^{mt} induction upon PHB
477 depletion in otherwise wild type animals is very strong, in the insulin mutant *daf-2(e1370)* and the
478 mTORC2 mutant *sgk-1(ok538)*, where lifespan is drastically increased upon PHB depletion, the PHB-

479 mediated induction or the UPR^{mt} is suppressed [20]. This is reminiscent of the threshold effect
480 observed upon mitochondrial dysfunction and suggests that conditions in which PHB depletion
481 extends lifespan might protect against mitochondrial stress.

482 **5. Future prospects**

483 Prohibitin deficiency signals to the nucleus by a non-canonical UPR^{mt} pathway as HAF-1 and
484 UBL-5 are not required. Instead, depletion of HAF-1 and UBL-5 further induces the UPR^{mt} in PHB
485 mutant nematodes [21]. Interestingly, PHB depletion results in opposing aging phenotypes
486 depending on the metabolic status of the animals [16], accompanied by a differential regulation of
487 the UPR^{mt} in the cases studied [20]. Identifying which mitochondrial-to-nucleus signaling
488 mechanisms are involved in the different conditions will help understanding the opposite longevity
489 phenotypes caused by PHB depletion. Depletion of proteins involved in the transport of nuclear-
490 encoded mitochondrial proteins reduces lifespan and strongly induces the UPR^{mt} [19]. These
491 included *tomm-22*, a component of the outer membrane translocase TOM, and several components of
492 the TIM and PAM complexes that function to transport proteins into the inner membrane with the
493 help of the *hsp-6*/mtHsp70 chaperone. Among them, F15D3.7/TIM23, F45G2.8/TIM16/PAM16, and
494 DNJ-21/DNAJC19/PAM18/TIM14, have been shown to physically interact with the PHB complex
495 [101]. It would be interesting to study if the same opposite lifespan phenotype can be seen upon
496 depletion of mitochondrial components of the import machinery.

497 A role for the PHB complex in mtDNA stability, OXPHOS biogenesis and assembly,
498 mitochondrial cristae architecture, metabolism and membrane lipid homeostasis has been
499 demonstrated. Whether the PHB complexes regulate all these processes acting as holdase/unfoldase
500 type of chaperones, protein/lipid scaffolds, or a more direct role in in keeping mitochondrial cristae
501 junctions, remains to be deciphered. Advances in structural biology of membrane proteins hold
502 promise in providing insights into the molecular architecture and the biochemical role of the PHB
503 complex [129].

504 While the exact biochemical function of this complex remains to be elucidated, it is clear that
505 different phenotypes can be observed upon PHB depletion depending on cell types and the metabolic
506 status of the organisms affected. As a consequence, different mitochondrial retrograde signaling
507 could be triggered in response to stress. A deeper elucidation of how mitochondria communicate
508 with the nucleus upon different stresses is crucial to understand how the cell responds and adapts to
509 keep homeostasis. Moreover, understanding the relationship between mitochondrial stress responses
510 and lifespan is of fundamental importance to understand mitochondrial associated diseases and
511 aging.

512

513 **Author Contributions:** Writing-Original Draft Preparation, B.H.R. and M.A.S.; Writing-Review & Editing, B.H.R. and M.A.S.

515 **Funding:** Supported by the European Research Council (ERCStG No. 281691) to Marta Artal-Sanz.

516 **Acknowledgments:** Very special thanks to Liesbeth de Jong for illustrating Figure 2.

517 **Conflicts of Interest:** The authors declare no conflict of interest.

