Real-time Inferential Analytics Based on Online Databases of Trends:

A Breakthrough within the Discipline of Digital Epidemiology in Dentistry and Dental Anatomy

Ahmed Al-Imam ^{1, 2}, Usama Khalid ³, Shahad Al-Qaisi ⁴, Nawfal Al-Hadithi ¹, Dawoude Kaouche ⁵

- 1. Department of Anatomy and Cellular Biology, College of Medicine, University of Baghdad, Iraq.
- 2. CERVO Brain Research Center, Faculty of Medicine, University of Laval, Canada.
- 3. Department of Software Engineering and Information Technology, Al-Mansour University College, Iraq.
- 4. Ibn Alkaf Hospital for Spinal Cord Injuries, Iraqi Ministry of Health, Iraq
- 5. Department of Dental Surgery, Faculty of Medicine, University of Constantine 3, Algeria.

CORRESPONDING AUTHOR

Dr Ahmed Al-Imam:

Department of Anatomy and Cellular Biology, College of Medicine, University of Baghdad, Bab Al-Moadham, 10053, Baghdad, Iraq.

Email: tesla1452@gmail.com | a.m.al-imam@herts.ac.uk

Phone number: +964 (0) 771 433 8199

ResearchGate Account: https://www.researchgate.net/profile/Ahmed_Al-Imam
Scopus Account: https://www.scopus.com/authid/detail.uri?authorld=57191594132

Scopus Author ID: 57191594132

MANUSCRIPT METRICS

Total number of words/ 2856 Total number of page/ 24

Total number of illustrations/ five tables and five figures

Source of Funding: No external funding, this study was entirely self-funded.

Conflict of Interest: None

ABSTRACT

BACKGROUND

Epidemiological sciences have been evolving at an exponential rate paralleled only by the comparable growth within the discipline of data science. Digital epidemiological studies are playing a vital role in medical science analytics for the past few decades. To date, there are no published attempts at deploying the use of real-time analytics in connection with the disciplines of Dentistry or Medicine.

AIMS AND OBJECTIVES

We deployed a real-time statistical analysis in connection with topics in Dental Anatomy and Dental Pathology represented by the maxillary sinus, posterior maxillary teeth, related oral pathology. The purpose is to infer the digital epidemiology based on a continuous stream of raw data retrieved from Google Trends database.

MATERIALS AND METHODS

Statistical analysis was carried out via Microsoft Excel 2016 and SPSS version 24. Google Trends database was used to retrieve data for digital epidemiology. Real-time analysis and the statistical inference were based on encoding a programming script using Python high-level programming language. A systematic review of the literature was carried out via PubMed-NCBI, the Cochrane Library, and Elsevier databases.

RESULTS

The comprehensive review of databases of the literature, based on specific keywords search, yielded 491813 published studies. These were distributed as 488884 (PubMed-NCBI), 1611 (the Cochrane Library), and 1318 (Elsevier). However, there was no single study attempting real-time analytics. Nevertheless, we succeeded in achieving an automated real-time stream of data accompanied by a statistical inference based on data extrapolated from Google Trends.

CONCLUSION

Real-time analytics are of considerable impact when implemented in biological and life sciences as they will tremendously reduce the required resources for research. Predictive analytics, based on artificial neural networks and machine learning algorithms, can be the next step to be deployed in continuation of the real-time systems to prognosticate changes in the temporal trends and the digital epidemiology of phenomena of interest.

KEYWORDS

Evidence-Based Dentistry; Public Health Dentistry; Google Trends; Real-time Analytics; Predictive Analytics.

1. INTRODUCTION

Digital epidemiology is an emerging discipline of public health and epidemiological sciences, and it has been evolving rapidly over the past few decades. [1, 2] It can be implemented based on data from online resources of the surface web including trends databases, online drug fora and blogs, and social communication media. [3, 4] Google Trends database perfectly fits this purpose as it contains an automated and up-to-date collection of data based on queries of users of the web from all over the world, including millions if not billions of users. [2, 5] Epidemiologist never attempted to carry out real-time or predictive analytics within the context of digital epidemiology and in connection with the discipline of dentistry or medicine. [6-8] In this study, we will explore this concept via the integrative use of Python programme language, statistical packages, and spreadsheet templates in an aim to demonstrate a prototype for real-time analytic of data retrieved from Google Trends.

The primary objective of this study is to demonstrate a prototype of real-time analysis and to infer data on the digital epidemiology in connection with topics that are related to the maxillary sinus and the Schneiderian membrane, posterior maxillary teeth, and related oral pathologies including periapical abscess formation, periodontal pathologies, and complicated dental implants. Real-time analytics are of considerable impact when implemented in biological and life sciences as they will tremendously reduce the required resources for research. On the other hand, Predictive analytics based on artificial neural networks and machine learning algorithms, can be the next step to be deployed in continuation of the real-time systems to prognosticate changes in the temporal trends and the digital epidemiology of phenomena of interest in medicine, dentistry, as well as other subdisciplines of biological and life sciences.

The paranasal sinuses are of prime importance for the region of the head. [9, 10] Leonardo da Vinci (1452-1519) made the very first illustration of the maxillary sinus as well as other paranasal sinuses (Figure 1). [11, 12] Following a maxillary molar tooth extraction, the treatment modalities routinely involve dental prostheses. However, the central fossa of the candidate implant site may require bone grafting techniques to carry out a satisfactory surgery outcome at the prospective implantation site. [13] Oberli and workmates analysed a series of one hundred thirteen periapical radiographs of maxillary premolars and molars with periapical radiolucency indicating chronic apical periodontitis. The cohort was evaluated for the occurrence of maxillary sinus perforations and postoperative complications. Perforation of the Schneiderian membrane occurred in 9.6% of the cases, while membrane exposure without rupture existed in 12%. The distance between the apex of the periapical lesion and the sinus floor did not serve as a predictor of a potential sinus membrane rupture. [14] In 2013, Dagassan-Berndt and fellow workers

measured the thickness of the Schneiderian membrane via dental Cone-Beam Computed Tomography (CBCT). It was significantly higher in the dentate group compared to the edentulous group in connection with the position of the first and second molar. Further, in the dentate group, clinical signs of periodontal destruction were not associated with Schneiderian membrane thickness. [15]

2. MATERIALS AND METHODS

2.1 ETHICAL APPROVAL

This study has been ethically permitted by the Institute Review Board (IRB) of the College of Medicine at the University of Baghdad and in compliance with the authority of the IRB meeting number seven that took place on the 20th of December in 2016.

