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Abstract: Augment reality (AR) is crucial for immersive human-computer interaction (HCI)
and vision of artificial intelligence (Al). Labeled data drove object recognition in AR. However,
manual annotating data is expensive and labor-intensive, and furthermore, scanty labeled data
limits the application of AR. Aiming at solving the problem of insufficient training data in AR
object recognition, an automated vision data synthesis method called BAGAN is proposed in this
paper based on the 3D modeling and GAN algorithm. Our approach has been validated to have
better performance than other methods through image recognition task on natural image database
ObjectNet3D. This study can shorten the algorithm development time of AR and expand the
application scope of AR, which is of great significance to immersive interactive systems.

Keywords: object recognition; image data synthesizing; Human-computer interaction; data
synthesizing for immersive HCI; generative adversarial nets;BAGAN

1. Introduction

Augment Reality (AR) is an essential part of the immersive human-computer interaction.
Using advanced sensing system, AR provides an essential platform for human-computer interaction,
such as Google Glass[2,3] and Microsoft HoloLens[4]. AR has much prospect in the fields of
medical, industrial, office education and so on. Therefore, the vision algorithm is an essential
sub-topic of human-computer interaction research. On the other side, benefited by deep learning
and big-data, data-driven computer vision algorithms based on deep learning had many significant
breakthroughs[5]. More and more computer vision algorithms based on deep learning were built and
achieved state-of-the-art performance.

However, the existing data sets cannot fulfill the demands of AR and significantly limit the
application of AR in the development. Due to the broad applications of AR technology, the visual data
of AR needs rich multi-class visual labeled data. More than that, people have increasing requirements
for advanced visual tasks of AR with the development of human-computer interaction.

[2,3] and Microsoft HoloLens[4] presented the strengthen ways of visual interaction because
advanced visual intelligence can finish complex visual tasks than before. High-performance visual
intelligence (or computer vision) algorithm is vital for Augment Reality.

These factors lead to two formidable problems, on the one hand, who state the quantity of
annotated data impact the performance of an algorithm. On the other side, annotating data become
an arduous work, because of the increasing advanced visual tasks required by interaction design[6-9].

To solve the lack of annotation data, many researchers find two possible ways: (1) Use
unsupervised vision learning algorithms to decrease the demands of annotated data. (2) Get more
annotations data for supervised learning using automated methods.

Different supervised learning algorithms, unsupervised learning algorithms do not rely on an
annotation to indicate the relationship between input and output. Figure 1 indicates the difference
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between supervised learning and unsupervised learning. Unsupervised learning can deal with the
task which is difficult to deal with supervised learning because it does not need the guidance of
annotation in data. However, the research of unsupervised learning is in the ascendant, and it can
not replace the supervised learning algorithm.

supervised learning : unsupervised learning

Observations (inputs) latent variables

Observations (outputs) Observations (outputs)

@ ®

Figure 1. Difference between supervised learning and unsupervised learning. Supervised learning
uses annotation guidance to draw learning-task-related conclusions about the data. Unsupervised
learning uses the latent factors in data to conclude the relationship between data and the
corresponding the learning task, and there is no need to mark the data.

Visual data enhancement algorithm is designed to reduce the cost of manual marking, and it
is also one of the traditional problems in computer vision based on deep learning. At present,
supervised learning algorithms are the primary engine driving the development of artificial
intelligence. Due to its data-driven nature, supervised learning is or has been outperformed by
traditional learning methods in some respects. Generally, using deep supervised learning algorithms
should collect large data and annotate by the human.

Traditional visual data augmentation algorithms use spoofing methods to enhance the annotated
data. Modern visual computing algorithms have a funny bug: when a simple transformation (such
as 1 degree to the right), the converted image and the original image will be treated as two different
images with the same annotation. Krizhevsky mentioned in this paper [10] that the use of traditional
visual data augmentation could significantly improve the classification accuracy of the model and
enhance the generalization performance in the real world. As a result, AlexNet (proposed in )
competed in the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) in 2012. With the
deepening of research, many different traditional vision algorithms, such as image rescaling[11] have
been proposed and proved to improve the effectiveness of the model significantly.

