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Abstract : The finding of important explanatory variables for the location parameter and
the scaleparameter of the generalized extreme value (GEV) distribution, when the latter
is used forthe modelling of annual streamflow maximg is known to have reduced the
uncertainties in inferences, as estimated throughregional flood frequency analysis
frameworks. However, mportant explanatory variables have not beenfound for the GEV
shape parameter, despite its critical significance which stems from the fact that it
determines thebehaviour of the upper tail of the distribution . Here we examine the nature
of the shape parameter by revealing its relationships with basin attributesWe use a
datasetthat comprisesinformation about daily streamflow and forcing, climatic indices,
topographic, land cover, soiland geological characteristics 0691 basinswith minimal
human influence in the contiguous United StatesWe propose a frameworkthat uses
random forests and linear moels to find (a) important predictor variables of the shape

parameterand (b) an interpretable model with high predictive performance The process
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of study comprises of assessing the predictive performance of the models, selecting a
parsimonious predicting model and intempreting the results in an adhoc manner.The
findings suggest that he shapeparameter mostly dependson climatic indices, whilethe
selectedprediction model results in more than 20% higher accuracy in terms of RMSE
compared to anaive approach. The impkations are important, since incorporating the
regression modelinto regional flood frequency analysisframeworks can considerably

reduce thepredictive uncertainties.

Keywords : CAMELS flood frequency; hydrological signatures; extreme value theory;

random forests;spatial modelling
1. Introduction
1.1 Flood frequency analysis and hydrological signatures

Floods are one of the most important naturahazards (see e.g. Odry and Arnaud 2017)
with a large part d the hydrological literature being devoted to their study (see e.gParkes
and Demeritt 2016). Flood frequency analysis (FFA) is a statisticapproach aiming at
determining the magnitude offloods for a predefined return period (Thorarinsdottir et
al. 2018). The simplest approach in FFAsito model data at a single site (asite FFA or
local modeling, Thorarinsdottir et al. 2018). However, when at-site data are limited, the
modelsGresults can be very uncertain. To obtain accurate resultsnformation from
adjacent or similar sites can be exploited. This approachis termed regional flood
frequency analysis (RFFAThorarinsdottir et al. 2018). Transfer of information from one
catchment to the other can I achieved by purely datébasedor by rainfall -runoff models.
A more detailed classificgion of the RFFAmodels can be found inOdry and Arnaud
(2017).

The RFFAmethodologies are related to the initiative for Predictions in Ungauged
Basins (PUB) of the International Association of Hydrological Science@AHS)
(Hrachowitz et al. 2013) in thesense that information from gauged basins can be used to
decrease the uncertainties of predictions in sparsely gauged basins or estimate
uncertainties in ungauged basins (e.g. Bourgin et al. 2015). The investigation of this
practice for the case of floodss particularly recommended by Stedinger and Griffis
(2008). Furthermore, they are related to the notion of hydrological signatures. The latter
AOA A A mrexAdluesidérived from observed or modelled series of hydrological data
such as rainfall, flov or soil moisturé®@ | - A- EI I AT AO Al 8 c¢mpxn OA,
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Gupta et al. (2008)AT A 7ACAT A0 AT A -11 O0AT AOE jcmppqQqQs8
view the hydrological signatures are values of a statistic; therefore, they summarize the

informati on provided by the data.

Hydrological signatures can be used for hydrological model calibration (Shafii and
Tolson 2015). From a statistical point of view, this approach is similar to thdata-based
approaches mentioned earlier. Hydrological signatures maydepend on local climatic
conditions, as well as on attributes related to the local topography, land cover, soil and
geology. Attempts have been made to find such relationships using regression and/or
classification methods (Viglione et al. 2013b; Singh al. 2014; Beck et al. 2015; Addor et
al. 2018). Frameworks have also been developed for computing the uncertainty in the
estimation of hydrological signatures (Westerberg and McMillan 2015; Westerberg et al.
2016).

1.2 Frameworks with separate parameter estination

A common approach irthe class of atsite data-based models oFFAis to model theannual
(or seasonal)discharge block maxima(peak discharges)with the generalized extreme
value (GEV)distribution . This approach is supported by empirical evidencé/ogel and
Wilson 1996), albeit other distributions have also been consideredh the literature (Vogel
and Wilson 1996; Griffis and Stedinger 2007) The modelling choice of the GEV
distribution is justified by limiting theorems and constitutes a common graund for
hydrologists (Coles 2001 Reiss and Thomas 2007, pp337, 338). The cumulative
distribution function of the GEV distribution is given by thefollowing equation (Coles
2001, pp47, 48 Dey et al. 2016see also Stedinger et al. 1998losking and Wallis 1997

Koutsoyiannis 2004for equivalent expressions of the GEV

FOAP) = exp@(L +k((xz ) AD¥),J =t £,K), K> 0 (1)
Heret is the location parameter A is the scale parameter and is the shape parameter.
The shapeparameter determines the behaviour(or shape of the tail of the distribution.
In particular, higher values ofk result in heavier tails. Bayesian frameworks for flood
frequency modellingbased on eq. 1) are available when streamflow data of a basin are
given (Northrop and Attalides 2016). While such models quantify the probability of
extreme events rigorously, the estimated postrior regions, confidence interval or

predictive intervals are wide (see e.g. Xu et a2010).



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 November 2018 doi:10.20944/preprints201811.0265.v1

Data-based RFFA models can be used to decrease the uncertainties related tosthave
quantities. Here we are interested inusing data-based RFFA modelsvhich separately
model the parameters of the GEMistribution as functions of the basin attributes
Regressionbased models ang in particular, models using parameter regression
techniques (see e.gAhn and Palmer 2016) Theparameter regression techniquesanbe
viewed as subcases of th&eneralized Additive Models for Location Scale and Shape
(GAMLSSRIigby and Stasinopoulos 200f albeit the softwareconnected with the latter
method is restricted to certain types of implemented regression techniques (linearand
non-linear). In this category of models the parameters are modelled separately as
functions of the attributes of the gaugedbasins by mostly (but not exclusively) using
linear models. The information is transferred to the ungauged basins through the
prediction made by the fitted regression model. This category of models similar to
another category of models in which quantiles of the GEVdistribution (i.e. flood
magnitudes for a given retun period) are directly computed by regression models. This
last category of models has been extensively investigated and includi#sear (seee.g.
Stedinger and Tasker 1985)yand non-linear models. Examples of this type of no#linear
models arequantile regression Geee.g.Haddad et al2012, Ouali et al. 2016, generalized
additive models (GAM seee.g.Ouali et al. 2017Rahman et al. 2018pgnd artificial neural
networks (ANN; seee.g.Ouali et al. 2017).Such models can be appliedirectly to the
dataset or after partitioning the dataset intohomogenous regions (see thditerature

reviews in Gaume et al. 2010; Merz and Bléschl 200Requena et al. 201)

Separate modelling of the parameters of the GEV is alsmuired by Bayesian nodels
(see e.gLima and Lall2010; Yan and Moradkhani 2015, 2016Wu et al. 2018), while
comprehensive relevant frameworks have been proposed by Northrop (2004), Viglione
et al. (2013a) and Lima et al. (2016). In this category of modelthe parameters ae
separately modelled as linearfunctions of basin attributes and the linear models are
inserted in the final model. Posterior distributions of the parameters given the available

data, as well as predictive intervals for the variable of interestare thencomputed.

1.3 2A1 AOET 1 OEED xEDE AAOEI 60 AOOOEAOOA
To assist in the design of the methods presented in Sectidr2, as well as to understand
how extreme events depend on the attributes of the basins studiedhvestigation of large

discharge datasetsfrom Central Europe, UK and USfocused on the estimatef the [
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parametersand their empirical relationship with attributes of the basins(Northrop 2004;
Villarini and Smith 2010; Smith et al. 2011,Villarini et al. 2011a, b, 2012)

The most frequently mett and A parameterizationsinclude their relation with the area
of the basin. Lima et al. (2016)ustify this parameterization basedon theoretical and
empirical prescriptions, and subsequentlycite the relevant studies ofGupta and Waymire
(1990), Gupta et al. (1994, 2007)Gupta and Dawdy (1995)Morrison and Smith (2002),
Northrop (2004), Lima and Lall (2010), Villarini and Smith (2010) and Villarini et al.
(2011b). Parameterization d the coefficient of variationcv := A/t , which depends ont
and A, is also a frequent subject in the literature ¢ee e.gBloschl and Sivapalan 1997
Vogel and Sankarasubramanian 2000; Morrison and Smith 200Kuzuha et al. 2009

Veneziano and Langousis 2010

However, the k parameter in Lima et al. (2016)is modelled by a normal distribution
with common mean across alsites; thus, it is independent orattributes of the basin This
choice isbased onthe studies ofGupta and Waymire (1990) Burlando and Rosso (1996)
and Morrison and Smith (2002).0n the other hand He et al. (2015) conclude that it is
worthwhile considering the effect ofother catchmentattributes than the area of the basin
(such asmeteorologicalandtopological factors) in the edimation of the shape parameter
Moreover,” OT LApET OU AT A -i11AO jc¢cmpxq OOCCAOO OE
major floods with extreme precipitation. Other studies also find unclear (slightly
significant) relationships between the k parameter and other basin attributes (see
Northrop 2004, Villarini and Smith 2010, and Villarini et al. 2011a, ki see alsothe

discussion in Sectiord).

