

Article

Improvement of Wu et al.'s Three-Factor User Authentication Scheme for Wireless Sensor Networks

Jihyeon Ryu ¹, Hakjun Lee², Hyoungshick Kim ³ and Dongho Won ^{3,*}

¹ Department of Platform Software, Sungkyunkwan University, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; jhryu@security.re.kr;

² Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; hjlee@security.re.kr;

³ Department of Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; hyoung@skku.edu(H.K.); dhwon@security.re.kr(D.W.);

* Correspondence: dhwon@security.re.kr; Tel.: +82-31-290-7107

Version November 9, 2018 submitted to Preprints

1 **Abstract:** Wireless sensor networks are widely used in many applications such as environmental
2 monitoring, health care, smart grid and surveillance. Many security protocols have been proposed and
3 intensively studied due to the inherent nature of wireless networks. In particular, Wu et al. proposed
4 a promising authentication scheme which is sufficiently robust against various attacks. However,
5 according to our analysis, Wu et al.'s scheme has two serious security weaknesses against malicious
6 outsiders. First, their scheme can lead to user impersonation attacks. Second, user anonymity is not
7 preserved in their scheme. In this paper, we present these vulnerabilities of Wu et al.'s scheme in
8 detail. We also propose a new scheme by fixing such vulnerabilities and improving the performance
9 of the protocol.

10 **Keywords:** wireless sensor networks; user authentication; biometric; smart card

11 1. Introduction

12 A wireless sensor network (WSN) is a distributed network of autonomous sensors that are
13 typically used to collect information about environmental or physical conditions. Wireless sensor
14 networks are applicable to a variety of applications such as environmental monitoring, health care,
15 smart grid and surveillance [1–4] because they can be easily deployed without a significant cost penalty.

16 In general, a WSN system consists of four entities: (1) user interface, (2) sensor node that measures
17 physical or environmental conditions, (3) gateway node that forwards the information received
18 from the sensor nodes to a central server, (4) central server that collects the information from the
19 sensor nodes and analyze it. Naturally, however, the security of WSN is critical because network
20 packets can be easily captured and modified in WSN due to the inherent characteristics of wireless
21 networks. Therefore, we need to provide security protocols in order to ensure security properties
22 such as confidentiality, integrity, and authenticity even when data packets on a WSN are captured and
23 modified in an unauthorized manner.

24 Recently, Wu et al. [1] proposed a promising user authentication scheme using elliptic curve
25 cryptography (ECC) [5,6] which was designed for WSN. In this paper, however, we found that Wu
26 et al.'s scheme [1] has two security flaws against outsider attackers. First, their scheme can lead to
27 user impersonation attacks. Second, user anonymity is not preserved because the user identity can
28 be revealed from an anonymous login request message. We will explain these in the reminder of this
29 paper. Our key contributions are summarized below:

30 • We discovered two security weaknesses in Wu et al.'s scheme [1] which was recently designed
31 for user authentication using ECC on WSN systems. We demonstrated that a malicious outsider
32 holding a smart card can extract the secret parameters from his/her smart card; the extracted

33 secret parameters can be used to perform impersonation attacks and reveal the identity of the
34 user from a login request message.

35 • We also proposed a novel three-factor user authentication scheme for WSN by extending Wu et
36 al.'s scheme [1]. The proposed authentication scheme not only accomplishes several important
37 security properties but also improves the performance of the protocol in time.

38 The rest of the paper is structured as follows: Section 2 summarizes the related work. Section 3
39 gives some preliminaries of the cryptographic primitives (i.e., ECC and fuzzy extractor) used in our
40 paper and explains the threat model and assumptions. Section 4 provides a review of Wu et al.'s
41 scheme [1]. Section 5 analyze the security weaknesses of their scheme. Section 6 presents a novel
42 three-factor user authentication scheme by fixing security issues in Wu et al.'s scheme. Section 7 and 8
43 provide security and performance analysis results, respectively. We conclude in Section 9.

44 2. Related work

45 Due to the inherent weakness of WSNs, many researchers have proposed security protocols to
46 achieve fundamental security goals of WSNs. As one of the pioneers in this area, Watto et al. [7]
47 proposed a security protocol using RSA for wireless sensor networks. To enhance the security of
48 the authentication procedure, Das [2] extended their protocol to a two-factor user authentication
49 protocol for WSNs where a user has to hold both of password and smartcard. Because their proposed
50 authentication scheme provides reasonable security properties, it had been widely used for WSNs as a
51 de-factor standard protocol [8–10]. However, He et al. [11] found that Das's protocol is vulnerable to
52 several attacks such as insider attacks, impersonation attacks and lack of secure mutual authentication.
53 They also suggested an authentication scheme by fixing the discovered problems. However, Kumar et
54 al. [12] also discovered several security flaws such as information leakage, no session key agreement,
55 no mutual authentication, and lack of anonymity in Das's protocol.

56 Recently, some researchers (e.g., [13]) have started to develop user authentication schemes for
57 WSNs using ECC which can provide the same security as RSA with a smaller key size. ECC is the most
58 efficient algorithm that satisfies forward secrecy and backward secrecy among the algorithms so far.
59 Xue et al. [14] particularly introduced a temporal-credential-based protocol to provide user anonymity.
60 However, Jiang et al. [15] demonstrated that Xue et al.'s scheme has four critical security flaws: (1)
61 identity guessing attacks, (2) on-line password guessing attacks by privileged insiders, and (3) off-line
62 password guessing attacks with a victim's smartcard. Jiang et al. also suggested a new authentication
63 scheme to address their discovered issues.

64 More recently, Das [16] found that Jiang et al. [15]'s scheme has significant security issues such
65 as the vulnerabilities to insider and de-synchronization attacks and lack of formal security proof of
66 the proposed scheme. To address these issues, Das proposed several three-factor user authentication
67 schemes [16–18] by introducing a new factor of user biometrics. Again, Wu et al. [1] found that all the
68 Das' schemes [16–18] are vulnerable to de-synchronization and off-line password guessing attacks.
69 Also, the protocols [17,18] are vulnerable to user impersonation and off-line password guessing attacks.
70 To fix such problems, Wu et al. [1] suggested a three-factor user authentication scheme using ECC for
71 WSNs.

72 In this paper, however, we found that Wu et al.'s scheme [1] is vulnerable to user impersonation
73 attacks and cannot provide user anonymity. We also propose a new three-factor user authentication
74 scheme to fix the discovered security flaws in Wu et al.'s scheme. In the following sections, we will
75 explain how the proposed scheme can solve the security problems of Wu et al.'s scheme.

76 3. Preliminaries

77 In this section, we introduce elliptic curves, fuzzy extractors, and threat models to be used in this
78 paper.

79

3.1. Elliptic curve cryptosystem

The Elliptic curve cryptosystem (ECC) is the most frequently used password system in modern passwords and has strong security characteristics. Miller [6] and Neal [5] create ECC in 1985 and 1987, respectively. ECC uses the following formula:

$$y^2 = x^3 + ax + b \quad \text{mod } p \quad a, b \in F_p \quad (1)$$

The above equation is ECC on the F_p . The following conditions must be met in order to ensure safety.

$$4a^3 + 27b^2 \neq 0 \quad \text{mod } p \quad (2)$$

80 This is a formula that guarantees the non-singularity of an elliptic curve. When using this elliptic
81 curve, safety is ensured as follows :

- 82 1. *Elliptic Curve Computational Diffie-Hellman Problem (ECCDHP)*: Given xyP , it is impossible to find
83 xP, yP .
- 84 2. *Elliptic Curve Decisional Diffie-Hellman Problem (ECDDHP)*: Given xP, yP it is impossible to find
85 xyP .
- 86 3. *Elliptic Curve Discrete Logarithm Problem (ECDLP)*: Given P, xP it is impossible to find x .