However, traditional visual data augmentation methods have two congenital shortage. First,
simply converting visual data could not bring diversity to the appearance distribution of original
data. That made visual intelligence algorithms cannot benefit lots form the converting data. Second,
in some advanced visual tasks (based on image classification but not limited to image classification),
some methods are unable to transform the annotation of data. For example, in object detection, we
cannot use rotation methods (one of traditional visual data augmentation which rotate a image as
a new image) dose not make sense because the bounding box annotation can not be transformed
directly.

Generated visual data augmentation, making various image data by unsupervised learning,
is an effective way to solve the shortage of labeled data. Although unsupervised learning is
not mature enough to take the place of supervised learning, the ability to extract latent space
(or random noise) is useful for increasing the diversity of original data. In Krizhevsky’s paper
[10] (2012), they not only use the traditional visual data enhancement algorithm but also change
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hidden features, extracted by Primary Components Analysis (PCA) [12], to enrich the appearance
of original data. In 2014, generative adversarial network (GAN)[13] provide an alternative way
to produce various visual data from the original data. Although GAN is an algorithm which
computed to approximate the distribution of any data, uncontrollable random processes cannot
provide useful data for supervised learning. In 2016, Odena[14]proposed conditional generative
adversarial networks (CGAN or Conditional-GAN) to generate visual data with annotation by
controlling the random noise generation. However, both GAN and CGAN has a simple architecture
which cannot support the model to create a nature image. In 2016, deep convolutional generative
adversarial network (DCGAN) [15] synthesize more natural and high-resolution images by using
complex random noise generation, and unique lose function.

However, two difficult research gap existed in generated visual data augmentation. First,
guaranteed quality of each image results in serious data mismatch problems in model training
progress. Secondly, created visual data augmentation cannot make the multiple annotations for visual
data. At presents, that only allow image classification data annotations.

In IEEE conference on computer vision and pattern recognition 2017 (CVPR2017),
Shrivastava[16] give a positive inspire, they are not using a generator to product images from the
latent space, before using GAN to generate images. Computer graphic methods rendered a corse
image. After that, they use GAN to refine the rendering images. Their work makes GAN produce
labeled training data, which decreased the demands of visual intelligence. Finally, we generate ideal
training data. As an endorsement, this article gets CVPR2017 best paper award. In this article,

P( S = fake | X back) c=1
P( S = fake | Xfinal) c=2
P(S =real | Xreal)

X final

X synthesize

Figure 2. Background augmentation generative adversarial nets

using foreground images (rendering from 3D shapes) and random noises as input, we proposed
Background Augmentation GAN to decrease the complex task of GAN in data synthesis. Our work
could generate guaranteed labeled vision data. To increase the edge appearance of the foreground
object, we implement compositing layer which applied alpha compositing algorithms [17,18]
composited foreground and background images. Figure 2 illustrates the schematic. In experiments,
contrasting with Cycle-GAN[19] (73.64% accuracy) and ACGANs|[14] (85.23% accuracy), our methods
got the best performance (93.51% accuracy).
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2. Related works

2.1. Generative adversarial networks

Generative adversarial networks are the epoch-making unsupervised learning algorithm
framework. In 2014, Goodfellow[13] introduced the novel unsupervised learning algorithm
generative adversarial nets. It brought three breakthroughs for deep learning: (1) escape Markov
chain learning methods; (2) high capability of sophisticated loss functions; (3) it is always valid,
even if the probability density of target domain is challenging to calculate. However, it also has
two shortages: (1) the freedom from simple constraints increases the uncertainty of the final result
and the difficulty of the training process; (2) the generator will get better, and the discriminator’s
return gradient will be smaller and smaller, making the network hard to converge. Radford[15]
introduced GAN into computer vision through deconvolutional and convolutional networks. The
deep convolutional generative adversarial nets (DCGAN) had the elaborated network architecture.
It animated the training process more stable, but it is not an optimum solution to the significant
problems of GANs. Enumeration is always the wrong way to find a capable network structure.
Arjovsky and Gulrajani[20-22] found the reason of the two problems by a mathematical way, and
it solved problems through introducing the Wasserstein Distance and the gradient penalty so that
most of the networks could avoid the above two issues.