The parameters of the GEV distribution fitted to the annual block maxima of
streamflow are certainly related to the distribution of the daily sreamflow, which could
be considered its parent distribution. Attempts have been made to estimate a common
type of distribution for the statistical modelling of daily streamflow (Blum et al. 2017%.
Nonethelessand despite the excellent fit of the proposed distribution, theoretical issues
related to the dependence and the seasonality in the daily streamflow have not been

treated.
1.4 Aim of the present study

The aim of the present studyis (a) to present aframework that can be used to reveal

relationships amongthe shape parameter of the GEV distribution when fitted to annual
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discharge block maxima and characteristics of the respective basin(in particular
topographic characteristics, climatic indices, land cover characteristics, soil
characteristics and geological characteristigs as well as(b) to better predict the shape
DAOAI AOGAO AiI 1T AEOEITAI I ObtanédE AelatiohshifsE Wiie® A OOO
incorporated in the regressionbased orBayesian frameworks pregnted in Sectionl.3,
can support the understanding of the mechanismbehind the generation of floodsand
decrease the uncertainties of flood desigrConcerning the discovered relationships,te
findings of the present studyare alsooriginal in comparisonto previous studies in which

the k parameter was examined

To reveal such relationships ve expand themethodologyimplemented by Tyralis et al.
(2018) and Addor et al. (2018). In both these studiesrandom forests were useddue to
their excellent predictive performance and their ability to find important predictor
variables (Biau and Scornet 2016)These twostudies are alsosimilar in their approach to
finding spatial relationships, as they both use the T O Alite8t €@r this purpose. The use
I £ OE A |teét B Avoided here because its common implementation requireshe
use of Euclidean distances, whilethe spatial behaviour of rivers can be examined in a
framework based on river networks. In such frameworks, other types of distances are
calculated Random forests are a machine learning algorithm (Breiman 2001) of
increasing interest in geosciences (e.g. Tyralis and Papacharalampous 2017;
Papacharalampous and Tyrali018; Papacharalampous et al2018a, b) Tyralis et al.
(2018) implemented this methodology with the aim to find important characteristics of
precipitation and Addor et el. (2018) implemented this methodology to find such

relationships for hydrological signatures

While random forests are a flexible algorithm with high predictive power, it is less
interpretable than linear regression models since there is a tradeoff between flexibility
(and predictive power) of machine learning models and their interpretability(James et al.
2013, p.5%). Thus, we enhance the implemented methodology by finding linear regression
models with comparable predictive performance to random forests for this specific

application. The framework is based on the following ideas:

a. The predictability of the parameter must first be investigated using a high
performance predictive algorithm that is not affected by the presence of unimportant

predictor variables, e.g. the hereinmplemented random forest algorithm.
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b. Due to the large number ® predictor variables, their importance mustbe computed

by an appropriate algorithm, whichhere is again random forests.

c.If a linear modelwith similar predictive performance to the benchmark modelexists,
then it will be preferable, asit is more interpretable. To find sucha model, the number of

predictor variables is reducedin an automatic way

d. Then asemi-automatic procedure that usesimportance metrics for linear models
and random forests, and examines combinations of predictor variables and their
interactions, is implemented using the retained predictor variables. If the predictive
performance of the linear model is similar with theperformance ofrandom forests, then

both aims of the present studywill be accomplished.

The new concepts introducechere compared to Tyralis et al. (2018) and Addor et al.
(2018) is the examination of interactions,the use of importance metrics for linear models
as well asthe extensive investigation of thelatter through the inclusion of interactions
This investigation is benchmarked using random forestsThe framework based on these
ideas is presented in detail in Sectior2.2.5 The proposed framework can bette reveal
possible relationships compared to previous studies For instance, it can offer an
improvement in comparison to Ahn and Palmer (2016), who exclusivelysed additive
terms for predicting the k parameter, while (as results from the present study)
interactions could result ina better model. The data usecherein were obtained from the
CAMELS datasetNewman et al. 2015 Addor et al. 2017b)and are comprised of daily
streamflow, precipitation and other basin attributes of 671 catchments in theontiguous
United States(CONUS)

2. Data and methods
2.1 Data

The data usedn the present studycan besourced fromNewman et al. (2014) andAddor
et al. (2017a).Moreover, their documentation is available inNewman et al. (2015) and
Addor et al. (2017b), who created their datasetby combining data from Miller and White
(1998), Hartmann and Moosdorf (2012) Gleeson et al. (2014)Thornton et al. (2014)and
Pelletier et al. (2016).The CAMELS dataset is one of the largest dataseiith respect to
the number of included basins and the information provided for each basin; therefore, it

is suitablefor benchmarking purposes(Newman et al.2017).
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Briefly, the datasetcomprisesinformation about daily streamflow and forcing for 671
small- to medium-sized basinsHere we used theprecipitation forcing derived from the
daily gridded Daymet datasetThe data span in the period 1980R014. The 671 basins
cover the entire CONUS with a wide range of hydroclimatic conditions and having minimal
human influence The catchment attributes used in the present study include topographic
characteristics, climatic indices, land cover charactestics, soil characteristics am
geological characteristics related to the basin of interesand are presented inTable 1.
Details on the collection of the datasets can be found in Newman et al. (2015) and Addor
et al. (2017b), while the explanation of theattributes of Table 1 is presented in Appendix
A

Table 1. Attributes and respective dbreviations of the 671 basins in Addor et al. (2017b)
used as predictor variables The GEV attributes were estimated in thpresent study. A
detailed description of the attributes can be foundin Appendix A

Attribute type Values asis Transformed using log
Attribute Abbreviation Attribute Abbreviation
Topographic Mean elevation elev_mean
Mean slope slope_mean
Area area_gages2
Geographical coordinates |Latitude gauge_lat
Longitude gauge_lon
Climatic Seasonality and timing of precipitation p_seasonality Mean daily precipitation p_mean
Fraction of precipitation falling as snow  frac_snow Mean daily PET pet_mean

Frequency of high precipitation events high_prec_freq
Duration of high precipitation events  high_prec_dur
Duration of low precipitation events low_prec_dur

Land cover Forest fraction forest_frac
LAl maximum lai_max
Green vegetation fraction difference gvf_diff
Soil Soil depth soil_depth_statsgo |Depth to bedrock soil_depth_pelletier
Maximum water content max_water_content | Volumetric porosity soil_porosity
Sand fraction sand_frac Saturated hydraulic conductivity soil_conductivity
Silt fraction silt_frac
Clay fraction clay_frac
Water fraction water_frac
Organic fraction organic_frac
Geology Fraction of carbonate rocks carb_rocks_frac
Subsurface porosity geol_porosity
Subsurfacepermeability geol_permeability
GEV attributes Precipitation shape parameter shape_par_prcp Precipitation location parameter loc_par_prcp

The data were preprocessed according to the following procedur€irstly, the data in
the year 2014 were omitted because most basins included many missingtreamflow
values in this year(e.g. 17 basins without datan the year 2014). Therefore, the period
1980M2013 was examined(34 years of data for each basin)Attributes not used in the
analysis are presented inTable 2 for the sake of conpleteness The root depth and the
second most common geologic clasattributes were not used because of their many
missing values(24 and 138 respectively). Categorical attributes were notincluded in the
analysis since they were found in general unimportant for predicting the shape
parameter in a preliminary analysis using importance metricsfor random forests (see

Section 2.2.2, for instance, the most common geological clasgvas the most important
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categorical variablg still, it was rankedvery low, i.e.15% in overall), while their inclusion
in the linear model was not possible in the testing procedure. The latter sgaindue to
the appearance of missing values the crossvalidation procedure (see Section2.2.4).
Some variables were not consideretecause they were highly correlatedcorrelations
higher than 0.9)with other variables; therefore, the inclusion of both variables would not
increase the performance of the fitted modelsThese variables are presented iffable 2
under the term collinearity. From the remaining dataset basins with more than 100
missing daily streamflow valuesin the period 1980M2013 or with at least one missing
attribute were omitted. The maximum likelihood estimates (Coles 2001, pfb5, 56) of the
parameters of eq. ) for the annualblock maxima ofdaily streamflow and precipitation
were calculated and they were namedGEV attributes inTable 1. In particular, the
maximum likelihood estimates were obtained using theSpatialExtremes R package
(Ribatet 2018). Basins with k1 1 (k denotes the estimate of the shape parameter from
hereinafter) were omitted, sinceE[x] (i.e. the first moment) isnot defined for k| 1 (Dey
et al. 2016). Herex denotes the GEV random variabléhat models the streamflow annual
block maxima.The 591remained basins are presented irFigure 1, while the histogram of
the k estimates is presented inFigure 2. The correlogram of the remained predictor

variables is presented inFigure 3.

