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Abstract : The finding of important explanatory variables for the location parameter and 

the scale parameter of the generalized extreme value (GEV) distribution, when the latter 

is used for the modelling of annual streamflow maxima, is known to have reduced the 

uncertainties in inferences, as estimated through regional flood frequency analysis 

frameworks. However, important explanatory variables have not been found for the GEV 

shape parameter, despite its critical  significance, which stems from the fact that it 

determines the behaviour of the upper tail of the distribution . Here we examine the nature 

of the shape parameter by revealing its relationships with basin attributes. We use a 

dataset that comprises information about daily streamflow and forcing, climatic indices, 

topographic, land cover, soil and geological characteristics of 591 basins with minimal 

human influence in the contiguous United States. We propose a framework that uses 

random forests and linear models to find (a) important predictor variables of the shape 

parameter and (b) an interpretable model with high predictive performance. The process 
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of study comprises of assessing the predictive performance of the models, selecting a 

parsimonious predicting model and interpreting the results in an ad-hoc manner. The 

findings suggest that the shape parameter mostly depends on climatic indices, while the 

selected prediction model results in more than 20% higher accuracy in terms of RMSE 

compared to a naïve approach. The implications are important, since incorporating the 

regression model into regional flood frequency analysis frameworks can considerably 

reduce the predictive uncertainties. 

Keywords : CAMELS; flood frequency; hydrological signatures; extreme value theory; 

random forests; spatial modelling 

1. Introduction  

1.1 Flood frequency analysis and hydrological signatures 

Floods are one of the most important natural hazards (see e.g. Odry and Arnaud 2017), 

with  a large part of the hydrological literature being devoted to their study (see e.g. Parkes 

and Demeritt 2016). Flood frequency analysis (FFA) is a statistical approach aiming at 

determining the magnitude of floods for a predefined return period (Thorarinsdottir et 

al. 2018). The simplest approach in FFA is to model data at a single site (at-site FFA or 

local modelling, Thorarinsdottir et al. 2018). However, when at-site data are limited, the 

modelsȭ results can be very uncertain. To obtain accurate results, information from  

adjacent or similar sites can be exploited. This approach is termed regional flood 

frequency analysis (RFFA, Thorarinsdottir et al. 2018). Transfer of information from one 

catchment to the other can be achieved by purely data-based or by rainfall -runoff models. 

A more detailed classification of the RFFA models can be found in Odry and Arnaud 

(2017). 

The RFFA methodologies are related to the initiative for Predictions in Ungauged 

Basins (PUB) of the International Association of Hydrological Sciences (IAHS) 

(Hrachowitz et al. 2013) in the sense that information from gauged basins can be used to 

decrease the uncertainties of predictions in sparsely gauged basins or estimate 

uncertainties in ungauged basins (e.g. Bourgin et al. 2015). The investigation of this 

practice for the case of floods is particularly recommended by Stedinger and Griffis 

(2008). Furthermore, they are related to the notion of hydrological signatures. The latter 

ÁÒÅ ÄÅÆÉÎÅÄ ÁÓ Ȱindex values derived from observed or modelled series of hydrological data 

such as rainfall, flow or soil moistureȱ ɉ-Ã-ÉÌÌÁÎ ÅÔ ÁÌȢ ςπρχȠ ÓÅÅ ÁÌÓÏ ÔÈÅ ÄÉÓÃÕÓÓÉÏÎ ÉÎ 

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2018                    doi:10.20944/preprints201811.0265.v1

Peer-reviewed version available at Journal of Hydrology 2019, 574, 628-645; doi:10.1016/j.jhydrol.2019.04.070



3 

 

Gupta et al. (2008), ÁÎÄ 7ÁÇÅÎÅÒ ÁÎÄ -ÏÎÔÁÎÁÒÉ ɉςπρρɊɊȢ &ÒÏÍ Á ÓÔÁÔÉÓÔÉÃÉÁÎȭÓ ÐÏÉÎÔ ÏÆ 

view the hydrological signatures are values of a statistic; therefore, they summarize the 

informati on provided by the data. 

Hydrological signatures can be used for hydrological model calibration (Shafii and 

Tolson 2015). From a statistical point of view, this approach is similar to the data-based 

approaches mentioned earlier. Hydrological signatures may depend on local climatic 

conditions, as well as on attributes related to the local topography, land cover, soil and 

geology. Attempts have been made to find such relationships using regression and/or 

classification methods (Viglione et al. 2013b; Singh et al. 2014; Beck et al. 2015; Addor et 

al. 2018). Frameworks have also been developed for computing the uncertainty in the 

estimation of hydrological signatures (Westerberg and McMillan 2015; Westerberg et al. 

2016). 

1.2 Frameworks with separate parameter estimation 

A common approach in the class of at-site data-based models of FFA is to model the annual 

(or seasonal) discharge block maxima (peak discharges) with the generalized extreme 

value (GEV) distribution . This approach is supported by empirical evidence (Vogel and 

Wilson 1996), albeit other distributions have also been considered in the literature  (Vogel 

and Wilson 1996; Griffis and Stedinger 2007). The modelling choice of the GEV 

distribution is justified by limiting theorems and constitutes a common ground for 

hydrologists (Coles 2001; Reiss and Thomas 2007, pp. 337, 338). The cumulative 

distribution function of the GEV distribution is given by the following equation (Coles 

2001, pp.47, 48; Dey et al. 2016, see also Stedinger et al. 1993; Hosking and Wallis 1997; 

Koutsoyiannis 2004 for equivalent expressions of the GEV). 

 F(x|ʃ) := exp(ɀ(1 + k((x ɀ ʈ)/ʎ))Ϻ1/ k
+ ), ʃ = (ʈ, ʎ, k), ʎ > 0 (1) 

Here ʈ is the location parameter, ʎ is the scale parameter and k is the shape parameter. 

The shape parameter determines the behaviour (or shape) of the tail of the distribution. 

In particular , higher values of k result in heavier tails. Bayesian frameworks for flood 

frequency modelling based on eq. (1) are available when streamflow data of a basin are 

given (Northrop and Attalides 2016). While such models quantify the probability of 

extreme events rigorously, the estimated posterior regions, confidence interval or 

predictive intervals are wide (see e.g. Xu et al. 2010). 

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 November 2018                    doi:10.20944/preprints201811.0265.v1

Peer-reviewed version available at Journal of Hydrology 2019, 574, 628-645; doi:10.1016/j.jhydrol.2019.04.070



4 

 

Data-based RFFA models can be used to decrease the uncertainties related to the above 

quantities. Here we are interested in using data-based RFFA models which separately 

model the parameters of the GEV distribution  as functions of the basin attributes. 

Regression-based models and, in particular , models using parameter regression 

techniques (see e.g. Ahn and Palmer 2016). The parameter regression techniques can be 

viewed as subcases of the Generalized Additive Models for Location Scale and Shape 

(GAMLSS, Rigby and Stasinopoulos 2005), albeit the software connected with the latter 

method is restricted to certain types of implemented regression techniques (linear and 

non-linear). In this category of models, the parameters are modelled separately as 

functions of the attributes of the gauged basins by mostly (but not exclusively) using 

linear models. The information is transferred to the ungauged basins through the 

prediction made by the fitted regression model. This category of models is similar to 

another category of models, in which quantiles of the GEV distribution (i.e. flood 

magnitudes for a given return period) are directly computed by regression models. This 

last category of models has been extensively investigated and includes linear (see e.g. 

Stedinger and Tasker 1985) and non-linear models. Examples of this type of non-linear 

models are quantile regression (see e.g. Haddad et al. 2012, Ouali et al. 2016), generalized 

additive models (GAM; see e.g. Ouali et al. 2017, Rahman et al. 2018) and artificial neural 

networks (ANN; see e.g. Ouali et al. 2017). Such models can be applied directly to the 

dataset or after partitioning the dataset into homogenous regions (see the literature 

reviews in Gaume et al. 2010; Merz and Blöschl 2005; Requena et al. 2017). 

Separate modelling of the parameters of the GEV is also required by Bayesian models 

(see e.g. Lima and Lall 2010; Yan and Moradkhani 2015, 2016; Wu et al. 2018), while 

comprehensive relevant frameworks have been proposed by Northrop (2004), Viglione 

et al. (2013a) and Lima et al. (2016). In this category of models, the parameters are 

separately modelled as linear functions of basin attributes and the linear models are 

inserted in the final model. Posterior distributions of the parameters given the available 

data, as well as predictive intervals for the variable of interest, are then computed. 

1.3 2ÅÌÁÔÉÏÎÓÈÉÐ ×ÉÔÈ ÂÁÓÉÎȭÓ ÁÔÔÒÉÂÕÔÅs 

To assist in the design of the methods presented in Section 1.2, as well as to understand 

how extreme events depend on the attributes of the basins studied, investigation of large 

discharge datasets from Central Europe, UK and USA focused on the estimates of the ʃ 
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parameters and their empirical relationship with attributes of the basins (Northrop 2004; 

Villarini and Smith 2010; Smith et al. 2011; Villarini et al. 2011a, b, 2012). 

The most frequently met ʈ and ʎ parameterizations include their relation with the area 

of the basin. Lima et al. (2016) justify  this parameterization based on theoretical and 

empirical prescriptions, and subsequently cite the relevant studies of Gupta and Waymire 

(1990), Gupta et al. (1994, 2007), Gupta and Dawdy (1995), Morrison and Smith (2002), 

Northrop (2004) , Lima and Lall (2010), Villarini and Smith (2010) and Villarini et al. 

(2011b). Parameterization of the coefficient of variation cv := ʎ/ʈ, which depends on ʈ 

and ʎ, is also a frequent subject in the literature (see e.g. Blöschl and Sivapalan 1997; 

Vogel and Sankarasubramanian 2000; Morrison and Smith 2001; Kuzuha et al. 2009; 

Veneziano and Langousis 2010). 

