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Abstract

Information-related measures are useful tools for multi-variable data analysis, as
measures of dependence among variables, and as descriptions of order and disorder
in biological and physical systems. Measures, like marginal entropies, mutual /
interaction / multi -information, have long been used in a number of fields including
descriptions of systems complexity and biological data analysis. The mathematical
relationships among these measures are therefore of significant inherent interest.
Relations between common information measures include the duality relations
based on Mébius inversion on lattices. These are the direct consequence of the
symmetries of the lattices of the sets of variables (subsets ordered by inclusion).
While these relationships are of significant interest there has been, to our
knowledge, no systematic examination of the full range of relationships of this
diverse range of functions into a unifying formalism as we do here. In this paper we
define operators on functions on these lattices based on the Mébius inversions that
map functions into one another (Mobius operators). We show that these operators
form a simple group isomorphic to the symmetric group Ss. Relations among the set
of functions on the lattice are transparently expressed in terms of the operator
algebra, and, applied to the information measures, can be used to derive a wide
range of relationships among diverse information measures. The Mdbius operator
algebra is naturally generalized which yields extensive new relationships. This
formalism now provides a fundamental unification of information-related measures,
and the isomorphism of all distributive lattices with the subset lattice implies an
even broader application of these results.

Keywords: information, entropy, interaction-information, multi-information, Mébius
inversion, lattices, multivariable dependence, symmetric group, MaxEnt, networks
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1. Introduction

The description of order and disorder in systems of all kinds is fundamental. In
the physics and chemistry of condensed matter it plays a central role, but for
systems with biological levels of complexity, including interactions of genes,
macromolecules, cells and of networks of neurons, it is also central, and certainly
not well understood. Mathematical descriptions of the underlying order, and
transitions between states of order, are still far from satisfactory and a subject of
much current research (for example [16,17]). The difficulty arises in several ways,
but the dominant contributors are, in our view, the number and high degree of
effective interactions among components, and their non-linearity. There have been
many efforts to define information-based measures as a language for describing the
order and disorder of systems and the transfer of information. Negative entropy,
joint entropies, multi-information and various manifestations of Kullback-Leibler
(K-L) divergence are among the key concepts. Interaction information is one of
these. It is an entropy-based measure for multiple variables introduced by McGill in
1954 [1]. It has been used effectively in a number of developments and applications
of information-based analysis [2-5], and has several interesting properties,
including symmetry under permutation of variables, like joint entropies and multi-
information, though its interpretation as a form of information in the usual sense is
ambiguous as it can have negative values. In previous work we have proposed

complexity and dependence measures related to this quantity [6,9].

Here we focus on elucidating the character and source of some of the
mathematical properties that relate these measures, and on extending both the
definitions and spectrum of relations among all these quantities. The formalism
presented here can thus be viewed as a unification of a wide range of information-
related measures in the sense that the relations between them are elucidated. This
paper is structured as follows. We briefly review a number of definitions and
review preliminaries relevant to information measures and Mébius inversion. In
the next section we define the operators that map the functions on the lattice into

one another, expressing the Mobius inversions as operator equations. We then
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determine the products of the operators and, completing the set of operators with a
lattice complement operator, we show that they form a group that is isomorphic to
the symmetric group, S;. In the next section we express previous results in defining
dependency and complexity measures in terms of the operator formalism, and
illustrate relationships between many commonly used information measures, like
interaction information and multi-information. We derive a number of new
relations using the formalism, and point out the relationship between multi-
information and certain maximum entropy limits. This suggests a wide range of
maximum entropy criteria in the relationships inherent in the operator algebra. The
next section focuses on the relations between these functions and the probability
distributions underlying the symmetries. We then illustrate an operator equation
expressing our dependence measure in terms of conditional log likelihood functions.
Finally, we define a generalized form of the inversion relation, which also has Sz
symmetry, and show how these operators on functions can be additively

decomposed in a variety of interesting ways.
2. Preliminaries
We review the elements of information theory and lattices that are relevant to

this paper here, and clarify some notational conventions used.

2.1 Information Theory

Consider a set of n discrete variables v,, = {X;, X5, ..., X,;} sometimes denoted as
v if there is no ambiguity. We use v,,_; to denote the set v,, without variable X,,. We
write Pr(v,) to denote a joint probability density function over v,, and Pr(X,,|v,._;)

to denote a conditional probability density function.