Table 2. Abbreviations of the attributes of the 671 basins in Addor et al. (2017bhot
included in the analysis for reasons explained in the heading of the Tabléhe GEV
attributes were estimated in the present studyThe names of the attributes and detailed
description can be found inAppendix A

Attribute type |Categorical Used for identification of stations Many missing values Without physical meaning Due to collinearity
Topographic gauge_id area_geospa_fabric

huc_02

gauge_name
Climatic high_prec_timing aridity

low_prec_timing low_prec_freq
Land cover dom_land_cover root_depth_XX dom_land_cover_frac lai_diff
gvf_max
Soil other_frac
Geology geol_class_1st geol_class_2nd geol_class_1st_frac
geol_class_2nd_frac

GEV attributes scale_par_prcp

d0i:10.20944/preprints201811.0265.v1
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Figure 1. The 591 basins examined and their estimated streamflow GEV shape parameter
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Figure 2. Histogram ofk estimatesof the 591 basins inFigure 1. The median (reddashed

line) is equal to 0.19.
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Figure 3. Correlations between the predictor variables included in the analysis (see also
Tablel).
2.2 Methods

We used two algorithms (i.e. linear models and random forests) to predict theparameter
as a response to the attributes of the basiill computations were performedusing theR
Programming Language (R Core Team 2018jd the contributed packages mentioned in
Appendix C Several other utilities accompanying linear models and random forests were

implemented in the present study These areresented in the following.
2.2.1Linear models

The theory oflinear models is well known (seeg for instance, the textbook of Casella and
Berger, 2002, pp. 577611). The discussionhere will be limited to special topics of
interest. We use multiple linear regression models. The model is fitted to the data by
implementing the Im Rfunction. The complexity of the model increases with the increase

of the number of predictor variables. However the improvement in its predictive

11
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importance for a number of predictor variables higher thana specific value depending on
the specific caseis not substantial. On the other hand, important predictor variables
should not be removed. To this endtepwise backward regression, in which each fitted
model is evaluated with the Akaike information criterion (AIC Akaike 1974), can be used
and unimportant predictor variables can be removed according to anautomatic
procedure. Stepwise backward regression is performed by implementinghe olsrr R
package(Hebbali 2018).

Linear models including interactions are also examinedin common statistical
literature, the term interaction denotes the influence of the product of two or more
predictor variables to the response. This approach differentiates from the usual approach
in which the effects of the predictor variables are additive. The concept of imaction
differs from the concept of confoundingwhich in Gaussianbased settingsis equivalent
with correlation (Boulesteix et al. 2015)Interactions between two predictor variablesx:
and x2 are notated with xi : x2. The notation x1 X x2 := X1 : X2 + X1 + X2 is usedto denote that

additive terms are included in the interaction term

Ranking the relative importance of the predictor variables in the linear models crucial
for understanding how the predictor variables affect the dependent variableGromping
2007a). The LMGrelative importance metric (abbreviation of Lindeman, Merenda, and
Gold 1980 who introduced the metrig is here used through the relaimpo R package
(Grémping 2007b, 2018). The LMG metric decomposethe r2 values of the fitted model
into contributions from different predictor variables (see Gromping 2007a)While there
are many methods to decompose?, the LMG metric isamongstthe most credble ones
(Grébmping 2007a, b). For instance, LMG is invariant to the orderingf the predictor
variables in the linear model, unlike the most frequently used Analysis of Variance
(ANOVA).

It is essential to test the normality of the residuals of fitted linear models. To do so, we
used the ShapireWilk test (Shapiro and Wilk 1965).Selection of a linear model between
many candidates is possible by using information criteria. Here we implement th&kaike
Information Criterion (AIC; Akaike 1974) and the Bayesian Information Griterion (BIC;
Schwarz 1978) When two linear models are fited to a specific dataset, each one including
different predictor variables, then the model with lower values of AIC and BIC is

preferable.

12
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Despite omitting highly correlated predictor variablesin the examined dataset (see
Section 2.1), the remaining variables still have someaesidual correlation. A suitable

metric to examine the influence of the correlated variables in the linear modgllso

termed collinearity) is the Variance Inflation Factor(VIF,O'Brien 2007). Let Vi represent

the proportion of variance of theith predictor variable, whichis associated with the other
predictor variables in the model The VIFmetric is defined by1/(1 ZViZ) and intuitively is

interpreted as the effect ofv? on the variance of the estimated regression coefficient of the
ith predictor variable (O'Brien 2007). As a rule of thumb, common unacceptable values of
the VIFmetric are those that arehigher than 10, albeit in some studies the limit reduces
to 4. However, these rules should not be strictly applied (see the discussion @iBrien
2007) and models including predictor variables with VIF higher than 10 can become

acceptable.
2.2.2Random forests

Randomforests are a machine learning algorithm witha few parameters to optimize,
while they are simple with high predictive accuracy and successful implementation in
practical problems and forecasting competitiongScornet et al. 201% Biau and Scornet
2016). A detailed presentation of random forests and related concepts and terminology
oriented to the purpose of our study is available irAppendix B Random forestsare used
here for regresson by implementing the randomForest R package(Liaw and Wiener
2002; Breiman et al. 2018)The algorithm has four hyperparametergseealso Appendix
B). When increasing the number of trees hyperparameter, predictions become more
accurateat the cost of increasing the computational timéOshiro et al. 2012) The number
of trees is set equal to 1000 in the present study, since the gain in the predictive
performance of the algorithm would besmall by adding more trees €.g. Probst and
Boulesteix 2018. The other hyperparameters werealso not optimized, becausetheir
predictive performance using their default values isimilar to the predictive performance
of the optimized algorithms, while the gain in computational time is high when

optimization is not performed (see e.g. Biau and Scornet 2016).

Similarly to the linear model, random forests can be used for ranking the importance
of variables in predicting the dependent variable (Verikas et ak011) with the aim to
select important variables (Genuer et al. 2010)Rankings of variable importance using

random forests and linear modelsexhibit some dissimilarities (Gromping 2009) For this

13
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reason, the examination of both algorithms is useful An important remark is that in
contrast to the linearmodel,random forests arerobust to the inclusion of many and non
important predictor variables (Diaz-Uriarte and De Andres 2006) thus, including all

predictor variables would hardly affect the predictive performance of the model

The permutation importance, which measures the mean increase of the prediction
Mean Squared Error on the oubf-bag portion of the data after permuting each predictor
variable in the trees of the trained modelwas used as relative variable importance metric
It was computed by implementing therandomForest R package Relevantdetails are

presentedin the documentation of Breiman et al(2018) (see alscAppendix B).
2.2.3 Naive prediction

The predictive performance of the regression models isompared to the naiveapproach
In the latter, the predicted value of thek parameter is equal to its median value from the
training samplein the 10-fold cross validation (see Sectio2.2.4). Naive prediction is used

as worst-casebenchmark.
2.2.410-fold cross validation

To test the predictive performance of the regression modelsn@ive, linear or random
forests) 10-fold cross validation is performed(Kuhn and Johnson 2013, pp69z71). In
particular, the sample is randomly divided intoten equal sized subsamples. The model is
trained in nine subsamples and tested in the remaining one, wialthe procedure is
repeated ten times. The Root Mean Square Err(RMSE)the 0 A A O @ &nbl thelslope of
the regression line between the predicted ad testing valuesare the metrics used for the

assessment of the predictive performance of the regression models

To test whetherthe differences between the mean RMS&lues(eachcomputed using
the 10 RMSEvalues obtainedvia 10-fold cross validation) are statistically significant
between a pair of methods we implement the Wilcaxon signedrank test (WSRT
Wilcoxon 1945). WSRTis a nonparametric statistical hypothesis test used to assess
whether the population mean anks between two samples differlts usefor comparing
the performance of machine learning algorithms irk-fold cross validationis suggested by
$AT HAO KA tpw prvplGesof the test (e.g. 0.05) denotes that the means of the two

samples are different at a significance level 0.05.
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2.2.5Theproposed framework

The proposed framework consists of the following sequential steps.

Step 1:Application of stepwise backward Ihear regression to the whole dataset. Lat1 be

the number ofthe retained predictor variables.

Step 2: Comptation of LMG importance metrics for theretained predictor variables of
Step 1.

Step 3. Computation of relative importance metricgor random forests when using all

predictor variables.

Step 4.10-fold cross validation with random forests using (a) all predictor variables (b)
all predictor variables excluding geographical coordinates (c) the groups of predictor

variables defined inTable 1.

Step 5.Again10-fold cross validation with random forests. In this new mode|training the
most important variable according to the variable importance metridor random forests
is included. Subsequently,the cross validation is repeated by adding one predictor
variable at the time according totheir importance. The procedure terminateswhen the
performance of thelast trained model is similar to the performance of the model that uses

all predictor variables.

Step 6. The same procedurfprocedure of Step 5)is repeated with the linear model, but
here it terminates when using all predictor variables of Step 1. Ae LMG variable
importance metric is used for ranking the variable importance and selectinghe

additional predictor variable in each iteration. Furthermore, AIC and BIC are computed

for each fitted model.
Step 7. 16fold cross validation is also performed for the naive method.

Step 8 From theresults of the steps 4z7 we understand (a) the performance of the
models, (b) the importance of variablesusing two available metrics and(c) how the
inclusion of more predictor variables increases (or decreases) the predictive performance

of the models.