87 We hypothesized that P is the point on F_p , xP is the result of calculating P times x , yP is the result
88 of calculating P times y , and xyP is the result of calculating P times xy .

89

3.2. Fuzzy extractor

90 The user's biometric information is very important information. In general, human biometric
91 recognition is perceived differently each time, and the fuzzy extractor plays a role in correcting it.
92 The fuzzy extractor can obtain a unique string using error tolerance. The fuzzy extractor is operated
93 through two procedures (*Gen*, *Rep*), demonstrated as [19,20] :

$$\text{Gen } (B) \rightarrow \langle \alpha, \beta \rangle \quad (3)$$

$$\text{Rep } (B^*, \beta) = \alpha \quad (4)$$

94 *Gen* is a function that biometrics B sends a factored out string $\alpha \in \{0,1\}^k$ and a coadjunct string
95 $\beta \in \{0,1\}^*$. *Rep* is function that *Gen* is a probabilistic generation function for which the biometrics B
96 returns a factored out string $\alpha \in \{0,1\}^k$ and a coadjunct string $\beta \in \{0,1\}^*$, and *Rep* is a function that
97 restore β to α , and any vector BIO^* close to BIO [21].

98

3.3. Threat assumption

99 We introduce a threat model [8], and consider constructing the threat assumptions as follows:

- 100 1. The attacker \mathcal{A} can be a user, a gateway, or a sensor. Any registered user can act as an attacker.
- 101 2. \mathcal{A} can intercept or eavesdrop on all communication messages in a public channel, thereby
102 capturing any message exchanged between a user and gateway or sensor.
- 103 3. \mathcal{A} has the ability to modify, reroute, or delete the intercepted message.
- 104 4. Stored parameters can be extracted from smart cards using the side channel attack [22].
- 105 5. An external attacker \mathcal{A} (outsider) can also register, login and receive his/her smart card.

106

4. Review of Wu et al.'s scheme

107 In this section, We perform an analysis on Wu et al.'s scheme in order to scrutinize the security
108 weakness of their scheme in next section. Wu et al.'s scheme consists of four phases: registration phase,
109 login phase, authentication phase, and password change phase. In addition, it applies ECC such as
110 the [19] schemes. To begin with, GWN creates G on $E(F_p)$ with P as a generator and large prime n

as an order. After that GWN picks a private key x under two hash functions $h(\cdot)$, $h_1(\cdot)$ and security length l_s . In their scheme, they assume that the length of all random numbers should be above l_s . Other notations used in Wu et al.'s scheme are abridged in Table 1.

Table 1. Notations used in this paper.

Notations	Description
U_i	The i -th user
S_j, SID_j	A j -th sensor and its identity
ID_i	U_i 's identification
PW_i	Password of U_i
B_i	U_i 's Biometric information summarized
\mathcal{A}	An evil-minded attacker
x	Secret key of GWN
r_i	Random number generated by U_i
$h(\cdot), h_1(\cdot)$	One-way hash function
$X Y$	Concatenation operator
\oplus	Bitwise XOR operator
$E(F_p)$	A group of points on a finite field F_p elliptic curve
P	A point generator in F_p with a large prime order n
G	A cyclic addition group under P as a generator
sk_u, sk_s	The session key generated by U_i and S_j respectively.

4.1. Registration Phase

Registration phase is divided into two parts: user registration phase and registration phase.

4.1.1. User registration

1. The user U_i first decides his/her identification ID_i and password PW_i . With a random number r_i , imprints B_i over a device for biometrics collection, and calculates $Gen(B_i) = (R_i, P_{bi})$, $DID_i = h(ID_i \parallel r_i)$ and $HPW_i = h(PW_i \parallel r_i \parallel R_i)$. He/she then requests the registration message $\{ID_i, DID_i\}$ to the gateway node GWN over a secure channel.
2. After the registration request message from the U_i is received, GWN computes $B'_1 = h(DID_i \parallel x)$ where x is GWN's secret key, prepares a smart card for U_i containing $h(\cdot), h_1(\cdot), P$, and collects ID_i in database. The next thing is that GWN sends the smart card with B'_1 to the U_i securely.
3. When receiving the smart card with B'_1 from the GWN, U_i computes $B_1 = B'_1 \oplus HPW_i$ and $B_2 = h(ID_i \parallel R_i \parallel PW_i) \oplus r_i$ with storing B_1, B_2, P and P_{bi} into the smart card.

4.1.2. Sensor registration

1. GWN determines an identity SID_j for new sensor node S_j , computes hash function $c_j = h(SID_j \parallel x)$, and sends $\{SID_j, c_j\}$ to S_j .
2. S_j stores P, SID_j and c_j , and enters the WSN.

4.2. Login Phase

1. U_i enters ID_i, PW_i and B'_i . And then, the smart card computes $Rep(B'_i, P_{bi}) = R_i, r_i = B_2 \oplus h(ID_i \parallel R_i \parallel PW_i)$, $HPW_i = h(PW_i \parallel r_i \parallel R_i)$ and $DID_i = h(ID_i \parallel r_i)$.
2. The smart card produces random numbers r_i^{new}, e_i and $\alpha \in [1, n - 1]$, and selects a special sensor SID_j . Then, The smart card calculate $DID_i^{new} = h(ID_i \parallel r_i^{new})$, $C_1 = B_1 \oplus HPW_i \oplus e_i$, $C_2 = \alpha P$, $C_3 = h(e_i) \oplus DID_i^{new}$, $Z_i = ID_i \oplus h(e_i \parallel DID_i)$ and $C_4 = h(ID_i \parallel e_i \parallel DID_i \parallel DID_i^{new} \parallel C_2 \parallel SID_j)$. The value C_4 is used to certify the integrity of the identities and the new data generated by the user side as well as to authenticate the source of the message M_1 .
3. U_i sends the login request messages $M_1 = \{C_1, C_2, C_3, C_4, Z_i, DID_i, SID_j\}$ to GWN.