518 References

- 519 1. Eisenberg-Bord, M., et al., A Tether Is a Tether Is a Tether: Tethering at Membrane Contact Sites. *Dev Cell*, 2016. 39(4): p. 395-409.
- 520 2. Lewis, S.C., L.F. Uchiyama, and J. Nunnari, ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. *Science*, 2016. 353(6296): p. aaf5549.
- 521 3. Diogo, C.V., et al., Mitochondrial adventures at the organelle society. *Biochem Biophys Res Commun*, 2018. 500(1): p. 87-93.
- 522 4. Nguyen, T.B., et al., DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. *Dev Cell*, 2017. 42(1): p. 9-21 e5.
- 523 5. Sugiura, A., et al., Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. *Nature*, 2017. 542(7640): p. 251-254.
- 524 6. Rouault, T.A., Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. *Dis Model Mech*, 2012. 5(2): p. 155-64.
- 525 7. Krebs, J., L.B. Agellon, and M. Michalak, Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. *Biochem Biophys Res Commun*, 2015. 460(1): p. 114-21.
- 526 8. Frezza, C., Mitochondrial metabolites: undercover signalling molecules. *Interface Focus*, 2017. 7(2): p. 20160100.
- 527 9. Lopez-Otin, C., et al., The hallmarks of aging. *Cell*, 2013. 153(6): p. 1194-217.
- 528 10. Quiros, P.M., A. Mottis, and J. Auwerx, Mitonuclear communication in homeostasis and stress. *Nat Rev Mol Cell Biol*, 2016. 17(4): p. 213-26.
- 529 11. Harbauer, A.B., et al., The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. *Cell Metab*, 2014. 19(3): p. 357-72.
- 530 12. Tatsuta, T., M. Scharwey, and T. Langer, Mitochondrial lipid trafficking. *Trends Cell Biol*, 2014. 24(1): p. 44-52.
- 531 13. Tavernarakis, N., M. Driscoll, and N.C. Kyriides, The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. *Trends Biochem Sci*, 1999. 24(11): p. 425-7.
- 532 14. Browman, D.T., M.B. Hoegg, and S.M. Robbins, The SPFH domain-containing proteins: more than lipid raft markers. *Trends Cell Biol*, 2007. 17(8): p. 394-402.
- 533 15. Artal-Sanz, M. and N. Tavernarakis, Prohibitin and mitochondrial biology. *Trends Endocrinol Metab*, 2009. 20(8): p. 394-401.
- 534 16. Artal-Sanz, M. and N. Tavernarakis, Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in *C. elegans*. *Nature*, 2009. 461(7265): p. 793-7.
- 535 17. Lourenco, A.B., et al., Analysis of the effect of the mitochondrial prohibitin complex, a context-dependent modulator of longevity, on the *C. elegans* metabolome. *Biochim Biophys Acta*, 2015. 1847(11): p. 1457-68.
- 536 18. Yoneda, T., et al., Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. *J Cell Sci*, 2004. 117(Pt 18): p. 4055-66.

556 19. Bennett, C.F., et al., Activation of the mitochondrial unfolded protein response does not predict
557 longevity in *Caenorhabditis elegans*. *Nat Commun*, 2014. 5: p. 3483.

558 20. Gatsi, R., et al., Prohibitin-mediated lifespan and mitochondrial stress implicate SGK-1, insulin/IGF
559 and mTORC2 in *C. elegans*. *PLoS One*, 2014. 9(9): p. e107671.

560 21. Hernando-Rodriguez, B., et al., Combined flow cytometry and high-throughput image analysis for
561 the study of essential genes in *Caenorhabditis elegans*. *BMC Biol*, 2018. 16(1): p. 36.

562 22. Liesa, M. and O.S. Shirihai, Mitochondrial dynamics in the regulation of nutrient utilization and
563 energy expenditure. *Cell Metab*, 2013. 17(4): p. 491-506.

564 23. Labrousse, A.M., et al., *C. elegans* dynamin-related protein DRP-1 controls severing of the
565 mitochondrial outer membrane. *Mol Cell*, 1999. 4(5): p. 815-26.

566 24. Rolland, S.G., et al., The BCL-2-like protein CED-9 of *C. elegans* promotes FZO-1/Mfn1,2- and EAT-
567 3/Opa1-dependent mitochondrial fusion. *J Cell Biol*, 2009. 186(4): p. 525-40.

568 25. Kanazawa, T., et al., The *C. elegans* Opa1 homologue EAT-3 is essential for resistance to free radicals.
569 *PLoS Genet*, 2008. 4(2): p. e1000022.

570 26. Luz, A.L., et al., Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial
571 Respiratory Chain Are Altered in *Caenorhabditis elegans* Strains Deficient in Mitochondrial
572 Dynamics and Homeostasis Processes. *PLoS One*, 2015. 10(6): p. e0130940.