Step 9 Since the performance of the best linear model expected to beworse compared
to the best randomforest model (the one that terminates the procedure irstep 5) then
we seek for interactions The inclusion of these interactiongould potentially increase the

performance of the linear modelHere the pracedure is semiautomatic. The main idea is
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to first examine interactions between climatic attributes, since (as will be shown in the
following Sections when following steps %3) they are found to be the most important in

the predictive model.

Step 1Q Finally (and hopefully), a parsimonious (i.e. with few predictor variables) linear
model with interacting terms and high predictive performance (slightly worse than the
best random forest mode) appears. According to the criteriaset, other linear modelsmay
slightly outperform the proposed model; howeverthey are too complicated, because they
include many predictor variables.The selected linear model is investigated by computing

VIF andp-values.
2.2.6 Some remarks on the proposed framework

Some remarks on thesteps of theprocedure of the proposed framework are presented

here:

Steps & 3: Regarding the selection of important variables, we mention thavhen many
predictor variables (i.e. more than approximately 20 in our datasetpre included in the
model fitting, the LMG cannot be computed in a regular home PRandom forests are used
in predictive modelling, in which variable selection is required throughe.g. recursive
procedures. In this case, these procedures are informative and can accompany other
predictive models (Boulesteix et al. 2012).Variable importance, when including all
predictor variables in the regression model,can be conputed in a reasondle time if
random forests are implemented Consequently variable importance computation with
random forests is convenient when compared, e.g. with linear modeldue to
computational speedadvantages Therefore, a proposed strategy by Ziegler and Kdnig
(2014) is to select important predictor variables using random forests in the beginning
and, subsequently, use more computationally intensive methods(e.g. related to linear
models) in the following. Here we decided to removepredictor variables in the linear
model and then compare the results withlie random forests. In our opinionthis strategy

is equally reasonable.

Variable importance metrics rank the predictor variables, but the values of the metrics
do not provide full knowledge about how significant the predictor variables are
(Boulesteix et al. 2012).A conservative rule of thumb for selecting predictor variables
based onimportance metrics for random forests is presented by Strobl et al. (2009).

Variables with negative, zero or small positive value of importance can be excluded. This
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decision is based on the assumption that the importance of namportant variables is

randomly distributed around zero.

Steps 4, 5: Regarding the selection of random forests as best case benchrpagkiictive
model we mention that random forestsare fast, flexible, robust, theycan cope with high
dimensional data (i.e. few observationdout many predictor variables), highly correlated
variables, interactions between predictor variables nontlinear relationships between the
response and the predictor variables and arenon parametric, i.e. the specification of a
statistical model is not required (Boulesteix et al. 2012 Ziegler and Konig 2014
Correlated variables have a very slight influence in the predictive performance of random
forests (Boulesteix et al. 2012. They were found to outperform other methods, as well as

hydrological modes in hydrological signatures predictions (Zhang et al. 2018).

Variable importance metrics can be affected by strongly correlated variables;
therefore, in some cases a fewepresentative predictor variables should be selected.
However, excluding all correhted variables is also not recommended, since information
is lost. In this casethere should be some compromise between all option@Boulesteix et
al. 2012). Removal of confounding can be done by adding the effect of the confounder
separately in e.g. a mitiple regression model In this caseif for instance the effects of
both confounders are positive, then the coefficients of the predictor variables are
expected to be smaller compared to the case in which one of them is pres@Rbulesteix
et al. 2015).

Step 10: We mention that the selection of a useful models not only a matter of
objectivity. ! O 1T AT OET T AA AU ' Al | prdctitiohérsdmugt ApplfEthe | ¢ mp )
subjective judgement in the choice of what method to use, what assumptions to invoke and
what data to include in their analyseasBor instance,the choice of a linear model with a
significant lower number of predictor variables can be justified over a linear model with
a high number of predictor variables, when the AIC value of the latter idightly lower. A
discussion on the subjectivity and objectivity in statistical modellingand how these
concepts can be substituted by conceptsuch astransparency, consensus, impartiality
and correspondence to observable reality, awareness of multiple mpectives, context

dependence and stability can be found in Gelman and Hennig (2017
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3. Application
3.1 Application of linear model

We applied a linear model to better understand the effect of the predictor variables of
Tablel. In this application, we excluded the geographical coordinates, because this would
not have a physical meaning, unless spatial models such as kriging were used in the
modelling procedure. When including all variables of interest oTable 1 the computation

of the LMG metric was not possible due to the high computational cqsee Section2.2.6).
Therefore, by applying the stepwise backward regression we excluded some variables not
important for the prediction of k. The remaining variables, as well as their respective LMG

metric values, are presented irFigure 4.

Mean daily precipitation =< L ]
Frequency of high precipitation events = L
Precipitation location parameter - L ]
Forest fraction = L)
Fraction of precipitation falling as snow = L]
Depth to bedrock (]
Duration of high precipitation events = L]
Subsurface porosity 5 [}
LAI maximum = L]
Silt fraction = L]

Variable

Volumetric porosity =~ @
Precipitation shape parameter 4 @
Clay fraction = @
Saturated hydraulic conductivity = @
Organic fraction 4 @

T T T T
0.05 010 015 020
Importance

Figure 4. LMG relativeimportance metric for the predictor variables presented in the y
axis when a linear model is used to predict the shape parameter.

3.2 Application of random forests

We applied random forests to predict thek parameter. The predictor variables are
presented inTable 1. Neighbouring basins share similar attributes, while this information
is included in their geographical coordinates. Consequently, inclusioaf geographical
coordinates may mask the influence of other attributes in the prediction df. Hence, wo
cases were examined, i.e. in the first case tlgmographical coordinates(longitude and
latitude of the basin) were omitted from the set of he predictor variables, while in the
second case they were included in the set. The importance of the predictor variables in

predicting k is presented inFigure 5 for both cases.
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Mean daily precipitation = [ ] Duration of low precipitation events - [ ]
Freguency of high precipitation events = ® Freguency of high precipitation events L]
Precipitation location parameter = L] Latitude - *
Fraction of precipitation falling as snow = L] Precipitation location parameter - .
Forest fraction - L] Forest fréctlon 7 .
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Mean elevation - (] - .
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Seasonality and timing of precipitation = o Duration of high precipitation events - Py
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Duration of high precipitation events * Seasonality and timing of precipitation = ]
Mean daily PET [ Mean slope P
I Precipitation shape parameter 5 L4 o Precipitation shape parameter = [
a2 Depth to bedrock . a2 Mean daily PET [
%  Green vegetation fraction difference . E Depth to bedrock °
= Clay fraction = [ ] > Green vegetation fraction difference = [ ]
Saturated hydraulic conductivity 4~ @ Volumetric porosity |-~ @
Volumetric porosity = * Saturated hydraulic conductivity = [ ]
Silt fraction = L] Clay fract!on - [ ]
Subsurface permeability 4 ' @ Silt fraction 4 e
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Organic fraction | @ Organic fraction 4 @
Water fraction = @ Water fraction @
T T T T T T T T
0.000 0.005 0.010 0.015 0.000 0.005 0.010 0.015
Importance

Importance
Figure 5. Variable importance of explanatory variables of interest in Table 1 (the
geographical coordinatesare excluded in the left and included in the right) when random
forests are applied to the dataset of the 591 stations to predict the shape parameter. The
variable importance of a particular variable is the percentage of increase in mean square
error observed in out-of-bag (OOB) prediction when this variable is randomly permuted

(Breiman et al. 2018 see als®Appendix B).

The ranking of the variables with respect to their importance islightly different in the
two cases When excluding thegeographical coordinates the most important variables
are the meandaily precipitation and the duration of low precipitation events. They are
followed by the frequency of high precipitation eventsand the precipitation GEV location
parameter. The fraction of precipitation falling as snowand the forest fractionare also
important variables. We note here again that variableimportance metrics rank the
predictor variables, but the values of the metrics are less informative (see Secti@r?2.6).
Therefore, they should be combined with the predictive performance of the models, to
understand their absolute contribution to the k parameter. This examination follows in
Sectiors 3.3and 3.4. Here we mention that the increase in the grformance of the random
forest based predictive models flattens after including 7 to 8 predictor variablegsee

again Sectior2.2.6), and this is the criterion used here t@haracterizea predictor variable

as important.
When including the geographical coordinates the latitude and, to a lesser extentthe

longitude of the basins are important variabless well, albeit not as important as mosiwf
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the earlier mentioned ones The maximum monthly mean of the leaf area indexLAl

maximum) alsobecomes an important variable.
3.3 General resuts

In both models, the most important variables are climatic indices (the GEV parameters of
precipitation can also be consideredas climatic indices). Important variables of other
types are he forest fraction, the LAl maximum, the catchment mean elevation the
catchment mean slopeand the depth to bedrock depending on the employed modet E A
duration of low precipitation events was excluded when applying the stepwise backward

regression, albeit it is an important varable in the random forest model.