2.2. Conditional generative adversarial networks

Let’s revisit one of the critical reasons that cause GAN training and design difficulties: the
freedom from simple constraints. Is it possible to solve part of the problems with GAN by adding
constraints? Yes, it is. Moreover, additional restrictions extended its application. The conditional
generative adversarial nets(Conditional GAN or CGAN) proposed by Mriza[23] found that adding
category constraints to GAN impelled the training process more stable and the final result more
multiform. Their work converted the binary minimax game into the probabilistic binary minimax
game. Odena (Semi-GAN)[24] attempts to improve sample generation and classifier performance
by training GAN with classifiers simultaneously. Their approach achieved the original intention of
the author and shortened the training time on the premise of improving the quality of the generated
sample. InfoGAN proposed by chen[25] not only considers the classification effect of real data but
also tries to use the method of mutual information to add the category information of the generated
sample to the training process. Auxiliary Classifier Generative Adversarial Nets (ACGAN) proposed
by Odena[14] changes the GAN energy function to add the discrimination class error of the generated
sample and the real sample. Their approach demonstrates that complex latent coder could boost
generative sample’s resolution.

One of the essential reasons that cause GAN training and design difficulties is freedom from
simple constraints. Additional constraints could solve the problem of GAN. The conditional
generative adversarial nets(Conditional GAN or CGAN) proposed by Mriza[23] found that adding
category constraints to GAN impelled the training process more stable and the final result
more multiform. Odena (Semi-GAN)[24] attempted to improve sample generation and classifier
performance by training GAN with classifiers simultaneously. InfoGAN proposed by chen[25]
not only considers the classification effect of real data but also tries to use the method of mutual
information to add the category information of the generated sample to the training process.
Auxiliary Classifier Generative Adversarial Nets (ACGAN) proposed by Odena[14] changes the GAN
energy function to add the discrimination class error of the generated sample and the real sample.
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Figure 3. This figure shows the development of conditional generative networks structures.

Their approach demonstrates that complex latent coder could boost generative sample’s resolution.

Figure 3 shows the brief history of conditional generative networks structures!.

3. Materials and Methods

3.1. Previous work: Synthetic image data from 3D models

Learning appearance from source data is the significant purpose of GAN. Two considerable
difficulties affect GAN application: (1) GAN cannot produce complex annotations because of criticism
information restrains only classes information. Because results are a start of random noise, few factors
to affect GAN make an excellent orientated image. (2)The generative images are unnatural because
of the lack of geometric characteristics. Computer graphic methods could finish data synthesis but
rigorously lacking in appearance properties.

In Section 2.2, CGAN solved the freedom of GAN by increasing latent random space, To find a
new way for CGAN, using other resources to light the task of a generator. Odena [14,24]provided
many robust ways to increase the quality of GAN results. How about introducing other resources
to rescue task complexity of generator? The authors[16] give a positive inspire, they are not using a
generator to product images from the latent space, before using gan to generate images. Computer
graphic methods rendered a corse image. After that, they use GAN to refine the rendering images.
Their work makes GAN produce labeled training data, which decreased the demands of visual
intelligence.

Different from earlier GAN works, our visual data synthesis methods decrease the complexity of
GAN tasks (Figure4). First 3D-2D rendering process was introduced into the data synthesis pipeline.

Unlike earlier GAN jobs, our work reduces GAN complexity (Figure 4). BAGAN does not
directly generate foreground target information associated with the visual intelligence algorithm.
That ensures any picture of our synthesis data has guaranteed foreground appearance. BAGAN
is responsible for generating related backgrounds only according to category information and pose
annotations for foreground objects. In previous work, we used a pipeline that generated multiple
annotations images 5 based on pose annotations from the ObjecNet3D dataset( large scale 2D-3D
image dataset)[26] and 3D shapes from the ShapeNet dataset (large scale 3D shape dataset)[27]. And

1 This figure comes from https://www.cnblogs.com/punkcure/p/7873566.html
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Figure 4. Idea comparison between this paper image and GANSs. Different with the methods only
based on GAN, our works introduced 3D models into the generator.
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Figure 5. Multi-annotation of previous work: image recognition (category), image fine-grained
classification subcategory, object detection (bounding box), object pose estimation (pose information),
image instance segmentation.

we found that improving the background quality of synthetic images can enhance the accuracy of the
visual intelligence algorithm (Figure 6).