Marginal entropy of a single variable X; is defined as H(X;) =
— X, Pr(x;) log(Pr(x;)). Similarly given a set of variables v,, joint entropy is defined
as H(v,) = — Y.x Pr(s) log(Pr(s)), where s traverses all possible states ofv,. We

write H(X,|v,—1) to denote conditional entropy of X, on the rest of the variables
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V,—1- The difference in joint entropy of sets of variables with and without X, is
called differential entropy §H (v,,):
6H(Vn) = H(Vn) - H(Vn—l) (1)

The mutual information I(Xi,Xj) measuring the mutual dependence between
two variables X; and X; is defined as

Pr(x;x;) ) )

1(Xi,X;) = = Yxye, Pr(s, x;) log (Pr(xi)Pr(xj)
Equivalently, the mutual information can be expressed via marginal and joint
entropies:

1(X,X;) = HX) + H(X;) — H(X., X;) (3)

Similar to Equation 3, given three variables X;, X;, and X, the conditional mutual
information can be defined as

1(X:, X;| X)) = HXi| X)) + H(Xj|Xe) — H(X;, X;|Xx) (4)

A generalization of mutual information to more than two variables is called
interaction information. For three variables it is defined as the difference between
mutual information with and without knowledge of the third variable

10X, X5, Xi) = 1(X0, X5 |Xi) — 1(X5,X;) (5)
When expressed entirely in terms of entropies we have
I(X:, X, Xe) = HX) + H(X;) + HXy)
—H (X, X;) — HX;, Xi) — H(X;, X (6)
+H(X;, X;, Xy)
Consider the interaction information for a set of n variables v,,
I(vn) = = Yrcy, (DI H(7) (7)

Given Equation 7, we define the differential interaction information, A, as the

difference between values of successive interaction informations arising from

adding variables
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A(Vn—l;Xn) = I(Vn) - I(Vn—l) = _I(Vn—llxn) (8)

The last equality in Equation 8 comes from the recursive relation for the
interaction information, Equation 5. The differential interaction information is
based on providing the target variable X,, to be added to the set of n — 1 variables,
and is therefore asymmetric. If we multiply differential interaction informations
with all possible choices of the target variable, the resulting measure will be

symmetric and called symmetric delta, A

A(vp) = (D" [xev, AV, — {X},X) (9)

There is another measure for multivariable dependence called multi-information,
or total correlation [10]. It is defined as the difference between the sum of single

entropies for each variable of a set and the joint entropy for the entire set

Q(Vn) = in H(Xi) - H(Vn) (10)

Multi-information is frequently used because it is always postive and goes to zero
when all the variables are independent. We can think of it as a kind of conglomerate

of dependencies among members of the set v,,.

At the two-variable level multi-information, Kullback-Leibler divergence and
interaction information are all identical, and equal to mutual information. The
interaction information I (v,,) for a set of n variables, obeys a recursion relation that
parallels that for the joint entropy of sets of variables, H(v,,), which is derived in
turn directly from the probability chain rule:

H(Vn) = H(Vn—l) + H(anvn—l)
I(Vn) = I(Vn—l) - I(Vn—llxn)

where the second terms on the right are conditionals. These two information

(11)

functions are known to be related by Moébius inversion [2-5]. There is an inherent
duality between the marginal entropy functions and the interaction information
functions based on Mobius inversion, which we will show in detail in Section 2. Bell

described an elegantly symmetric form of the inversion and identified the source of
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this duality in the lattice associated with the variables [2]. The duality is based on
the inclusion lattice of the set of variables. We start with this symmetric inversion
relation and extend it to an algebra of operators on these lattices. We will first
define the lattice and other relevant concepts from lattice theory before discussing

Mobius inversion.

2.2 Lattice theory

We now review some definitions from the lattice theory [13]. We say that a set P
is a poset (a partially ordered set) if there is a partial order defined on it, (P, <). A
partial order (<) is a binary relation that is reflexive, antisymmetric, and transitive.
Note that we would write x < y to denote the partial order between elements x and
y of a poset. Note also that an inverse of a partial order is a partial order. A chain of a
poset (P, <) is a subset C S P such that for any two elements x,y € C either x < y or
y < x. Similarly, a path of length k is a subset C € P such that C = [x,,x, ..., xx] for
any 1 <i < k eitherx; < x;,; orx;;; < x;. Note that any chain is a path, but not

other way around, since x; and x; of a path need not be ordered if [i — j| > 1.

Let X be a subset of a poset (P, <). The minimum of X, if exists, is min(X) such
that min(X) € X and for any x € X: min(X) < x. Similarly, the maximum of X, if
exists, is max(X) such that max(X) € X and for any x € X:x < max(X). A poset
(P,<)has a top element (a greatest element) Tiff T € P and for anyx € P:x < T.
Similarly, a poset (P, <) has a bottom element (a least element) L iff L€ P and for
any x € P: 1L< x.

The dual of a poset (P, <) is (P, =), where > is the inverse partial order of <. For
any statement based on the partial order <and true about all posets, the dual
statement (based on the inverse partial order =) is also true about all posets.