573 27. Chaudhari, S.N. and E.T. Kipreos, Increased mitochondrial fusion allows the survival of older
574 animals in diverse *C. elegans* longevity pathways. *Nat Commun*, 2017. 8(1): p. 182.

575 28. Yang, C.C., et al., The dynamin-related protein DRP-1 and the insulin signaling pathway cooperate to
576 modulate *Caenorhabditis elegans* longevity. *Aging Cell*, 2011. 10(4): p. 724-8.

577 29. Ni, H.M., J.A. Williams, and W.X. Ding, Mitochondrial dynamics and mitochondrial quality control.
578 *Redox Biol*, 2015. 4: p. 6-13.

579 30. Khaminets, A., C. Behl, and I. Dikic, Ubiquitin-Dependent And Independent Signals In Selective
580 Autophagy. *Trends Cell Biol*, 2016. 26(1): p. 6-16.

581 31. Palikaras, K., E. Lionaki, and N. Tavernarakis, Coordination of mitophagy and mitochondrial
582 biogenesis during ageing in *C. elegans*. *Nature*, 2015. 521(7553): p. 525-8.

583 32. Sekine, S. and R.J. Youle, PINK1 import regulation; a fine system to convey mitochondrial stress to
584 the cytosol. *BMC Biol*, 2018. 16(1): p. 2.

585 33. Sarraf, S.A., et al., Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial
586 depolarization. *Nature*, 2013. 496(7445): p. 372-6.

587 34. Sato, M. and K. Sato, Degradation of paternal mitochondria by fertilization-triggered autophagy in *C.*
588 *elegans* embryos. *Science*, 2011. 334(6059): p. 1141-4.

589 35. Al Rawi, S., et al., Postfertilization autophagy of sperm organelles prevents paternal mitochondrial
590 DNA transmission. *Science*, 2011. 334(6059): p. 1144-7.

591 36. Wei, Y., et al., Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. *Cell*, 2017.
592 168(1-2): p. 224-238 e10.

593 37. Sharpley, M.S., et al., Heteroplasmy of mouse mtDNA is genetically unstable and results in altered
594 behavior and cognition. *Cell*, 2012. 151(2): p. 333-343.

595 38. Pickles, S., P. Vigie, and R.J. Youle, Mitophagy and Quality Control Mechanisms in Mitochondrial
596 Maintenance. *Curr Biol*, 2018. 28(4): p. R170-R185.

597 39. Politi, Y., et al., Paternal mitochondrial destruction after fertilization is mediated by a common
598 endocytic and autophagic pathway in *Drosophila*. *Dev Cell*, 2014. 29(3): p. 305-20.

599 40. Zhou, Q., et al., Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon
600 fertilization. *Science*, 2016. 353(6297): p. 394-9.

601 41. DeLuca, S.Z. and P.H. O'Farrell, Barriers to male transmission of mitochondrial DNA in sperm
602 development. *Dev Cell*, 2012. 22(3): p. 660-8.

603 42. Kirienko, N.V., F.M. Ausubel, and G. Ruvkun, Mitophagy confers resistance to siderophore-mediated
604 killing by *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A*, 2015. 112(6): p. 1821-6.

605 43. Chikka, M.R., et al., The Mitochondria-Regulated Immune Pathway Activated in the *C. elegans*
606 Intestine Is Neuroprotective. *Cell Rep*, 2016. 16(9): p. 2399-414.

607 44. Schiavi, A., et al., Iron-Starvation-Induced Mitophagy Mediates Lifespan Extension upon
608 Mitochondrial Stress in *C. elegans*. *Curr Biol*, 2015. 25(14): p. 1810-22.

609 45. Munch, C., The different axes of the mammalian mitochondrial unfolded protein response. *BMC Biol*,
610 2018. 16(1): p. 81.

611 46. Lin, Y.F., et al., Maintenance and propagation of a deleterious mitochondrial genome by the
612 mitochondrial unfolded protein response. *Nature*, 2016. 533(7603): p. 416-9.

613 47. Houtkooper, R.H., et al., Mitonuclear protein imbalance as a conserved longevity mechanism. *Nature*,
614 2013. 497(7450): p. 451-7.