139 4.3. Authentication Phase

- 140 Being arrived the login request messages M_1 from the user U_i , GWN first computes $e_i = C_1 \oplus h(DID_i \parallel x)$, $DID_i^{new} = C_3 \oplus h(e_i)$ and $ID_i = Z_i \oplus h(e_i \parallel DID_i)$, and verify the legitimacy 141 of ID_i and $C_4 \stackrel{?}{=} h(ID_i \parallel e_i \parallel DID_i \parallel DID_i^{new} \parallel C_2 \parallel SID_j)$. GWN terminates the session 142 if either verification is failed. If three failures continuously occur in a certain time span as 143 defined, U_i 's account will be frozen; otherwise, GWN calculates $c_j = h(SID_j \parallel x)$ and $C_5 = h(c_j \parallel DID_j \parallel SID_j \parallel C_2)$ and sends $M_2 = \{C_2, C_5, DID_i\}$ to the sensor node S_j . The value C_5 is 144 used to accredit the integrity of the strings containing c_j , and the data can be used for the sensor 145 S_j to acquire the correct data for calculating the session key. This is also done for verification of 146 the source of M_2 .
- 147 2. S_j checks the validity of C_5 , $C_5 \stackrel{?}{=} h(c_j \parallel DID_i \parallel SID_j \parallel C_2)$ with its identity SID_j . If this step 148 is failed, S_j will terminate the session. Otherwise, S_j then chooses $\beta \in [1, n - 1]$ and calculates 149 $C_6 = \beta P$, $sk_s = \beta C_2$, $C_7 = h_1(C_2 \parallel C_6 \parallel sk_s \parallel DID_i \parallel SID_j)$ and $C_8 = h(DID_i \parallel SID_j \parallel c_j)$. The 150 main functionality of C_7 is used for checking the integrity of the session key and C_6 , which is 151 needed by U_i to compute the session key. Both C_7 and C_8 are also used to validate the source of 152 M_3 . In the end, S_j sends $M_3 = \{C_6, C_7, C_8\}$ to GWN.
- 153 3. GWN checks $C_8 \stackrel{?}{=} h(DID_i \parallel SID_j \parallel c_j)$. If validation phase is failed, GWN terminates 154 the session; otherwise, GWN computes $C_9 = h(DID_i^{new} \parallel x) \oplus h(DID_i \parallel e_i)$ and $C_{10} = h 155 (ID_i \parallel SID_j \parallel DID_i \parallel DID_i^{new} \parallel e_i \parallel C_9)$. The value C_{10} is to check the validation of the source's 156 message M_4 . Eventually, GWN sends the message $M_4 = \{C_6, C_7, C_9, C_{10}\}$ to U_i .
- 157 4. U_i checks $C_{10} \stackrel{?}{=} h(ID_i \parallel SID_j \parallel DID_i \parallel DID_i^{new} \parallel e_i \parallel C_9)$. U_i then computes the session key 158 $sk_u = \alpha C_6$, and checks $C_7 \stackrel{?}{=} h_1(C_2 \parallel C_6 \parallel sk_u \parallel DID_i \parallel SID_j)$. U_i terminates the session if U_i 159 fails verification phase. Otherwise, U_i computes $HPW_i^{new} = h(PW_i \parallel r_i^{new} \parallel R_i)$, $B_1^{new} = C_9 \oplus h 160 (DID_i \parallel e_i) \oplus HPW_i^{new}$ and $B_2^{new} = h(ID_i \parallel R_i \parallel PW_i) \oplus r_i^{new}$, and replaces (B_1, B_2) with 161 (B_1^{new}, B_2^{new}) in each smart card separately.

164 4.4. Password and Biometrics Change Phase

- 165 1. Same as the step 1 in the Login phase.
- 166 2. The smart card produces random numbers r_i^{new} and e_i , calculates DID_i^{new} , C_1 , C_3 , Z_i and $C_{11} = h 167 (ID_i \parallel e_i \parallel DID_i \parallel DID_i^{new})$, and sends $M_5 = \{C_1, C_3, Z_i, C_{11}, DID_i\}$ with a password change 168 request to GWN. The value C_{11} is similar to C_4 which is to confirm the integrity of the identities 169 as well as to verify the source of M_5 .
- 170 3. GWN obtains e_i , ID_i and DID_i^{new} as in step 1 of the authentication phase, and checks ID_i 171 and $C_{11} \stackrel{?}{=} h(ID_i \parallel e_i \parallel DID_i \parallel DID_i^{new})$. If verification stage is failed, GWN terminates 172 the session; otherwise, GWN computes $C_9 = h(DID_i^{new} \parallel x) \oplus h(DID_i \parallel e_i)$ and $C_{12} = h 173 (ID_i \parallel DID_i \parallel DID_i^{new} \parallel e_i \parallel C_9)$ and sends $M_6 = \{C_9, C_{12}\}$ and a grant to U_i . Here C_{12} is to 174 verify the source of M_6 .
- 175 4. U_i checks $C_{12} \stackrel{?}{=} h(ID_i \parallel DID_i \parallel DID_i^{new} \parallel e_i \parallel C_9)$. If two values are not equal, then U_i 176 terminates this session; otherwise, U_i inputs a new password PW_i^{new} and a new biometric 177 information B_i^{new} . Next thing is that the smart card computes $Gen(B_i^{new}) = (R_i^{new}, P_{bi}^{new})$, 178 $HPW_i^{new2} = h(PW_i^{new} \parallel r_i^{new} \parallel R_i^{new})$, $B_1^{new2} = C_9 \oplus h(DID_i \parallel e_i) \oplus HPW_i^{new2}$ and $B_2^{new2} = h 179 (ID_i \parallel R_i^{new} \parallel PW_i^{new}) \oplus r_i^{new}$. Finally, U_i substitutes $(B_1^{new2}, B_2^{new2}, P_{bi}^{new2})$ for (B_1, B_2, P_{bi}) in the 180 smart card respectively.

181 5. Cryptanalysis of Wu et al.'s scheme

- 182 1. We show that Wu et al.'s scheme [1] possesses certain some security vulnerabilities in this section.
- 183 2. The following problems have been found and are described in detail below.

184 5.1. Extract critical information

185 1. An attacker \mathcal{A} who is a legitimate user and he/she can own his/her smart card. Smart card can
 186 be extracted the value $\{B_{1A}, B_{2A}, P, P_{bA}\}$.
 187 2. \mathcal{A} can thus obtain $h(DID_{\mathcal{A}} \parallel x) = B_{1A} \oplus HPW_{\mathcal{A}}$, and use this variable for other attacks,
 188 because this value is an critical value that be used on the user identification in the GWN.

189 5.2. No user anonymity

190 Attacker \mathcal{A} can extract the identity of U_i from the login request message M_i of U_i . Assume that \mathcal{A}
 191 eavesdrops on the login request message $M_1 = \{C_1, C_2, C_3, C_4, Z_i, DID_i, SID_j\}$ of U_i . We also assume
 192 that attacker \mathcal{A} has $h(DID_{\mathcal{A}} \parallel x)$ through 5.1. Extract Critical Information. The details are as follows.

193 1. Attacker \mathcal{A} first generates random numbers $r_{\mathcal{A}}^{new}, e_{\mathcal{A}}$, and $\alpha_{\mathcal{A}} \in [1, n - 1]$, and selects a special
 194 sensor SID_j . $C_{1A} = B_{1A} \oplus HPW_{\mathcal{A}} \oplus e_{\mathcal{A}}$, $C_{2A} = \alpha_{\mathcal{A}} P$, $C_{3A} = h(e_{\mathcal{A}}) \oplus DID_i$, $Z_{\mathcal{A}} = ID_{\mathcal{A}} \oplus h$
 195 $(e_{\mathcal{A}} \parallel DID_{\mathcal{A}})$ and $C_{4A} = h(ID_{\mathcal{A}} \parallel e_{\mathcal{A}} \parallel DID_{\mathcal{A}} \parallel DID_i \parallel C_{2A} \parallel SID_j)$.
 196 2. \mathcal{A} forwards the login request message $M_{1A} = \{C_{1A}, C_{2A}, C_{3A}, C_{4A}, Z_{\mathcal{A}}, DID_{\mathcal{A}}, SID_j\}$ to the
 197 gateway node GWN.
 198 3. After receiving the login request message from \mathcal{A} , GWN computes $e_{\mathcal{A}} = C_{1A} \oplus h(DID_{\mathcal{A}} \parallel x)$,
 199 $DID_i = C_{3A} \oplus h(e_{\mathcal{A}})$ and $ID_{\mathcal{A}} = Z_{\mathcal{A}} \oplus h(e_{\mathcal{A}} \parallel DID_{\mathcal{A}})$, and checks the validity of $ID_{\mathcal{A}}$ and
 200 $C_{4A} = h(ID_{\mathcal{A}} \parallel e_{\mathcal{A}} \parallel DID_{\mathcal{A}} \parallel DID_i \parallel C_{2A} \parallel SID_j)$. GWN then computes $c_j = h(SID_j \parallel x)$ and
 201 $C_{5A} = h(c_j \parallel DID_j \parallel SID_j \parallel C_{2A})$ and sends $M_{2A} = \{C_{2A}, C_{5A}, DID_{\mathcal{A}}\}$ to S_j .
 202 4. S_j checks $C_{5A} = h(c_j \parallel DID_{\mathcal{A}} \parallel SID_j \parallel C_{2A})$ with its identity SID_j . If this does not hold, S_j
 203 terminates the session. S_j then selects $\beta_{\mathcal{A}} \in [1, n - 1]$ and computes $C_{6A} = \beta_{\mathcal{A}} P$, $sk_s = \beta_{\mathcal{A}} C_{2A}$,
 204 $C_{7A} = h_1(C_{2A} \parallel C_{6A} \parallel sk_s \parallel DID_{\mathcal{A}} \parallel SID_j)$ and $C_{8A} = h(DID_{\mathcal{A}} \parallel SID_j \parallel c_j)$. S_j sends
 205 $M_{3A} = \{C_{6A}, C_{7A}, C_{8A}\}$ to GWN.
 206 5. GWN tests $C_{8A} = h(DID_{\mathcal{A}} \parallel SID_j \parallel c_j)$. If this does not hold, GWN terminates the session;
 207 otherwise, GWN calculates $C_{9A} = h(DID_i \parallel x) \oplus h(DID_{\mathcal{A}} \parallel e_{\mathcal{A}})$ and $C_{10A} = h(ID_{\mathcal{A}} \parallel SID_j \parallel$
 208 $DID_{\mathcal{A}} \parallel DID_i \parallel e_{\mathcal{A}} \parallel C_{9A})$. Finally GWN sends the message $M_{4A} = \{C_{6A}, C_{7A}, C_{9A}, C_{10A}\}$ to
 209 attacker \mathcal{A} .
 210 6. \mathcal{A} calculates $h(DID_i \parallel x) = h(DID_{\mathcal{A}} \parallel e_{\mathcal{A}}) \oplus C_{9A}$. Now \mathcal{A} can compute $e_i = C_1 \oplus h$
 211 $(DID_i \parallel x)$. Eventually, \mathcal{A} can find $ID_i = h(e_i \parallel DID_i) \oplus Z_i$.