However, the k parameter in Lima et al. (2016) is modelled by a normal distribution 

with common mean across all sites; thus, it is independent on attributes of the basin. This 

choice is based on the studies of Gupta and Waymire (1990), Burlando and Rosso (1996) 

and Morrison and Smith (2002). On the other hand, He et al. (2015) conclude that it is 

worthwhile considering the effect of other catchment attributes than the area of the basin 

(such as meteorological and topological factors) in the estimation of the shape parameter. 

Moreover, 'ÖÏĿÄþËÏÖÜ ÁÎÄ -İÌÌÅÒ ɉςπρχɊ ÓÕÇÇÅÓÔ ÔÈÅ ÉÎÖÅÓÔÉÇÁÔÉÏÎ ÏÆ ÔÈÅ ÒÅÌÁÔÉÏÎÓÈÉÐ ÏÆ 

major floods with extreme precipitation. Other studies also find unclear (slightly 

significant) relationships between the k parameter and other basin attributes (see 

Northrop 2004, Villarini and Smith 2010, and Villarini et al. 2011a, b; see also the 

discussion in Section 4). 

The parameters of the GEV distribution fitted to the annual block maxima of 

streamflow are certainly related to the distribution of the daily streamflow, which could 

be considered its parent distribution. Attempts have been made to estimate a common 

type of distribution for the statistical modelling of daily streamflow (Blum et al. 2017). 

Nonetheless and despite the excellent fit of the proposed distribution, theoretical issues 

related to the dependence and the seasonality in the daily streamflow have not been 

treated. 

1.4 Aim of the present study 

The aim of the present study is (a) to present a framework that can be used to reveal 

relationships among the shape parameter of the GEV distribution when fitted to annual 
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discharge block maxima, and characteristics of the respective basin (in particular 

topographic characteristics, climatic indices, land cover characteristics, soil 

characteristics and geological characteristics), as well as (b) to better predict the shape 

ÐÁÒÁÍÅÔÅÒ ÃÏÎÄÉÔÉÏÎÁÌ ÏÎ ÔÈÅ ÂÁÓÉÎȭÓ ÁÔÔÒÉÂÕÔÅÓ. Obtained relationships, when 

incorporated in the regression-based or Bayesian frameworks presented in Section 1.3, 

can support the understanding of the mechanism behind the generation of floods and 

decrease the uncertainties of flood design. Concerning the discovered relationships, the 

findings of the present study are also original in comparison to previous studies in which 

the k parameter was examined. 

To reveal such relationships we expand the methodology implemented by Tyralis et al. 

(2018) and Addor et al. (2018). In both these studies, random forests were used due to 

their excellent predictive performance and their ability to find important predictor 

variables (Biau and Scornet 2016). These two studies are also similar in their approach to 

finding spatial relationships, as they both use the -ÏÒÁÎȭÓ I test for this purpose. The use 

ÏÆ ÔÈÅ -ÏÒÁÎȭÓ I test is avoided here, because its common implementation requires the 

use of Euclidean distances, while the spatial behaviour of rivers can be examined in a 

framework based on river networks. In such frameworks, other types of distances are 

calculated. Random forests are a machine learning algorithm (Breiman 2001) of 

increasing interest in geosciences (e.g. Tyralis and Papacharalampous 2017; 

Papacharalampous and Tyralis 2018; Papacharalampous et al. 2018a, b). Tyralis et al. 

(2018) implemented this methodology with the aim to find important characteristics of 

precipitation and Addor et el. (2018) implemented this methodology to find such 

relationships for hydrological signatures. 

While random forests are a flexible algorithm with high predictive power, it is less 

interpretable than linear regression models, since there is a trade-off between flexibility 

(and predictive power) of machine learning models and their interpretability (James et al. 

2013, p.25). Thus, we enhance the implemented methodology by finding linear regression 

models with comparable predictive performance to random forests for this specific 

application. The framework is based on the following ideas: 

a. The predictability of the parameter must first be investigated using a high 

performance predictive algorithm that is not affected by the presence of unimportant 

predictor variables, e.g. the herein implemented random forest algorithm. 
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b. Due to the large number of predictor variables, their importance must be computed 

by an appropriate algorithm, which here is again random forests. 

c. If a linear model with similar predictive performance to the benchmark model exists, 

then it will be preferable, as it is more interpretable. To find such a model, the number of 

predictor variables is reduced in an automatic way. 

d. Then a semi-automatic procedure that uses importance metrics for linear models 

and random forests, and examines combinations of predictor variables and their 

interactions, is implemented using the retained predictor variables. If the predictive 

performance of the linear model is similar with the performance of random forests, then 

both aims of the present study will be accomplished. 

The new concepts introduced here compared to Tyralis et al. (2018) and Addor et al. 

(2018) is the examination of interactions, the use of importance metrics for linear models, 

as well as the extensive investigation of the latter  through the inclusion of interactions. 

This investigation is benchmarked using random forests. The framework based on these 

ideas is presented in detail in Section 2.2.5. The proposed framework can better reveal 

possible relationships compared to previous studies. For instance, it can offer an 

improvement in comparison to Ahn and Palmer (2016), who exclusively used additive 

terms for predicting the k parameter, while (as results from the present study) 

interactions could result in a better model. The data used herein were obtained from the 

CAMELS dataset (Newman et al. 2015; Addor et al. 2017b) and are comprised of daily 

streamflow, precipitation and other basin attributes of 671 catchments in the contiguous 

United States (CONUS). 

2. Data and methods  

2.1 Data 

The data used in the present study can be sourced from Newman et al. (2014) and Addor 

et al. (2017a). Moreover, their documentation is available in Newman et al. (2015) and 

Addor et al. (2017b), who created their dataset by combining data from Miller and White 

(1998), Hartmann and Moosdorf (2012), Gleeson et al. (2014), Thornton et al. (2014) and 

Pelletier et al. (2016). The CAMELS dataset is one of the largest datasets with respect to 

the number of included basins and the information provided for each basin; therefore, it 

is suitable for benchmarking purposes (Newman et al. 2017). 
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Briefly, the dataset comprises information about daily streamflow and forcing for 671 

small- to medium-sized basins. Here we used the precipitation forcing derived from the 

daily gridded Daymet dataset. The data span in the period 1980Ϻ2014. The 671 basins 

cover the entire CONUS with a wide range of hydroclimatic conditions and having minimal 

human influence. The catchment attributes used in the present study include topographic 

characteristics, climatic indices, land cover characteristics, soil characteristics and 

geological characteristics related to the basin of interest, and are presented in Table 1. 

Details on the collection of the datasets can be found in Newman et al. (2015) and Addor 

et al. (2017b), while the explanation of the attributes of Table 1 is presented in Appendix 

A. 

Table 1. Attributes and respective abbreviations of the 671 basins in Addor et al. (2017b) 
used as predictor variables. The GEV attributes were estimated in the present study. A 
detailed description of the attributes can be found in Appendix A. 

Attribute  type Values as -is Transformed using log 

 Attribute  Abbreviation Attribute  Abbreviation 
Topographic   Mean elevation elev_mean 
   Mean slope slope_mean 
   Area area_gages2 

Geographical coordinates Latitude gauge_lat   
 Longitude gauge_lon   

Climatic Seasonality and timing of precipitation p_seasonality Mean daily precipitation p_mean 
 Fraction of precipitation falling as snow frac_snow Mean daily PET pet_mean 
   Frequency of high precipitation events high_prec_freq 
   Duration of high precipitation events high_prec_dur 
   Duration of low precipitation events low_prec_dur 

Land cover Forest fraction forest_frac   
 LAI maximum lai_max   
 Green vegetation fraction difference gvf_diff   
Soil Soil depth soil_depth_statsgo Depth to bedrock soil_depth_pelletier 
 Maximum water content max_water_content Volumetric porosity soil_porosity 
 Sand fraction sand_frac Saturated hydraulic conductivity soil_conductivity 
 Silt fraction silt_frac   
 Clay fraction clay_frac   
 Water fraction water_frac   
 Organic fraction organic_frac   

Geology Fraction of carbonate rocks carb_rocks_frac   
 Subsurface porosity geol_porosity   
 Subsurface permeability  geol_permeability   
GEV attributes Precipitation shape parameter shape_par_prcp Precipitation location parameter loc_par_prcp 

The data were preprocessed according to the following procedure. Firstly, the data in 

the year 2014 were omitted, because most basins included many missing streamflow 

values in this year (e.g. 17 basins without data in the year 2014). Therefore, the period 

1980Ϻ2013 was examined (34 years of data for each basin). Attributes not used in the 

analysis are presented in Table 2 for the sake of completeness. The root depth and the 

second most common geologic class attributes were not used, because of their many 

missing values (24 and 138 respectively). Categorical attributes were not included in the 

analysis, since they were found in general unimportant for predicting the shape 

parameter in a preliminary analysis using importance metrics for random forests (see 

Section 2.2.2; for instance, the most common geological class was the most important 
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categorical variable; still, it  was ranked very low, i.e. 15th in overall), while their inclusion 

in the linear model was not possible in the testing procedure. The latter is again due to 

the appearance of missing values in the cross-validation procedure (see Section 2.2.4). 