615 48. Haynes, C.M., et al., ClpP mediates activation of a mitochondrial unfolded protein response in *C.*
616 *elegans*. *Dev Cell*, 2007. 13(4): p. 467-80.

617 49. Haynes, C.M., et al., The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating
618 the transcription factor ZC376.7 in *C. elegans*. *Mol Cell*, 2010. 37(4): p. 529-40.

619 50. Nargund, A.M., et al., Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR
620 activation. *Science*, 2012. 337(6094): p. 587-90.

621 51. Benedetti, C., et al., Ubiquitin-like protein 5 positively regulates chaperone gene expression in the
622 mitochondrial unfolded protein response. *Genetics*, 2006. 174(1): p. 229-39.

623 52. Nargund, A.M., et al., Mitochondrial and nuclear accumulation of the transcription factor ATFS-1
624 promotes OXPHOS recovery during the UPR(mt). *Mol Cell*, 2015. 58(1): p. 123-33.

625 53. Melo, J.A. and G. Ruvkun, Inactivation of conserved *C. elegans* genes engages pathogen- and
626 xenobiotic-associated defenses. *Cell*, 2012. 149(2): p. 452-66.

627 54. Liu, Y., et al., *Caenorhabditis elegans* pathways that surveil and defend mitochondria. *Nature*, 2014.
628 508(7496): p. 406-10.

629 55. Pellegrino, M.W., et al., Mitochondrial UPR-regulated innate immunity provides resistance to
630 pathogen infection. *Nature*, 2014. 516(7531): p. 414-7.

631 56. Dunbar, T.L., et al., *C. elegans* detects pathogen-induced translational inhibition to activate immune
632 signaling. *Cell Host Microbe*, 2012. 11(4): p. 375-86.

633 57. Merkowirth, C., et al., Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced
634 Longevity. *Cell*, 2016. 165(5): p. 1209-1223.

635 58. Tian, Y., et al., Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and
636 UPR(mt). *Cell*, 2016. 165(5): p. 1197-1208.

637 59. Teperino, R., K. Schoonjans, and J. Auwerx, Histone methyl transferases and demethylases; can they
638 link metabolism and transcription? *Cell Metab*, 2010. 12(4): p. 321-327.

639 60. Durieux, J., S. Wolff, and A. Dillin, The cell-non-autonomous nature of electron transport chain-
640 mediated longevity. *Cell*, 2011. 144(1): p. 79-91.

641 61. Shao, L.W., R. Niu, and Y. Liu, Neuropeptide signals cell non-autonomous mitochondrial unfolded
642 protein response. *Cell Res*, 2016. 26(11): p. 1182-1196.

643 62. Berendzen, K.M., et al., Neuroendocrine Coordination of Mitochondrial Stress Signaling and
644 Proteostasis. *Cell*, 2016. 166(6): p. 1553-1563 e10.

645 63. Zhang, Q., et al., The Mitochondrial Unfolded Protein Response Is Mediated Cell-Non-autonomously
646 by Retromer-Dependent Wnt Signaling. *Cell*, 2018.

647 64. Kim, S. and D. Sieburth, Sphingosine Kinase Activates the Mitochondrial Unfolded Protein Response
648 and Is Targeted to Mitochondria by Stress. *Cell Rep*, 2018. 24(11): p. 2932-2945 e4.

649 65. Wang, X. and X.J. Chen, A cytosolic network suppressing mitochondria-mediated proteostatic stress
650 and cell death. *Nature*, 2015. 524(7566): p. 481-4.

651 66. Wrobel, L., et al., Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol.
652 *Nature*, 2015. 524(7566): p. 485-8.

653 67. Baker, B.M., et al., Protective coupling of mitochondrial function and protein synthesis via the
654 eIF2alpha kinase GCN-2. *PLoS Genet*, 2012. 8(6): p. e1002760.

655 68. Safra, M., et al., The ire-1 ER stress-response pathway is required for normal secretory-protein
656 metabolism in *C. elegans*. *J Cell Sci*, 2013. 126(Pt 18): p. 4136-46.