212 This result shows that Wu et al.'s scheme does not ensure user anonymity.

213 5.3. User impersonation attack

214 An attacker \mathcal{A} can impersonate any user through the identity of others and his/her own
 215 information. We assume the casualty is U_i . We also assume that attacker \mathcal{A} has $h(DID_{\mathcal{A}} \parallel x)$
 216 through 5.1. Extract Critical Information. The detailed method is as follows.

217 1. Attacker \mathcal{A} selects ID_i who is the target of the user impersonation attack.
 218 2. \mathcal{A} selects random numbers $r_{\mathcal{A}}^{new}, e_{\mathcal{A}}$, and $\alpha_{\mathcal{A}} \in [1, n - 1]$ and selects a particular sensor SID_j . And
 219 then \mathcal{A} calculates $DID_A^{new} = h(ID_{\mathcal{A}} \parallel r_{\mathcal{A}}^{new})$, $C_{1A} = B_{1A} \oplus HPW_{\mathcal{A}} \oplus e_{\mathcal{A}}$, $C_{2A} = \alpha_{\mathcal{A}} P$, $C_{3A} = h$
 220 $(e_{\mathcal{A}}) \oplus DID_A^{new}$, $Z_{\mathcal{A}} = ID_i \oplus h(e_{\mathcal{A}} \parallel DID_{\mathcal{A}})$ and $C_{4A} = h(ID_i \parallel e_{\mathcal{A}} \parallel DID_{\mathcal{A}} \parallel DID_A^{new} \parallel$
 221 $C_{2A} \parallel SID_j)$. C_{4A} is to check the new data produced on the user side and the integrity of the
 222 identities as well as to verify the source of M_{1A} .
 223 3. \mathcal{A} forwards the login request message $M_{1A} = \{C_{1A}, C_{2A}, C_{3A}, C_{4A}, Z_{\mathcal{A}}, DID_{\mathcal{A}}, SID_j\}$ to GWN.
 224 4. After obtaining the message from the \mathcal{A} , GWN calculates $e_{\mathcal{A}} = C_{1A} \oplus h(DID_{\mathcal{A}} \parallel x)$, $DID_A^{new} =$
 225 $C_{3A} \oplus h(e_{\mathcal{A}})$ and $ID_i = Z_{\mathcal{A}} \oplus h(e_{\mathcal{A}} \parallel DID_{\mathcal{A}})$, and checks the availability of ID_i and checks
 226 $C_{4A} = h(ID_i \parallel e_{\mathcal{A}} \parallel DID_{\mathcal{A}} \parallel DID_A^{new} \parallel C_{2A} \parallel SID_j)$. GWN continues to proceed with
 227 the scheme without detection. Unfortunately, the GWN mistakenly believes that he/she is
 228 communicating with the legitimate patient U_i .

229 Resultingly, the attacker A will be successfully confirmed as GWN by user U_i . Hence, the user
 230 impersonation attack is successful.

231 In the next section, we discuss Wu et al.'s scheme to overcome the weakness of the scheme. Our
 232 scheme stores several variables in the database to prevent the vulnerability of Wu et al.

233 **6. Proposed scheme**

234 We propose a new three-factor user authentication scheme for wireless sensor networks in this
 235 section. We use three participants : the user U_i , the gateway node GWN and the sensor node S_j . The
 236 gateway node GWN creates master keys x . The user U_i and the sensor node S_j computes on elliptic
 237 curve group F_p .

238 The proposed scheme composed as follows : registration phase, login phase, authentication phase,
 239 and password/biometrics change phase.

240 *6.1. Registration phase*

241 In this phase, a user U_i chooses an identity ID_i , imprints biometric template B_i at the sensor, then
 242 performs the following steps:

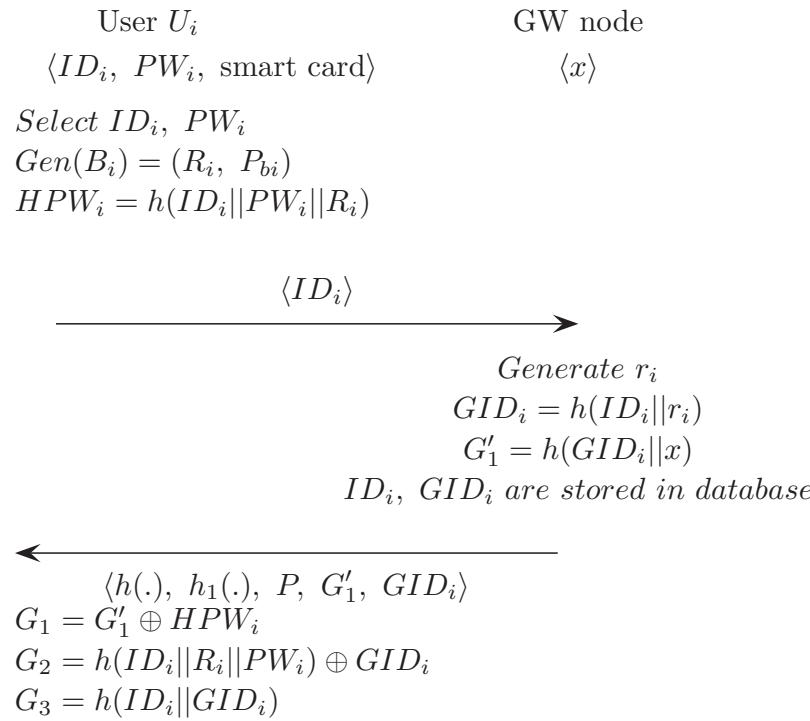
243 *6.1.1. User registration phase*

- 244 1. U_i selects ID_i and PW_i . imprints B_i via a device for biometrics collection and computes $Gen(B_i) = (R_i, P_{bi})$ and $HPW_i = h(ID_i \parallel PW_i \parallel R_i)$. Then he/she sends ID_i to GWN secretly.
- 245 2. GWN generates a random number r_i and computes $GID_i = h(ID_i \parallel r_i)$.
- 246 3. GWN computes $G'_i = h(GID_i \parallel x)$, prepares a smart card for U_i containing $h(.)$, $h_1(.)$, P , GID_i and the fuzzy extractor.
- 247 4. GWN stores ID_i and GID_i in its database and shares it with U_i . By storing ID_i and GID_i in the database, Wu et al. [1]'s problems arising from existing DID_i can be solved.
- 248 5. U_i computes $G_1 = G'_i \oplus HPW_i$, $G_2 = h(ID_i \parallel R_i \parallel PW_i) \oplus GID_i$ and $G_3 = h(ID_i \parallel GID_i)$. $\{G_1, G_2, G_3, h(.), h_1(.)P\}$ are stored in the smart card.