To understand how k and important predictor variables are rdated we provide some
representative scatterplots in Figure 6. We selected predictor variablesbased primarily
on the computations presented inFigure 5 and secondlyon the computations presented
in Figure 4. It appears that there is asignificant linear relationship betweenk and some
variables (p-values lower than 0.05) Furthermore, k is rather dispersed around the

regressions lines(see relative lowr values).
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Figure 6. Scatterplots of the shape parameteaand predictor variables of interest The line
is obtained by the linear regression of the shape parameter with the predictorariable.
Thep-OAT OAO AT Aof hellile@r@bdel@m® also depicted

To understand how the predicbr variables improve the predidive performance of the

fitted models we fit a sequence of modelgresented inTable 3 using random forests All
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models are evaluated using 14old cross validation. The modés are trained on the 90%

of the data and predictk for the remaining 10% of the data. The procedure is repeated 10

times, while the respective metrics are equal to the mean of their 10 values obtained from

the 10-fold cross-validation. Optimal values of EA 2 - 3% OET OI A AAr 1T AAO
should be near 1 and the slope should be near 1. When the slope is equal to 1, the
regression line between the predicted and the real values &fmakes an angle of 45° with

the x-axis.

Therflzrfl1l models include important predictor variables based orFigure 5. The first
model includes the most important predictor variable, while an important pralictor
variable based on the ranking ofigure 5 is added in the modelat each step. The rf12
model includes the predictor variables of the rfllmodel and the geographical
coordinates. The topographic, climate, land, soil, geology argeographical coordinates
random-forest-based models include the respective variables defined imable 1. The
reason is that weaim to understand how each particular type of attributes influences the
k parameter. Two additional models, whichare based on random forests anéhclude all
predictor variables of Figure 5, are examined with the aim to estimate the best prediction

of k using the available dataThe results of the naive model are also presented rable 3.

Table 3. Mean nodel errors (see Section2.2.4) on the test setof the 10-fold cross
validation for predicting the shape paraneter for each method and metriausing random
forests. The naive method is also presented

Name Predictor Variables RMSEr  slope
rfl low_prec_dur 0.291 0.284 0.196
rf2 low_prec_dur, p_mean 0.242 0.518 0.338
rf3 low_prec_dur, p_mean, high_prec_freq 0.233 0.552 0.347
rf4 low_prec_dur, p_mean, high_prec_frdqc_par_prcp 0.227 0.577 0.363
rf5 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow 0.223 0.599 0.368
rfé low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac 0.221 0.607 0.383
rf7 low_prec_dur, p_mean, high_prec_frdq¢c_par_prcp, frac_snow, forest_frac, lai_n0.219 0.620 0.384
rf8 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 0.217 0.628 0.391
lai_max, elev_mean,
rf9 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_sonmest_frac, 0.215 0.634 0.404
lai_max, elev_mean, p_seasonality
rf10 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 0.215 0.632 0.401
lai_max, elev_mean, p_seasonality, slope_mean
rfll low_prec_dur, p_mean, high_prec_frdq¢_par_prcp, frac_snow, forest_frac, 0.216 0.632 0.397
lai_max, elev_mean, p_seasonality, slope_mean, high_prec_dur
rf12 low_prec_dur, p_mean, high_prec_freq, loc_par_prcp, frac_snow, forest_frac, 0.214 0.641 0.409
lai_max, elev_mean, p_seasonality, slope_mean, high_pit@t gauge_lat, gauge_Ic
Topographic Topographicattributes, seeTable 1 0.262 0.355 0.161
Climate Climatic attributes, seeTable 1 0.218 0.621 0.390
Land Land cover attributes, seeTable 1 0.243 0.500 0.252
Soil Soilattributes, seeTable 1 0.260 0.362 0.157
Geology Geologyattributes, seeTable 1 0.276 0.241 0.091
Geographical gauge_lat, gauge_lon 0.224 0.615 0.396
coordinates
All attributes 1 All attributes of Table 1, excluding geographical coordinates 0.214 0.641 0.387
All attributes 2 All attributes of Table 1 0.213 0.642 0.393
naive 0.281 Z 0.000
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The sequence of fitted linear models is presented ifiable 4. The Im1zlm16 models
include predictor variables according to their ranking ofFigure 4. The AIC and BIC values

of the linear models when fitted to the whole dataset are also presented.

Table 4. Mean model errors(see Section2.2.4) on the test set of the 16fold cross
validation for predicting the shape parameter for linear models AIC and BIC are
computed when the linear model is fitted to the whole dataset.

Name Predictor Variables RMSEr slope AIC BIC

Im1 p_mean 0.263 0.340 0.118  101.13 114.27

Im2 p_mean, high_prec_freq 0.254 0.419 0.179 59.10 76.63

Im3 p_mean, high_prec_freq, loc_par_prcp 0.238 0.518 0.276  z17.64 4.27

Im4 p_mean, high_prec_freq, loc_par_préprest_frac 0.238 0.518 0.276  z16.10 10.19

Im5 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow 0.238 0.516 0.276  714.32 16.35

Imé p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.233 0.544 0.306  z37.31 z2.26
soil_depth_pelletier

Im7 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.232 0.551 0.315 743.62 74.18
soil_depth_pelletier, high_prec_dur

Im8 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.230 0.564 0.330 755.65 711.83
soil_depth_pelletier, high_prec_dur, geol_porosity

Im9 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.230 0.563 0.330 755.72 77.52
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max

Im10 p_mean, high_prec_freq, loc_par_prcp, forest_fifaac_snow, 0.228 0.572 0.342  763.74 z11.16
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac

Im11 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.227 0.578 0.351  7z70.92 z13.95
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac,
soil_porosity

Im12 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.223 0.598 0.374 791.02 729.68

soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac,
soil_porosity, shape_par_prcp

Im13 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.223 0.598 0.375 790.20 724.48
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac,
soil_porosity, shape_par_prcp, clay_frac

Im14 p_mean, high_prec_freq, loc_par_préprest_frac, frac_snow, 0.223 0.599 0.377 790.49 720.38
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac,
soil_porosity, shape_par_prcp, clay_frac, soil_conductivity

Im15 p_mean, high_prec_freq, loc_par_prcp, forest_frac, frac_snow, 0.222 0.601 0.382  796.26 z21.77
soil_depth_pelletier, high_prec_dur, geol_porosity, lai_max, silt_frac,
soil_porosity, shape_par_prcp, clay_frac, soil_conductivity, organic_frac
in Figure4

Finally, we fit linear models that include interactions, as presented in Table 5.

Practically, we firstly tested all interactions between the meandaily precipitation, the
frequency of high precipitation days and the precipitation location parameteiWe found
that newlm4 combination of predictor variables includes 2 terms andperforms similarly
or better compared tothe newlml1lznewlm7 combinations, while it includes less predictor
variables. The procedure continued by adding (and then removing if found useless)n a
stepwise mode the most important variables found inFigure 4. The newim17 model
includes 6 terms and reduces the RMSE compared to the previous best fitted model
(newim16) by 0.06. The next models (newlm21, newim22, newlm23jurther decrease
the RMSE by 0.03but they include at least 5 more terms (see newl2il, which includes
3-way interactions and their additive effects).Finally, the newlm24z27 models present a

significant increase in the RMSE when some terms from the newlmhiodel are omitted.
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As representative model we select the newlm1@ne (further reasoning along with other

details can be foundater in Section4.3).

Table 5. Mean model errors (see Section2.2.4) on the tes set of the 1G6fold cross
validation for predicting the shape parameter for linear modelsvith interactions. AIC and
BIC are computed when the linear model is fitted to the whole dataséddere a: b denotes
interaction while a x b:=a + b + a: b (includes interactions and additive effects see
Section2.2.1).

Name Predictor Variables RMSEr  slope AIC BIC

newlml p_meanx high_prec_freq 0.240 0.504 0.261 z5.47 16.44
newlm2 p_mean : high_prec_freq 0.267 0.297 0.089 120.12 133.27
newim3 p_meanx high_prec_fregloc_par_prcp 0.231 0.553 0.317 753.44 727.15
newim4 p_mean : high_prec_fredpc_par_prcp 0.233 0.542 0.303 741.82 724.29
newlm5 p_mean + loc_par_prcp 0.239 0.514 0.268 711.39 6.13

newlm6 high_prec_freq + loc_par_prcp 0.257 0.395 0.157 75.13 92.66
newlm?7 p_meanx high_prec_fregx loc_par_prcp 0.232 0.552 0.322 752.63 713.19
newim8 p_mean : high_prec_fredpc_par_prcpfrac_forest 0.233 0.541 0.303 239.88 717.97
newlm9 p_mean : high_prec_fredpc_par_prcpfrac_snow 0.233 0.542 0.304  z40.70 z18.79
newlml10 p_mean : high_prec_fredpc_par_prcpsoil_depth_pelletier 0.231 0.554 0.318 z52.70 z30.79

newlmll p_mean high_prec_fregloc_par_prcpsoil_depth_pelletier high_prec_dui0.231 0.553 0.318  z51.00 z24.70

newlml12 p_mean : high_prec_fredpc_par_prcpsoil_depth_pelletier geol_porosity 0.228 0.570 0.337  z67.15 z40.86

newlml13 p_mean : high_prec_fredpc_par_prcp, soil_depth_pelletiergeol_porosity, 0.228 0.569 0.336  765.24 734.57
lai_max