3.2. Background augmentation generative adversarial networks (BAGAN)

3.2.1. Importance of augment the synthesis image’s background

Data-driven means that an algorithm should let data ‘speak’. A practical synthesis data
should have the ability that makes an algorithms learning more visual appearance than others
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Figure 6. Test accuracy of diverse backgrounds. The figure exhibits the test accuracy (the test sets are
ObjectNet3D and Pascal VOC 2012) of four models trained on four training sets. The results illustrate
that the rendering images from 3D models support the classifier to recognize objects in natural
images.Syn_uniform: model’s training sets are rendering images with uniform noise background;
Syn_nobkg: model’s training sets are rendering images without background; Syn_SUN: model’s
training sets is rendering images with background from SUN database.

data. Figure 6 indicates that high-quality background helps the visual intelligence analysis salient
foreground appearance. Therefore, it is a significantly challenging task to strengthen the background
of generating images using GAN powerful image generating capability.

3.2.2. The value function of BAGAN

Two basic models composited Generative adversarial networks: one is the generator model
(denote as G, generator), the other is the discriminator model (denote as D, discriminator). The
task of G was producing generating samples (denote as D(x) or D(G(z))) from random noise vector
(denote as z). For G, it would try to produce a generated sample G(z) like a real sample.

The responsibility of D was ruling the inputs were coming from real x or fake G(z). Equationl
explained that G and D would make two-player minimax game.

ménm[e)lxﬁ(D, G) = EerJdm(x) [log D(x)] + Ez~pz(z) [1 —1log D(G(z))] 1)

To control the random noise generation process, conditional generative adversarial networks
(CGAN)[23] introduce the conditional constraints y into random noise z + y. The CGAN value
function is described in Equation 2.

mgn mDaX ‘C(Dr G) =E, Pdata(x]y) [log D(x)] +E, pz(z) [log D(G(Z|y))] 2)

Odena constructed Auxiliary Classifier Generative Adversarial Nets(ACGAN) [14] and found
building a complicated structure for random noise vector z into the generator G can get more
realistic samples. Moreover, adding an auxiliary classifier can smooth the training process for GAN.
Therefore, the ACGAN value function are redesigned( Equation 3).
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Ls = E[logP(S = real| X, )] + Ellog P(S = fake|G(z))]
Le = EllogP(C = c[Xpeq)] + Ellog P(C = ¢[G(2))] ®)

where the discriminator maximize Lg + L, the generator maximize L — Ls.

Background augmentation generative adversarial networks (BAGAN) aimed at providing
background images (denoted as Xy, and Xy, = G(2)) according to the foreground images (denoted
as Xsyn). The discriminator D would discriminate that background images x4 or the final images
Xfinal = Xpack + Xsyn Was a real sample. Our final images are made up of two portable images:
generated foreground images and foreground images. Based on ACGAN, CGAN, and GAN, we
redefined the value function (Equation 4).

ES = E[log P(S = Teallxreal)]
+ (1—A)E[logP(S = fake|Xpack)]
+  AE[log P(S = fake|Xfina)]

Lc = E[logP(C = C|Xreal)] —HE[logP(C = CIXfimzl)] 4)

For further explanation of Equation4, lambda is the parameter used to change the reference level of
Xpack- Because considering the degree of integrity of Xy, and Xy, will have a particular impact
on the training process of BAGAN. If removed the foreground image x5y, the generated background
image xp,c should also be a complete image. Considering the integrity of the background image Xy,
too much, the BAGAN would degenerate to the network sample generated by ACGAN. Considering
the integrity of the final image xf;,,, BAGAN could develop in the direction of not generating the
image background because of the relatively complete foreground image.

3.2.3. Composits Layer for foreground object adding.

Inspired by Zhao’s approach [28], we found that the artifacts surrounding foreground affect the
reality of BAGAN results. Fortunately, the object image input has four channels: red, green, blue and
alpha channels (RGBA).

