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Abstract 
 

Information-related measures are useful tools for multi-variable data analysis, as 
measures of dependence among variables, and as descriptions of order and disorder 
in biological and physical systems.  Measures, like marginal entropies, mutual / 
interaction / multi -information, have long been used in a number of fields including 
descriptions of systems complexity and biological data analysis.  The mathematical 
relationships among these measures are therefore of significant inherent interest.  
Relations between common information measures include the duality relations 
based on Möbius inversion on lattices.  These are the direct consequence of the 
symmetries of the lattices of the sets of variables (subsets ordered by inclusion).  
While these relationships are of significant interest there has been, to our 
knowledge, no systematic examination of the full range of relationships of this 
diverse range of functions into a unifying formalism as we do here.  In this paper we 
define operators on functions on these lattices based on the Möbius inversions that 
map functions into one another (Möbius operators).  We show that these operators 
form a simple group isomorphic to the symmetric group S3.  Relations among the set 
of functions on the lattice are transparently expressed in terms of the operator 
algebra, and, applied to the information measures, can be used to derive a wide 
range of relationships among diverse information measures.  The Möbius operator 
algebra is naturally generalized which yields extensive new relationships.  This 
formalism now provides a fundamental unification of information-related measures, 
and the isomorphism of all distributive lattices with the subset lattice implies an 
even broader application of these results. 

 
 

 
 
 
Keywords: information, entropy, interaction-information, multi-information, Möbius 
inversion, lattices, multivariable dependence, symmetric group, MaxEnt, networks 
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1. Introduction 

The description of order and disorder in systems of all kinds is fundamental.  In 

the physics and chemistry of condensed matter it plays a central role, but for 

systems with biological levels of complexity, including interactions of genes, 

macromolecules, cells and of networks of neurons, it is also central, and certainly 

not well understood.  Mathematical descriptions of the underlying order, and 

transitions between states of order, are still far from satisfactory and a subject of 

much current research (for example [16,17]).  The difficulty arises in several ways, 

but the dominant contributors are, in our view, the number and high degree of 

effective interactions among components, and their non-linearity. There have been 

many efforts to define information-based measures as a language for describing the 

order and disorder of systems and the transfer of information.  Negative entropy, 

joint entropies, multi-information and various manifestations of Kullback-Leibler 

(K-L) divergence are among the key concepts.  Interaction information is one of 

these.  It is an entropy-based measure for multiple variables introduced by McGill in 

1954 [1].  It has been used effectively in a number of developments and applications 

of information-based analysis [2-5], and has several interesting properties, 

including symmetry under permutation of variables, like joint entropies and multi-

information, though its interpretation as a form of information in the usual sense is 

ambiguous as it can have negative values.  In previous work we have proposed 

complexity and dependence measures related to this quantity [6,9]. 

 

Here we focus on elucidating the character and source of some of the 

mathematical properties that relate these measures, and on extending both the 

definitions and spectrum of relations among all these quantities. The formalism 

presented here can thus be viewed as a unification of a wide range of information-

related measures in the sense that the relations between them are elucidated. This 

paper is structured as follows.  We briefly review a number of definitions and 

review preliminaries relevant to information measures and Möbius inversion.  In 

the next section we define the operators that map the functions on the lattice into 

one another, expressing the Möbius inversions as operator equations.  We then 
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determine the products of the operators and, completing the set of operators with a 

lattice complement operator, we show that they form a group that is isomorphic to 

the symmetric group, ܵ ଷ.  In the next section we express previous results in defining 

dependency and complexity measures in terms of the operator formalism, and 

illustrate relationships between many commonly used information measures, like 

interaction information and multi-information.  We derive a number of new 

relations using the formalism, and point out the relationship between multi-

information and certain maximum entropy limits.  This suggests a wide range of 

maximum entropy criteria in the relationships inherent in the operator algebra. The 

next section focuses on the relations between these functions and the probability 

distributions underlying the symmetries.  We then illustrate an operator equation 

expressing our dependence measure in terms of conditional log likelihood functions.  

Finally, we define a generalized form of the inversion relation, which also has S3 

symmetry, and show how these operators on functions can be additively 

decomposed in a variety of interesting ways. 

 

2.  Preliminaries 

We review the elements of information theory and lattices that are relevant to 

this paper here, and clarify some notational conventions used. 

 

2.1 Information Theory 

Consider a set of ݊ discrete variables ߥ௡ = {ܺଵ, ܺଶ, … , ܺ௡} sometimes denoted as 

 ௡ without variable ܺ௡. Weߥ ௡ିଵ to denote the setߥ if there is no ambiguity. We use ߥ

write Pr(ߥ௡) to denote a joint probability density function over ߥ௡, and Pr(ܺ௡|ߥ௡ିଵ) 

to denote a conditional probability density function. 