253 *6.1.2. Sensor registration phase*

- 254 1. GWN selects an identity SID_j for each new sensor S_j , computes $c_j = h(SID_j \parallel x)$ and sends $\{SID_j, c_j\}$ to S_j .
- 255 2. S_j stores P , SID_j and c_j and joins the WSN.

257 Figure 1 illustrates the registration phase of the proposed scheme.


258 *6.2. Login phase*

- 259 1. U_i inputs ID_i , PW_i and B'_i . The smart card executes $Rep(B'_i, P_{bi}) = R_i$ and $GID_i = G_2 \oplus h(ID_i \parallel R_i \parallel PW_i)$. U_i checks $h(ID_i \parallel GID_i) = ? G_3$. This allows U_i to verify whether it has come in correctly.
- 260 2. U_i generates e_i and α . U_i computes $HPW_i = h(ID_i \parallel PW_i \parallel R_i)$, $MU_1 = G_1 \oplus HPW_i \oplus e_i$, $MU_2 = \alpha P$ and $MU_3 = h(ID_i \parallel e_i \parallel GID_i \parallel MU_2 \parallel SID_j)$.
- 261 3. U_i sends the message $M_1 = \{MU_1, MU_2, MU_3, GID_i, SID_j\}$ to GWN.

265 Figure 2 illustrates the login and authentication phase of the proposed scheme.

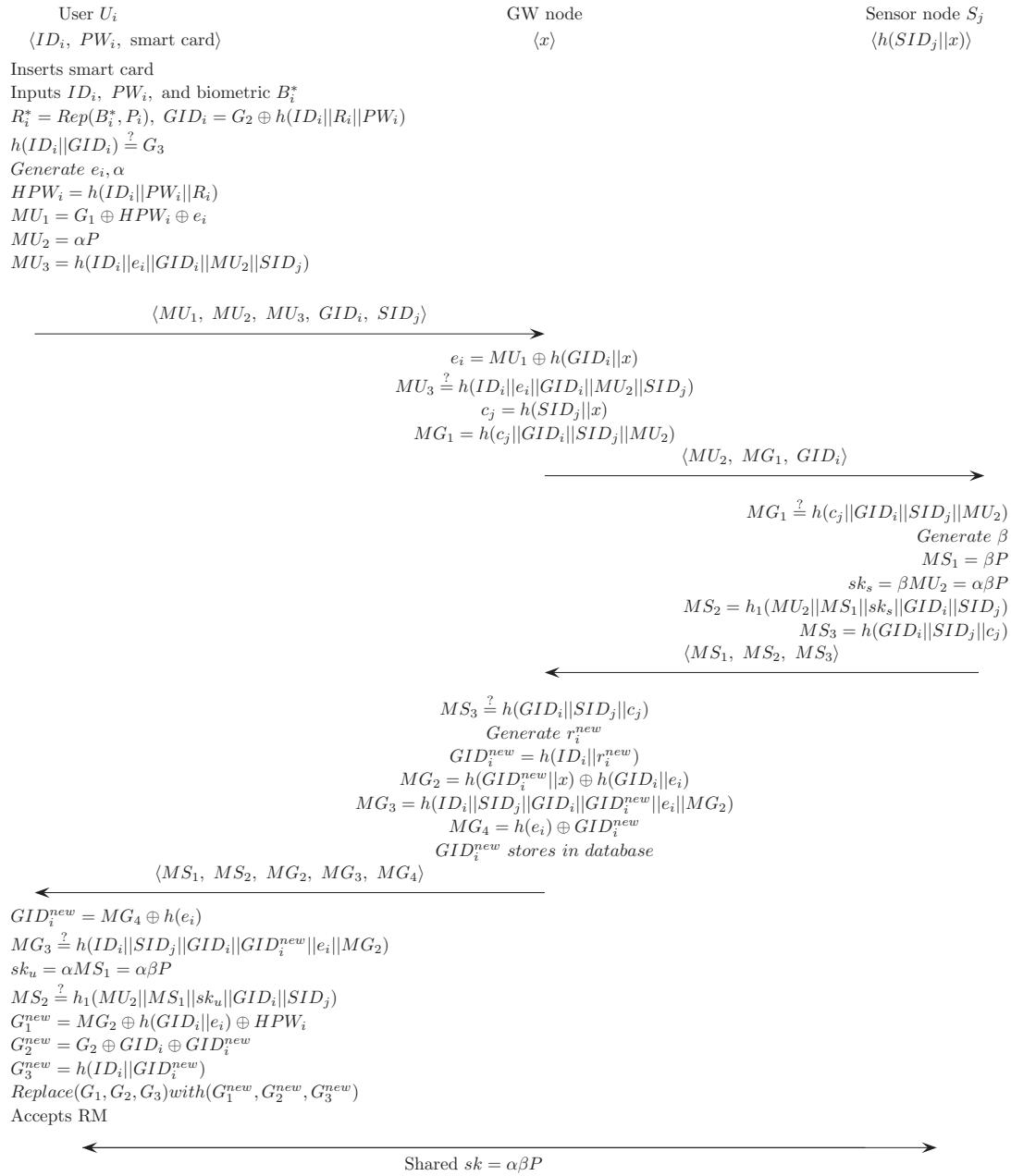
266 *6.3. Authentication phase*

- 267 1. GWN finds ID_i by using GID_i from the database and computes $e_i = MU_1 \oplus h(GID_i \parallel x)$. GWN checks the validity of $MU_3 = ? h(ID_i \parallel e_i \parallel GID_i \parallel MU_2 \parallel SID_j)$. If it fails, the session will be terminated. Otherwise, GWN computes $c_j = h(SID_j \parallel x)$ and $MG_1 = h(c_j \parallel GID_i \parallel SID_j \parallel MU_2)$. When the operation has finished, GWN sends the message $M_2 = \{MU_2, MG_1, GID_i\}$ to S_j .

Figure 1. Registration phase of the proposed scheme.

272 2. S_j checks $MG_1 \stackrel{?}{=} h(c_j \parallel GID_i \parallel SID_j \parallel MU_2)$ with its identity SID_j . If it is wrong, S_j will
 273 stop the session. Otherwise, S_j selects $\beta \in [1, n - 1]$ and computes $MS_1 = \beta P$, session key
 274 $sk_s = \beta MU_2$, $MS_2 = h_1(MU_2 \parallel MS_1 \parallel sk_s \parallel GID_i \parallel SID_j)$ and $MS_3 = h(GID_i \parallel SID_j \parallel c_j)$. it
 275 sends message $M_3 = \{MS_1, MS_2, MS_3\}$ when all operations have finished.

276 3. GWN checks $MS_3 \stackrel{?}{=} h(GID_i \parallel SID_j \parallel c_j)$. If it is wrong, the session will be stopped. Otherwise,
 277 GWN generates r_i^{new} and calculates $GID_i^{new} = h(ID_i \parallel r_i^{new})$, $MG_2 = h(GID_i^{new} \parallel x) \oplus h$
 278 $(GID_i \parallel e_i)$, $MG_3 = h(ID_i \parallel SID_j \parallel GID_i \parallel GID_i^{new} \parallel e_i \parallel MG_2)$ and $MG_4 = h(e_i) \oplus GID_i^{new}$.
 279 Finally GWN sends the message $M_4 = \{MS_1, MS_2, MG_2, MG_3, MG_4\}$ to U_i .