2.2 REVIEW OF LITERATURE

An analysis of the existing body of literature was conducted systematically from the 1st to the 15th of August 2018 via medical and paramedical databases including NCBI-PubMed, the Cochrane Library, and Elsevier. The unpublished grey literature was also consulted for data of interest. The concept of real-time and predictive analytics was never explored medical and paramedical literature (Table 1A). Further, keywords of different themes were utilised in the process of examining the databases of published research in connection with the maxillary sinus anatomy and related pathologies (Table 1B). Themes included five different topics including "Premolars and Molars", "Maxillary Sinus", "Pathologies", "Surgical Procedures", and "Radiology". We applied different combinations of keywords and themes, via the implementation of Boolean Operators (AND, OR, NOT). [16] Bibliographic materials of interest were assessed and appraised for validity and rigorousness via critical appraisal tools. [17, 18] Duplicate publications were eliminated, and studies that successfully passed the critical appraisal were deemed as satisfactory reference materials. Those studies were conducted on humans as well as non-human species, and written exclusively in the English language. Priority was given to recently-published literature within the past 5-10 years.

2.3 EXPLORATION OF GOOGLE TRENDS

Data were extracted from Google Trends database for the past five years from the 18th of August 2013 to the 18th of August 2018. [19] We used five keywords to retrieve raw numerical week-by-week particulars on the temporal trends, geographic mapping, and related queries by web users. Keywords included "Schneiderian membrane", "Maxillary Sinus", "Sinus lift", "Endodontics", and "Periodontal disease". Our study is a hybrid of a cross-sectional analysis via an internet snapshot, as well as real-time analytics of the

trends. Hence, the level-of-evidence for this study cannot be categorised in correspondence with the Oxford Centre for Evidence-Based Medicine (CEMB). [20] Real-time analysis was attempted via the integration of Python programming language and Microsoft Excel 2016. This concept was never tried as confirmed the complete absence of published literature relevant to the topic of real-time analysis (Table 1B). Statistical analyses and hypotheses testing, descriptive and inferential, were carried out via Microsoft Excel 2016 and the Statistical Package for Social Sciences (SPSS v.24). The implemented statistical tests included the *Analysis of Variance and Covariance* (ANOVA), *Student's t-test*, and *Linear Regression*. An alpha value (α) of 0.05 and a confidence interval of 95% (95% CI) are considered as the cut-off margin for statistical inference.

2.4 A PROTOTYPE OF REAL-TIME ANALYSIS OF GOOGLE TRENDS

To achieve real-time analytics based on data already available on Google Trends (Figure 2), we wrote a script (programming code) via Python high-level programming language version 3.6.6, 32-bit using Linux Deepin 15.6 (64-bit) and Windows 10 Pro (64-bit) operating systems. [21] We applied Thonny version 2.1.21 interpreter, a Python Integrated Development Environment (IDE). The interpreter is a computer program that directly executes the programming script. [22, 23] Two libraries (modules) were imported, Pytrends and OpenPyXI. Those modules are a collection of precompiled routines that a program can use. [24, 25]

3. RESULTS

3.1 DATABASES OF LITERATURE

The systematic inspection of databases of interest of the published literature yielded a total of 491813 hits distributed as 488884 (PubMed-NCBI), 1611 (the Cochrane Library), and 1318 (Elsevier). The most successful keywords to retrieve data addressing the research questions included two combinations of keywords seen in bold fonts (Table 1) generating 441 and 30 hits respectively.

3.2 GOOGLE TRENDS

Exploration of Google Trends database gave data on related queries from users of the surface web. Those queries were not limited to "Maxillary sinus cyst", "Maxillary sinus infection", "Maxillary sinus pain", "Maxillary sinusitis", "Maxillary sinus retention cyst", "Sinus lift surgery", "Sinus graft", "Sinus augmentation", "Dental implants", "Gum disease", "Periodontitis", "Gingivitis", "Gum disease treatment", and "Periodontal treatment" (Table 2). Google Trends also led to accurate data about the geographic mapping (geo-mapping) of the web users queries towards topics of interest in connection with

the maxillary sinus, the posterior maxillary teeth, and related oral pathologies. Geo-mapping was limited to forty-seven countries including Japan, Taiwan, Chile, Germany, Ecuador, United Kingdom, Bulgaria, Ireland, Peru, Italy, Spain, Austria, Venezuela, Brazil, Mexico, Colombia, Greece, United States, Australia, Norway, New Zealand, South Korea, Sweden, Switzerland, Portugal, Ukraine, Singapore, Russia, France, Canada, Romania, Belgium, the Netherlands, Philippines, Argentina, South Africa, Egypt, Malaysia, United Arab Emirates, Kingdom of Saudi Arabia, Poland, India, Pakistan, Thailand, Indonesia, Iran, and Turkey. Countries from the Middle East accounted for 10.64% while countries that represented statistical outliers has contributed to 6.38% of the global map (Figure 3). Those outliers were related to the keyword "Sinus lift" and included Austria, Romania, and Turkey. Concerning geo-mapping, the "Schneiderian Membrane" generated no hits at all while other keywords averaged 2.81 +/- 0.63 (Maxillary sinus), 1.47 +/- 0.39 (Sinus lift), 27.43 +/- 2.76 (Endodontics), and 68.30 +/- 3.14 (Periodontal Disease) (Table 3). Based on Student's t-test statistics, there was a statistically significant difference between all keywords with an exception for "Maxillary sinus" versus "Sinus lift" (*p-value*=0.091) (Table 4). Therefore, surface web users were most interested in periodontal diseases and endodontics.