For a poset (P, <) we call D € P a down-set (or an ideal) iff, forany d € D:Vp €
P:(p £d) = (p € D). Dually, we call U € P an up-set (or a filter) iff forany u €
U:Vp € P:(p =u) = (p € U). Note thata set S is a down-set of (P, <) iff its set

complement P \ S is an up-set of (P, <).
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Given a subset S of a poset (P,<), M is an upper bound of S iff for any x € S:x <
M. And dually, m is a lower bound of S iff for any x € S: m < x. The join of S, if exists,
is called an upper bound of S, which is the least of the upper bounds of S. And dually,

the meet of S is the greatest lower bound of S.

A poset where for every two elements there exist the unique join and meet is
called a lattice. A lattice that contains a top element T and a bottom element L, such
that for every element x of the lattice, L< x < T, is called a bounded lattice. An
inclusion lattice (also called a subset lattice) is a typical example of a lattice defined
on all subsets of a given set S ordered by a subset inclusion C. If a set S is finite, then
its corresponding inclusion lattice is bounded, where the top element is S itself and

the bottom element is the empty set.

3. Mébius Dualities

Many applications make use of the relations among information theoretic
quantities like joint entropies and interaction information that are formed by what can
be called Mébius duality [2]. Restricting ourselves to functions on subset lattices, we
note that a function on a lattice is a mapping of each of the lattice element (subset of
variables) to the reals. The Mébius function for this lattice is u(v,7) = (—1)VI=I7l

where 7 is a subset of v, |7] is the cardinality of the subset.

2a. Mobius Inversion

Consider a set of n variables v and define g, the dual of f for the set of variables

g@M) = 2ecnu(v, 1) f (7) =ngn(—1)|"|_|7|f(r); ncv 2
12a

Note that function g is the interaction information if f were the entropy function H,

adopting the sign convention of [2]. It can easily be shown that the symmetric relation
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holds,
f) = Yecy(DM-FHg(); ncv (12b)

The relations defined in Equation 12(a,b) represent a symmetric form of Mobius

inversion, and the functions f and g can be called Mdbius duals.

Now consider an inclusion lattice. The Mobius inversion is a convolution of the
Mobius function with any function defined on the lattice over all its elements (subsets)
between the argument subset, 7, of the function and the empty set. The summation in
the inversion is over all the elements on all chains between 7 and the empty set,
counting the elements only once, which is called a down-set of the inclusion lattice (see
section 2). The empty set, at the limit of the range of the convolution, can be considered
as the “reference element”. We use the idea of a reference element in section 6 in
generalizing the inversion relations. The range of the convolution can of course be
limited at the top element (largest subset) and the bottom element of the lattice. In
defining the Mobius operators below we need to carefully define how the range is

determined.

To illustrate the relations concretely the nodes and the Mobius function are shown
graphically for three variables in Figure 1. When the functions in Equation 12 are
mapped onto the lattice for three variables, these equations represent the convolution
of the lattice functions and the Mébius function over the lattice.

1 123

d0i:10.20944/preprints201811.0234.v1
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Figure 1. The Hasse diagram of the subset lattice for three variables. The
numbers in black are the variable subsets, while the Mébius function u(v, 7) on
this lattice (1 or -1) is indicated in red.

3b. Mobius operators

The convolutions with the Mobius function over the lattice in Equation 12 define
mappings that can be expressed as operators. The operators can be thought of as
mapping of one function on the lattice into another. A function on the lattice, in

turn, is a map of the subsets of variables at each node into the real numbers.

Definition: Mébius down-set operator. Given a set of variables, T, which is the

element in the inclusion lattice, we define the Mobius down-set operator, m, that

operates on a function on this lattice.
A(f (1) = Ty D) = g(2), 7€ v (13a)

The down-set operator is defined as an operator form of the convolution with the
Mobius function: the sum over the lattice of subsets of 7, of product of the values of
the function times the Mébius function. The upper bound of this convolution is the

entire set, 7, the lower bound is the empty set.
Likewise, we can define a Mobius up-set operator. The definition is significantly
different in that the lower limit needs to be specified, whereas the downset operator

uses the empty set unless otherwise specified.

Definition: Mobius up-set operator. Given a set of variables, v, the operator, M, is

defined as the convolution operator on a function on the inclusion lattice which is

the sum is over the lattice of supersets of 7.

M(f(0) = Tpae (DM () = h(2), n,T SV (13b)

10

d0i:10.20944/preprints201811.0234.v1
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The lower bound of this convolition is T and the upper bound is the complete set v.

Given a function, f, Equations 13(a,b) define the functions g and h, respectively:
the down-set and up-set inverses, or duals, of f. The sum in the expression of Eqn.
13a is the same as the symmetric form of the Mdébius inversion [2]: f and g in Eqn.
13a are interchangable, dual with respect to the down set operator (see Eqn. 12a
and 12b). Given a set to begin with, the up-set operator is referenced to the full set,

and the down-set operator to the empty set.