280 4. U_i computes $GID_i^{new} = MG_4 \oplus h(e_i)$ and checks $MG_3 \stackrel{?}{=} h(ID_i \parallel SID_j \parallel GID_i \parallel GID_i^{new} \parallel e_i \parallel$
 281 $MG_2)$. If not, the session will be stopped. U_i computes $sk_u = \alpha MS_1 = \alpha \beta P$ and checks $MS_2 \stackrel{?}{=} h_1$
 282 $(MU_2 \parallel MS_1 \parallel sk_u \parallel GID_i \parallel SID_j)$. If it is wrong, U_i will stop the session.

283 5. U_i computes $G_1^{new} = MG_2 \oplus h(GID_i \parallel e_i) \oplus HPW_i$, $G_2^{new} = G_2 \oplus GID_i \oplus GID_i^{new}$ and $G_3^{new} = h$
 284 $(ID_i \parallel GID_i^{new})$. Finally, U_i substitutes $(G_1^{new}, G_2^{new}, G_3^{new})$ for (G_1, G_2, G_3) in the smart card
 285 respectively.

286 6.4. Password and biometrics change phase

287 1. U_i inputs ID_i , PW_i and B'_i . The smart card executes $Rep(B'_i, P_{bi}) = R_i$ and $GID_i = G_2 \oplus h$
 288 $(ID_i \parallel R_i \parallel PW_i)$. U_i checks $h(ID_i \parallel GID_i) \stackrel{?}{=} G_3$. This allows U_i to verify whether it has come in
 289 correctly.

290 2. U_i is asked to input a new password PW_i^{new} and a new biometric information B_i^{new} . The following
 291 data are computed: $Gen(B_i^{new}) = (R_i^{new}, P_{bi}^{new})$, $HPW_i^{new2} = h(ID_i \parallel PW_i^{new} \parallel R_i^{new})$, $G_1^{new2} =$
 292 $G_1 \oplus HPW_i \oplus HPW_i^{new2}$, $G_2^{new2} = G_2 \oplus h(ID_i \parallel R_i \parallel PW_i) \oplus h(ID_i \parallel R_i \parallel PW_i^{new2})$. Finally,
 293 U_i substitutes $(G_1^{new2}, G_2^{new2}, P_{bi}^{new})$ for (G_1, G_2, P_{bi}) in the smart card respectively.

Figure 2. Login and authentication phase of the proposed scheme.

294 7. Security analysis of the proposed scheme

295 7.1. Formal security analysis

296 The formal security analysis uses an automated analysis tool called ProVerif. ProVerif is an
 297 automated tool for analyzing cryptographic protocols that was developed by Bruno Blanchet. Digital
 298 signatures, hash functions, signature proofs, etc. are suitable for analyzing an authentication protocol.
 299 Recently, many researchers [1,4?] have verified the authentication in the user authentication protocol
 300 using ProVerif. The formal security analysis shows the results of verifying and analyzing the security
 301 of the proposed scheme using ProVerif.

302 We use three channels. We provide the illustration of Table 2. cha is the channel in the registration
 303 phase and is used when the user U_i and GWN exchange ID_i in the registration phase. chc is the
 304 channel used by user U_i and GWN to exchange messages in the login phase and chb is used when
 305 the GWN and Sensor node S_j exchange messages in the login phase. Five initial variables were used:
 306 R_i , ID_i , ID_g , SID_j , and PW_i . ID_i and PW_i are the personal information made by the user U_i when
 307 registering. R_i is a random string made up of the user's biometric information. ID_g is the identity of
 308 the gateway and SID_j is the unique string of the sensor node S_j . x is defined as a secret key. P is a
 309 generator for creating a session key, which is the initial value used in ECC. The concatenate function
 310 and the xor function, including the multiplication in ECC and the hash function h and h_1 , are defined
 311 for the events that indicate the start and end of each.

312 Table 3 shows the registration phase of the user U_i and the process of the login and authentication
 313 phase. Table 4 demonstrates the registration phase and the login and authentication phase of the GWN.
 314 Table 5 displays the authentication phase of the sensor node S_j . Table 6 shows the query against the
 315 attack with the prover- sive, and Table 7 shows the result for Table 6.

316 When the code that makes up the scheme is executed, ProVerif prints the following results:

- 317 1. RESULT inj-event(EVENT) ==> inj-event(EVENT) is true.
- 318 2. RESULT inj-event(EVENT) ==> inj-event(EVENT) is false.
- 319 3. RESULT (QUERY) is true.
- 320 4. RESULT (QUERY) is false.

321 The first code means that the event has been verified and the authentication has been successful,
 322 while the second code means that the event has not been verified. The third code means that the query
 323 was proven and the attack was not successful. When the fourth code is displayed, the query is false
 324 meaning that an attack is possible and the attack induction and tracking thus displayed.

325 The ProVerif result of the proposed scheme is shown to be accurate for all events by simulating
 326 the result as shown in the figure. Therefore, the proposed scheme is safe from virtual attacker A and
 327 the virtual attack has been successfully terminated.

328 7.2. Informal security analysis

329 7.2.1. Privileged insider attack

330 The only value that the user sends in the registration center is the ID_i . However, their ID_i is
 331 used after hashing with other values at every subsequent step. It can not be used because it is used as
 332 hashed with values that are not exposed to the outside such as PW_i or R_i , GID_i , GID_i^{new} , e_i , MU_2 and
 333 SID_j , MG_2 , and these values are not exposed. Therefore, it is safe from a privileged insider attack.

334 7.2.2. Outsider attack

335 U_i 's smart cards include $h(.)$, $h_1(.)$, P , GID_i , and fuzzy extractors. Information such as session
 336 key or ID_i , which can be a critical value, or information such as a user's password are all hashed, or
 337 can not be extracted because the value can not be extracted from ECC. In addition, IDs and $GIDs$ are

Table 2. Define values and functions

```

(*—channels—*)
free cha:channel [private].
free chb:channel.
free chc:channel.

(*—constants—*)
free Ri:bitstring [private].
free IDi:bitstring [private].
free IDg:bitstring.
free SIDj:bitstring.
free PWi:bitstring [private].

(*—secret key—*)
free x:bitstring [private].

(*—shared key—*)
free P:bitstring [private].

(*—functions—*)
fun concat(bitstring, bitstring) : bitstring.
fun xor(bitstring, bitstring) : bitstring.
fun h(bitstring) : bitstring.
fun h1(bitstring) : bitstring.
fun mult(bitstring, bitstring) : bitstring.
equation forall a:bitstring, b:bitstring; mult(a,b) = mult(b,a).
equation forall a:bitstring, b:bitstring; xor(xor(a, b), b) = a.

(*—events—*)
event beginUi(bitstring).
event endUi(bitstring).
event beginGWN(bitstring).
event endGWN(bitstring).
event beginSj(bitstring).
event endSj(bitstring).

```

³³⁸ kept in the database, and ID_i information can not be extracted because ID_i are not used directly in the
³³⁹ protocol.

³⁴⁰ 7.2.3. Off-line ID guessing attack

³⁴¹ PW_i and ID_i are not used directly in this phase. They are used through hashing by concatenating
³⁴² them with other variables, so ID_i and PW_i can not be directly obtained from public information.
³⁴³ Therefore, ID_i and PW_i can not be obtained using login request messages MU_1 , MU_2 , MU_3 , GID_i , and
³⁴⁴ SID_j . Since ID_i and GID_i are combined and stored in the database, it is impossible to extract the ID_i
³⁴⁵ from the protocol.