The temporal trends were variable for the past five years (2013-) (Figure 4), and they averaged 0.02 +/-0.01 (Schneiderian Membrane), 2.64 +/- 0.04 (Maxillary sinus), 1.27 +/- 0.03 (Sinus lift), 25.59 +/- 0.17 (Endodontics), and 54.38 +/- 0.38 (Periodontal Disease) (Table 3). Statistical outliers co-existed for only two keywords, "Endodontics" and "Periodontal disease", during December of each year as well as lately during September and October in 2017. Scattered correlation and regression analysis confirmed a strong positive correlation between the two keywords "Endodontics" and "Periodontal disease" (*R score*=0.669, *p-value*<0.001) (Table 5, Figure 5). Besides, other keywords also had a significant moderate-to-strong positive linear correlation including "Schneiderian Membrane" and "Sinus Lift" (R=0.166), "Maxillary Sinus" and "Sinus Lift" (0.226), "Maxillary Sinus" and "Endodontics" (0.516), "Maxillary Sinus" and "Periodontal Disease" (0.495), "Sinus Lift" and "Endodontics" (0.330), and "Sinus Lift" and "Periodontal Disease" (0.218). Besides, Student's t-test calculations confirmed the existence of statistically significant differences (*p-value*<0.001) among all keywords (Table 5). Hence, the summative statistical inference validates that the web users are most interested in endodontics and periodontal diseases.

3.3 REAL-TIME ANALYSIS OF GOOGLE TRENDS

The programming script (Python's) enables an automatic retrieval of data from Google Trends based on keywords of interest (up to five). The retrieval process is in real-time, and at a regular interval (weekly, biweekly, monthly, etc.) that can be customised according to the research requirement. The data were self-

regulated to be transferred to an Excel spreadsheet template (Microsoft Excel 2016, 64-bits) that had built-in formulas for statistical analysis and multiple hypothesis testing for statistical inference and in real-time. A Complimentary statistical analysis was carried out via SPSS. Eventually, we succeeded in generating a real-time stream of inferential analytics.

4. DISCUSSION

4.1 THE CONCEPT OF REAL-TIME ANALYSIS

The concept of real-time analysis was never explored before not only within the field of dental anatomy and dental pathology but also in connection with the entire discipline of Medicine and Dentistry. [26] We used keywords that are specific to the proposed research questions on the maxillary sinus, maxillary teeth and related oral pathologies (Table 1B). The total number of hits, representing published papers was 346146, most of which (342841) were indexed via PubMed-NCBI, and much less (3305) were found on the Cochrane Library, while none existed on Elsevier database. Nevertheless, there was no single study attempting real-time analytic. Hence, there is a full deficit within the existing body of literature about the objectives of this study. Our study is the first of its kind according to which an automated real-time stream of data accompanied by a statistical analysis was applicable based on data extrapolated from Google Trends.

4.2 LIMITATIONS OF THE REAL-TIME ANALYSIS

The digital epidemiological analysis can be applied via online databases of trends. Geographic mapping of the top contributing countries originated mainly from the developed world, as well as few countries from the Middle East, some Latin countries, and others from Eastern Europe. This study may have some limitations due to the sole reliance on Google Trends as a representative of the databases of trends existing on the surface web. Besides, the retrospective analytic part of the study was specific for a restricted period (2013-2017). Data collected from Google Trends might be occasionally faulty or misleading as some web users might be deploying the use of an incognito mode of web browsing or dedicated incognito web browsers including Tor Browser, virtual private networks and internet protocol masking. Subsequent studies should incorporate more than one trends database for cross-validation. Additionally, ventures into the deep web and the darknet should be attempted to recover any relevant data including those on the geographic mapping and temporal trends whenever feasible.

4.3 LITERATURE REVIEW OF RELEVANCE TO MAXILLARY SINUS AND POSTERIOR MAXILLARY TEETH

Lozano-Carrascal (2014) confirmed, by means of a cross-sectional analytic study, that CBCT scanning has been shown to be a useful tool for evaluating maxillary sinus variations of anatomical parameters including the residual ridge height and width, ridge bone density, maxillary sinus angle, maxillary sinus lateral wall thickness, Schneiderian membrane thickness, maxillary sinus septa, and the posterior superior alveolar artery. CBCT represents the gold standard tool for evaluating the maxillary sinus area. [27] Concerning the maxillary septa, Bornstein and co-workers (2016) studied the of frequency, morphology, and locations of septa using CBCT. Septa are common anatomical structures that often exist in the region of the first or second molar on the floor of the maxillary sinus. Proper pre-operative assessment of the septa, via three-dimensional radiographic examination, is mandatory to avoid potential complications during sinus floor elevation procedures. [28]

In 2015, Goller-Bulut and teammates studied the relationship between periapical and marginal bone loss and the mucosal thickness of the maxillary sinus in connection with maxillary premolars and molars. Retrospective analysis showed that mucosal thickening (MT) of the maxillary sinus was common among patients with the periodontal bone loss (PBL), and it was significantly associated with apical lesions and PBL. [29] Bayrak and colleagues (2018) conducted another retrospective evaluation and found no statistically significant relationship between nasal septum deviation (NSD) and Schneiderian membrane thickness (SMT). The deviation of the nasal septum was found in 50.6% of patients without gender bias. However, the average SMT was found to be higher in males for all the examined tooth areas (*p-value*≤0.05). The average thickness of the membrane was highest in the first molar region and least in the third molar region. [30] Earlier in 2017, Khorramdel and fellows published similar data confirming that periapical lesions and periodontal infections in the posterior maxilla were associated with Schneiderian membrane thickening. Besides, there was a significant relationship between the location of the posterior maxillary teeth and the thickness of the Schneiderian membrane. [31]

In 2014, a study by Acharya and co-workers revealed that the incidence of advanced periodontal disease was common among Hong Kong Chinese and Asian Indian subjects who sought tooth replacement. Ethnicity, sex, and sinus membrane thickening affected the available bone height in the region below the maxillary sinus. [32] Lu and colleagues (2012) validated, via CBCT imaging, that the prevalence and extent severity of the maxillary sinus mucosal thickening were positively associated with the severity of apical periodontitis. CBCT imaging is invaluable for the assessment of the maxillary sinuses and related teeth primarily molars and premolars. Patients in their 7th decade of life had the highest prevalence of mucosal

thickening. [33] During the same year, Bornstein and co-authors explored the characteristics and dimensions of the Schneiderian membrane and apical bone in maxillary molars in patients referred for apical surgery. The thickness of the apical bone and the Schneiderian membrane were generally higher in patients with periapical pathoses. [34]