From Equation 13a Mobius inversion implies that applying the down-set
operator twice yields the identity, M? = I. Similarly, using Equation 13b we can
show that M2 = [ . This is an expression of the duality: this idempotent property of
the Mobius operators is equivalent to the symmetry in Equation 12; in other words,
the exchangability in these equations, or duality of the functions is exactly the same
property as the idempotecy of the operators. The relationships between pairs of the
dual functions, generated by the operators are shown in the diagram in Figure 2.
The range of the convolution operator is clear here, but this is not always true, and
where it is ambiguous we use a subscript on the operator to identify the reference

set. We will need this in section 4.

A

" g(1)

h(z) . f o)

Figure 2. The Mobius operators define the duality relationships between the

functions on the subset lattice.

To advance this formalism further we need to define another operator on the
inclusion lattice. The inversion, or complementation, operator X has the effect of
mapping function values of all elements of the lattice (subsets) into the function
values of the corresponding set complement elements. For example, node 1 maps
into node 23 in Figure 1. Viewed as a 3D geometric space, as shown in Figure 1, the

complementation corresponds to an inversion of the lattice, all such 3-D coordinates

11
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mapping into their opposites through the origin at the geometic center of the cube.
We define the operator X, acting on functions whose arguments are subsets 7 of the
setv

Xf@o)=CFDVIf(®:1€v, tnE=0, tUt=v (14)

The sign change factor is added since inversion of the lattice also has the effect of
shifting the Mobius function by a sign for odd numbers of total variables on the

lattice.

If we define the composite operators, P and R, as
P=XM,R=Xm (15)
the pairwise relations among the functions and the operators shown in Figure 3
then follow. The three- and four-variable case for the relationships in Figure 3 can
easily be confirmed by direct calculation, and as it happens the general case is also
easy to prove. The proofs are direct and follow from the Mdébius inversion sums, by
keeping track of the effects of each of the inversion and convolution operators, and

are not presented here.
f(7)

m

~»

h(T) - - > g(T)
R

Figure 3. Diagram of the mappings of the functions on the subset lattice into one
another by the operators. The operators PandR are: P = XM,R = Xm.

Let us collect the operators of Figure 3, add the identity operator and the composite

operators P and R, and calculate the full product table of the set of operators.

The full product table of the operators is shown in Table 1.

12
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P|P|M|m | X |R|I
R R|X|M m|T|P

Table 1. The product table for the 6 operators above. The operators P and R are
definedas P = XM, R = Xm. The convention is that the top row is on the right and
the left column on the left in the products indicated; e.g. MX = R, XM = P.

It is immediately clear that this set of 6 operators forms a group: the set is
closed, it contains an identity element, all its elements have an inverse included, and
they demonstrate associativity. Furthermore, examination of the table immediately
shows that it is isomorphic to the symmetric group S5, the group of permutations of
three objects. Table 2 shows the 3x3 matrix representation of the group S3, with the
one line notation of the operator effect, and the correspondence between the

Mobius operators and the S; representation.

One line Matrix
Notation: Representation Mébius
i Operator
(Permutation) (left act-lon P
convention)
(1 00)
123 010 I
001
(010)
213 1 00 m
01

13
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(10 0)
132 00 1 M
0 1
(00 1)
321 010 X
1 0
0 1
231 0 01 p
1 0
(00 1)
312 100 R
10

Table 2. The 3x3 matrix representation of symmetric group S; and the
corresponding Mobius operators. The one-line notation on the left shows the
permutations.

Note that while the operators themselves, which act on functions, depend on the
number of variables since they define convolutions, their relationships do not. Thus,
the group structure is independent of the number of variables in the lattice. For any

number of variables the structure is simply the permutation group, S;.

4. Connections to the Deltas

The differential interaction information and the symmetric deltas were defined
in [4] as overall measures of both dependence and complexity (see definitions in
Equations 8 and 9). We will now show the connection between these deltas and our
operator algebra. We will use the three-variable case to illustrate the connection. If
the marginal entropies are identified with the function f in Equation 12, and the
interaction informations with g, then the differential interaction information is
identified with h. For the three-variable case these examples are shown using

simplifed notation,

14
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h(1) = A(23;1), h(2) =A(13;2), h(3) = A(12;3) (16b)

Simplifying the notation we can express the relations between these functions using

the Mébius operator as
A(t; X) = MH(X) = —I(t|X) (16c)

The full set of the lattice is 7 U {X} and the variable X is singled out as in Equations
11 and 16a. Furthermore, the convolution takes place over the sett U {X}.
Equation 16c, if interpreted properly, provides a simple connection between the
deltas and the Mobius operator algebra, and expresses a key relation (Theorem 1).