 

Marginal entropy of a single variable ܺ௜  is defined as ܪ(ܺ௜) =

−∑ Pr(ݔ௜) log൫Pr(ݔ௜)൯௫೔ . Similarly given a set of variables ߥ௡, joint entropy is defined 

as ܪ(ߥ௡) = −∑ Pr(ݏ) log൫Pr(ݏ)൯௦ , where ݏ traverses all possible states of ߥ௡. We 

write ܪ(ܺ௡|ߥ௡ିଵ) to denote conditional entropy of ܺ ௡ on the rest of the variables 
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 ௡ିଵ. The difference in joint entropy of sets of variables with and without ܺ௡ isߥ

called differential entropy ܪߜ(ߥ௡): 

(௡ߥ)ܪߜ ≡ (௡ߥ)ܪ −  (1)       (௡ିଵߥ)ܪ

 

The mutual information ܫ൫ܺ௜, ௝ܺ൯ measuring the mutual dependence between 

two variables ܺ௜ and ௝ܺ is defined as  

൫ܫ ௜ܺ , ௝ܺ൯ ≡ −∑ Pr൫ݔ௜, ௝൯ݔ log ൬
୔୰൫௫೔ ,௫ೕ൯

୔୰(௫೔)୔୰൫௫ೕ൯
൰௫೔,௫ೕ     (2) 

 

Equivalently, the mutual information can be expressed via marginal and joint 

entropies:  

൫ܫ ௜ܺ , ௝ܺ൯ ≡ (௜ܺ)ܪ	 + ൫ܪ ௝ܺ൯ ൫ܺ௜ܪ− , ௝ܺ൯     (3) 

 

Similar to Equation 3, given three variables ܺ௜ , ௝ܺ, and ܺ௞ , the conditional mutual 

information can be defined as  

൫ܺ௜ܫ , ௝ܺหܺ௞൯ = (௜|ܺ௞ܺ)ܪ + ൫ܪ ௝ܺหܺ௞൯ − ,൫ܺ௜ܪ ௝ܺหܺ௞൯   (4) 

 

A generalization of mutual information to more than two variables is called 

interaction information. For three variables it is defined as the difference between 

mutual information with and without knowledge of the third variable 

൫ܫ ௜ܺ , ௝ܺ , ܺ௞൯ = ൫ܺ௜ܫ	 , ௝ܺหܺ௞൯ − ൫ܫ	 ௜ܺ , ௝ܺ൯     (5) 

When expressed entirely in terms of entropies we have 

൫ܫ ௜ܺ , ௝ܺ , ܺ௞൯ = (௜ܺ)ܪ + ൫ܪ ௝ܺ൯ + (௞ܺ)ܪ
൫ܺ௜ܪ− , ௝ܺ൯ − ,௜ܺ)ܪ ܺ௞) − ൫ܪ ௝ܺ, ܺ௞൯
൫ܺ௜ܪ+ , ௝ܺ, ܺ௞൯

   (6) 

Consider the interaction information for a set of ݊ variables ߥ௡ 

(௡ߥ)ܫ = −∑ (−1)|ఛ|ܪ(߬)ఛ⊆ఔ೙        (7) 

Given Equation 7, we define the differential interaction information, Δ, as the 

difference between values of successive interaction informations arising from 

adding variables 
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Δ(ߥ௡ିଵ; ܺ௡) ≡ (௡ߥ)ܫ − (௡ିଵߥ)ܫ =  (8)    (௡ିଵ|ܺ௡ߥ)ܫ−

 

The last equality in Equation 8 comes from the recursive relation for the 

interaction information, Equation 5. The differential interaction information is 

based on providing the target variable ܺ௡ to be added to the set of ݊ − 1 variables, 

and is therefore asymmetric.  If we multiply differential interaction informations 

with all possible choices of the target variable, the resulting measure will be 

symmetric and called symmetric delta, Δഥ 

Δഥ(ߥ௡) = (−1)௡∏ Δ(ߥ௡ − {ܺ}, ܺ)௑∈ఔ೙      (9) 

 

There is another measure for multivariable dependence called multi-information, 

or total correlation [10].  It is defined as the difference between the sum of single 

entropies for each variable of a set and the joint entropy for the entire set 

Ω(ߥ௡) ≡ ∑ (௜ܺ)ܪ − ௑೔(௡ߥ)ܪ        (10) 

 

Multi-information is frequently used because it is always postive and goes to zero 

when all the variables are independent. We can think of it as a kind of conglomerate 

of dependencies among members of the set ߥ௡. 