In our work, alpha compositing related to the compositing process of the final image and the
resizing process of the rendering image. An RGBA image contains an external channel alpha in the
storage which used to be an element of alpha compositing algorithm. Alpha compositing is a classical
algorithm in computer graphics, which combines an image with a background. This algorithm is
useful for image rendering in computer graphics. [17,18,29].

Cres = Cobj X Xobj + Chack X (1 - “obj) (5)

Where, Cpp; is the RGB channels of foreground objects, Cy,e is the RGB channels of background
objects. Figure 7 indicates the comparison of alpha compositing and copy an object to the background.

General image resizing methods only consider an RGB image. However, using general
algorithms to resize the alpha channels is harmful to the edge of the foreground. Because resizing an
image should use an upsampling method to supplement the channel value of the resulting missing
region of the image when resizing a small image to a big one. To maintain the alpha channels
information, we use the optimal alpha resizing method to perform the foreground image resizing
process (Algorithm 1).


http://dx.doi.org/10.20944/preprints201811.0252.v1
http://dx.doi.org/10.3390/sym10120734

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 November 2018 d0i:10.20944/preprints201811.0252.v1

4. RESULTS 9o0f 17

(@) simple copy

(b) alpha channel

(c) alpha compositing

Figure 7. Results of background compositing algorithms. This figure presents the effect of different
background compositing algorithms. (a) fills the foreground object into the background (black) with
the alpha position. (b) shows the alpha channels in the same background. (c) presents the result of
alpha compositing.

4. Results

4.1. Datasets

ObjectNet3D is a large-scale 2D-3D image datasets made by Standford Computer vision and
Geometry Lab [26]. Collected from MSCOCO, PASCAL VOC, IMAGENET and so on, the images in
ObjectNet3D are compelling and consist of 100 categories, 90,127 images, 201,888 objects and 44,147
3D models. The annotation of ObjectNet3D contains not only the essential annotation in computer
vision such as object category and object detection but also the corresponding 3D model, posture and
other advanced annotation. Therefore, it has a significant impact on automatic driving, augmented
reality (AR) and other applications.
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Algorithm 1 Optimal RGBA image resizing method.

Input: IMG;, > IMG;j,, Input foreground image (RGBA)
Output: IMGyyt > IMG,yt, Resized foreground image (RGBA)
1: pixels < IMG;j,
2. fory < — 0 to len(IMG;,,.height) do
3: for x < — 0 to len(IMG,y;.width) do

4 Cin, & < pixels[x,y] > C;;, is RGB channels value;
5: > « is alpha channels value
6: if o # 255 then
7 Ciy + Ciy x o =255
8: pixels[x,y] < (Ci,, )
9: end if

10: end for

11: end for

12: IMGour = RESIZE(IMG;,)

13: pixels < IMG,yut

14: fory < — 0to len(IMGyys.height) do
15: for x < — 0 to len(IMG,y;.width) do

16: Cout, & < pixels[x,y] > Cout is RGB channels value;
17: > « is alpha channels value
18: if « # 255 and « # 0 then

19: if C,yt > « then

20: Cout < 255

21: else

22: Cout + 255 x Coyt ~

23: end if

24: pixels[x,y]| < (Cout, ®)

25: end if

26: end for

27: end for

In order to avoid the classifier to see the 3D model related to the test data during the training
process, the rendered image does not use the 3D models of the ObjectNet3D but selects the 3D models
of the ShapeNet database. Unlike ObjectNet3D’s 3D model data, ShapeNet’s 3D model is better in
quality than ObjectNet3D’s, and the ShapeNet team proposed a way to measure the scores of 3D
models to help us automatically capture high-quality 3D model information.

4.2. Evaluation metrics

There is no reliable metric to explain the quality of the synthesized data. One of the more
intuitive ways is to observe the differences in the results. In the following chapters, we present the
result graphs of several different models for comparison. Another practical approach in this paper is
to use computer vision tasks to verify the quality of the generated data, because the ultimate purpose
of generating data is to provide training data for a computer vision algorithm.