We have proved the following theorem.

Theorem 1. The Mdbius up-set operator acting on the join-irreducible elements of
the lattice of marginal entropies generates the conditional interaction

informations, the deltas, for the full set of variables of the lattice.

Join-irreducible lattice elements are all those that cannot be expressed as the
join, or union, of other elements. In this case they are all the single variables. Since
the deltas are differentials of the interaction information at the top of the lattice (the
argument of the function is the full set), their expression in terms of the join-
irreducible elements is the most fundamental form. To illustrate the relation more
concretely, Figure 4 shows the specific connection between the join-irreducible

elements and deltas for the four-variable lattice.

15
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-1
1
-1
Join irreducible 1
elements :_ ________
-1

Figure 4. The four-variable lattice showing the 4 join-irreducible elements that
generate the symmetric deltas as in Equation 16¢c. Mébius function values are
shown on the right, and the red lines connect the elements of the delta function,
A(234;1), which form a 3D-cube.

A general statement of this connection emerging from this geometric picture is a

general property of the algebraic structure of the subset lattice.

Corollary: The differential of one function on the lattice corresponds to the up-set

operator on another function of the join-irreducible elements.

Written in terms of the functions related by the inversions, and using the same
set notation as above, X indicating a join-irreducible element, we can state this

general result as follows.
If g(t) =aif(r)and X is a join-irreducible element of lattice, then
Mf(X) = h(z; X) = g(z]X) (17)

where the final term is a conditional form of the g function in which X is

instantiated. This is defined as function over all 7 for which X € t. These deltas, and

16
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delta-like functions more generally, are represented as convolutions over a lattice

that is one dimension less than the full variable set lattice.

We have previously proposed the symmetric delta (the product of all variable
permutations of the delta function, h) as a measure of complexity, and of collective
variable dependence [6]. The symmetric delta expression simply the product of the
individual deltas is seen to be the product of the results of the up-set operator acting
on the functions of all of the join-irreducible elements of the entropy lattice. Note that
by Equation 11 both the conditional entropies and conditional interaction
informations, since they correspond to the differentials, imply a path independent
chain rule. Note that these kinds of differential functions include more than just

those keyed on the join-irreducible elements as shown in the next section.

5. Symmetries reveal a wide range of new relations

The system of functions and operators defined in the previous section reveals a
wide range of relationships. Examination of Equation 11 and comparision with 16¢
shows that delta is also related to the differential entropy (defined by Equation 1)
measuring the change in the entropy of a set when we consider an additional
variable. Applying the down-set operator to Equation 1, and using sets v,, and v,,_;

as the upper bounds, gives us

Theorem 2. Given the definition of the differential entropy (Equation 1), and the

definitions of the up-set and down-set operators:

m(SH(Vn) = m(H(Vn) - H(Vn—l)) = I(Vn) - I(Vn—l) = _I(VnIXn)

RSH () = M(H(X,)) (18)

where X, is the element that is the difference between the sets v, and v,,_;.

We can consider § as an operator, but note that it does not define a convolution
over elements of the lattice as do the M6bius operators. Considering § as an
operator we note that § and m commute. The duality between H and I implies a

dual version of Equation 18 as well, which we will not derive. If we apply other
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operators to the expression in equaton 18 we find another set of relations among
these marginal entropy functions. For example, another remarkable symmetry
emerges.

SH(v,) = mMMH(X,) = XmH(X,) = RH(X,,)

H(X,) = P6H(v,) (19)

Equations 18 and 19 relate functions of the lattice elements to functions of join

irreducible elements.

There are further symmetries in this set of information functions. Consider the
mapping diagram of Figure 3. If we define a function which is simply the delta
function with each lattice element mapped into its set complement, that is, acted on
by the lattice inversion operator, from Equation 16¢ we have

® =XA, Xmd=XmXA=H (20)

Then these functions occupy different positions in the mapping diagram as seen in

Figure 5. Several other such modifications can be generated by similar operations.
H(7) I(7)

m m

> I(7) (I)(‘L')< ~ > H(7)
R R

Figure 5. A simple modifcation of one of the functions by lattice inversion modifies
the postion of functions in the mapping diagram. The original diagram is on the left,
the result of A modified by inversion is on the right. Note that the idempotent
property of M is applied to the ® function relation.

There are a large number of similar relations that can be generated by such

considerations.

There are other information-based measures that we can express using the

operator algebra. Because it is a widely used measure for multi-variable

18
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dependence we will now examine the example of multi-information () defined by
Equation 10. In terms of entropy functions on the lattice elements, (), as expressed
in this equation, can be thought of as the sum of the join-irreducible elements, minus
the top element or the join of the inclusion lattice. To apply the down-set operator
to the terms in Equation 10 we must carefully define the bounds of the convolutions.