³⁴⁶ 7.2.4. On-line ID guessing attack

³⁴⁷ ID_i and PW_i are not directly used in the phase so the attacker can not guess the ID_i s or passwords
³⁴⁸ of others. It is impossible to retrieve a user's ID_i in the protocol because the IDs and $GIDs$ are stored
³⁴⁹ in the database, and ID_i is found by searching the database.

Table 3. U_i protocol

```
(*—Ui process—*)
let Ui =
let HPWi = h(concat(concat(IDi, PWi), Ri)) in
out(cha,(IDi));
in(cha,(XGIDi:bitstring));
let G1' = h(concat(XGIDi, x)) in
let G1 = xor(G1', HPWi) in
let G2 = xor(h(concat(concat(IDi, Ri), PWi)), XGIDi) in
let G3 = h(concat(IDi, XGIDi)) in
event beginUi(IDi);
new ei:bitstring;
new alpha:bitstring;
let GIDi = xor(G2, h(concat(concat(IDi, Ri), PWi))) in
if h(concat(IDi, XGIDi)) = G3 then
let HPWi = h(concat(concat(IDi, PWi), Ri)) in
let MU1 = xor(xor(G1, HPWi), ei) in
let MU2 = mult(alpha, P) in
let MU3 = h(concat(concat(IDi, ei), concat(concat(XGIDi, MU2), SIDj))) in
out(chc,(MU1, MU2, MU3, GIDi, SIDj));
in(chc,(XXMS1:bitstring, XXMS2:bitstring,
XMG2:bitstring, XMG3:bitstring, XMG4:bitstring));
let GIDinew = xor(XMG4, h(ei)) in
if XMG3 = h(concat(concat(IDi, SIDj),
concat(concat(GIDi, GIDinew), concat(ei, XMG2)))) then
let sku = mult(alpha, XXMS1) in
if XXMS2 = h1(concat(concat(MU2, XXMS1),
concat(concat(sku, GIDi), SIDj))) then
let G1new = xor(XMG2, xor(h(concat(GIDi, ei)), HPWi)) in
let G2new = xor(G2, xor(GIDi, GIDinew)) in
let G1 = G1new in
let G2 = G2new in
event endUi(IDi).
```

350 7.2.5. Session key disclosure attack

351 The session key should be computed as β or α when knowing αP or βP with $\alpha\beta P$. Neither β nor α
352 are not known to the user or the sensor node, so it is impossible to know the session key unless it is a
353 user or a sensor node.

354 7.2.6. User impersonation attack

355 After the ID_i is found in the database using the GID , $e_i = MU_1 + h(GID_i||x)$ is calculated in
356 order to compare the MU_3 and $h(ID_i||e_i||GID_i||MU_2||SID_j)$. One can never be accepted as a specific
357 user without knowing the ID and GID pair. Therefore, a User Impersonation Attack is impossible.

358 7.2.7. Server impersonation attack

359 The server is identified in $MS_3 = h(GID_i||SID_j||c_j)$. $c_j = h(SID_j||x)$ and x is the secret key.
360 Therefore, it is necessary to know the c_j calculated by the secret key other than the GID_i and the
361 SID_j included in the message in order to authenticate the server and c_j is not used alone and $MG_1=$

Table 4. GWN protocol

```
(*—GWN process—*)
let GWN =
in(ch, (XIDi:bitstring));
new ri:bitstring;
let GIDi = h(concat(XIDi, ri)) in
let G1' = h(concat(GIDi, x)) in
out(ch, (GIDi));
in(chc, (XMU1:bitstring, XMU2:bitstring, XMU3:bitstring, XGIDi:bitstring, XSIDj:bitstring));
event beginGWN(IDg);
let ei = xor(XMU1, h(concat(XGIDi, x))) in
if XMU3 = h(concat(concat(XIDi, ei),
concat(concat(XGIDi, XMU2), XSIDj))) then
let cj = h(concat(XSIDj, x)) in
let MG1 = h(concat(concat(cj, XGIDi), concat(XSIDj, XMU2))) in
out(chb, (XMU2, MG1, XGIDi));
in(chb, (XMS1:bitstring, XMS2:bitstring,
XMS3:bitstring));
if XMS3 = h(concat(concat(XGIDi, XSIDj), cj)) then
new rinew:bitstring;
let GIDinew = h(concat(XIDi, rinew)) in
let MG2 = xor(h(concat(GIDinew, x)), h(concat(XGIDi, ei))) in
let MG3 = h(concat(concat(XIDi, XSIDj), concat(concat(XGIDi, GIDinew), concat(ei, MG2)))) in
let MG4 = xor(h(ei), GIDinew) in
out(chc, (XMS1, XMS2, MG2, MG3, MG4));
event endGWN(IDg).
```

Table 5. S_j protocol

```
(*— $S_j$  process—*)
let Sj =
in(chb, (XXMU2:bitstring, XMG1:bitstring, XXGIDi:bitstring));
event beginSj(SIDj);
let scj = h(concat(SIDj, x)) in
if XMG1 = h(concat(concat(scj, XXGIDi), concat(SIDj, XXMU2))) then
new beta:bitstring;
let MS1 = mult(beta, P) in
let sks = mult(beta, XXMU2) in
let MS2 = h1(concat(concat(XXMU2, MS1), concat(concat(sks, XXGIDi), SIDj))) in
let MS3 = h(concat(concat(XXGIDi, SIDj), scj)) in
out(chb, (MS1, MS2, MS3));
event endSj(SIDj).
```

³⁶² $h(c_j||GID_i||SID_j||MU_2)$, $MS_3 = h(GID_i||SID_j||c_j)$ and other values. In addition, the value x in the
³⁶³ destination $c_j = h(SID_j||x)$ can not be determined because it is always used by hashing with SID_j .

Table 6. Queries

(*—queries—*)

query attacker(P).

query id:bitstring; inj-event(endUi(id)) ==> inj-event(beginUi(id)).

query id:bitstring; inj-event(endGWN(id)) ==> inj-event(beginGWN(id)).

query id:bitstring; inj-event(endSj(id)) ==> inj-event(beginSj(id)).

process

((!Ui) | (!GWN) | (!Sj))

Table 7. Output of queries

RESULT inj-event(endSj(id)) ==> inj-event(beginSj(id)) is true.

RESULT inj-event(endGWN(id_12209)) ==> inj-event(beginGWN(id_12209)) is true.

RESULT inj-event(endUi(id_25655)) ==> inj-event(beginUi(id_25655)) is true.

RESULT not attacker(P[]) is true.

Table 8. Performance comparison

Features	Wu et al. [1]	Park et al. [3]	Park et al. [?]	Ours
Defence of privileged insider attack	O	O	O	O
Defence of outsider attack	X	X	X	O
Defence of off-line ID guessing attack	O	O	O	O
Defence of on-line ID guessing attack	X	X	X	O
Defence of session key disclosure attack	O	O	O	O
Defence of user impersonation attack	X	X	O	O
Defence of server impersonation attack	O	X	O	O
User anonymity	X	O	X	O
Forward secrecy and backward secrecy	O	O	O	O

³⁶⁴ 7.2.8. User anonymity

³⁶⁵ In the login process, the user gives MU_1 , MU_2 , MU_3 , GID_i , and SID_j to the GWN. In this case,
³⁶⁶ $GID_i = G_2 + h(ID_i || R_i || PW_i)$ is continuously changed by the random number R_i . Since ID_i is used by
³⁶⁷ hashing, one cannot guess ID_i through MU_1 , MU_2 , MU_3 , GID_i , and SID_j .