As the basic algorithm of the computer vision method, the visual cognitive task (or image
classification) is used to measure the quality of different synthesizing data. In order to experiment
with contrast, we use the VGG16 depth convolutional network[30] to train in different training data
and evaluate the classifier in the same real image test set. So the classifier score (accuracy, precision,
recall, and F-1 score) can help us to get the objective measurement when we cannot distinguish
between good and bad images from the resulting figure. At the same time, this method can also
avoid some of the subjective errors of the generated data.

do0i:10.20944/preprints201811.0252.v1
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The experimental computer configuration as follows: Intel (R) Core (TM) i7-5930k 3.5 GHz CPU,
64GB RAM, and Nvidia Geforce (R) Titan X (Pascal) GPU.

4.3. Comparison with different generative models

One of the significant improvements in BAGAN is the use of multiple source inputs (rendered
images and random noise) to solve the problems of traditional GAN. Therefore, to illustrate the
benefits of BAGAN, the most advanced algorithms of single inputs ACGAN (random noise) and
CycleGAN (images) were used as comparison.

4.3.1. BAGAN vs ACGAN

Figure 9. Synthetic images produced by BAGAN. This figure displayed the various lambda BAGANSs
results and revealed the influence of A on BAGANS.


http://dx.doi.org/10.20944/preprints201811.0252.v1
http://dx.doi.org/10.3390/sym10120734

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 November 2018 d0i:10.20944/preprints201811.0252.v1

4. RESULTS 12 0f 17

From the result of image, ACGAN has some foreground objects better than BAGAN, because
BAGAN foreground object is real image rendering with computer geometry characteristic. This
ensures that any BAGAN’s main targets related to tags have good texture and geometric features
whose texture and geometric features are determined by the quality of the model. Moreover, on the
result of classification accuracy, ACGAN can achieve only 83.32% classification accuracy with VGG16
classifier on ObjectNet image dataset. BAGAN achieves 93.51% values in OBjectnet3D model and
proves that BAGAN generation result with good foreground texture and geometric feature is better
than ACGAN from classification precision.

4.3.2. BAGAN vs Cycle-GAN

Unlike GAN, Cycle-GAN consists of two pairs of GAN: GAN4 (G, D4) is responsible for
converting Xsyn to X,eq ; GANp (Gp, Dp) converts X, to Xsyn. Cycle-GAN uses the binary game
of GAN and the game of two pairs of GAN. To achieve good image to image conversion effect. In
the experiment, however, Figure 10 shows that the Cycle-GAN changes more for the salient objects
than for the background in the image. Therefore, Cycle-GAN is more suitable for the works similar
to the image style transferring. Not only that, it can be seen from the graph that Cycle-GAN changes
the appearance information of foreground objects more, this phenomenon causes the classification
result of Cycle-GAN is not better than ACGAN, although the foreground objects of the generated
images have geometric characteristics. At the same time, from the score of the classifier, we can see
that the training set score of Cycle-GAN is lower than that of ACGAN. That shows that preserving
the foreground appearance is vital for the data synthesis algorithm.

inputs generated samples inputs generated samples

Figure 10. Synthetic images produced by Cycle-GAN.

4.4. Lambda parameters

A is the parameter used to fix the reference level of x,. (described by Euquation 4). Because
considering the degree of integrity of xj, and xf;,, will have a particular impact on the training
process of BAGAN. If removed the foreground image x5y, the generated background image xp;x
should also be a complete image. Considering the integrity of the background image x},; too
much, the BAGAN would degenerate to the network sample generated by ACGAN. Considering the
integrity of the final image x5 , BAGAN could develop in the direction of not generating the image
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background because of the relatively complete foreground image. Figure 9 indicates the influence of
different A. If A is 0, BAGAN would only consider about the integrity of background images (xp,cx)-
After compositing the foreground and the background images, BAGAN would fall to find the balance
between xp,cr and Xy, Therefore, the generated background images looks like random noise.

1. If A is 0.25, BAGAN would try to find balance between the background and the foreground.
Figure 9 pointed out that BAGAN got much better background than A is 0.
2. If A is 0.5, the generated backgrounds are more natural than A = 0 and 0.25. That stems from

the training balance between X, and X £
. After tuning the A, when its value is 0.72, BAGAN generated the best backgrounds.
4. If A is 1, BAGAB would not consider the xy,., therefore the generated backgrounds are like

[68]

noise image again.

no uniform noise overlaied
background background background

Figure 11. To enhance images appearance information, three types background were used: rendering
images x5y, without background; rendering images xsy, with uniform noise background; rendering
images x5y, with randomly selected background from SUN database [31].