If we calculate the convolution over the Q function, we have

A0 = > AHX) — ()

(21)

Since the upper bound of the down-set operator is defined as the argument set of
the function, the down-set of a single variable function is the function itself (since
H; — 0 = H;). Note that we are using the distributive property of the operator here.
The application of the up-set operator to the multi-information function on the

lattice, on the other hand, gives us
M@, = ) A1 XD — H(v)
Xi
(22)

Note that the multi-information is a composite function and therefore the results of

the action of the (distributive) Mobius operators are also composite functions.

6. Relation to probability densities

6a. Conditional log Likelihoods and Deltas

Writing the differential entropy in terms of the probability distributions, using the

definitions of the joint entropies and the probability chain rule, gives

Pr(v,)

6H(Vn) = - (lnm

) = —(InPr(Xy,|v,_1)) = HXy|vp_1)

(23a)
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For simplicity of notation we define  as the expectation value on the right. We
have

Pr(v,)

m) = (InPr(v,,_;) — InPr(v,))

T(Xp|vp-1) = —(In

(23b)

From Equation 23 we see that m is a conditional log likelihood function. By applying
the down-set operator, m, to m we generate some interesting relations. As seen in
Equations 18, the result of this operation is the delta, the conditional interaction

information,
ﬁ}ln(XnIVn—l) = m(SH(Vn) = MH(Xn) = _I(Vn—llxn) = A(Vn—l;Xn) (24)

Expressing this in another way, using the group table, we have the expressions from

Equation 19, and therefore
T(Xplvp-1) = =(InPr(X,|v,_1)) = 6H(vy,) = EH(Xn) (25a)

The expected value of the log of the probability of a given, single variable,
conditioned on the other variables in the subset, can therefore be expressed simply
in terms of Mobius operators acting on the entropy functions of a lattice. This is the

result of this section, embodied in Theorem 3.

Theorem 3. The symmetric delta is the product of all conditional log likelihood

functions acted on by the down-set operator:

iw= || ssxo= || At

all choices of Xy, all choices of Xy,

(25b)

The relation of the ©’s to the deltas is clear here, and the subsets of the variables
under consideration can then generate a series of conditional log likelihoods (CLL'’s)
for vyl =m , {m(X;n|lvm_1)} for m > 2. The simplest approximation for

dependencies among variables is realized in the casem = 2, where CLL’s are

20
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approximated by those with a single conditional variable. In this case (using

simplified notation)

w(2|1) = Hy, — Hy

26a
n(3[1) = Hy; — H, (262)
and we have for the three-variable case

A(23;1) = —n(3|1) + n(3]12)

There are two different ways to express deltas as sums of themn’s. Several
conclusions follow from these considerations. Since the group table for the Mébius
operators exhibits several different, equivalent operators, R = mM = Xm = MX =
P2, we can express the correspondence between A and the CLL’s in several
equivalent ways. These expressions then provide direct links with other information

functions.

6b. Towards prediction

An approach to extracting relations predictive of a variable from the information
in a data set is suggested by the above considerations. The general problem can be
defined as how to determine the “best” prediction formula for the value of one
variable in the set, say X;, from analysis of a data set of all variables. We sketch the
suggested approach here. Step one in a high level description of the process, is to
define the maximum degree of dependence to consider (the number of variables
involved.) Step two is to calculate the symmetric deltas to determine the set of
variables that are dependent on one another [9]. Step three is to find the maximum
expected CLL, from the set {m(X,1X,), 7(X1|X:, X;), m(X,|X;, X;, X)) ... } by calculating
the expectations of the entropy differentials. Note that the specifc, expected entropy
differences tend to zero as the dependence of the single variable, X;, on the other
variables increases. Finally, once the “best” likelihood function is found, a predictive
function is estimated based on the data: an estimate of the probabilities of X,

conditioned on all the other variables of the set. The general framework for
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inference is clear. This procedure is reminiscent of the Chow-Liu algorithm [12]
which is entirely pairwise and based on mutual information. Our approach is a
direct way towards generating predictive rules from large, multivariable data sets.

We will develop this approach further in a future paper.

7. Generalizing the Mé6bius operators

The up-set and down-set operators, M and 7, defined above, generate
convolutions over chains from each element of the inclusion lattice to the top
element (full set) or to the bottom element (empty set) respectively. The
convolutions are either “down”, towards subset elements, or “up” toward supersets.
The chains over which the convolutions, sums of the product of function and Mébius
function, are taken are clear and are defined by the subset lattice for these two
operators. No element is included more than once in the sum. Moreover, the sign
of the Mdbius function is the same across all elements at the same distance from the

extreme elements.