newlml14 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletyegl_porosity, 0.227 0.576 0.344  772.20 z41.52
silt_frac

newlml15 p_mean : high_prec_fredpc_par_prcp, soil_depth_pelletiegeol_porosity, 0.226 0.581 0.352 q77.74 742.68
silt_frac,soil_porosity

newlml16 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletiegl_porosity, 0.225 0.583 0.352  779.27 z48.60
soil_porosity

newlml17 p_mean high_prec_freq, loc_par_prcppil_depth_pelletie, geol_porosity, 0.219 0.612 0.387 7110.54775.48
soil_porosity,shape_par_prcp

newlml18 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletyegl_porosity; 0.219 0.611 0.387  z108.58769.14
soil_porosity, shape_par_prcglay_frac

newlml19 p_mean : high_prec_freq, loc_par_prcp, soil_depth_pelletyegl_porosity, 0.219 0.612 0.388  z110.17770.73
soil_porosity, shape_par_prcpgoil_conductivity

newlm20 p_mean : high_prec_freq, loc_par_prapjl_depth_pelletier geol_porosity, 0.219 0.614 0.390 z112.31772.87
soil_porosity, shape_par_prcmrganic_frac

newlm21 p_meanx high_prec_freg< shape_par_prcp, loc_par_prcp, 0.216 0.628 0.412 7129.91772.95
soil_depth_pelletier geol_porosity, soil_porosity

newlm22 p_meanx high_prec_freg< shape_par_prcp, loc_par_prcp, 0.217 0.622 0.410 7122.76748.27
soil_depth_pelletierx geol_porosityx soil_porosity

newlm23 p_meanx high_prec_freg< shape_parprcp, loc_par_prcp, 0.216 0.627 0.412 7128.47767.13

soil_depth_pelletierx geol_porosity, soil_porosity

newlm24 p_mean, high_prec_freq, loc_par_prcp, soil_depth_pelletiegl_porosity, 0.225 0.586 0.356  779.39 739.95
soil_porosity,shape_par_prcp

newlm25 p_mean : high_prec_fregpil_depth_pelletier geol_porosity, soil_porosity,0.260 0.372 0.143 90.92 121.60
shape_par_prcp

newlm26 loc_par_prcp, soil_depth_pelletiegeol_porosity, soil_porosity, 0.274 0.215 0.048 153.28 183.95
shape_par_prcp
newlm27 soil_depth_pelletiergeol_porosity, soil_porosity,shape_par_prcp 0.274 0.218 0.048 151.96 178.25

To understand how differences in the RMSEwhich can be perceivedas small, can
largely influence predictive uncertainties we compute prediction intervals for the 500-
year floods for all basins. TheT-year flood is defined by Dey et al. 2016;Tyralis and
Langousis2018):

ar=t + (A/K) ((zlog(1z1/T))*z 1) (2)
Two models are compared, i.e. the selected newlm17 and the newlmdodels. The
newlm4 model was selected for comparison reasons becausempared to the newlm17

model does not include gealgic and soil attributes(see also the relevant discussion in
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Section4.3). The difference in themeanRMSEof the 10-fold cross validationbetween the
two models is0.014. The p-value of the WSRT is equal to 0.075, i.e. it is lower than the
significance level 0.10Q indicating that the difference is significantSince the focus here is
to isolate the influence of thek parameter, thet and A parameters are set equal to their
known values (i.e. the maximum likelihood estimates)Then 10fold cross validation is
implemented for both linear modelsand 95% prediction intervals for k are computedat
the independent setsusing thelm R function. Sincethe quantile is an increasing function
of k, as can be derived by eq.2), 95% prediction intervals can be obtained forgsoo by
simply substituting k in eq. ) with its prediction limits. Coverageprobabilities for
newlm17 and newlm4are equal t00.949and 0.956 respectivelyHowever, the prediction
intervals of the newlm17 model are considerablynarrower compared tothose produced
by newlm4. In particular,we computed the relative decrease in the width of the prediction
interval between the two models in each basitin the 10 independent test sets of the 10

fold cross validation) according to:
a= (Wldth newlim4 { width newlml?)/ width newima (3)

The mean relative decreas@n the sample of all basins is 4.99%while the histogram of
the relative improvements per basin can be found inFigure 7. To understand the
difference betweenthe two models, it is mentioned that the mean width of the prediction
intervals are 4785m3/s and 5460 m3/s for the newlml7 and newlm4 models

respectively, while 500-year floods range up to 2M00 m3/s.

Figure 7. Histogram ofrelative improvement of the 95% prediction interval width of the
model newim17 against the model newlm4The mean (red dashed line) is equal to 4.99%.
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3.4 Overview of results
3.4.1 Naive method

We limit our following discussion mainly to the assessment of the predictive performance
with respect to the value of the RMSE reported iBection3.3. The naive method serves as
a benchmark; therefore, all combinations of predictor variables and all applied models
should be assessed based on their relative performance compared to it. THRISE in the
estimation of k when applying the naive method is equal to 0.281. It could be said
informally that the naive method is equivalent to not using any predictor variables fok

in the models introduced, for example, by Northrop (2004).
3.4.2Linear models

When applying the linear model by adding one variable at a time the increase in
performance is small. However, the use of 12 variables (Im12) leads to a performance that
is approximately equal to the one of the rf model with thegeographical coordinatesi.e.

the RMSE is 0.223 (21% increase in performance compared to the naive method). The use
of all predictor variables presented inFigure 4 results in a RMSE of 0.222, while when
including 3Mb predictor variables (Im3Mm5) the RMSE becomes 0.238. The increase in
performance is 15%. Finally, the inclusion of six predictor variables results in a 17%
increase in performance These values are imprtant benchmarks for understanding the

importance of the predictor variables when added in stepwise mode.
3.4.3Random forests

The predictive performance of the random forestbased models increases with the
increase of the number of predictor variables, but iseems to stabilize when using nine
(rf9, seeTable 3 for the abbreviation) or more predictor variables. When moving from the
use of one predictor varable (rfl) to nine predictor variables (rf9), the RMSE in the
prediction of k decreases from 0.291 to 0.215. Its optimal value is equal to 0.213 and it is
observed for the use of all predictor variables ofigure 5, including the geographical
coordinates of the catchments. When excluding thgeographical coordinatesthe RMSE
increases to 0.214. This change can be considered negligible. When usinggsegraphical
coordinates of the catchments the RMSE is 0.224. This value can be surpassed by using
five predictor variables (rf5). An explanation is that the information gained through

utilising the proximity of the catchments can be compensated by the inforation obtained
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through the predictor variables of rf5. This is important, since the information from the
CAMELS dataset can be transferred tgeographical coordinatesnot included in the

CONUS, using just five predictor variables.

It is further important to understand how the different types of attributes of the
catchments can be used to increase the information féx The climatic indices result in an
RMSE equal to 0.218, which is significantly low compared to the naive approach, while its
difference compared to the optimal model is also very small. The other types of predictor
variables (seeTable 1) do not seem to be particularly useful for the prediction model. The
land cover characteristics seem to improve the performance of the model with an RMSE
equal to 0.243. They are followed by the soil and topographic characteristics with RMSE
values equal b 0.260 and 0.262 respectively. The improvement using geological

characteristics is negligible.

Compared to the naive approach, the optimal model results in an increase in
performance of the RMSEequal to 24%, which is a considerable improvement. The
respective improvement in performance when applying the rf5 model is 21%. This
improvement is fair as well, if we also consider the fact that it can be achieved by using

only five predictor variables.
3.4.4 Summary of results

Themean0 A A O @in thé10-fold cross-validation is approximately equal to 0.60, while
its exact value depends on the combination of predictor variables and the selected model.
The patterns of change in performance are similar to the patterns observed for RMSE.
Here again, we highlight thain this kind of studies the relative importance compared to
naive methods is of high importance, and therefore the approach should not be
ABAl OOEOAT U AOOGAOOAA AAOGAA 11 AOEOAOEA OAIlI AC
equal to 0.60 may not be clge to 1, yet the improvement is considerable compared to its
respective value when explanatory information is not used. The case for the slope of the
regression line is also similar. The slope of the naive method is 0, while it increases to 0.40
for rf12.

By comparing the random forests with the linear model we observe that the former
have better predictive performana. This is due to the flexibilityof the algorithm, which
can reveal possible nodinear relationships. Therefore, random forests that use les

predictor variables can have equal performance with linear models. It is also of
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significance that the most important variables entered firstly in the models are rhate

indices.
4. Discussion
4.1 Someadditional remarks on the experimental design

Shmueli (2010) identifies three modelling perspectives, i.e. predictive, explanatory and
descriptive modelling. Breiman (2001) makes a distinction between two cultures in
statistical modelling. In the first culture, it is assumed that the data are generated by a
statistical model, while in the second culturethat the data are modelled by a non
parametric model, since the data mechanism is considered unknown. According to
Boulesteix and Schmid (2014) these two approaches are related, i.e. the statistical
approach slould be preferred when descriptive modelling is required, while non
parametric approaches (termed algorithmic approaches in Breiman 2001) are suitable
the second case. In some cases, it is possible that a statistical model can also perform
equaly well to an algorithmic model;therefore, it can simultaneously answer questions
related to the description of the modelndits predictability. If such a model can be found,

as is the case here, then it can answer multiple questions.