Some variables were not considered, because they were highly correlated (correlations 

higher than 0.9) with other variables; therefore, the inclusion of both variables would not 

increase the performance of the fitted models. These variables are presented in Table 2 

under the term collinearity. From the remaining dataset, basins with more than 100 

missing daily streamflow values in the period 1980Ϻ2013 or with at least one missing 

attribute  were omitted. The maximum likelihood estimates (Coles 2001, pp. 55, 56) of the 

parameters of eq. (1) for the annual block maxima of daily streamflow and precipitation 

were calculated and they were named GEV attributes in Table 1. In particular, the 

maximum likelihood estimates were obtained using the SpatialExtremes  R package 

(Ribatet 2018). Basins with k І 1 (k denotes the estimate of the shape parameter from 

hereinafter) were omitted, since E[x] (i.e. the first moment) is not defined for k І 1 (Dey 

et al. 2016). Here x denotes the GEV random variable that models the streamflow annual 

block maxima. The 591 remained basins are presented in Figure 1, while the histogram of 

the k estimates is presented in Figure 2. The correlogram of the remained predictor 

variables is presented in Figure 3. 

Table 2. Abbreviations of the attributes of the 671 basins in Addor et al. (2017b) not 
included in the analysis for reasons explained in the heading of the Table. The GEV 
attributes were estimated in the present study. The names of the attributes and a detailed 
description can be found in Appendix A. 

Attribute  type Categorical Used for identification of stations Many missing values Without physical meaning Due to collinearity 

Topographic  gauge_id   area_geospa_fabric 
  huc_02    
  gauge_name    

Climatic high_prec_timing    aridity  
 low_prec_timing    low_prec_freq 

Land cover dom_land_cover  root_depth_XX dom_land_cover_frac lai_diff 
     gvf_max 
      
Soil    other_frac  

Geology geol_class_1st  geol_class_2nd geol_class_1st_frac  
    geol_class_2nd_frac  

GEV attributes     scale_par_prcp 
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Figure 1. The 591 basins examined and their estimated streamflow GEV shape parameter 
(or k estimates). 

 
Figure 2. Histogram of k estimates of the 591 basins in Figure 1. The median (red dashed 
line) is equal to 0.19. 
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Figure 3. Correlations between the predictor variables included in the analysis (see also 
Table 1). 

2.2 Methods 

We used two algorithms (i.e. linear models and random forests) to predict the k parameter 

as a response to the attributes of the basin. All computations were performed using the R 

Programming Language (R Core Team 2018) and the contributed packages mentioned in 

Appendix C. Several other utilities accompanying linear models and random forests were 

implemented in the present study. These are presented in the following. 

2.2.1 Linear models 

The theory of linear models is well known (see, for instance, the textbook of Casella and 

Berger, 2002, pp.  577ɀ611). The discussion here will be limited to special topics of 

interest. We use multiple linear regression models. The model is fitted to the data by 

implementing the lm  R function. The complexity of the model increases with the increase 

of the number of predictor variables. However, the improvement in its predictive 
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importance for a number of predictor variables higher than a specific value depending on 

the specific case is not substantial. On the other hand, important predictor variables 

should not be removed. To this end stepwise backward regression, in which each fitted 

model is evaluated with the Akaike information criterion (AIC; Akaike 1974), can be used 

and unimportant predictor variables can be removed according to an automatic 

procedure. Stepwise backward regression is performed by implementing the olsrr  R 

package (Hebbali 2018). 

Linear models including interactions are also examined. In common statistical 

literature, the term interaction denotes the influence of the product of two or more 

predictor variables to the response. This approach differentiates from the usual approach 

in which the effects of the predictor variables are additive. The concept of interaction 

differs from the concept of confounding, which in Gaussian-based settings is equivalent 

with correlat ion (Boulesteix et al. 2015). Interactions between two predictor variables x1 

and x2 are notated with  x1 : x2. The notation x1 × x2 := x1 : x2 + x1 + x2 is used to denote that 

additive terms are included in the interaction term. 

Ranking the relative importance of the predictor variables in the linear model is crucial 

for understanding how the predictor variables affect the dependent variable (Grömping 

2007a). The LMG relative importance metric (abbreviation of Lindeman, Merenda, and 

Gold 1980 who introduced the metric) is here used through the relaimpo  R package 

(Grömping 2007b, 2018). The LMG metric decomposes the r2 values of the fitted model 

into contributions from different  predictor variables (see Grömping 2007a). While there 

are many methods to decompose r2, the LMG metric is amongst the most credible ones 

(Grömping 2007a, b). For instance, LMG is invariant to the ordering of the predictor 

variables in the linear model, unlike the most frequently used Analysis of Variance 

(ANOVA). 

It is essential to test the normality of the residuals of fitted linear models. To do so, we 

used the Shapiro-Wilk test (Shapiro and Wilk 1965). Selection of a linear model between 

many candidates is possible by using information criteria. Here we implement the Akaike 

Information Criterion  (AIC; Akaike 1974) and the Bayesian Information Criterion  (BIC; 

Schwarz 1978). When two linear models are fitted to a specific dataset, each one including 

different predictor variables, then the model with lower values of AIC and BIC is 

preferable. 
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Despite omitting highly correlated predictor variables in the examined dataset (see 

Section 2.1), the remaining variables still have some residual correlation. A suitable 

metric to examine the influence of the correlated variables in the linear model (also 

termed collinearity)  is the Variance Inflation Factor (VIF, O'Brien 2007). Let v2
i  represent 

the proportion of variance of the ith predictor variable, which is associated with the other 

predictor variables in the model. The VIF metric is defined by 1/(1  ɀ v2
i ) and intuitively is 

interpreted as the effect of v2
i  on the variance of the estimated regression coefficient of the 

ith predictor variable (O'Brien 2007). As a rule of thumb, common unacceptable values of 

the VIF metric are those that are higher than 10, albeit in some studies the limit reduces 

to 4. However, these rules should not be strictly applied (see the discussion in O'Brien 

2007) and models including predictor variables with VIF higher than 10 can become 

acceptable. 

2.2.2 Random forests 

Random forests are a machine learning algorithm with a few parameters to optimize, 

while they are simple with high predictive accuracy and successful implementation in 

practical problems and forecasting competitions (Scornet et al. 2015; Biau and Scornet 

2016). A detailed presentation of random forests and related concepts and terminology 

oriented to the purpose of our study is available in Appendix B. Random forests are used 

here for regression by implementing the randomForest  R package (Liaw and Wiener 

2002; Breiman et al. 2018). The algorithm has four hyperparameters (see also Appendix 

B). When increasing the number of trees hyperparameter, predictions become more 

accurate at the cost of increasing the computational time (Oshiro et al. 2012). The number 

of trees is set equal to 1 000 in the present study, since the gain in the predictive 

performance of the algorithm would be small by adding more trees (e.g. Probst and 

Boulesteix 2018). The other hyperparameters were also not optimized, because their 

predictive performance using their default values is similar to the predictive performance 

of the optimized algorithms, while the gain in computational time is high when 

optimization is not performed (see e.g. Biau and Scornet 2016). 

Similarly to the linear model, random forests can be used for ranking the importance 

of variables in predicting the dependent variable (Verikas et al. 2011) with the aim to 

select important variables (Genuer et al. 2010). Rankings of variable importance using 

random forests and linear models exhibit some dissimilarities (Grömping 2009). For this 
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reason, the examination of both algorithms is useful. An important remark is that in 

contrast to the linear model, random forests are robust to the inclusion of many and non-

important predictor variables (Díaz-Uriarte and De Andres 2006); thus, including all 

predictor variables would hardly affect the predictive performance of the model. 

The permutation importance, which measures the mean increase of the prediction 

Mean Squared Error on the out-of-bag portion of the data after permuting each predictor 

variable in the trees of the trained model, was used as relative variable importance metric. 

It was computed by implementing the randomForest  R package. Relevant details are 

presented in the documentation of Breiman et al. (2018) (see also Appendix B). 

2.2.3 Naïve prediction 

The predictive performance of the regression models is compared to the naïve approach.   

In the latter, the predicted value of the k parameter is equal to its median value from the 

training sample in the 10-fold cross validation (see Section 2.2.4). Naïve prediction is used 

as worst-case benchmark. 

2.2.4 10-fold cross validation 

To test the predictive performance of the regression models (naïve, linear or random 

forests) 10-fold cross validation is performed (Kuhn and Johnson 2013, pp. 69ɀ71). In 

particular, the sample is randomly divided into ten equal sized subsamples. The model is 

trained in nine subsamples and tested in the remaining one, while the procedure is 

repeated ten times. The Root Mean Square Error (RMSE), the 0ÅÁÒÓÏÎȭÓ r and the slope of 

the regression line between the predicted and testing values are the metrics used for the 

assessment of the predictive performance of the regression models. 

To test whether the differences between the mean RMSE values (each computed using 

the 10 RMSE values obtained via 10-fold cross validation) are statistically significant 

between a pair of methods, we implement the Wilcoxon signed-rank test (WSRT; 

Wilcoxon 1945). WSRT is a non-parametric statistical hypothesis test used to assess 

whether the population mean ranks between two samples differ. Its use for comparing 

the performance of machine learning algorithms in k-fold cross validation is suggested by 

$ÅÍĤÁÒ ɉςππφɊȢ A low p-value of the test (e.g. 0.05) denotes that the means of the two 

samples are different at a significance level 0.05. 
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2.2.5 The proposed framework 

The proposed framework consists of the following sequential steps. 

Step 1: Application of stepwise backward linear regression to the whole dataset. Let n1 be 

the number of the retained predictor variables. 

Step 2: Computation of LMG importance metrics for the retained predictor variables of 

Step 1. 

Step 3. Computation of relative importance metrics for random forests when using all 

predictor variables. 

Step 4. 10-fold cross validation with random forests using (a) all predictor variables (b) 

all predictor variables excluding geographical coordinates (c) the groups of predictor 

variables defined in Table 1. 