For single-tooth implant replacement in the posterior maxilla, it is often necessary to do an augmentation of the alveolar process to overcome the post-extraction bone resorption. In 2011, Kahnberg presented a technique for a local sinus lift with autogenous bone in a one-stage procedure. The researchers validated that local sinus lift with simultaneous bone augmentation and single-tooth replacement in the posterior maxilla is a predictable method although a certain bone volume reduction around the implant was evident at the 2-year follow-up. [35] On the other hand, Taschieri and co-researchers (2014) validated via their experimental trial, that the use of platelet concentrates can be effective in reducing the pain, swelling, and surgery-related side effects. [36]

In 2017, Eggmann and colleagues concluded, based on a systematic review of studies implementing CBCT scans, that periapical lesions in the posterior maxilla are likely to be associated with Schneiderian membrane thickening. On the other hand, the current evidence regarding the relation between periodontal diseases and the appearance of the Schneiderian membrane in CBCT is inconclusive. [37] Monje and co-workers (2016), based on their systematic review and meta-regression analytic of thirty-one studies, reported that the overall mean ± SE maxillary Schneiderian membrane thickness (SMT) was 1.17 ± 0.1 mm. The mean SMT for the three-dimensional radiography (3DR) group was 1.33 mm, and 0.48 mm for the histology group. Three-dimensional technologies overestimate the SMT by approximately 2.5 folds in comparison with histologic analysis, yet the difference between the two measurement methods was not statistically significant. Regression analyses, though statistically insignificant, demonstrated that patient with periodontitis and smoking had thicker SMT. The thicker SMT might be more vulnerable to perforation (*p-value*=0.14). On average, SMT is 1 mm in patients seeking sinus augmentation. [38]

Several other pathologies can affect the maxillary sinus and the subjacent alveolar ridge as documented by Evrard, Jham, and Kessler. [39-41] Evans reported a tumour attached to the cemento-enamel junction of an impacted third molar at the region of the maxillary tuberosity. The lesion represented an unusual presentation for an odontogenic myxoma in which an aggressive squamous epithelial component existed, altogether with a mucus-secreting component. [34] Jham published a report of a case of an extensive central ossifying fibroma (COF) affecting the maxilla of a 62-year-old patient. The lesion had undefined limits on the right side of the upper alveolar ridge and extending towards the palate. The considerable

growth potential of COF manifested in this case by the invasion of the maxillary sinus, nasal cavity and the orbit. [35] Kessler reported a case of respiratory epithelial adenomatoid hamartoma of the maxillary sinus. Those hamartomas are rare lesions occurring primarily in the nasal cavity, nasopharynx, and the paranasal sinuses. [36]

AVAILABILITY OF DATA

All data, including the raw data and supplementary materials, are available upon request from the corresponding author.

ACKNOWLEDGEMENTS

None

CONFLICTS OF INTEREST

The authors have nothing to be declared.

SOURCE OF FUNDING

This study is entirely self-funded.

REFERENCES

- 1. Mittelstadt B, Benzler J, Engelmann L, Prainsack B, Vayena E. Is there a duty to participate in digital epidemiology?. Life sciences, society and policy. 2018 Dec 1;14(1):9.
- 2. Adawi M, Bragazzi NL, Watad A, Sharif K, Amital H, Mahroum N. Discrepancies between classic and digital epidemiology in searching for the Mayaro virus: preliminary qualitative and quantitative analysis of Google trends. JMIR public health and surveillance. 2017 Oct;3(4).
- Al-Imam A. Monitoring and Analysis of Novel Psychoactive Substances in Trends Databases, Surface Web and the Deep Web, with Special Interest and Geo-Mapping of the Middle East. info:eu-repo/semantics/masterThesis [dissertation on the Internet]. United Kingdom: University of Hertfordshire; 2017. DOI: 10.13140/RG.2.2.27636.24961.
- Al-Imam A. Could Hallucinogens Induce Permanent Pupillary Changes in (Ab) users? A Case Report from New Zealand. Case reports in neurological medicine. 2017;2017. doi:10.1155/2017/2503762.
- 5. Cervellin G, Comelli I, Lippi G. Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. Journal of epidemiology and global health. 2017 Sep 1;7(3):185-9.
- 6. Choi H, Varian H. Predicting the present with Google Trends. Economic Record. 2012 Jun 1;88(s1):2-9.

- 7. Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clinical infectious diseases. 2009 Nov 15;49(10):1557-64.
- 8. Nuti SV, Wayda B, Ranasinghe I, Wang S, Dreyer RP, Chen SI, Murugiah K. The use of google trends in health care research: a systematic review. PloS one. 2014 Oct 22;9(10):e109583.
- 9. Rudmik L, Soler ZM. Medical therapies for adult chronic sinusitis: a systematic review. Jama. 2015 Sep 1;314(9):926-39.
- Munhoz L, Júnior RA, Abdala R, Arita ES. Diffusion-Weighted Magnetic Resonance Imaging of the Paranasal Sinuses: A Systematic Review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2018 Jul 21.
- 11. Mion M, Zanon A, Marchese-Ragona R. The history of paranasal sinus surgery. Medicina Historica. 2018 Feb 14;1(3):139-46.
- 12. Chai OH, Song CH. Anatomical Achievement and Thought of Leonardo da Vinci. Korean Journal of Physical Anthropology. 2016 Jun 1;29(2):35-46.
- 13. Block MS. Sinus augmentation at the time of molar tooth removal: Modification of Jensen technique. Journal of Oral and Maxillofacial Surgery. 2015 Jun 1;73(6):1078-83.
- 14. Oberli K, Bornstein MM, von Arx T. Periapical surgery and the maxillary sinus: radiographic parameters for clinical outcome. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007 Jun 1;103(6):848-53.
- 15. Dagassan-Berndt DC, Zitzmann NU, Lambrecht JT, Weiger R, Walter C. Is the Schneiderian membrane thickness affected by periodontal disease? A cone beam computed tomography-based extended case series. Journal of the International Academy of Periodontology. 2013 Jul;15(3):75-82.
- 16. Salton G. Developments in automatic text retrieval. science. 1991 Aug 30;253(5023):974-80.
- 17. Chan SS. Critical Appraisal of Medical Literature. Hong Kong Journal of Psychiatry. 2001 Dec 1;11(4):26.
- 18. Umesh G, Karippacheril JG, Magazine R. Critical appraisal of published literature. Indian journal of anaesthesia. 2016 Sep;60(9):670.
- 19. Microsoft . Google Trends. https://trends.google.com/trends/explore?date=today%205-y&q=Schneiderian%20membrane,maxillary%20sinus,%2Fm%2F0d0kxy,%2Fm%2F03_mvt,%2Fm%2F0d0kxy,%2Fm%2F03_mvt,%2Fm%2F0d0kxy,%2Fm%2F0d0kxy,%2Fm%2F03_mvt,%2Fm%2F0d0kxy,%2Fm%2F0
- 20. University of Oxford. OCEBM Levels of Evidence. https://www.cebm.net/2016/05/ocebm-levels-of-evidence/ (accessed 8 August 2018).