We can generalize the Mobius operators by defining the range of the
convolution, the end elements of the paths, to be any pair of elements of the lattice,
an upper and lower element, rather than the bounds of the lattice. Two elements
are required: the starting element, and an ending element. The starting element
may be determined by the argument of the function being operated on. We can call
the ending element a reference element and associate it with the operator. The
specification of both the upper and lower element is essential. Instead of the up-set
operator, for example, with the full setvas its reference element, we could
designate an arbitrary subset element like {1,2} as the reference and thereby define
another operator. Consider now a lattice of the full setv, where n designates a

reference element.

Definition: The generalized Mobius operator F,, acting on a function of a subset,

f (1), T S v, is defined by Equation 27, where the subsets of variables, ¢, ranges over
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all of the shortest paths between 7 and 71, and the functions f(¢) only occur once in

the sum, even if they are on more than one path.

RI@= ) DVHEfE)

Con all shortest paths
between T and 1]

(27)

There are often multiple shortest paths between any two elements in the lattice,
since the subset lattice is a hypercube. In this case, we are specifying the upper and
lower elements by the reference and the element specified by the function. The two
extreme reference elements, the empty set and the full set, then yield the down-set
and up-set operators respectively

Fof =mf
Ef = Mf

The reference elementn establishes a relation between the lattice sums and the

(28)

Mobius function. It is the juxtaposition of the lattice, anchored atn, to the Mébius
function that defines the symmetries of the generalized Mobius operator algebra.
Note that we now have the possibility of including elements that are not ordered
along the paths by inclusion since the reference element can be chosen from any
lattice element. For example, the convolution between {1} and {2,3} for the 3D-cube

lattice, shows this clearly (see Figure 1) as it inclues {1,2}, {2} and the empty set.

Definition: Given y,n € v we define the complement generalized operator Mébius

A~

operatoras F, = XF,X.

The products of the generalized operators can easy be calculated for the 3- and
4- element sets. We can identify some similarities of these general operators to the
operators M and 7. First, we note that the operators, F,, are all idempotent. This is
easy to calculate for the 3D and 4D case, and to derive using the relations indicated
in Equation 27. The idempotent property implies that there are pairs of functions

that are related by each general Mobius operator — a generalized Mdbius inversion
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on the inclusion lattice, a generalized duality. Furthermore, the products exhibit
other familiar symmetries. The notable relationships that involve a subset and its

complement are summarized in the following theorem.

Theorem 4. For allu,n € vthe following properties of the generalized Mobius

operator and its complement hold:

F.Ey = an;t (29a)
F.by = FyF, (29b)
F, =—F; (29¢)
E.f@) = F f () (29d)

where fi and 7] are set complements of u and n correspondingly.

Equation 29a is true since the products of the generalized Mobius operators

involve the operator X, namely FF, = X FnFH)?, which in the geometric metaphor is

like a rotation of the hypercube (inclusion lattice). Applying Equation 29a to F,F,
results in Equation 29b. The property shown in Equation 29c follows directly from
the definition of F, and its complement. The proof of the last property (Equation
29d) is direct. Since the limiting elements of the convolution are a subset and its
complement, it encompasses the whole lattice. Thus F, f (¥) for any subsety is seen

to describe the convolution over all subsets of the entire lattice and therfore

Equation 29d holds.

The full group structure of the general operator algebra is more complex
than the group defined by the up-set and down-set operators as there are many
more operators, defined by the full range of reference elements. (If N is the number
of subsets on the lattice there are N — 1 down-set operators, while for the
generalized case there are (N — 1)? operators.) The symmetry of the subgroups
determined by pairs of complementary subsets are preserved, remaining
isomorphic to S; (seen to be true for the 3D, and 4D case by direct calculation, and it

appears to be generally true, though we do not yet have a proof of the general case.)
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The relations between these pairs of functions on the lattice is described by the
diagram in Figure 6. It appears that the sets of three functions, specific to a
reference setn, with the operators that map one into the other exhibit the same
overall symmetries reflected in the group S;. The pairs of operators identified with
a subset and its complement are the key elements of the group. This is because this
particular combination of operator and function defines a convolution over the
entire set,v. This identity therefore includes the specific up-set and down set

relations, and is equal to the interaction information if f is the entropy function.

f(7)

g.(t

n

Figure 6. Generalized M6bius operator relations. A diagram of the relations among
the functions as determined by the operators. The upper two arrows represent the
generalized Mobius inversion relations. The function g, (7) is the designation of

the function created by the operator F,. The S5 structure is reflected in the
similarity with the diagram of Figure 3. Note that when n = @ the figure becomes
identical to Figure 3.