657 69. Kim, H.E., et al., Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response. *Cell*,
658 2016. 166(6): p. 1539-1552 e16.

659 70. Jovaisaita, V. and J. Auwerx, The mitochondrial unfolded protein response-synchronizing genomes.
660 *Curr Opin Cell Biol*, 2015. 33: p. 74-81.

661 71. Lee, S.S., et al., A systematic RNAi screen identifies a critical role for mitochondria in *C. elegans*
662 longevity. *Nat Genet*, 2003. 33(1): p. 40-8.

663 72. Liu, X., et al., Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1
664 increases cellular fitness and lifespan in mice. *Genes Dev*, 2005. 19(20): p. 2424-34.

665 73. Owusu-Ansah, E., W. Song, and N. Perrimon, Muscle mitohormesis promotes longevity via systemic
666 repression of insulin signaling. *Cell*, 2013. 155(3): p. 699-712.

667 74. Dillin, A., et al., Rates of behavior and aging specified by mitochondrial function during
668 development. *Science*, 2002. 298(5602): p. 2398-401.

669 75. Rea, S.L., N. Ventura, and T.E. Johnson, Relationship between mitochondrial electron transport chain
670 dysfunction, development, and life extension in *Caenorhabditis elegans*. *PLoS Biol*, 2007. 5(10): p.
671 e259.

672 76. Schulz, A.M. and C.M. Haynes, UPR(mt)-mediated cytoprotection and organismal aging. *Biochim
673 Biophys Acta*, 2015. 1847(11): p. 1448-56.

674 77. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. *Cell*, 2005. 120(4): p. 483-
675 95.

676 78. Hekimi, S., J. Lapointe, and Y. Wen, Taking a "good" look at free radicals in the aging process. *Trends
677 Cell Biol*, 2011. 21(10): p. 569-76.

678 79. Van Raamsdonk, J.M. and S. Hekimi, Deletion of the mitochondrial superoxide dismutase sod-2
679 extends lifespan in *Caenorhabditis elegans*. *PLoS Genet*, 2009. 5(2): p. e1000361.

680 80. Merkowirth, C. and T. Langer, Prohibitin function within mitochondria: essential roles for cell
681 proliferation and cristae morphogenesis. *Biochim Biophys Acta*, 2009. 1793(1): p. 27-32.

682 81. Osman, C., et al., The genetic interactome of prohibitins: coordinated control of cardiolipin and
683 phosphatidylethanolamine by conserved regulators in mitochondria. *J Cell Biol*, 2009. 184(4): p. 583-
684 96.

685 82. Artal-Sanz, M., et al., The mitochondrial prohibitin complex is essential for embryonic viability and
686 germline function in *Caenorhabditis elegans*. *J Biol Chem*, 2003. 278(34): p. 32091-9.

687 83. Merkowirth, C., et al., Prohibitins control cell proliferation and apoptosis by regulating OPA1-
688 dependent cristae morphogenesis in mitochondria. *Genes Dev*, 2008. 22(4): p. 476-88.

689 84. Back, J.W., et al., A structure for the yeast prohibitin complex: Structure prediction and evidence from
690 chemical crosslinking and mass spectrometry. *Protein Sci*, 2002. 11(10): p. 2471-8.

691 85. Winter, A., O. Kamarainen, and A. Hofmann, Molecular modeling of prohibitin domains. *Proteins*,
692 2007. 68(1): p. 353-62.

693 86. Berger, K.H. and M.P. Yaffe, Prohibitin family members interact genetically with mitochondrial
694 inheritance components in *Saccharomyces cerevisiae*. *Mol Cell Biol*, 1998. 18(7): p. 4043-52.

695 87. Bogenhagen, D.F., et al., Protein components of mitochondrial DNA nucleoids in higher eukaryotes.
696 *Mol Cell Proteomics*, 2003. 2(11): p. 1205-16.

697 88. Kasashima, K., et al., Human prohibitin 1 maintains the organization and stability of the
698 mitochondrial nucleoids. *Exp Cell Res*, 2008. 314(5): p. 988-96.