Step 5. Again 10-fold cross validation with random forests. In this new model, training the 

most important variable according to the variable importance metric for random forests 

is included. Subsequently, the cross validation is repeated by adding one predictor 

variable at the time according to their importance. The procedure terminates when the 

performance of the last trained model is similar to the performance of the model that uses 

all predictor variables. 

Step 6. The same procedure (procedure of Step 5) is repeated with the linear model, but 

here it  terminates when using all predictor variables of Step 1. The LMG variable 

importance metric is used for ranking the variable importance and selecting the 

additional predictor variable in each iteration. Furthermore, AIC and BIC are computed 

for each fitted model. 

Step 7. 10-fold cross validation is also performed for the naïve method. 

Step 8. From the results of the steps 4ɀ7 we understand (a) the performance of the 

models, (b) the importance of variables using two available metrics and (c) how the 

inclusion of more predictor variables increases (or decreases) the predictive performance 

of the models. 

Step 9. Since the performance of the best linear model is expected to be worse compared 

to the best random forest model (the one that terminates the procedure in step 5) then 

we seek for interactions. The inclusion of these interactions could potentially increase the 

performance of the linear model. Here the procedure is semi-automatic. The main idea is 
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to first examine interactions between climatic attributes, since (as will be shown in the 

following Sections, when following steps 1ɀ3) they are found to be the most important in 

the predictive model. 

Step 10. Finally (and hopefully), a parsimonious (i.e. with few predictor variables) linear 

model with interacting terms and high predictive performance (slightly worse than the 

best random forest model) appears. According to the criteria set, other linear models may 

slightly outperform the proposed model; however, they are too complicated, because they 

include many predictor variables. The selected linear model is investigated by computing 

VIF and p-values. 

2.2.6 Some remarks on the proposed framework 

Some remarks on the steps of the procedure of the proposed framework are presented 

here: 

Steps 1ɀ3: Regarding the selection of important variables, we mention that, when many 

predictor variables (i.e. more than approximately 20 in our dataset) are included in the 

model fitting, the LMG cannot be computed in a regular home PC. Random forests are used 

in predictive modelling, in which variable selection is required through e.g. recursive 

procedures. In this case, these procedures are informative and can accompany other 

predictive models (Boulesteix et al. 2012). Variable importance, when including all 

predictor variables in the regression model, can be computed in a reasonable time if 

random forests are implemented. Consequently, variable importance computation with 

random forests is convenient when compared, e.g. with linear models, due to 

computational speed advantages. Therefore, a proposed strategy by Ziegler and König 

(2014) is to select important predictor variables using random forests in the beginning 

and, subsequently, use more computationally intensive methods (e.g. related to linear 

models) in the following. Here we decided to remove predictor variables in the linear 

model and then compare the results with the random forests. In our opinion, this strategy 

is equally reasonable. 

Variable importance metrics rank the predictor variables, but the values of the metrics 

do not provide full knowledge about how significant the predictor variables are 

(Boulesteix et al. 2012). A conservative rule of thumb for selecting predictor variables 

based on importance metrics for random forests is presented by Strobl et al. (2009). 

Variables with negative, zero or small positive value of importance can be excluded. This 
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decision is based on the assumption that the importance of non-important variabl es is 

randomly distributed around zero. 

Steps 4, 5: Regarding the selection of random forests as best case benchmark predictive 

model we mention that random forests are fast, flexible, robust, they can cope with high-

dimensional data (i.e. few observations but many predictor variables), highly correlated 

variables, interactions between predictor variables, non-linear relationships between the 

response and the predictor variables and are non parametric, i.e. the specification of a 

statistical model is not required (Boulesteix et al. 2012; Ziegler and König 2014). 

Correlated variables have a very slight influence in the predictive performance of random 

forests (Boulesteix et al. 2012). They were found to outperform other methods, as well as 

hydrological models in hydrological signatures predictions (Zhang et al. 2018). 

Variable importance metrics can be affected by strongly correlated variables; 

therefore, in some cases a few representative predictor variables should be selected. 

However, excluding all correlated variables is also not recommended, since information 

is lost. In this case, there should be some compromise between all options (Boulesteix et 

al. 2012). Removal of confounding can be done by adding the effect of the confounder 

separately in e.g. a multiple regression model. In this case, if for instance the effects of 

both confounders are positive, then the coefficients of the predictor variables are 

expected to be smaller compared to the case in which one of them is present (Boulesteix 

et al. 2015). 

Step 10: We mention that the selection of a useful model is not only a matter of 

objectivity. !Ó ÍÅÎÔÉÏÎÅÄ ÂÙ 'ÅÌÍÁÎ ÁÎÄ (ÅÎÉÎÇ ɉςπρχɊ Ȱpractitioners must apply their 

subjective judgement in the choice of what method to use, what assumptions to invoke and 

what data to include in their analysesȱȢ For instance, the choice of a linear model with a 

significant lower number of predictor variables can be justified over a linear model with 

a high number of predictor variables, when the AIC value of the latter is slightly lower. A 

discussion on the subjectivity and objectivity in statistical modelling, and how these 

concepts can be substituted by concepts such as transparency, consensus, impartiality 

and correspondence to observable reality, awareness of multiple perspectives, context 

dependence and stability can be found in Gelman and Hennig (2017). 
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3. Application  

3.1 Application of linear model 

We applied a linear model to better understand the effect of the predictor variables of 

Table 1. In this application, we excluded the geographical coordinates, because this would 

not have a physical meaning, unless spatial models such as kriging were used in the 

modelling procedure. When including all variables of interest of Table 1 the computation 

of the LMG metric was not possible due to the high computational cost (see Section 2.2.6). 

Therefore, by applying the stepwise backward regression we excluded some variables not 

important for the prediction of k. The remaining variables, as well as their respective LMG 

metric values, are presented in Figure 4. 

 
Figure 4. LMG relative importance metric for the predictor variables presented in the y-
axis when a linear model is used to predict the shape parameter. 

3.2 Application of random forests 

We applied random forests to predict the k parameter. The predictor variables are 

presented in Table 1. Neighbouring basins share similar attributes, while this information 

is included in their geographical coordinates. Consequently, inclusion of geographical 

coordinates may mask the influence of other attributes in the prediction of k. Hence, two 

cases were examined, i.e. in the first case the geographical coordinates (longitude and 

latitude of the basin) were omitted from the set of the predictor variables, while in the 

second case they were included in the set. The importance of the predictor variables in 

predicting k is presented in Figure 5 for both cases. 
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Figure 5. Variable importance of explanatory variables of interest in Table 1 (the 
geographical coordinates are excluded in the left and included in the right) when random 
forests are applied to the dataset of the 591 stations to predict the shape parameter. The 
variable importance of a particular variable is the percentage of increase in mean square 
error observed in out-of-bag (OOB) prediction when this variable is randomly permuted 
(Breiman et al. 2018, see also Appendix B). 

The ranking of the variables with respect to their importance is slightly different in the 

two cases. When excluding the geographical coordinates, the most important variables 

are the mean daily precipitation  and the duration of low precipitation events. They are 

followed by the frequency of high precipitation events and the precipitation GEV location 

parameter. The fraction of precipitation falling as snow and the forest fraction are also 

important variables. We note here again that variable importance metrics rank the 

predictor variables, but the values of the metrics are less informative (see Section 2.2.6). 

Therefore, they should be combined with the predictive performance of the models, to 

understand their absolute contribution to the k parameter. This examination follows in 

Sections 3.3 and 3.4. Here we mention that the increase in the performance of the random 

forest based predictive models flattens after including 7 to 8 predictor variables (see 

again Section 2.2.6), and this is the criterion used here to characterize a predictor variable 

as important. 

When including the geographical coordinates, the latitude and, to a lesser extent, the 

longitude of the basins are important variables as well, albeit not as important as most of 
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the earlier mentioned ones. The maximum monthly mean of the leaf area index (LAI 

maximum) also becomes an important variable. 

3.3 General results 

In both models, the most important variables are climatic indices (the GEV parameters of 

precipitation can also be considered as climatic indices). Important variables of other 

types are the forest fraction, the LAI maximum, the catchment mean elevation, the 

catchment mean slope and the depth to bedrock depending on the employed model. ɬÈÅ 

duration of low precipitation events was excluded when applying the stepwise backward 

regression, albeit it is an important variable in the random forest model. 

To understand how k and important predictor variables are related we provide some 

representative scatterplots in Figure 6. We selected predictor variables based primarily 

on the computations presented in Figure 5 and secondly on the computations presented 

in Figure 4. It appears that there is a significant linear relationship between k and some 

variables (p-values lower than 0.05). Furthermore, k is rather dispersed around the 

regressions lines (see relative low r values). 
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Figure 6. Scatterplots of the shape parameter and predictor variables of interest. The line 
is obtained by the linear regression of the shape parameter with the predictor variable. 
The p-ÖÁÌÕÅÓ ÁÎÄ 0ÅÁÒÓÏÎȭÓ r of the linear model are also depicted. 

To understand how the predictor variables improve the predictive performance of the 

fitted models we fit a sequence of models presented in Table 3 using random forests. All 
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models are evaluated using 10-fold cross validation. The models are trained on the 90% 

of the data and predict k for the remaining 10% of the data. The procedure is repeated 10 

times, while the respective metrics are equal to the mean of their 10 values obtained from 

the 10-fold cross-validation. Optimal values of tÈÅ 2-3% ÓÈÏÕÌÄ ÂÅ ÎÅÁÒ πȟ ÏÆ 0ÅÁÒÓÏÎȭÓ r 

should be near 1 and the slope should be near 1. When the slope is equal to 1, the 

regression line between the predicted and the real values of k makes an angle of 45° with 

the x-axis. 