4.5. Effectiness of alpha compositing layer

Composting

None

Figure 12. Comparison of Compositing layer. Compositing means generated sample with the
composting algorithm. None means generated samples without the compositing algorithm.

An alpha compositing algorithm was built in networks to enhance the edge appearance
information for synthesizing vision data. In experiments, that algorithm made the classifier
performance increasing. Firstly, figure 7 argues that alpha compositing algorithms cloud improves
the edge appearance of the synthesizing final images. Secondly, figure 12 shown the comparison of
using compositing layer or not. Thirdly, table 2 indicates that using alpha compositing algorithms
cloud enhance the performance of the classifier slightly. When A = 0.5 or 0.72, Figure 9 indicates
the generator can produce available background. Using compositing algorithms can make the
classifier get a higher precision score. However, when the background was not strong enough, alpha
composting algorithms had not increase of the accuracy, because compared to the appearance of the
background the influence of edge appearance on the classifier was little.
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Table 1. Classification results of different training sets. Training sets were adding background
with different methods, generated samples, and natural image: Large scale 2D-3D annotaion
image database[26] (ObjNet_3D), Rendering images xs;, without background (Syn_nobkg),
Rendering images xsyn with uniform noise background (Syn_uniform), Rendering images xsy, with
random background from SUN database[31](Syn_SUN ), Compositing generated background by
Cycle-GANs(Cycle_GANSs) and Compositing generated samples of various A.

Trainingdata Accuracy Precision Recall Fl-score
No_bkg 87.98% 90.58%  94.23%  92.37%
Uniform_bkg 89.99% 91.80%  95.25%  93.50%
SUN_bkg 92.24% 93.65%  96.19%  94.90%
ObjNet_3D 90.29% 92.14%  95.47%  93.78%
Cycle_GANSs 73.64% 77.52%  82.17%  79.78%
BAGANSs(A = 0) 88.12% 92.06%  91.67%  91.63%

BAGANs(A = 0.25)  90.53% 91.15%  94.77%  93.44%
BAGANSs(A = 0.5) 91.64% 94.65%  94.58%  94.62%
BAGANs(A =0.72)  93.12% 94.23%  97.64%  95.90%
BAGANSs(A =1) 90.42% 91.54%  94.53%  93.01%

Table 2. This figure indicates the effect of using alpha compositing algorithm. Where BAGANs-CL
means BAGANSs using alpha compositing algorithms (discussed in sec3.2.3). When A = 0,0.25and
1, the generator produce "noise-like" background, and the score of classifier are not changed. When
A = 0.5 or 0.72, the training data generated by BAGANs-CL got better score compare with BAGANSs.

Trainingdata Accuracy Precision Recall  Fl-score
BAGANSs(A = 0) 88.12% 92.06%  91.67%  91.63%
BAGANSs-CL(A = 0) 88.32% 92.06%  91.67%  91.51%
BAGANSs(A = 0.25) 90.53% 91.15%  94.77%  93.44%
BAGANs-CL(A = 0.25)  90.52% 90.25%  95.54%  93.26%
BAGANSs(A = 0.5) 91.64% 94.65%  94.58%  94.62%
BAGANs-CL(A = 0.5) 91.97% 96.03%  94.55%  95.28%
BAGANSs(A = 0.72) 93.12% 94.23%  97.64%  95.90%
BAGANs-CL(A = 0.72)  93.51% 95.27%  97.02%  96.14%
BAGANSs(A = 1) 90.42% 91.54%  94.53%  93.01%
BAGANs-CL(A = 1) 90.39% 92.22%  96.509%  94.12%

4.6. Classification results of different training data

As the compared methods, the classification score of ACGAN and Cycle-GAN argued that
simple inputs (only random noise vector and image) would the performance of single source input
(random noise vector or image) was worse than that of multiple input sources (random noise vector
or image) in data synthesis tasks. And data synthesis benefited from reducing the "burden" of GAN.