699 89. Wang, Y. and D.F. Bogenhagen, Human mitochondrial DNA nucleoids are linked to protein folding
700 machinery and metabolic enzymes at the mitochondrial inner membrane. *J Biol Chem*, 2006. 281(35):
701 p. 25791-802.

702 90. He, J., et al., Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.
703 *Nucleic Acids Res*, 2012. 40(13): p. 6109-21.

704 91. Gerhold, J.M., et al., Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich
705 Membrane Structure. *Sci Rep*, 2015. 5: p. 15292.

706 92. Peralta, S., et al., ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing
707 mtDNA replication and cholesterol levels. *J Cell Sci*, 2018. 131(13).

708 93. Baudier, J., ATAD3 proteins: brokers of a mitochondria-endoplasmic reticulum connection in
709 mammalian cells. *Biol Rev Camb Philos Soc*, 2018. 93(2): p. 827-844.

710 94. Nijtmans, L.G., et al., Prohibitins act as a membrane-bound chaperone for the stabilization of
711 mitochondrial proteins. *EMBO J*, 2000. 19(11): p. 2444-51.

712 95. Strub, G.M., et al., Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria
713 interacts with prohibitin 2 to regulate complex IV assembly and respiration. *FASEB J*, 2011. 25(2): p.
714 600-12.

715 96. Miwa, S., et al., Low abundance of the matrix arm of complex I in mitochondria predicts longevity in
716 mice. *Nat Commun*, 2014. 5: p. 3837.

717 97. Steglich, G., W. Neupert, and T. Langer, Prohibitins regulate membrane protein degradation by the
718 m-AAA protease in mitochondria. *Mol Cell Biol*, 1999. 19(5): p. 3435-42.

719 98. Osman, C., et al., Prohibitins interact genetically with Atp23, a novel processing peptidase and
720 chaperone for the F1Fo-ATP synthase. *Mol Biol Cell*, 2007. 18(2): p. 627-35.

721 99. Mitsopoulos, P., et al., Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain
722 supercomplex formation and optimal cell function. *Mol Cell Biol*, 2015. 35(10): p. 1838-47.

723 100. Jian, C., et al., Deficiency of PHB complex impairs respiratory supercomplex formation and activates
724 mitochondrial flashes. *J Cell Sci*, 2017. 130(15): p. 2620-2630.

725 101. Richter-Dennerlein, R., et al., DNAJC19, a mitochondrial cochaperone associated with
726 cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. *Cell Metab.*,
727 2014. 20(1): p. 158-71.

728 102. Birner, R., et al., Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine
729 biosynthetic machinery with the prohibitin complex of *Saccharomyces cerevisiae*. *Mol Biol Cell*, 2003.
730 14(2): p. 370-83.

731 103. Klecker, T., et al., Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways
732 in yeast. *Sci Rep*, 2015. 5: p. 18344.

733 104. Kornmann, B., et al., An ER-mitochondria tethering complex revealed by a synthetic biology screen.
734 *Science*, 2009. 325(5939): p. 477-81.

735 105. van der Laan, M., et al., Role of MINOS in mitochondrial membrane architecture and biogenesis.
736 *Trends Cell Biol*, 2012. 22(4): p. 185-92.

737 106. Oeljeklaus, S., et al., Identification of core components and transient interactors of the peroxisomal
738 importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. *J Proteome*
739 *Res*, 2012. 11(4): p. 2567-80.

740 107. Brasaemle, D.L., et al., Proteomic analysis of proteins associated with lipid droplets of basal and
741 lipolytically stimulated 3T3-L1 adipocytes. *J Biol Chem*, 2004. 279(45): p. 46835-42.

742 108. Garin, J., et al., The phagosome proteome: insight into phagosome functions. *J Cell Biol*, 2001. 152(1):
743 p. 165-80.

744 109. Xu, Y.R., Y.S. Fan, and W.X. Yang, Mitochondrial prohibitin and its ubiquitination during
745 spermatogenesis of the swimming crab *Charybdis japonica*. *Gene*, 2017. 627: p. 137-148.

746 110. Hou, C.C., et al., Prohibitin-mediated mitochondrial ubiquitination during spermiogenesis in Chinese
747 mitten crab *Eriocheir sinensis*. *Oncotarget*, 2017. 8(58): p. 98782-98797.