The rf1ɀrf11 models include important predictor variables based on Figure 5. The first 

model includes the most important predictor variable, while an important predictor 

variable based on the ranking of Figure 5 is added in the model at each step. The rf12 

model includes the predictor variables of the rf11model and the geographical 

coordinates. The topographic, climate, land, soil, geology and geographical coordinates 

random-forest-based models include the respective variables defined in Table 1. The 

reason is that we aim to understand how each particular type of attributes influences the 

k parameter. Two additional models, which are based on random forests and include all 

predictor variables of Figure 5, are examined with the aim to estimate the best prediction 

of k using the available data. The results of the naïve model are also presented in Table 3. 

Table 3. Mean model errors (see Section 2.2.4) on the test set of the 10-fold cross-
validation for predicting the shape parameter for each method and metric using random 
forests. The naïve method is also presented. 
Name Predictor Variables RMSE r slope 
rf1 low_prec_dur 0.291 0.284 0.196 
rf2 low_prec_dur, p_mean 0.242 0.518 0.338 
rf3 low_prec_dur, p_mean, high_prec_freq 0.233 0.552 0.347 
rf4 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp 0.227 0.577 0.363 
rf5 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow 0.223 0.599 0.368 
rf6 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac 0.221 0.607 0.383 
rf7 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, lai_max 0.219 0.620 0.384 
rf8 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 

lai_max, elev_mean, 
0.217 0.628 0.391 

rf9 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 
lai_max, elev_mean, p_seasonality 

0.215 0.634 0.404 

rf10 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 
lai_max, elev_mean, p_seasonality, slope_mean 

0.215 0.632 0.401 

rf11 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 
lai_max, elev_mean, p_seasonality, slope_mean, high_prec_dur 

0.216 0.632 0.397 

rf12 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 
lai_max, elev_mean, p_seasonality, slope_mean, high_prec_dur, gauge_lat, gauge_lon 

0.214 0.641 0.409 

Topographic Topographic attributes, see Table 1 0.262 0.355 0.161 
Climate Climatic attributes, see Table 1 0.218 0.621 0.390 
Land Land cover attributes, see Table 1 0.243 0.500 0.252 
Soil Soil attributes, see Table 1 0.260 0.362 0.157 
Geology Geology attributes, see Table 1 0.276 0.241 0.091 
Geographical 
coordinates 

gauge_lat, gauge_lon 0.224 0.615 0.396 

All attributes 1 All attributes of Table 1, excluding geographical coordinates 0.214 0.641 0.387 
All attributes 2 All attributes of Table 1 0.213 0.642 0.393 
naïve  0.281 ɀ 0.000 
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The sequence of fitted linear models is presented in Table 4. The lm1ɀlm16 models 

include predictor variables according to their ranking of Figure 4. The AIC and BIC values 

of the linear models when fitted to the whole dataset are also presented. 

Table 4. Mean model errors (see Section 2.2.4) on the test set of the 10-fold cross-
validation for predicting the shape parameter for linear models. AIC and BIC are 
computed when the linear model is fitted to the whole dataset. 
Name Predictor Variables RMSE r slope AIC BIC 
lm1 p_mean 0.263 0.340 0.118 101.13 114.27 
lm2 p_mean, high_prec_freq 0.254 0.419 0.179 59.10 76.63 
lm3 p_mean, high_prec_freq, loc_par_prcp 0.238 0.518 0.276 ɀ17.64 4.27 
lm4 p_mean, high_prec_freq, loc_par_prcp, forest_frac 0.238 0.518 0.276 ɀ16.10 10.19 
lm5 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow 0.238 0.516 0.276 ɀ14.32 16.35 
lm6 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 

soil_depth_pelletier 
0.233 0.544 0.306 ɀ37.31 ɀ2.26 

lm7 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur 

0.232 0.551 0.315 ɀ43.62 ɀ4.18 

lm8 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity 

0.230 0.564 0.330 ɀ55.65 ɀ11.83 

lm9 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max 

0.230 0.563 0.330 ɀ55.72 ɀ7.52 

lm10 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac 

0.228 0.572 0.342 ɀ63.74 ɀ11.16 

lm11 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac, 
soil_porosity 

0.227 0.578 0.351 ɀ70.92 ɀ13.95 

lm12 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac, 
soil_porosity, shape_par_prcp 

0.223 0.598 0.374 ɀ91.02 ɀ29.68 

lm13 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac, 
soil_porosity, shape_par_prcp, clay_frac 

0.223 0.598 0.375 ɀ90.20 ɀ24.48 

lm14 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac, 
soil_porosity, shape_par_prcp, clay_frac, soil_conductivity 

0.223 0.599 0.377 ɀ90.49 ɀ20.38 

lm15 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac, 
soil_porosity, shape_par_prcp, clay_frac, soil_conductivity, organic_frac, as 
in Figure 4 

0.222 0.601 0.382 ɀ96.26 ɀ21.77 

Finally, we fit linear models that include interactions, as presented in Table 5. 

Practically, we firstly tested all interactions between the mean daily precipitation, the 

frequency of high precipitation days and the precipitation location parameter. We found 

that newlm4 combination of predictor variables includes 2 terms and performs similarly 

or better compared to the newlm1ɀnewlm7 combinations, while it includes less predictor 

variables. The procedure continued by adding (and then removing if found useless) in a 

stepwise mode the most important variables found in Figure 4. The newlm17 model 

includes 6 terms and reduces the RMSE compared to the previous best fitted model 

(newlm16) by 0.06. The next models (newlm21, newlm22, newlm23) further decrease 

the RMSE by 0.03, but they include at least 5 more terms (see newlm21, which includes 

3-way interactions and their additive effects). Finally, the newlm24ɀ27 models present a 

significant increase in the RMSE when some terms from the newlm17 model are omitted. 
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As representative model we select the newlm17 one (further reasoning along with other 

details can be found later in Section 4.3). 

Table 5. Mean model errors (see Section 2.2.4) on the test set of the 10-fold cross-
validation for predicting the shape parameter for linear models with interactions . AIC and 
BIC are computed when the linear model is fitted to the whole dataset. Here a : b denotes 
interaction while a × b := a + b + a : b (includes interactions and additive effects, see 
Section 2.2.1). 
Name Predictor Variables RMSE r slope AIC BIC 
newlm1 p_mean × high_prec_freq 0.240 0.504 0.261 ɀ5.47 16.44 
newlm2 p_mean : high_prec_freq 0.267 0.297 0.089 120.12 133.27 
newlm3 p_mean × high_prec_freq, loc_par_prcp 0.231 0.553 0.317 ɀ53.44 ɀ27.15 
newlm4 p_mean : high_prec_freq, loc_par_prcp 0.233 0.542 0.303 ɀ41.82 ɀ24.29 
newlm5 p_mean + loc_par_prcp 0.239 0.514 0.268 ɀ11.39 6.13 
newlm6 high_prec_freq + loc_par_prcp 0.257 0.395 0.157 75.13 92.66 
newlm7 p_mean × high_prec_freq × loc_par_prcp 0.232 0.552 0.322 ɀ52.63 ɀ13.19 
newlm8 p_mean : high_prec_freq, loc_par_prcp, frac_forest 0.233 0.541 0.303 ɀ39.88 ɀ17.97 
newlm9 p_mean : high_prec_freq, loc_par_prcp, frac_snow 0.233 0.542 0.304 ɀ40.70 ɀ18.79 
newlm10 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier 0.231 0.554 0.318 ɀ52.70 ɀ30.79 
newlm11 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, high_prec_dur 0.231 0.553 0.318 ɀ51.00 ɀ24.70 
newlm12 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity 0.228 0.570 0.337 ɀ67.15 ɀ40.86 
newlm13 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 

lai_max 
0.228 0.569 0.336 ɀ65.24 ɀ34.57 

newlm14 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
silt_frac 

0.227 0.576 0.344 ɀ72.20 ɀ41.52 

newlm15 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
silt_frac, soil_porosity 

0.226 0.581 0.352 ɀ77.74 ɀ42.68 

newlm16 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
soil_porosity 

0.225 0.583 0.352 ɀ79.27 ɀ48.60 

newlm17 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
soil_porosity, shape_par_prcp 

0.219 0.612 0.387 ɀ110.54 ɀ75.48 

newlm18 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
soil_porosity, shape_par_prcp, clay_frac 

0.219 0.611 0.387 ɀ108.58 ɀ69.14 

newlm19 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
soil_porosity, shape_par_prcp, soil_conductivity 

0.219 0.612 0.388 ɀ110.17 ɀ70.73 

newlm20 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
soil_porosity, shape_par_prcp, organic_frac 

0.219 0.614 0.390 ɀ112.31 ɀ72.87 

newlm21 p_mean × high_prec_freq × shape_par_prcp, loc_par_prcp, 
soil_depth_pelletier, geol_porosity, soil_porosity 

0.216 0.628 0.412 ɀ129.91 ɀ72.95 

newlm22 p_mean × high_prec_freq × shape_par_prcp, loc_par_prcp, 
soil_depth_pelletier × geol_porosity × soil_porosity 

0.217 0.622 0.410 ɀ122.76 ɀ48.27 

newlm23 p_mean × high_prec_freq × shape_par_prcp, loc_par_prcp, 
soil_depth_pelletier × geol_porosity, soil_porosity 

0.216 0.627 0.412 ɀ128.47 ɀ67.13 

newlm24 p_mean, high_prec_freq, loc_par_prcp, soil_depth_pelletier, geol_porosity, 
soil_porosity, shape_par_prcp 

0.225 0.586 0.356 ɀ79.39 ɀ39.95 

newlm25 p_mean : high_prec_freq, soil_depth_pelletier, geol_porosity, soil_porosity, 
shape_par_prcp 