- 21. Usama Khalid. Python with Excel.

 https://www.youtube.com/watch?v=F2KSsalTx1k&feature=youtu.be (accessed 13 July 2018).
- 22. Scott ML. Programming language pragmatics. Morgan Kaufmann; 2000.
- 23. Lutz M. Learning Python: Powerful Object-Oriented Programming. "O'Reilly Media, Inc."; 2013 Jun 12.
- 24. Microsoft. GitHub. https://github.com/GeneralMills/pytrends (accessed 8 August 2016).
- 25. Gazoni E, Clark C. OpenPyXI. https://openpyxl.readthedocs.io/en/stable/ (accessed 8 August 2016).
- 26. Ahmed Al-Imam. Real-time Analytics for Big Data: Potentials in Data Science and Medical Research. https://www.researchgate.net/publication/328415500_Real-time_Analytics_for_Big_Data_Potentials_in_Data_Science_and_Medical_Research (accessed 23 October 2018). DOI: 10.13140/RG.2.2.29925.45280
- 27. Lozano-Carrascal N, Salomó-Coll O, Gehrke SA, Calvo-Guirado JL, Hernández-Alfaro F, Gargallo-Albiol J. Radiological evaluation of maxillary sinus anatomy: A cross-sectional study of 300 patients. Annals of Anatomy-Anatomischer Anzeiger. 2017 Nov 1;214:1-8.
- 28. Bornstein MM, Seiffert C, Maestre-Ferrín L, Fodich I, Jacobs R, Buser D, von Arx T. An analysis of frequency, morphology, and locations of maxillary sinus septa using cone beam computed tomography. Int J Oral Maxillofac Implants. 2016 Mar 1;31(2):280-7.
- 29. Bulut DG, Sekerci AE, Köse E, Sisman Y. Cone beam computed tomographic analysis of maxillary premolars and molars to detect the relationship between periapical and marginal bone loss and mucosal thickness of maxillary sinus. Medicina oral, patología oral y cirugía bucal. Ed. inglesa. 2015;20(5):10.
- 30. Bayrak S, Ustaoglu G, Demiralp KÖ, Çakmak ES. Evaluation of the Characteristics and Association Between Schneiderian Membrane Thickness and Nasal Septum Deviation. Journal of Craniofacial Surgery. 2018 May 1;29(3):683-7.
- 31. Khorramdel A, Shirmohammadi A, Sadighi A, Faramarzi M, Babaloo AR, Shamami MS, Mousavi A, Adhami ZE. Association between demographic and radiographic characteristics of the schneiderian membrane and periapical and periodontal diseases using cone-beam computed tomography scanning: A retrospective study. Journal of dental research, dental clinics, dental prospects. 2017;11(3):170.

- 32. Acharya A, Hao J, Mattheos N, Chau A, Shirke P, Lang NP. Residual ridge dimensions at edentulous maxillary first molar sites and periodontal bone loss among two ethnic cohorts seeking tooth replacement. Clinical oral implants research. 2014 Dec;25(12):1386-94.
- 33. Lu Y, Liu Z, Zhang L, Zhou X, Zheng Q, Duan X, Zheng G, Wang H, Huang D. Associations between maxillary sinus mucosal thickening and apical periodontitis using cone-beam computed tomography scanning: a retrospective study. Journal of endodontics. 2012 Aug 1;38(8):1069-74.
- 34. Bornstein MM, Wasmer J, Sendi P, Janner SF, Buser D, Von Arx T. Characteristics and dimensions of the Schneiderian membrane and apical bone in maxillary molars referred for apical surgery: a comparative radiographic analysis using limited cone beam computed tomography. Journal of endodontics. 2012 Jan 1;38(1):51-7.
- 35. Kahnberg KE, Wallström M, Rasmusson L. Local sinus lift for single-tooth implant. I. Clinical and radiographic follow-up. Clinical implant dentistry and related research. 2011 Sep;13(3):231-7.
- 36. Taschieri S, Corbella S, Tsesis I, Del Fabbro M. Impact of the use of plasma rich in growth factors (PRGF) on the quality of life of patients treated with endodontic surgery when a perforation of sinus membrane occurred. Oral and maxillofacial surgery. 2014 Mar 1;18(1):43-52.
- 37. Eggmann F, Connert T, Bühler J, Dagassan-Berndt D, Weiger R, Walter C. Do periapical and periodontal pathologies affect Schneiderian membrane appearance? Systematic review of studies using cone-beam computed tomography. Clinical oral investigations. 2017 Jun 1;21(5):1611-30.
- 38. Monje A, Diaz KT, Aranda L, Insua A, Garcia-Nogales A, Wang HL. Schneiderian Membrane Thickness and Clinical Implications for Sinus Augmentation: A Systematic Review and Meta-Regression Analyses. Journal of periodontology. 2016 Aug;87(8):888-99.
- 39. Evrard L, Daelemans P, Glineur R, Vanmuylder N, Louryan S, Dourov N. Myxomatous odontogenic tumor of the maxilla. An unusual case with squamous and mucoproducing epithelial component. Acta stomatologica Belgica. 1997 Jun;94(2):59-62.
- 40. Jham BC, Duraes GV, Rocha CS. Extensive central ossifying fibroma of the maxilla: a case report with description of an alternative surgical technique. Minerva stomatologica. 2006 Oct;55(10):593-7.
- 41. Kessler HP, Unterman B. Respiratory epithelial adenomatoid hamartoma of the maxillary sinus presenting as a periapical radiolucency: a case report and review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2004 May 1;97(5):607-12.