Genuer et al. (2010) identiy two variable selection objectives Theseare the finding of
important variables that are highly related to the dependent variable for interpretation
purposes andthe designingof a parsimonious prediction model by retaining a small and
sufficient number of predictor variables. The two objectives are parallel to the distinction
between explanatory/causal importance and predictive importance intypical regression
models (Gromping 2009) and are related to the descriptive modelling perspective
(Shmueli 2010). The combination of thesetwo objectives can lead to a better
understanding of the influence of the predictor variableson k (Gromping 2009), albeit a
theory-driven explanatory modelshould be preferred if it exists (Grémping 2007a).In
the absence of sah model important variablesthat result from metrics based on data
driven methods should be preferred to explain the nature of the response variable
(Grébmping 2007a).Here we employed a similar strategyto the ones proposed by Diaz
Uriarte and De Andres (2006) andSenuer et al. (2010) for variable selection by ranking
the predictor variables according to their importance and by introducing variables in the
prediction problem in a stepwise strategy. Aehoc interpretation of the importance of the

predictor variables can then take place, whilghe selection ofa parsimonious model
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depends on the specific case examined. The latter involves comparison with naive
methods andintercomparison of models with varying number of predictor \ariables with

respect to their predictive performance.
4.2 New findings on the nature of thek parameter

A general assessment is that thieparameter depends o climatic indices, while the other
attributes of the catchments are lessnportant. This result is in agreement with Beck et
al. (2015) and Addor et al. (2018)who argue that hydrological signaturesmostly depend
on climatic indices, albeit Addor et al. (2018) claim that this may be a result @n
insufficient summary of the catchments attributes by thamplemented indices.What is
particularly important is that hydrological signatures related to the magnitude of flow
(e.g. thet and A parameters here) mostly depend on the area of the catchment (see also
Northrop 2004), with a high influence in their vaties, while other attributes have less
influence in the response variable. However, the&k parameter has a different nature.
Firstly, the uncertainties in its estimation are higher, resulting in the dispersed
scatterplots observed inFigure 6. Secondly, assuminghat the uncertainties are mitigated
by the large sample, the influence of the areaf the catchmentis less profound compared
to the cases of thg and A parameters. The large CAMELS dataset (Newman et al. 2015;
Addor et al. 2017b) helped in finding such relationshipdor the k parameter (see e.qg.
Northrop 2004; Villarini and Smith 2010; Villarini et al. 2011a, b;Lima et al. 2016 Wallis
et al. 2007; Ahn and Palmer 2015 which earlier studies could not identify due to limited
data availability. In particular, Northrop (2004) and Lima et al. (2016) did not use a
regressionmodel for the k parameter, while Villarini and Smith (2010) and Mlarini et al.
(2011a, b) found relationships with the catchment areaThe latteris here shown to be
less important compared to at leasfi0 other predictor variables. Wallis et al. (2007) found
a relationship betweenk and the mean annual precipitation, which was also found heye
but it is not sufficient for a good prediction ofk. On the other hand, Ahn and Palmer (2016)
found that k depends on the latitude, the mean dsin slope and the precipitation
seasonality. These attributes were found less important herecompared to other
attributes.He et al. (2015)alsodid not find any relationship between thek parameter and
the catchment areaand suggested that hydrologicaheterogeneity is implicitly reflected
in the shape parameter Apparently, results of different studies are not directly

comparable, especially when datérom different regions are used;however, the present
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study includes a higher number of examined basinand attributes, while the basins

represent a large diversity of climate types.
4.3 The final model

Random forests is an algorithm with high predictive performance andn ability to reveal
interactions between the predictor variables and nodinear relationships (see Section
2.2.6). Therefore, the here lowest predictive performance of the linear model should be
expected. Considering that the improvement of other algorithms is expected to be low
compared to random forests it is reasonableto assume that an optimal benchmark
regarding the prediction of k would be a result from the implementation of random
forests. Considering also the need for dhining an interpretable and parsimonious model,
alinear model with asmall number of predictor variables should be selectediithe model.
Such a model is the newlm1,Avhich includes five predictor variables and the interaction
between other two attributes, when fitted to the sample of the 591 catchmentas shown

in the next equation:

k =z 2.61 + 0.87 log (precipitation location parameter) z 0.03log(depth to bedrock) +
0.46 subsurface porosityz 0.66 log(volumetric porosity) + 0.30precipitation GEVshape
parameter z 0.32 log(mean daily precipitation) log(frequency of high precipitation
events) (4)

It is obvious that the newlm17model has good predictive propertiessince it is better
than all linear models inTable 4, highlighting the role of interactions It is also slightly
worse compared tothe rf8 Mfl2 random forest models with respect to its predictive
performance; however, it is more interpretable and includes less predictor variables. lis
also notable that the rateof increase in the predictive performanceof random forests
decreases rapidly as more predictor variables are added in the modeFherefore, starting
from an RMSE equal t6.291 (rf1 model in Table 3), an intermediate RMSE equal to 0.219
is reached (rf7 inTable 3), while the terminating RMSE is equal to 0.214 (rf14 model in
Table 3). A delivered RMSE equal to 0.21%ogether with a small number of predictor
variablesand a simple model structureare good reasons to sele¢he newlm17 model for

the given data

All coefficients of the model of eq.4) where statistically significant at the 0.05level.
The VIF of precipitation location parameter and the interaction term weret.41 and 4.52

respectively, which are far lower compared to 10 (see SectioB.2.1); therefore, they are
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acceptable especiallyif we considerthat their exclusion results insignificant decrease in
performance. The VIFof the predictor variables were in the range IML.5 (1 is the lower
limit of VIF). The residuals of the newlm17 model werealso found normally distributed
according to the Shapiro-Wilk test. The model of eq. 4) uses severpredictor variables
and its RMSE wa$.219in the 10-fold cross-validation, whilethe 0 A A O @ Wds 8gGal to
0.612. Its adjusted r2 was 0.39 when fitted to the dataset of the 591 catchments.
Furthermore, its performance is equal to theone of therf7 model, which also includes

seven predictor variables

When looking at eq. 4) one sees thak is adecreasingfunction of the product of mean
daily precipitation and frequency of high precipitation events. The inclusion of the
interaction played a crucial role inthe considerable increasan performance compared to
the models that do not include interactions, i.e. the models ofable 4. Additionally, k
increaseswith the location parameter of the GEV distribution ofprecipitation extremes
and with the increase of their shape paramete The latter seems also sensibldecause
extreme precipitation should result in streamflow extremes. Lastly, k increases with
increasing subsurface porosity and decreases with increasing depth to bedrock and
Oi 1 Oi AOOEA DPi Ol OEOUS8 41 OEdthednOdiven explndatolyl 1T x 1 A A
model for the relationship betweenk and geological or soil attributes However, the
benefits of using such model have been shown in Secti8r8 (seeFigure 7 andthe relevant
discussion on the comparison in the predictive performance between newlm4which

includes the interaction term and the location parameter of precipitationand newim17).
5. Conclusions

The shape parametewof the generalized extreme value distributionof daily annual block
maxima of streamflow is important because it is related to how extreméhe floods are
For this specific reasonit should be attentively examinedwith the aim to reduce its high

impact on uncertainty, when incorporated in statistical models of extremes.

Here we proposea framework to find significant relationships between the shape
parameter and basin attributes in the context of flood frequency analysiss well as to
predict the shapeparameter given the attributes in ungauged or sparsely gauged basins.
The framework is based on multiple linear regression, incorporation of interactions
between the attributes, assessment of the importance of attributes in predicting the shape

parameter within a linear framework and comparison with a high performance non

31



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 November 2018

linear model (random forests), which is herein used as best case prediction algorithm,
aiming to validate the proposed linear model. We applied the frameworto 591 basins in

the contiguous US

We found that the shape parameter is influenced by thateractions between the mean
daily precipitation and the frequency of high precipitation days the precipitation GEV
location parameter and the precipitation GEV shape parameter It also dependson
geological and soil characteristics of the catchamt, albeit to a smaller extent

The RMSEof the linear modelin a 10-fold crossvalidation schemewas found to be
0.219, i.e.22% smaller than the RMSEcomputed for a naive mode] while its adjusted r2
when the model is fitted to the whole dataset is 0.39ts performance was similar to the
more complex benchmark modeli.e. negligible improvements can be found, by further
modification of the model The incorporation of this model into relevant Bayesian
frameworks or regressionbasedmodelsfor regional flood frequency analysis may result

in considerable reduction of thepredictive uncertainties.

Conflicts of interest: The authors declare no conflict of interest.
Appendix A Description of catchment attributes

In Tables Al1-A-6 we describe the attributes of the basins

Table A-1. Name, location and topographic characteristics (adapted from Addor et al.