0.260 0.372 0.143 90.92 121.60 

newlm26 loc_par_prcp, soil_depth_pelletier, geol_porosity, soil_porosity, 
shape_par_prcp 

0.274 0.215 0.048 153.28 183.95 

newlm27 soil_depth_pelletier, geol_porosity, soil_porosity, shape_par_prcp 0.274 0.218 0.048 151.96 178.25 

To understand how differences in the RMSE, which can be perceived as small, can 

largely influence predictive uncertainties, we compute prediction intervals for the 500-

year floods for all basins. The T-year flood is defined by (Dey et al. 2016; Tyralis and 

Langousis 2018): 

 qT = ʈ + (ʎ/ k) ( (ɀlog(1ɀ1/ T))ɀk ɀ 1) (2) 

Two models are compared, i.e. the selected newlm17 and the newlm4 models. The 

newlm4 model was selected for comparison reasons because compared to the newlm17 

model does not include geologic and soil attributes (see also the relevant discussion in 
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Section 4.3). The difference in the mean RMSE of the 10-fold cross validation between the 

two models is 0.014. The p-value of the WSRT is equal to 0.075, i.e. it is lower than the 

significance level 0.10, indicating that the difference is significant. Since the focus here is 

to isolate the influence of the k parameter, the ʈ and ʎ parameters are set equal to their 

known values (i.e. the maximum likelihood estimates). Then 10-fold cross validation is 

implemented for both linear models and 95% prediction intervals for k are computed at 

the independent sets using the lm  R function. Since the quantile is an increasing function 

of k, as can be derived by eq. (2), 95% prediction intervals can be obtained for q500 by 

simply substituting k in eq. (2) with its prediction limits. Coverage probabilities for 

newlm17 and newlm4 are equal to 0.949 and 0.956 respectively. However, the prediction 

intervals of the newlm17 model are considerably narrower  compared to those produced 

by newlm4. In particular , we computed the relative decrease in the width of the prediction 

interval between the two models in each basin (in the 10 independent test sets of the 10-

fold cross validation) according to: 

 a = (width newlm4 ɀ width newlm17)/ width newlm4 (3) 

The mean relative decrease in the sample of all basins is 4.99%, while the histogram of 

the relative improvements per basin can be found in Figure 7. To understand the 

difference between the two models, it is mentioned that the mean width of the prediction 

intervals are 4 785 m3/s  and 5 460 m3/s  for the newlm17 and newlm4 models 

respectively, while 500-year floods range up to 20 000 m3/s. 

 
Figure 7. Histogram of relative improvement of the 95% prediction interval width of the 
model newlm17 against the model newlm4. The mean (red dashed line) is equal to 4.99%. 
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3.4 Overview of results 

3.4.1 Naïve method 

We limit our following discussion mainly to the assessment of the predictive performance 

with respect to the value of the RMSE reported in Section 3.3. The naïve method serves as 

a benchmark; therefore, all combinations of predictor variables and all applied models 

should be assessed based on their relative performance compared to it. The RMSE in the 

estimation of k when applying the naïve method is equal to 0.281. It could be said 

informally that the naïve method is equivalent to not using any predictor variables for k 

in the models introduced, for example, by Northrop (2004). 

3.4.2 Linear models 

When applying the linear model by adding one variable at a time the increase in 

performance is small. However, the use of 12 variables (lm12) leads to a performance that 

is approximately equal to the one of the rf model with the geographical coordinates, i.e. 

the RMSE is 0.223 (21% increase in performance compared to the naïve method). The use 

of all predictor variables presented in Figure 4 results in a RMSE of 0.222, while when 

including 3Ϻ5 predictor variables (lm3Ϻlm5) the RMSE becomes 0.238. The increase in 

performance is 15%. Finally, the inclusion of six predictor variables results in a 17% 

increase in performance. These values are important benchmarks for understanding the 

importance of the predictor variables when added in stepwise mode. 

3.4.3 Random forests 

The predictive performance of the random forest based models increases with the 

increase of the number of predictor variables, but it seems to stabilize when using nine 

(rf9, see Table 3 for the abbreviation) or more predictor variables. When moving from the 

use of one predictor variable (rf1) to nine predictor variables (rf9), the RMSE in the 

prediction of k decreases from 0.291 to 0.215. Its optimal value is equal to 0.213 and it is 

observed for the use of all predictor variables of Figure 5, including the geographical 

coordinates of the catchments. When excluding the geographical coordinates the RMSE 

increases to 0.214. This change can be considered negligible. When using the geographical 

coordinates of the catchments the RMSE is 0.224. This value can be surpassed by using 

five predictor variables (rf5). An explanation is that the information gained through 

utilising the proximity of the catchments can be compensated by the information obtained 
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through the predictor variables of rf5. This is important, since the information from the 

CAMELS dataset can be transferred to geographical coordinates not included in the 

CONUS, using just five predictor variables. 

It is further important to understand how the different types of attributes of the 

catchments can be used to increase the information for k. The climatic indices result in an 

RMSE equal to 0.218, which is significantly low compared to the naïve approach, while its 

difference compared to the optimal model is also very small. The other types of predictor 

variables (see Table 1) do not seem to be particularly useful for the prediction model. The 

land cover characteristics seem to improve the performance of the model with an RMSE 

equal to 0.243. They are followed by the soil and topographic characteristics with RMSE 

values equal to 0.260 and 0.262 respectively. The improvement using geological 

characteristics is negligible. 

Compared to the naïve approach, the optimal model results in an increase in 

performance of the RMSE equal to 24%, which is a considerable improvement. The 

respective improvement in performance when applying the rf5 model is 21%. This 

improvement is fair as well, if we also consider the fact that it can be achieved by using 

only five predictor variables. 

3.4.4 Summary of results 

The mean 0ÅÁÒÓÏÎȭÓ r in the 10-fold cross-validation is approximately equal to 0.60, while 

its exact value depends on the combination of predictor variables and the selected model. 

The patterns of change in performance are similar to the patterns observed for RMSE.  

Here again, we highlight that in this kind of studies the relative importance compared to 

naïve methods is of high importance, and therefore the approach should not be 

ÅØÃÌÕÓÉÖÅÌÙ ÁÓÓÅÓÓÅÄ ÂÁÓÅÄ ÏÎ ÃÒÉÔÅÒÉÁ ÒÅÌÁÔÅÄ ÔÏ ÔÈÅ ÁÂÓÏÌÕÔÅ ÐÅÒÆÏÒÍÁÎÃÅȢ ! 0ÅÁÒÓÏÎȭÓ r 

equal to 0.60 may not be close to 1, yet the improvement is considerable compared to its 

respective value when explanatory information is not used. The case for the slope of the 

regression line is also similar. The slope of the naïve method is 0, while it increases to 0.40 

for rf12. 

By comparing the random forests with the linear model we observe that the former 

have better predictive performance. This is due to the flexibility of the algorithm, which 

can reveal possible non-linear relationships. Therefore, random forests that use less 

predictor variables can have equal performance with linear models. It is also of 
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significance that the most important variables entered firstly in the models are climate 

indices. 

4. Discussion  

4.1 Some additional remarks on the experimental design 

Shmueli (2010) identifies three modelling perspectives, i.e. predictive, explanatory and 

descriptive modelling. Breiman (2001) makes a distinction between two cultures in 

statistical modelling. In the first culture, it is assumed that the data are generated by a 

statistical model, while in the second culture that the data are modelled by a non-

parametric model, since the data mechanism is considered unknown. According to 

Boulesteix and Schmid (2014) these two approaches are related, i.e. the statistical 

approach should be preferred when descriptive modelling is required, while non-

parametric approaches (termed algorithmic approaches in Breiman 2001) are suitable in 

the second case. In some cases, it is possible that a statistical model can also perform 

equally well to an algorithmic model; therefore, it can simultaneously answer questions 

related to the description of the model and its predictability.  If such a model can be found, 

as is the case here, then it can answer multiple questions. 

Genuer et al. (2010) identify two variable selection objectives. These are the finding of 

important variables that are highly related to the dependent variable for interpretation 

purposes and the designing of a parsimonious prediction model by retaining a small and 

sufficient number of predictor variables. The two objectives are parallel to the distinction 

between explanatory/causal importance and predictive importance in typical regression 

models (Grömping 2009) and are related to the descriptive modelling perspective 

(Shmueli 2010). The combination of these two objectives can lead to a better 

understanding of the influence of the predictor variables on k (Grömping 2009), albeit a 

theory-driven explanatory model should be preferred, if it exists (Grömping 2007a). In 

the absence of such model important variables that result from metrics based on data-

driven methods should be preferred to explain the nature of the response variable 

(Grömping 2007a). Here we employed a similar strategy to the ones proposed by Díaz-

Uriarte and De Andres (2006) and Genuer et al. (2010) for variable selection by ranking 

the predictor variables according to their importance and by introducing variables in the 

prediction problem in a stepwise strategy. Ad-hoc interpretation of the importance of the 

predictor variables can then take place, while the selection of a parsimonious model 
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depends on the specific case examined. The latter involves comparison with naïve 

methods and intercomparison of models with varying number of predictor variables with 

respect to their predictive performance. 

4.2 New findings on the nature of the k parameter 

A general assessment is that the k parameter depends on climatic indices, while the other 

attr ibutes of the catchments are less important. This result is in agreement with Beck et 

al. (2015) and Addor et al. (2018), who argue that hydrological signatures mostly depend 

on climatic indices, albeit Addor et al. (2018) claim that this may be a result of an 

insufficient summary of the catchments attributes by the implemented indices. What is 

particularly important is that hydrological signatures related to the magnitude of flow 

(e.g. the ʈ and ʎ parameters here) mostly depend on the area of the catchment (see also 

Northrop 2004) , with a high influence in their values, while other attributes have less 

influence in the response variable. However, the k parameter has a different nature. 