Compared to different backgrounds images, the significant finding is that increasing the quality
of backgrounds helped improve the performance of intelligent visual algorithms (Table 1).

In the classification score, BAGAN with alpha compositing algorithm achieved the best
performance (accuracy 93.51%, precision 95.27%, recall score 97.02%, and f1-score 96.14%).

5. Discussion

This work study using 3D models and GAN produced visual data. To improve visual
intelligence algorithms, providing massive guaranteed annotated data was an effective way. This
conclusion has been proved by zhang[5], and proved by our classification results again. Our
synthesized data provided massive labeled data for deep networks training and achieved the best
performance which accuracy score is 93.51%, precision is 95.27%, recall score is 97.02%, and f1-score is
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96.14%, compare with the manual labeled data, our synthetic images looks unnatural but the synthetic
data help the classifier recognized objects in natural images.

Benifits for Augment Reality. The objects recognition algorithm of AR needs a lot of tag data
for the business scene in the practical application process. In some special industrial scene, the
annotations of the picture sometimes need professional knowledge. Therefore, using data-driven
methods to develop AR applications is a very time-consuming and costly approach. However, our
research relied on GAN and 3D models, which are easy to obtain in the relevant industrial chain, and
a small number of models can generate a large number of tag data, which is a valuable attribute in
the real industrial scene. In this paper, we do not use a specific task scene to verify the application of
AR target recognition, and this is due to the lack of relevant images and 3D model data, we can not
produce validation data. However, our results have achieved good results in the generic categories,
which is sufficient to demonstrate the effectiveness of this method in the AR scenario.

Significance and limitations of our works.Training data is crucial to developing computational
algorithms, especially in augmented reality domain. For augmented reality, large numbers of training
data can apply AR to all aspects of generation and life. Our method can automatically generate
image training samples according to the types of 3D model which is very conducive to application
and deployment of immersive interactive systems. Compared with artificial marker training sets, our
synthetic data can effectively control the quantity and quality of samples. Moreover, for industrial
development, high-quality data from real images is more comfortable to obtain than real photos.
Therefore, our approach is to promote immersive interactive systems with good exploration.

Our works also Provided an alternative choice to fix GAN into the field of data synthesis is
a significant strength of our works. However, the generated samples by BAGAN still were poor
compared with the natural image.

Cycle-GAN performed well in other tasks, for instance, image to image conversation. The energy
function should be considered to compositing in BAGAN of the follow-up research.

Major findings in this article are:

1. Using 3D shapes to decrease the complex task of GAN in data synthesis.

2. Designing BAGAN improves the synthesis pictures more natural.

3. Using alpha compositing algorithms to increase foreground edge appearance.

4. Training visual data produced by our method enhanced the classifier get 93% accuracy.

Considering the subsequent research of this article, five ways could promote our works in future:

e Wang [32] applied visual attention algorithms for video saliency detection. Adding the attention
module may let GAN spend more consideration on the image background.

o Stacked stages fro networks (mentioned by Jaime[33]), manufacturing multi-stages networks
perhaps an adequate approach to fix the problem of the high-resolution images.

o Adjusting the energy function to absorb Cycle-GAN image to image.

o Considering the classification results, saliency object recognition[34] perhaps an alternative
research direction.
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The following abbreviations are used in this manuscript:

HCI: Human-Computer Interaction.

GAN: Generative Adversarial Networks.

PCA: Principal Component Analysis.

ILSVRC: ImageNet Large Scale Visual Recognition Challenge.

ACGAN: Auxiliary Classifier Generative Adversarial Networks proposed by [14].

DCGAN: Deep Convolutional Generative Adversarial Networks proposed by [15].

CGAN or Conditional GAN: Conditional Generative Adversarial Nets proposed by [23].
Semi-GAN: Semi-Supervised Learning with Generative Adversarial Networks proposed by [24].
Info-GAN: Information Maximizing Generative Adversarial Nets proposed by [25].
ObjectNet3D: Large-Scale 2D-3D image dataset proposed by Stanford University [26].
ShapeNet: Large-Scale 3D shapes dataset proposed by Stanford University [27].

SUN Database: Large-Scale scene understanding dataset proposed by Princeton University [8].
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