748 111. Hou, C.C., et al., The expression pattern and potential functions of PHB in the spermiogenesis of
749 *Phascolosoma esculenta*. *Gene*, 2018. 652: p. 25-38.

750 112. Chakraborty, J., et al., USP14 inhibition corrects an in vivo model of impaired mitophagy. *EMBO Mol*
751 *Med*, 2018.

752 113. Coates, P.J., et al., Mammalian prohibitin proteins respond to mitochondrial stress and decrease
753 during cellular senescence. *Exp Cell Res*, 2001. 265(2): p. 262-73.

754 114. Perez-Martinez, X., et al., Dual functions of Mss51 couple synthesis of Cox1 to assembly of
755 cytochrome c oxidase in *Saccharomyces cerevisiae* mitochondria. *Mol Biol Cell*, 2009. 20(20): p. 4371-
756 80.

757 115. Nijtmans, L.G., et al., Shy1p occurs in a high molecular weight complex and is required for efficient
758 assembly of cytochrome c oxidase in yeast. *FEBS Lett*, 2001. 498(1): p. 46-51.

759 116. Tortelli, T.C.J., et al., Accumulation of prohibitin is a common cellular response to different stressing
760 stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death.
761 *Oncotarget*, 2017. 8(26): p. 43114-43129.

762 117. Thuaud, F., et al., Prohibitin ligands in cell death and survival: mode of action and therapeutic
763 potential. *Chem Biol*, 2013. 20(3): p. 316-31.

764 118. Perez-Perarnau, A., et al., A trifluorinated thiazoline scaffold leading to pro-apoptotic agents
765 targeting prohibitins. *Angew Chem Int Ed Engl*, 2014. 53(38): p. 10150-4.

766 119. Nijtmans, L.G., et al., The mitochondrial PHB complex: roles in mitochondrial respiratory complex
767 assembly, ageing and degenerative disease. *Cell Mol Life Sci*, 2002. 59(1): p. 143-55.

768 120. Mishra, S. and B.G. Nyomba, Prohibitin - At the crossroads of obesity-linked diabetes and cancer. *Exp*
769 *Biol Med (Maywood)*, 2017. 242(11): p. 1170-1177.

770 121. Merkowirth, C., et al., Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and
771 leads to tau hyperphosphorylation and neurodegeneration. *PLoS Genet*, 2012. 8(11): p. e1003021.

772 122. Zi Xu, Y.X., S.R. Ande, and S. Mishra, Prohibitin: A new player in immunometabolism and in linking
773 obesity and inflammation with cancer. *Cancer Lett*, 2018. 415: p. 208-216.

774 123. Piper, P.W., et al., The shortened replicative life span of prohibitin mutants of yeast appears to be due
775 to defective mitochondrial segregation in old mother cells. *Aging Cell*, 2002. 1(2): p. 149-57.

776 124. Schleicher, M., et al., Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating
777 mitochondrial function and senescence. *J Cell Biol*, 2008. 180(1): p. 101-12.

778 125. Kasashima, K., et al., Mitochondrial functions and estrogen receptor-dependent nuclear translocation
779 of pleiotropic human prohibitin 2. *J Biol Chem*, 2006. 281(47): p. 36401-10.

780 126. Chowdhury, D., et al., Prohibitin confers cytoprotection against ISO-induced hypertrophy in H9c2
781 cells via attenuation of oxidative stress and modulation of Akt/Gsk-3beta signaling. *Mol Cell*
782 *Biochem*, 2017. 425(1-2): p. 155-168.

783 127. Zhang, H., et al., NAD(+) repletion improves mitochondrial and stem cell function and enhances life
784 span in mice. *Science*, 2016. 352(6292): p. 1436-43.

785 128. Schleit, J., et al., Molecular mechanisms underlying genotype-dependent responses to dietary
786 restriction. *Aging Cell*, 2013. 12(6): p. 1050-61.

787 129. Bausewein, T., et al., Cryo-EM Structure of the TOM Core Complex from *Neurospora crassa*. *Cell*,
788 2017. 170(4): p. 693-700 e7.