Firstly, the uncertainties in its estimation are higher, resulting in the dispersed 

scatterplots observed in Figure 6. Secondly, assuming that the uncertainties are mitigated 

by the large sample, the influence of the area of the catchment is less profound compared 

to the cases of the ʈ and ʎ parameters. The large CAMELS dataset (Newman et al. 2015; 

Addor et al. 2017b) helped in finding such relationships for the k parameter (see e.g. 

Northrop 2004; Villarini and Smith 2010; Villarini et al. 2011a, b; Lima et al. 2016, Wallis 

et al. 2007; Ahn and Palmer 2016), which earlier studies could not identify due to limited 

data availability. In particular, Northrop (2004) and Lima et al. (2016) did not use a 

regression model for the k parameter, while Villarini and Smith (2010) and Villarini et al. 

(2011a, b) found relationships with the catchment area. The latter is here shown to be 

less important compared to at least 10 other predictor variables. Wallis et al. (2007) found 

a relationship between k and the mean annual precipitation, which was also found here, 

but it is not sufficient for a good prediction of k. On the other hand, Ahn and Palmer (2016) 

found that k depends on the latitude, the mean basin slope and the precipitation 

seasonality. These attributes were found less important here compared to other 

attributes. He et al. (2015) also did not find any relationship between the k parameter and 

the catchment area, and suggested that hydrological heterogeneity is implicitly reflected 

in the shape parameter. Apparently, results of different studies are not directly 

comparable, especially when data from different regions are used; however, the present 
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study includes a higher number of examined basins and attributes, while the basins 

represent a large diversity of climate types. 

4.3 The final model 

Random forests is an algorithm with high predictive performance and an ability to reveal 

interactions between the predictor variables and non-linear relationships (see Section 

2.2.6). Therefore, the here lowest predictive performance of the linear model should be 

expected. Considering that the improvement of other algorithms is expected to be low 

compared to random forests, it is reasonable to assume that an optimal benchmark 

regarding the prediction of k would be a result from the implementation of random 

forests. Considering also the need for obtaining an interpretable and parsimonious model, 

a linear model with a small number of predictor variables should be selected in the model. 

Such a model is the newlm17, which includes five predictor variables and the interaction 

between other two attributes , when fitted to the sample of the 591 catchments as shown 

in the next equation: 

k = ɀ 2.61 + 0.87 log (precipitation  location parameter) ɀ 0.03 log(depth to bedrock) + 

0.46 subsurface porosity ɀ 0.66 log(volumetric porosity ) + 0.30 precipitation  GEV shape 

parameter ɀ 0.32 log(mean daily precipitation) log(frequency of high precipitation 

events)  (4) 

It is obvious that the newlm17 model has good predictive properties, since it is better 

than all linear models in Table 4, highlighting the role of interactions. It is also slightly 

worse compared to the rf8Ϻrf12 random forest models with respect to its predictive 

performance; however, it is more interpretable and includes less predictor variables. It is 

also notable that the rate of increase in the predictive performance of random forests 

decreases rapidly as more predictor variables are added in the models. Therefore, starting 

from an RMSE equal to 0.291 (rf1 model in Table 3), an intermediate RMSE equal to 0.219 

is reached (rf7 in Table 3), while the terminating RMSE is equal to 0.214 (rf14 model in 

Table 3). A delivered RMSE equal to 0.219, together with a small number of predictor 

variables and a simple model structure, are good reasons to select the newlm17 model for 

the given data. 

All coefficients of the model of eq. (4) where statistically significant at the 0.05-level. 

The VIF of precipitation location parameter and the interaction term were 4.41 and 4.52 

respectively, which are far lower compared to 10 (see Section 2.2.1); therefore, they are 
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acceptable, especially if we consider that their exclusion results in significant decrease in 

performance. The VIF of the predictor variables were in the range 1Ϻ1.5 (1 is the lower 

limit of VIF). The residuals of the newlm17 model were also found normally distributed 

according to the Shapiro-Wilk test. The model of eq. (4) uses seven predictor variables 

and its RMSE was 0.219 in the 10-fold cross-validation, while the 0ÅÁÒÓÏÎȭÓ r was equal to 

0.612. Its adjusted r2 was 0.39 when fitted to the dataset of the 591 catchments. 

Furthermore, its performance is equal to the one of the rf7 model, which also includes 

seven predictor variables. 

When looking at eq. (4) one sees that k is a decreasing function of the product of mean 

daily precipitation and frequency of high precipitation events. The inclusion of the 

interaction played a crucial role in the considerable increase in performance compared to 

the models that do not include interactions, i.e. the models of Table 4. Additionally, k 

increases with the location parameter of the GEV distribution of precipitation extremes 

and with the increase of their shape parameter. The latter seems also sensible, because 

extreme precipitation should result in streamflow extremes. Lastly, k increases with 

increasing subsurface porosity and decreases with increasing depth to bedrock and 

ÖÏÌÕÍÅÔÒÉÃ ÐÏÒÏÓÉÔÙȢ 4Ï ÔÈÅ ÁÕÔÈÏÒÓȭ ËÎÏ×ÌÅÄÇÅȟ ÔÈÅÒÅ ÉÓ ÎÏÔ a theory-driven explanatory 

model for the relationship between k and geological or soil attributes. However, the 

benefits of using such model have been shown in Section 3.3 (see Figure 7 and the relevant 

discussion on the comparison in the predictive performance between newlm4 (which 

includes the interaction term and the location parameter of precipitation) and newlm17). 

5. Conclusions 

The shape parameter of the generalized extreme value distribution of daily annual block 

maxima of streamflow is important because it is related to how extreme the floods are. 

For this specific reason, it should be attentively examined with the aim to reduce its high 

impact on uncertainty, when incorporated in statistical models of extremes. 

Here we propose a framework to find significant relationships between the shape 

parameter and basin attributes in the context of flood frequency analysis, as well as to 

predict the shape parameter given the attributes in ungauged or sparsely gauged basins. 

The framework is based on multiple linear regression, incorporation of interactions 

between the attributes, assessment of the importance of attributes in predicting the shape 

parameter within a linear framework and comparison with a high performance non-
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linear model (random forests), which is herein used as best case prediction algorithm, 

aiming to validate the proposed linear model. We applied the framework to 591 basins in 

the contiguous US. 

We found that the shape parameter is influenced by the interactions between the mean 

daily precipitation and the frequency of high precipitation days, the precipitation GEV 

location parameter and the precipitation GEV shape parameter. It also depends on 

geological and soil characteristics of the catchment, albeit to a smaller extent. 

The RMSE of the linear model in a 10-fold cross-validation scheme was found to be 

0.219, i.e. 22% smaller than the RMSE computed for a naïve model, while its adjusted r2 

when the model is fitted to the whole dataset is 0.39. Its performance was similar to the 

more complex benchmark model, i.e. negligible improvements can be found, by further 

modification of the model. The incorporation  of this model into relevant Bayesian 

frameworks or regression-based models for regional flood frequency analysis may result 

in considerable reduction of the predictive uncertainties. 

Conflicts of interest: The authors declare no conflict of interest. 

Appendix A  Description of catchment attributes  

In Tables A-1-A-6 we describe the attributes of the basins. 

Table A-1. Name, location and topographic characteristics (adapted from Addor et al. 
2017b). 

Attribute  Abbreviation Description 
Gauge id gauge_id catchment identifier (eight-digit USGS hydrologic unit code) 
Region huc_02 region (two-digit USGS hydrologic unit code) 
Gauge name gauge_name gauge name, followed by the state 
Latitude gauge_lat gauge latitude 
Longitude gauge_lon gauge longitude 
Mean elevation elev_mean catchment mean elevation 
Mean slope slope_mean catchment mean slope 
Area area_gages2 catchment area (GAGESII estimate) 
 area_geospa_fabric catchment area (geospatial fabric estimate) 
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Table A-2. Climatic indices (adapted from Addor et al. 2017b). 
Attribute  Abbreviation Description 
Mean daily precipitation p_mean mean daily precipitation 
Mean daily PET pet_mean mean daily PET, estimated by N15 using PriestleyɀTaylor 

formulation calibrated for each catchment 
Aridity  aridity  aridity (PET / P, ratio of mean PET, estimated by N15 using 

PriestleyɀTaylor formulation calibrated for each catchment, to 
mean precipitation) 

Seasonality and timing of 
precipitation  

p_seasonality seasonality and timing of precipitation (estimated using sine curves 
to represent the annual temperature and precipitation cycles; 
positive (negative) values indicate that precipitation peaks in 
summer (winter); values close to 0 indicate uniform precipitation 
throughout the year) 

Fraction of precipitation 
falling as snow 

frac_snow fraction of precipitation falling as snow (i.e., on days colder than 
0°C) 

Frequency of high 
precipitation events 

high_prec_freq ÆÒÅÑÕÅÎÃÙ ÏÆ ÈÉÇÈ ÐÒÅÃÉÐÉÔÁÔÉÏÎ ÄÁÙÓ ɉІ υ ÔÉÍÅÓ ÍÅÁÎ ÄÁÉÌÙ 
precipitation)  

Duration of high 
precipitation events 

high_prec_dur average duration of high precipitation events (number of 
ÃÏÎÓÅÃÕÔÉÖÅ ÄÁÙÓ І υ ÔÉÍÅÓ ÍÅÁÎ ÄÁÉÌÙ ÐÒÅÃÉÐÉÔÁÔÉÏÎɊ 

Season of high 
precipitation events 

high_prec_timing ÓÅÁÓÏÎ ÄÕÒÉÎÇ ×ÈÉÃÈ ÍÏÓÔ ÈÉÇÈ ÐÒÅÃÉÐÉÔÁÔÉÏÎ ÄÁÙÓ ɉІ υ ÔÉÍÅÓ ÍÅÁÎ 
daily precipitation) occur 