2017h).
Attribute Abbreviation Description
Gauge id gauge_id catchment identifier (eight-digit USGShydrologic unit code)
Region huc_02 region (two-digit USGS hydrologic unit code)
Gauge name gauge_name gauge name, followed by the state
Latitude gauge_lat gauge latitude
Longitude gauge_lon gauge longitude
Mean elevation elev_mean catchment mean elevation
Meanslope slope_mean catchment mean slope
Area area_gages?2 catchment area (GAGESII estimate)

area_geospa_fabric catchment area (geospatial fabric estimate)
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Table A-2. Climatic indices (adapted from Addor et al. 2017b).

Attribute

Abbreviation

Description

Mean daily precipitation
Mean daily PET

Aridity

Seasonality and timing of
precipitation

Fraction of precipitation
falling as snow
Frequency of high
precipitation events
Duration of high
precipitation events
Season of high
precipitation events
Frequency of low
precipitation events
Duration of low
precipitation events

p_mean
pet_mean

aridity

p_seasonality

frac_snow

high_prec_freq
high_prec_dur
high_prec_timing
low_prec_freq

low_prec_dur

Season of low precipitation low_prec_timing

events

mean daily precipitation

mean daily PET, estimated by N15 using Priestlgyaylor
formulation calibrated for each catchment

aridity (PET / P, ratio of mean PET, estimated by N15 using
Priestleyz Taylor formulation calibrated for each catchment, to
mean precipitation)

seasonality and timing of precipitation (estimated using sine curves
to represent the annual temperature and precipiation cycles;
positive (negative) values indicate that precipitation peaks in
summer (winter); values close to 0 indicate uniform precipitation
throughout the year)

fraction of precipitation falling as snow (i.e., on days colder than
0°C)
AOANOGAT AU
precipitation)
average duration of high precipitationevents (number of
AT T OAAOOEOA AAUO | v OEIAO 1 A#
OAAOI 1T ABOET C xEEAE 71600 EECE
daily precipitation) occur

frequency of dry days (< Imm dayz?)

I E EECE DOAAEDPEOAOQEI

average duration of dry periods (number of consecutive days <
1 mm dayz?)
season during which most dy days (< 1mm dayzt) occur

Table A-3. Land cover characteristics (adapted from Addor et al. 2017b).

Attribute

Abbreviation

Description

Forest fraction
LAl maximum

LAI difference

Green vegetation fraction
maximum

Green vegetation fraction
difference

Dominant land cover

Dominant land cover
fraction
Root depth

forest_frac
lai_max

lai_diff
gvf_max
gvf_diff

dom_land_cover

dom_land_cover_frac

root_depth_XX

forest fraction

Maximum monthly mean of the leaf area index (based di?
monthly means)

difference between the maximum and minimum monthly mean
of the leaf area index (based on 12 monthly means)

maximum monthly mean of the green vegetation fraction
(basedon 12 monthly means)

difference between the maximum and minimum monthly mean
of the green vegetation fraction (based on 12 monthly means)
dominant land cover (Noakmodified 20-category IGBPMODIS
land cover)

fraction of the catchment area associated with the dominant
land cover

root depth (percentiles XX = 50 and 9% extracted from a root
depth distribution based on IGBP land cover)
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Table A-4. Soil characteristics (adapted from Addor et al. 2017b).

Attribute Abbreviation Description

Depth to bedrock soil_depth_pelletier depth to bedrock (maximum 50 m)

Soil depth soil_depth_statsgo  soil depth (maximum 1.5 m; layers marked as water and
bedrock were excluded)

Volumetric porosity soil_porosity volumetric porosity (saturated volumetric water content

estimated using a multiple linear regressiorbased on sand
and clay fraction for the layers markedas USDA soil texture
class and a default value (0.9) for layers marked as organic
i AOAOEAI N 1 AUAOO 1 AOEAA AO

excluded)
Saturated hydraulic soil_conductivity saturated hydraulic conductivity (estimated ushg amultiple
conductivity linear regression-based on sand and clay fraction for the

layers marked as USDA soil texture class and a default valu
(36 cm hz?) for layers marked as organic material; layers
i AOEAA AO xAOAOR AAAOT AEh £

Maximum water cantent max_water_content maximum water content (combination of porosity and
soil_depth_statsgo; layers marked as water, bedrock, and
Ol OEA06 xAOA A@Al OAAAQ

Sand fraction sand_frac sand fraction (of the soil material smaller than 2nm; layers
marked asi OCAT EA | AGAOGEAI h xAOGA
were excluded)

Silt fraction silt_frac silt fraction (of the soil material smaller than 2mm; layers
i AOEAA AO 1T OCATEA [ AOAOGEAI T
were excluded)

Clay fraction clay_frac clay fraction (of the soil material smaller than 2mm; layers
i AOEAA AO 1T OCATEA [ AOAOGEAI T
were excluded)

Water fraction water_frac fraction of the top 1.5m marked as water (class 14)

Organic fraction organic_frac fraction of soil_depth_statsgo marked as organic material
(class 13)

Other fraction other frac AFOAAOCETT 1 & OIEI AAPOE OOA(C

Table A-5. Geological characteristics (adapted from Addor et al. 2017b).

Attribute Abbreviation Description

Common geologic class geol_class_1st most common geologic class in the catchment

Fraction of common geol_class_1st frac fraction of the catchment area associated with its most common
geologic class geologic class

Second most common geol_class_2nd second most common geologic class in the catchment

geologic class
Fraction of second most geol_class_2nd_frac fraction of the catchment area associated with its second most

common geologic class common geologic class

Fraction of carbonate rocks carb_rocks_frac AFOAAOGETT 1T &£ OEA AAGAEI AT O AO.
OAAEI AT OAOU 01 AEOS

Subsurface porosity geol_porosity subsurface porosity

Subsurface permeability geol_permeability  subsurface permeability (log10)

Table A6. GEV attributes.

Attribute Abbreviation Description
Shape parameter of streamflow shape_par GEV shape parameter estimate of the streamflow annual blocl
extremes maxima

Precipitation location parameter loc_par_prcp GEV location parameter estimate of the precipitatioannual
block maxima

Precipitation scale parameter scale_par_prcp GEV scale parameter estimate of the precipitation annual bloc
maxima

Precipitation shape parameter  shape_par_prcp GEV shape parameter estimate of the precipitation annual
block maxima

Appendix B Random Forests

Here we present aspects of Random ForestéRF), analgorithm introduced by Breiman

(2001). The presentation is based orhe classical textbook oHastie et al. (2018 Chapter
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15). RFare a classification and regression algorithm. Here we use it foegression.The
algorithm uses regressiontrees (see Hastie et al. 2018, Chapter @nd a modification of
bootstrap aggregating(bagging).” OAETI AT 80 j¢nmnpq 2& OQdee OEA #
Hastie et al. 2018, Chapter 9QWwhile other tree versions also existTrees have low bias and
can model interactions.The idea of bagging i$o averagemany noisy but approximately
unbiased models aiming to reduce the varianc€onsequentlya good option & to average
many trees The bias of the average of trees is equal to the bias of each trieeywever,
bagging reduces the variance of the average of trees. Further reduction of the variance is
achieved when a modification of bagging is used. In this modiétion, eachtree grows by

a random selection of the input variables. Thaotation mtry is commonly used to denote
the number of variables randomly selected at each tredue to the most frequently used
software implementation of the algorithm, i.e. therandomForest (Liaw and Wiener
2002; Breiman et al. 2018) R packagelhe training of the algorithm is performed by
minimizing the out-of-bag (oob) error, i.e. the error of the internal (within the training

set) crossvalidation of the algorithm.

The algorithm needs little tuning, while its performance is very good when using the
default parameters, i.emtry , the number of trees, the maximum number of terminal nodes
of the trees and the minimum size of terminal no@iee number of trees is a critical parameter.
Growing a large number of trees results in better predictimishe performance flattens

asymptotically

Estimation of the variable importancee. the contribution of each input variable in
predicting the @sponsegee Hastie et al. 2018, Chapter 16ee also Gromping 201pis also
possible with RFVariable importance of RF is computed byde)wning a tree(b) computing
the prediction accuracy of the tree in the oob sam@Eeassed dowifc) randomly prmuting
the j" variable in the oob sample and recomputing the prediction accuFaeyyvariable
importance of thg'" variable is equal tohe decrease in accuraafter permutingin all trees
and averaging the resultdegative variable importance meahat inclusion of the predictor
variables results in decrease of the performance of the algoftbsitive values indicate
positive contribution in the prediction of the algorithwhile the magnitude of the contribution
is related to the relative cortitition of all variablesas estimated from their respective variable

importance.
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Appendix C Used software

All analyses and visualizations wereonductedin R Progranming Language (R Core Team
2018) using thefollowing packagescaret (Kuhn 2008, 2018),devtools (Wickham et
al. 2018),gdata (Warnes et al. 2017)ggplot2 (Wickham 2016; Wickham et al. 2018
knitr  (Xie 2014, 2015, 2018),olsrr  (Hebbali 2018), randomForest  (Liaw and
Wiener 2002; Breiman et al. 2018, readr (Wickham et al. 2017)relaimpo (Gromping
2007b, 2018), reshape2 (Wickham 2007, 2017, rmarkdown (Allaire et al. 2018),
SpatialExtremes (Ribatet 2018),stringi  (Gagolewski 2018)
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