³⁶⁸ 7.2.9. Forward secrecy and backward secrecy

³⁶⁹ Because of the nature of ECCDH, we can not find αP and βP through $\alpha\beta P$ we can not find $\alpha\beta P$
³⁷⁰ through αP and βP , and we can not find α through P and αP .

371 8. Performance analysis of the proposed scheme

372 Four symbols in total are used to analyze performance. T_m is the time of the multiplicative
 373 operation used in ECC. This takes the most time in our scheme. T_{Rep} assumes that it is equal to T_m ,
 374 the time to check for a match when recognizing the user's biometric B_i^* . T_s means time in symmetric
 375 encryption or decryption. Finally, T_h means the time it takes to use the hash function. These are listed
 376 in Table 9.

Table 9. Notations of time symbol

Symbol	Meaning	Time (ms)
T_m	time of multiplication in Field	7.3529 [23]
T_{Rep}	time of <i>Rep</i>	= T_m [24]
T_s	time of symmetric encryption or decryption	0.1303 [23]
T_h	time of hash operation	0.0004 [23]

377 The proposed scheme produced the best results in time among all the three factor user
 378 authentication schemes using ECC (see Table 10).

Table 10. Performance comparison

	Wu et al. [1]	Park et al. [3]	Park et al. [?]	Ours
User U_i	$10T_h + 1T_{Rep} + 2T_m$	$6T_h + 1T_{Rep} + 2T_m$	$10T_h + 1T_{Rep} + 2T_m$	$8T_h + 1T_{Rep} + 2T_m$
GWN	$10T_h$	$7T_h + 2T_e$	$11T_h$	$10T_h$
Sensor node S_j	$2T_h + 2T_m$	$6T_h + 2T_m + 1T_e$	$4T_h + 2T_m$	$3T_h + 2T_m$
Total costs	$22T_h + 4T_m + 1T_{Rep}$	$19T_h + 4T_m + 3T_e + 1T_{Rep}$	$25T_h + 4T_m + 1T_{Rep}$	$21T_h + 4T_m + 1T_{Rep}$
Total costs (ms)	36.7733	37.163	36.7745	36.7729

379 9. Conclusions

380 Many user authentication schemes have been proposed for Wireless sensor networks, but they
 381 have serious security flaws, respectively. Recently, Wu et al. also proposed a three factor user
 382 authentication scheme which is looking promising. However, we discovered vulnerabilities in the
 383 configuration of their scheme and proposed a new scheme to address the discovered issues. Moreover,
 384 the security and performance of the proposed scheme are significantly better than the existing user
 385 authentication schemes.

386 **Conflicts of Interest:** The authors declare no conflict of interest.

387 References

1. Wu, F.; Xu, L.; Kumari, S.; Li, X.: An Improved and Provably Secure Three-Factor User Authentication Scheme for Wireless Sensor Networks. *Peer-to-Peer Networking and Applications*. **2018**, *11*(1), 1–20.
2. Das, M.: Two-Factor User Authentication in Wireless Sensor Networks. *IEEE transactions on wireless communications*. **2009**, *8*(3), 1086–1090.
3. Park, Y.; Lee, S.; Kim, C.; Park, Y. Secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. *Int. J. Distrib. Sens. Netw.* **2016**, *12*, 1–11.
4. Kumari, S.; Chaudhry, S. A.; Wu, F.; Li, X.; Farash, M. S.; Khan, M. K. An improved smart card based authentication scheme for session initiation protocol. *Peer-to-Peer Networking and Applications*. **2017**, *10*(1), 92–105.
5. Koblitz, N.: Elliptic curve cryptosystems. *Mathematics of computation*. **1987**, *48*, 203–209.
6. Miller, V.: Uses of Elliptic Curves in Cryptography. In: *Advances in Cryptology Crypto*. **1986**, *218*, 417–426.

399 7. Watro, R., Kong, D., Cuti, Sf., Gardiner, C., Lynn, C., Kruus, P.: Tinypk: Securing Sensor Networks with
400 Public Key Technology. In: *Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks*. ACM.
401 2004, 59–64.

402 8. Moon, J., Choi, Y., Jung, J., Won, D.: An Improvement of Robust Biometrics-based Authentication and Key
403 Agreement Scheme for Multi-Server Environments using Smart Cards. *PLoS One*. 2015, 10, 1–15.

404 9. Choo, K. K. R., Nam, J., Won, D.: A mechanical approach to derive identity-based protocols from
405 Diffie–Hellman-based protocols. *Information Sciences*. 2014, 281, 182–200.

406 10. Moon, J., Choi, Y., Kim, J., Won, D.: An improvement of robust and efficient biometrics based password
407 authentication scheme for telecare medicine information systems using extended chaotic maps. *Journal of
408 medical systems*. 2016, 40(3), 70.

409 11. He, D., Gao, Y., Chan, S., Chen, C., Bu, J.: An enhanced two-factor user authentication scheme in wireless
410 sensor networks. *Ad hoc and Sensor wireless network*. 2010, 10(4), 361–371.

411 12. Kumar, P., Lee, H. J.: Cryptanalysis on two user authentication protocols using smart card for wireless sensor
412 networks. *IEEE Wireless advanced (WiAd)*. 2011, 241–245.

413 13. Yeh, H. L., Chen, T. H., Liu, P. C., Kim, T. H., Wei, H. W.: A secured authentication protocol for wireless
414 sensor networks using elliptic curves cryptography. *Sensors*. 2011, 11(5), 4767–4779.

415 14. Xue, K., Ma, C., Hong, P., Ding, R.: A temporal-credential-based mutual authentication and key agreement
416 scheme for wireless sensor networks. *Journal of Network and Computer Applications*. 2013, 36(1), 316–323.

417 15. Jiang, Q., Ma, J., Lu, X., Tian, Y.: An efficient two-factor user authentication scheme with unlinkability for
418 wireless sensor networks. *Peer-to-peer Networking and Applications*. 2015, 8(6), 1070–1081.

419 16. Das, A. K.: A secure and robust temporal credential-based three-factor user authentication scheme for
420 wireless sensor networks. *Peer-to-peer Networking and Applications*, 2016, 9(1), 223–244.

421 17. Das, A. K.: A secure and effective biometricbased user authentication scheme for wireless sensor networks
422 using smart card and fuzzy extractor. *International Journal of Communication Systems*. 2017, 30(1), e2933.

423 18. Das, A. K.: A secure and efficient user anonymity-preserving three-factor authentication protocol for
424 large-scale distributed wireless sensor networks. *Wireless Personal Communications*. 2015, 82(3), 1377–1404.

425 19. Das, A.: A Secure and Effective Biometric-based User Authentication Scheme for Wireless Sensor Networks
426 using Smart Card and Fuzzy Extractor. *International Journal of Communication Systems*. 2015, 1–25.

427 20. Dodis, Y., Kanukurthi, B., Katz, J., Smith, A.: Robust fuzzy extractors and authenticated key agreement from
428 close secrets. *IEEE Transactions on Information Theory* 58. 2013, 6207–6222.

429 21. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other
430 Noisy Data. In: *Proceedings on the International Conference on the Theory and Applications of Cryptographic
431 Techniques*. 2004, 523–540.

432 22. Messerges, T. S., Dabbish, E. A., Sloan, R. H.: Examining smart-card security under the threat of power
433 analysis attacks. *IEEE transactions on computers*. 2002, 51(5), 541–552.

434 23. Xu, L., Wu, F.: Cryptanalysis and improvement of a user authentication scheme preserving uniqueness and
435 anonymity for connected health care. *Journal of medical systems*. 2015, 39(2), 10.

436 24. Das, A. K.: A secure and robust temporal credential-based three-factor user authentication scheme for
437 wireless sensor networks. *Peer-to-peer Networking and Applications*. 2016, 9(1), 223–244.