Frequency of low 
precipitation events 

low_prec_freq frequency of dry days (< 1 mm dayɀ1) 

Duration of low 
precipitation events 

low_prec_dur average duration of dry periods (number of consecutive days < 
1 mm dayɀ1) 

Season of low precipitation 
events 

low_prec_timing season during which most dry days (< 1 mm dayɀ1) occur 

Table A-3. Land cover characteristics (adapted from Addor et al. 2017b). 
Attribute  Abbreviation Description 
Forest fraction forest_frac forest fraction 
LAI maximum lai_max Maximum monthly mean of the leaf area index (based on 12 

monthly means) 
LAI difference lai_diff difference between the maximum and minimum monthly mean 

of the leaf area index (based on 12 monthly means) 
Green vegetation fraction 
maximum 

gvf_max maximum monthly mean of the green vegetation fraction 
(based on 12 monthly means) 

Green vegetation fraction 
difference 

gvf_diff difference between the maximum and minimum monthly mean 
of the green vegetation fraction (based on 12 monthly means) 

Dominant land cover dom_land_cover dominant land cover (Noah-modified 20-category IGBP-MODIS 
land cover) 

Dominant land cover 
fraction 

dom_land_cover_frac fraction of the catchment area associated with the dominant 
land cover 

Root depth root_depth_XX root depth (percentiles XX = 50 and 99 % extracted from a root 
depth distribution based on IGBP land cover) 
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Table A-4. Soil characteristics (adapted from Addor et al. 2017b). 
Attribute  Abbreviation Description 
Depth to bedrock soil_depth_pelletier depth to bedrock (maximum 50 m) 
Soil depth soil_depth_statsgo soil depth (maximum 1.5 m; layers marked as water and 

bedrock were excluded) 
Volumetric porosity soil_porosity volumetric porosity (saturated volumetric water content 

estimated using a multiple linear regression-based on sand 
and clay fraction for the layers marked as USDA soil texture 
class and a default value (0.9) for layers marked as organic 
ÍÁÔÅÒÉÁÌȠ ÌÁÙÅÒÓ ÍÁÒËÅÄ ÁÓ ×ÁÔÅÒȟ ÂÅÄÒÏÃËȟ ÁÎÄ ȰÏÔÈÅÒȱ ×ÅÒÅ 
excluded) 

Saturated hydraulic 
conductivity 

soil_conductivity saturated hydraulic conductivity (estimated using a multiple 
linear regression-based on sand and clay fraction for the 
layers marked as USDA soil texture class and a default value 
(36 cm hɀ1) for layers marked as organic material; layers 
ÍÁÒËÅÄ ÁÓ ×ÁÔÅÒȟ ÂÅÄÒÏÃËȟ ÁÎÄ ȰÏÔÈÅÒȱ ×ÅÒÅ ÅØÃÌÕÄÅÄɊ 

Maximum water content max_water_content maximum water content (combination of porosity and 
soil_depth_statsgo; layers marked as water, bedrock, and 
ȰÏÔÈÅÒȱ ×ÅÒÅ ÅØÃÌÕÄÅÄɊ 

Sand fraction sand_frac sand fraction (of the soil material smaller than 2 mm; layers 
marked as ÏÒÇÁÎÉÃ ÍÁÔÅÒÉÁÌȟ ×ÁÔÅÒȟ ÂÅÄÒÏÃËȟ ÁÎÄ ȰÏÔÈÅÒȱ 
were excluded) 

Silt fraction silt_frac silt fraction (of the soil material smaller than 2 mm; layers 
ÍÁÒËÅÄ ÁÓ ÏÒÇÁÎÉÃ ÍÁÔÅÒÉÁÌȟ ×ÁÔÅÒȟ ÂÅÄÒÏÃËȟ ÁÎÄ ȰÏÔÈÅÒȱ 
were excluded) 

Clay fraction clay_frac clay fraction (of the soil material smaller than 2 mm; layers 
ÍÁÒËÅÄ ÁÓ ÏÒÇÁÎÉÃ ÍÁÔÅÒÉÁÌȟ ×ÁÔÅÒȟ ÂÅÄÒÏÃËȟ ÁÎÄ ȰÏÔÈÅÒȱ 
were excluded) 

Water fraction water_frac fraction of the top 1.5 m marked as water (class 14) 
Organic fraction organic_frac fraction of soil_depth_statsgo marked as organic material 

(class 13) 
Other fraction other_frac ÆÒÁÃÔÉÏÎ ÏÆ ÓÏÉÌͺÄÅÐÔÈͺÓÔÁÔÓÇÏ ÍÁÒËÅÄ ÁÓ ȰÏÔÈÅÒȱ ɉÃÌÁÓÓ ρφɊ 

Table A-5. Geological characteristics (adapted from Addor et al. 2017b). 
Attribute  Abbreviation Description 
Common geologic class geol_class_1st most common geologic class in the catchment 
Fraction of common 
geologic class 

geol_class_1st_frac fraction of the catchment area associated with its most common 
geologic class 

Second most common 
geologic class 

geol_class_2nd second most common geologic class in the catchment 

Fraction of second most 
common geologic class 

geol_class_2nd_frac fraction of the catchment area associated with its second most 
common geologic class 

Fraction of carbonate rocks carb_rocks_frac ÆÒÁÃÔÉÏÎ ÏÆ ÔÈÅ ÃÁÔÃÈÍÅÎÔ ÁÒÅÁ ÃÈÁÒÁÃÔÅÒÉÚÅÄ ÁÓ ȰÃÁÒÂÏÎÁÔÅ 
ÓÅÄÉÍÅÎÔÁÒÙ ÒÏÃËÓȱ 

Subsurface porosity geol_porosity subsurface porosity 
Subsurface permeability geol_permeability subsurface permeability (log10) 

Table A-6. GEV attributes. 
Attribute  Abbreviation Description 
Shape parameter of streamflow 
extremes 

shape_par GEV shape parameter estimate of the streamflow annual block 
maxima 

Precipitation location parameter loc_par_prcp GEV location parameter estimate of the precipitation annual 
block maxima 

Precipitation scale parameter scale_par_prcp GEV scale parameter estimate of the precipitation annual block 
maxima 

Precipitation shape parameter shape_par_prcp GEV shape parameter estimate of the precipitation annual 
block maxima 

Appendix B  Random Forests 

Here we present aspects of Random Forests (RF), an algorithm introduced by Breiman 

(2001). The presentation is based on the classical textbook of Hastie et al. (2018, Chapter 
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15). RF are a classification and regression algorithm. Here we use it for regression. The 

algorithm uses regression trees (see Hastie et al. 2018, Chapter 9) and a modification of 

bootstrap aggregating (bagging). "ÒÅÉÍÁÎȭÓ ɉςππρɊ 2& ÕÓÅ ÔÈÅ #!24 ÄÅÃÉÓÉÏÎ ÔÒÅÅÓ (see 

Hastie et al. 2018, Chapter 9), while other tree versions also exist. Trees have low bias and 

can model interactions. The idea of bagging is to average many noisy but approximately 

unbiased models aiming to reduce the variance. Consequently, a good option is to average 

many trees. The bias of the average of trees is equal to the bias of each tree; however, 

bagging reduces the variance of the average of trees. Further reduction of the variance is 

achieved when a modification of bagging is used. In this modification, each tree grows by 

a random selection of the input variables. The notation mtry  is commonly used to denote 

the number of variables randomly selected at each tree due to the most frequently used 

software implementation of the algorithm, i.e. the randomForest  (Liaw and Wiener 

2002; Breiman et al. 2018) R package. The training of the algorithm is performed by 

minimizing the out-of-bag (oob) error, i.e. the error of the internal (within the training 

set) cross-validation of the algorithm. 

The algorithm needs little tuning, while its performance is very good when using the 

default parameters, i.e. mtry , the number of trees, the maximum number of terminal nodes 

of the trees and the minimum size of terminal nodes. The number of trees is a critical parameter. 

Growing a large number of trees results in better predictions but the performance flattens 

asymptotically. 

Estimation of the variable importance, i.e. the contribution of each input variable in 

predicting the response (see Hastie et al. 2018, Chapter 10; see also Grömping 2015) is also 

possible with RF. Variable importance of RF is computed by (a) growning a tree, (b) computing 

the prediction accuracy of the tree in the oob sample are passed down, (c) randomly permuting 

the j th variable in the oob sample and recomputing the prediction accuracy. The variable 

importance of the j th variable is equal to the decrease in accuracy after permuting in all trees 

and averaging the results. Negative variable importance means that inclusion of the predictor 

variables results in decrease of the performance of the algorithm. Positive values indicate 

positive contribution in the prediction of the algorithm, while the magnitude of the contribution 

is related to the relative contribution of all variables, as estimated from their respective variable 

importance. 
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Appendix C Used software  

All analyses and visualizations were conducted in R Programming Language (R Core Team 

2018) using the following packages: caret  (Kuhn 2008, 2018), devtools  (Wickham et 

al. 2018), gdata  (Warnes et al. 2017), ggplot2  (Wickham 2016; Wickham et al. 2018), 

knitr  (Xie 2014, 2015, 2018), olsrr  (Hebbali 2018), randomForest  (Liaw and 

Wiener 2002; Breiman et al. 2018), readr  (Wickham et al. 2017), relaimpo  (Grömping 

2007b, 2018), reshape2  (Wickham 2007, 2017), rmarkdown  (Allaire et al. 2018), 

SpatialExtremes  (Ribatet 2018), stringi  (Gagolewski 2018). 
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