 ${\it Table 1A. Investigation of Databases of Literature: The Topic of "Real-time" Analysis.}$

		Numb	Number of Hits per Database							
Theme of Keywords	Keywords	PubMed-NCBI	The Cochrane Library	Elsevier	Total					
Real-time and Predictive Analytics	real-time analysis OR real-time analytics OR real-time anal* OR predictive analysis OR predictive analytics OR predictive anal*	333835	2403	0	336238					
Real-time Analytics and Digital Epidemiology	(real-time analysis OR real-time analytics OR real-time anal* OR predictive analysis OR predictive analytics OR predictive anal*) AND (epidem* OR digital epidem*)	8570	896	0	9466					
Maxillary Sinus and Maxillary Teeth	("Molar Teeth" OR "Premolar Teeth" OR "Tooth Extraction" OR "Exodontia") AND ("Maxillary Sinus" OR "Sinus Anatomy" OR "Schneiderian Membrane")	436	5	0	441					
Combination of Themes	((real-time analysis OR real-time analytics OR real-time anal* OR predictive analysis OR predictive analytics OR predictive analytics OR predictive anal*) AND (epidem* OR digital epidem*)) AND (("Molar Teeth" OR "Premolar Teeth" OR "Tooth Extraction" OR "Exodontia") AND ("Maxillary Sinus" OR "Sinus Anatomy" OR "Schneiderian Membrane") AND ("Sinus Abnormalities" OR "Periapical Abscess" OR "Periodontitis"))	0	1†	0	1					
	Total Number of Hits	342841	3305	0	346146					

[†] Hits were irrelevant to the research questions.

Table 1B. Investigation of Databases of Literature: The Maxillary Sinus.

			Number of		
Theme of Keywords	Keywords	PubMed-NCBI	The Cochrane Library	Elsevier	Total
	Molar Teeth	35591	92	23	35706
Premolars and	Premolar Teeth	14043	40	9	14092
Molars	Tooth Extraction	23824	306	36	24166
	Exodontia	23903	1	9	23913
	Maxillary Sinus	16536	35	52	16623
Maxillary Sinus	Sinus Anatomy	41450	17	185	41652
,	Schneiderian Membrane	30189	18	0	30207
	Sinus Abnormalities	16032	176	83	16291
Pathologies	Periapical Abscess	2005	7	7	2019
	Periodontitis	36335	101	269	36705
	Candidate Site	9355	247	120	9722
	Endodontics	37412	50	108	37570
Surgical	Implant Dentistry	15440	60	101	15601
Procedures	Dental Implant	42325	64	230	42619
roccaures	Dental Implant Complications	4866	51	35	4952
	Sinus Floor Elevation	832	8	1	841
	Dental X-Ray	30688	44	43	30775
Radiology	OPG	312	3	6	321
	Orthopantomogram	312	14	1	327
	"Molar Teeth" OR "Premolar Teeth"				327
	OR "Tooth Extraction" OR "Exodontia"	24057	74	0	24131
	"Maxillary Sinus" OR "Sinus Anatomy"				
	OR "Schneiderian Membrane"	14878	26	0	14904
	"Sinus Abnormalities" OR "Periapical				
Combination of	Abscess" OR "Periodontitis"	32757	102	0	32859
Keywords within Theme	"Candidate Site" OR "Endodontics" OR "Implant Dentistry" OR "Dental Implant" OR "Dental Implant Complications" OR "Sinus Floor Elevation"	28894	63	0	28957
	"Dental X-Ray" OR "OPG" OR				
	"Orthopantomogram"	6386	3	0	6389
	("Molar Teeth" OR "Premolar Teeth" OR "Tooth Extraction" OR "Exodontia") AND ("Maxillary Sinus" OR "Sinus Anatomy" OR "Schneiderian Membrane")	436	5	0	441
Combination of Themes	("Molar Teeth" OR "Premolar Teeth" OR "Tooth Extraction" OR "Exodontia") AND ("Maxillary Sinus" OR "Sinus Anatomy" OR "Schneiderian Membrane") AND ("Sinus Abnormalities" OR "Periapical Abscess" OR "Periodontitis")	26	4	0	30
	("Molar Teeth" OR "Premolar Teeth" OR "Tooth Extraction" OR "Exodontia")	0	0	0	0

AND ("Maxillary Sinus" OR "Sinus Anatomy" OR "Schneiderian Membrane") AND ("Sinus Abnormalities" OR "Periapical Abscess" OR "Periodontitis") AND ("Candidate Site" OR "Endodontics" OR "Implant Dentistry" OR "Dental Implant" OR "Dental Implant Complications" OR "Sinus Floor Elevation") AND ("Dental X-Ray" OR "OPG" OR "Orthopantomogram") Total Number of Hits 488884 1318 1611 491813

Table 2. Google Trends: Top Related Queries on the Maxillary Sinus.

	Related Queries
1.	Maxillary sinus cyst
2.	Maxillary sinus infection
3.	Left maxillary sinus
4.	Right maxillary sinus
5.	Maxillary sinus pain
6.	Maxillary sinusitis
7.	Maxillary sinus retention cyst
8.	Sinus lift surgery
9.	Sinus graft
10.	Sinus augmentation
11.	Sinus lift procedure
12.	Sinus lift cost
13.	Sinus lifting
14.	Dental implants
15.	Sinus lift recovery
16.	Endodontic treatment
17.	Devitalisation
18.	Gum disease
19.	Periodontitis
20.	Gingivitis
21.	Gum disease treatment
22.	Periodontal treatment

Table 3. Descriptive Statistics: Geo-mapping (top) and Temporal Trends (bottom).