We ask now if sums of such operator-function pairs can be used to decompose a
convolution. This decomposition issue can be addressed by asking this specific
question: are there sums of operators acting on functions that add up to a given
specific operator on another function? If this is possible how do we decompose such
convolutions and what do they mean? The simple decomposition of the hypercube
into sub-lattices can be shown to be equivalent to the process of finding these
convolutions, or operator decompositions. We will not deal with the decomposition
relations in a general dimension here, but rather demonstrate them for {1,2,3} and

{1,2,3,4}. First, let’s consider the 3D case. There are three possible ways to
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decompose the 3D-cube Hasse diagram into two squares (2D hypercubes), which is

done by passing a plane through the cube parallel to the faces (see Figure 7)

TN

7N

123 123 123

[0 o O R 12T .E/.l 23 12 i\. .l
1 Q/oz\. 3 1 Q/oz Q3 1 Q, 02\.3

V' N\l

o

Figure 7. Decomposing the 3D-cube Hasse diagram into two squares (2D
hypercubes), by passing a plane through the center of the cube three different ways.

Considering one of these decompositions (the leftmost decomposition in Figure 7)

results in the following

Fofi23 = Faf123 + Fofi3 (30)

Each of the two terms on the right-hand side could be expressed in operator terms
in eight ways (each of the four elements of the sub-lattice being a reference
element). There are thus a total of 192 decompositions of the full 3-set convolution,
64 per each of the three decompositions of the cube into two squares. Note that
each decomposition leads to the same set of functions, but it is a distinct operator

expression.

For the 4-set decomposition, there are four ways of decomposing the 4-hypercube
into 2 cubes, so the total number of possible decompositions is 4 x 192 x 192 =

147456.
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8. Discussion

Many diverse measures have been used in descriptions of order and dependence
in complex systems and as data analysis tools [1-9]. While the mathematical
properties and relationships among these information-related measures are of
significant interest in several fields, there has been, to our knowledge, no systematic
examination of the full range of relationships and symmetries, and no unification of
this diverse range of functions into a single formalism as we do here. Beginning
with the duality relationships, based on Mobius inversions of functions on lattices,
we define a set of operators on functions on subset inclusion lattices that map the
functions into one another. We show here that they form a simple group,
isomorphic to the symmetric group S;. A wide range of relationships among the set
of functions on the lattice can be expressed simply in terms of this operator algebra
formalism. When applied to the information-related measures they can express a
wide range of relationships among various measures, providing a unified picture
and allowing new ways to calculate one from the other using the subset lattice
functions. For example, we can express the conditional mutual information in the
4D, {1,2,3,4} lattice as sums of convolutions of entropy functions with few terms for
multiple 3D and 2D lattices, or create new information functions with specific
symmetries and desired practical properties for a given system. Much is left to
explore in the full range of implications of this system, including algorithms for
prediction from complex data sets, and other issues about how these functions may

be used or computed.

We can make also connections with any other areas where lattices are useful.
Since any distributive lattice is isomorphic to the lattice of sets ordered by inclusion,
all the results presented here apply to any system of functions defined on a
distributive lattice [13,14], so this unification extends beyond the information
measure functions. Distributive lattices are widespread and include the following:
every Boolean algebra is a distributive lattice; the Lindebaum algebra of most logics
that support conjunction and disjunction is a distributive lattice; every Heyting

algebra is a distributive lattice, every totally ordered set is a distributive lattice with
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max as the join and min as the meet. The natural numbers also form a distributive
lattice with the greatest common divisor as the meet and the least common multiple
as the join (this infinite lattice, however, requires some extension of the equivalence

proof.)

The relationships shown here unify, clarify, and can serve to guide the use of a
range of measures in the development of the theoretical characterization of
information and complexity, and in the algorithms and estimation methods needed
for the computational analysis of multi-variable data. We have addressed the
relationships between the interaction information, the deltas (conditional
interaction information), and the underlying probability densities. We find that the
deltas can be expressed as Mobius sums of conditional entropies, the multi-
information is simply related by the operators to other information functions, and
we made an initial connection to the maximum entropy method. We also note that
Knuth has proposed generalizations of the zeta and Mobius functions that define
degrees of inclusion on the lattices [11]. Knuth’s formalism, integrated with ours,
could lead to a more general set of relations, and add another dimension to this
theory by incorporating uncertainty or variance in the information-related
measures. This could be particularly useful in developing future methods for
complexity descriptions and data analysis. Since the information-related functions
have been directly linked to interpretations in algebraic topology [15] it will also be

interesting to explore the topological interpretation of the Mdbius operators.

From the simple symmetries of these functions and operators it is clear there is
more to uncover in this complex of relationships. The information theory-based
measures have a surprising richness and internal relatedness in addition to their
practical value in data analysis. While we have described here a systematic
structure of relationships and symmetries, the full range of possible relationships,

insights and applications using Mébius pairs of functions remains to be explored.
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