	N	Range	Minimum	Maximum	n Mean		Std. Deviation	Variance
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic
Schneiderian Membrane	47	0	0	0	.00	.000	.000	.000
Maxillary Sinus	47	14	0	14	2.81	.627	4.297	18.463
Sinus Lift	47	15	0	15	1.47	.399	2.733	7.472
Endodontics	47	75	1	76	27.43	2.754	18.884	356.598
Periodontal Disease	47	77	22	99	68.30	3.135	21.490	461.822
Valid N (listwise)	47							

	N	Range	Minimum	Maximum	Mean		Std. Deviation	Variance
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Statistic
Schneiderian Membrane	260	1	0	1	.02	.009	.138	.019
Maxillary Sinus	260	3	1	4	2.64	.037	.589	.346
Sinus Lift	260	1	1	2	1.27	.028	.446	.199
Endodontics	260	18	16	34	25.59	.169	2.729	7.448
Periodontal Disease	260	66	34	100	54.38	.377	6.075	36.901
Valid N (listwise)	260							

Table 4. Geo-Mapping: Paired Samples Correlation (top) and Paired Sample Student's t-test (bottom).

		N	Correlation	Sig.
Pair 1	Schneiderian Membrane & Maxillary Sinus	47		
Pair 2	Schneiderian Membrane & Sinus Lift	47		
Pair 3	Schneiderian Membrane & Endodontics	47		
Pair 4	Schneiderian Membrane & Periodontal Disease	47		
Pair 5	Maxillary Sinus & Sinus Lift	47	100	.506
Pair 6	Maxillary Sinus & Endodontics	47	.293	.046
Pair 7	Maxillary Sinus & Periodontal Disease	47	445	.002
Pair 8	Sinus Lift & Endodontics	47	.330	.023
Pair 9	Sinus Lift & Periodontal Disease	47	398	.006
Pair 10	Endodontics & Periodontal Disease	47	979	.000

Paired Differences									
		Mean	Std. Deviation	Std. Error Mean	95% Confident the Diffe Lower		t	df	Sig. (2-tailed)
Pair 1	Schneiderian Membrane - Maxillary Sinus	-2.809	4.297	.627	-4.070	-1.547	-4.481	46	.000
Pair 2	Schneiderian Membrane - Sinus Lift	-1.468	2.733	.399	-2.271	666	-3.682	46	.001
Pair 3	Schneiderian Membrane - Endodontics	-27.426	18.884	2.754	-32.970	-21.881	-9.957	46	.000
Pair 4	Schneiderian Membrane - Periodontal Disease	-68.298	21.490	3.135	-74.608	-61.988	-21.788	46	.000
Pair 5	Maxillary Sinus - Sinus Lift	1.340	5.317	.776	221	2.902	1.728	46	.091
Pair 6	Maxillary Sinus - Endodontics	-24.617	18.098	2.640	-29.931	-19.303	-9.325	46	.000
Pair 7	Maxillary Sinus - Periodontal Disease	-65.489	23.715	3.459	-72.452	-58.526	-18.932	46	.000
Pair 8	Sinus Lift - Endodontics	-25.957	18.165	2.650	-31.291	-20.624	-9.797	46	.000
Pair 9	Sinus Lift - Periodontal Disease	-66.830	22.716	3.313	-73.499	-60.160	-20.169	46	.000
Pair 10	Endodontics - Periodontal Disease	-40.872	40.165	5.859	-52.665	-29.079	-6.976	46	.000

Table 5. Temporal Trends: Paired Samples Correlation (top) and Paired Sample Student's t-test (bottom).

		N	Correlation	Sig.
Pair 1	Schneiderian Membrane & Maxillary Sinus	260	010	.871
Pair 2	Schneiderian Membrane & Sinus Lift	260	.166	.007
Pair 3	Schneiderian Membrane & Endodontics	260	.011	.861
Pair 4	Schneiderian Membrane & Periodontal Disease	260	055	.377
Pair 5	Maxillary Sinus & Sinus Lift	260	.226	.000
Pair 6	Maxillary Sinus & Endodontics	260	.516	.000
Pair 7	Maxillary Sinus & Periodontal Disease	260	.495	.000
Pair 8	Sinus Lift & Endodontics	260	.330	.000
Pair 9	Sinus Lift & Periodontal Disease	260	.218	.000
Pair 10	Endodontics & Periodontal Disease	260	.669	.000

Paired Differences									
		Mean	Std. Deviation	Std. Error Mean	95% Confidence the Diffe Lower		t	df	Sig. (2-tailed)
Pair 1	Schneiderian Membrane - Maxillary Sinus	-2.623	.606	.038	-2.697	-2.549	-69.814	259	.000
Pair 2	Schneiderian Membrane - Sinus Lift	-1.254	.445	.028	-1.308	-1.200	-45.452	259	.000
Pair 3	Schneiderian Membrane - Endodontics	-25.569	2.731	.169	-25.903	-25.236	-150.966	259	.000
Pair 4	Schneiderian Membrane - Periodontal Disease	-54.362	6.084	.377	-55.104	-53.619	-144.082	259	.000
Pair 5	Maxillary Sinus - Sinus Lift	1.369	.653	.041	1.289	1.449	33.793	259	.000
Pair 6	Maxillary Sinus - Endodontics	-22.946	2.477	.154	-23.249	-22.644	-149.366	259	.000
Pair 7	Maxillary Sinus - Periodontal Disease	-51.738	5.806	.360	-52.447	-51.029	-143.694	259	.000
Pair 8	Sinus Lift - Endodontics	-24.315	2.616	.162	-24.635	-23.996	-149.889	259	.000
Pair 9	Sinus Lift - Periodontal Disease	-53.108	5.993	.372	-53.840	-52.376	-142.884	259	.000
Pair 10	Endodontics - Periodontal Disease	-28.792	4.707	.292	-29.367	-28.217	-98.629	259	.000

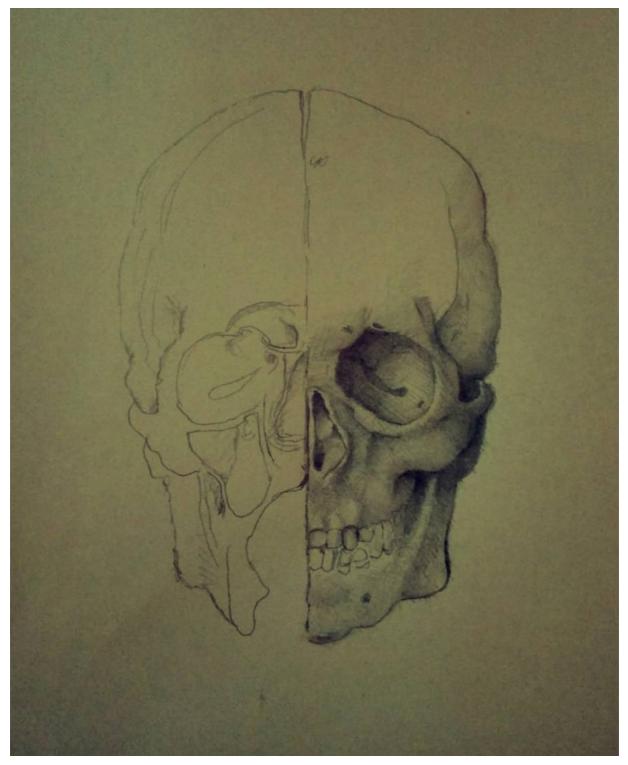


Figure 1. Sagittal Anatomy of the Maxillary Sinus: A Duplicate of Leonardo da Vinci's Original Sketch.

[†] Concept Art by Dawoude Kaouche (co-author).

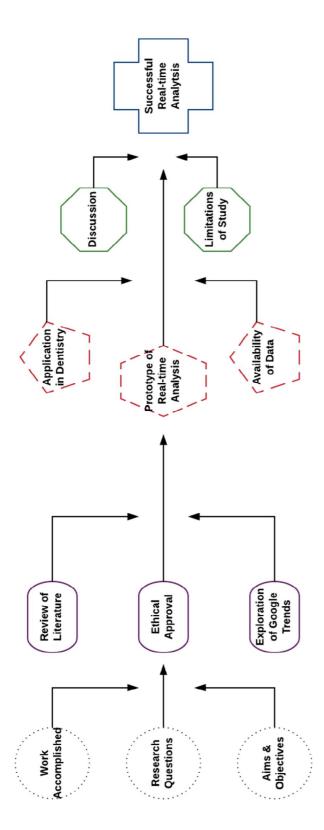
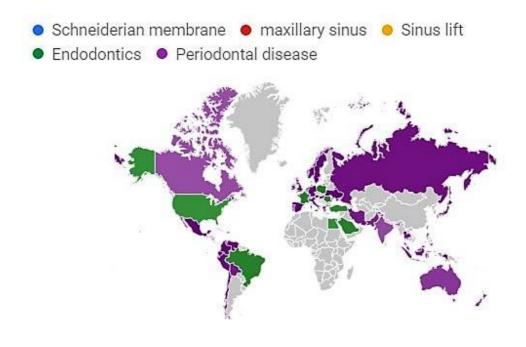



Figure 2. Flowchart of the Implemented Methods of Research.

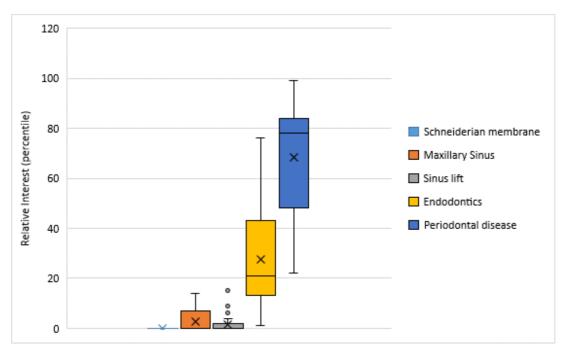
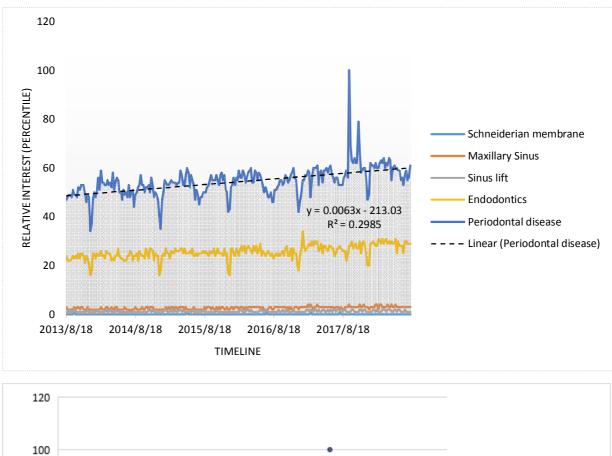



Figure 3. Geographic Mapping: Map Chart (top) and Boxplot Presentation (bottom).

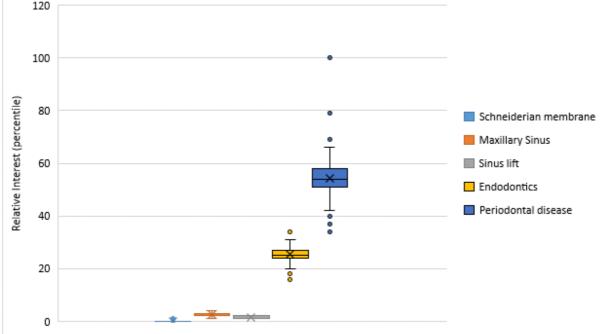


Figure 4. Temporal Trends: Trends (top) and Boxplot Presentation (bottom).

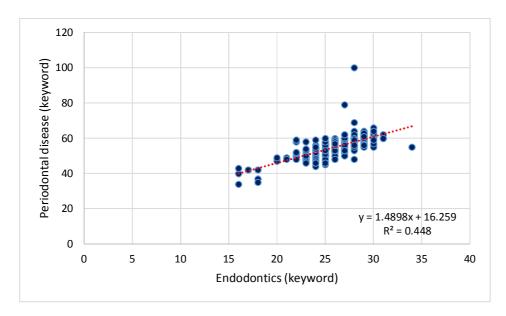


Figure 5. Scattered Correlation and Regression Analysis: Endodontics versus Periodontal Disease.