 

At the two-variable level multi-information, Kullback-Leibler divergence and 

interaction information are all identical, and equal to mutual information. The 

interaction information ܫ(ߥ௡) for a set of ݊ variables, obeys a recursion relation that 

parallels that for the joint entropy of sets of variables, ܪ(ߥ௡), which is derived in 

turn directly from the probability chain rule: 

(௡ߥ)ܪ = (௡ିଵߥ)ܪ + (௡ିଵߥ|௡ܺ)ܪ
(௡ߥ)ܫ = (௡ିଵߥ)ܫ − (௡ିଵ|ܺ௡ߥ)ܫ

   (11) 

where the second terms on the right are conditionals.  These two information 

functions are known to be related by Möbius inversion [2-5].  There is an inherent 

duality between the marginal entropy functions and the interaction information 

functions based on Möbius inversion, which we will show in detail in Section 2.  Bell 

described an elegantly symmetric form of the inversion and identified the source of 
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this duality in the lattice associated with the variables [2].  The duality is based on 

the inclusion lattice of the set of variables.  We start with this symmetric inversion 

relation and extend it to an algebra of operators on these lattices. We will first 

define the lattice and other relevant concepts from lattice theory before discussing 

Möbius inversion.  

 

2.2 Lattice theory 

We now review some definitions from the lattice theory [13].  We say that a set ܲ 

is a poset (a partially ordered set) if there is a partial order defined on it, 〈ܲ, ≤〉. A 

partial order (≤) is a binary relation that is reflexive, antisymmetric, and transitive. 

Note that we would write ݔ ≤  and ݔ to denote the partial order between elements ݕ

 of a poset. Note also that an inverse of a partial order is a partial order. A chain of a ݕ

poset 〈ܲ, ≤〉 is a subset ܥ ⊆ ܲ such that for any two elements ݔ, ݕ ∈ ݔ either ܥ ≤  or ݕ

ݕ ≤ ܥ Similarly, a path of length ݇ is a subset .ݔ ⊆ ܲ such that ܥ = ,ଵݔ] ,ଶݔ … ,  ௞] forݔ

any 1 ≤ ݅ < ݇ either ݔ௜ ≤ ௜ାଵݔ ௜ାଵ orݔ ≤  ௜. Note that any chain is a path, but notݔ

other way around, since ݔ௜ and ݔ௝ of a path need not be ordered if |݅ − ݆| > 1. 

 

Let ܺ be a subset of a poset 〈ܲ, ≤〉. The minimum of X, if exists, is min(ܺ) such 

that min(ܺ) ∈ ܺ and for any ݔ ∈ ܺ:min(ܺ) ≤  Similarly, the maximum of X, if .ݔ

exists, is max(ܺ) such that max(ܺ) ∈ ܺ and for any ݔ ∈ ܺ: ݔ ≤ max(ܺ). A poset 

〈ܲ, ≤〉 has a top element (a greatest element) T iff T ∈ ܲ and for any ݔ ∈ ܲ: ݔ ≤ T. 

Similarly, a poset 〈ܲ, ≤〉 has a bottom element (a least element) ⊥ iff ⊥∈ ܲ and for 

any ݔ ∈ ܲ: ⊥≤  .ݔ

The dual of a poset 〈ܲ, ≤〉 is 〈ܲ, ≥〉, where ≥ is the inverse partial order of ≤. For 

any statement based on the partial order ≤ and true about all posets, the dual 

statement (based on the inverse partial order ≥) is also true about all posets. 

For a poset 〈ܲ, ≤〉 we call ܦ ⊆ ܲ a down-set (or an ideal) iff,   for any   ݀ ∈ :ܦ ݌∀ ∈

ܲ: ݌) ≤ ݀) ⇒ ݌) ∈ ܷ Dually, we call  .(ܦ ⊆ ܲ an up-set (or a filter) iff for any ݑ ∈

ܷ: ݌∀ ∈ ܲ: ݌) ≥ (ݑ ⇒ ݌) ∈ ܷ). Note that a set ܵ is a down-set of 〈ܲ,≤〉 iff its set 

complement ܲ ∖ ܵ is an up-set of 〈ܲ,≤〉. 
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Given a subset ܵ of a poset 〈ܲ,≤〉, ܯ is an upper bound of ܵ iff for any ݔ ∈ ܵ: ݔ ≤

ݔ And dually, ݉ is a lower bound of ܵ iff for any .ܯ ∈ ܵ:݉ ≤  ,The join of ܵ, if exists .ݔ

is called an upper bound of ܵ , which is the least of the upper bounds of ܵ. And dually, 

the meet of ܵ  is the greatest lower bound of ܵ. 

 

A poset where for every two elements there exist the unique join and meet is 

called a lattice. A lattice that contains a top element T and a bottom element ⊥, such 

that for every element ݔ of the lattice, ⊥≤ ݔ ≤ T, is called a bounded lattice. An 

inclusion lattice (also called a subset lattice) is a typical example of a lattice defined 

on all subsets of a given set ܵ ordered by a subset inclusion ⊆. If a set ܵ  is finite, then 

its corresponding inclusion lattice is bounded, where the top element is ܵ  itself and 

the bottom element is the empty set.  

 

3.  Möbius Dualities  

Many applications make use of the relations among information theoretic 

quantities like joint entropies and interaction information that are formed by what can 

be called Möbius duality [2].  Restricting ourselves to functions on subset lattices, we 

note that a function on a lattice is a mapping of each of the lattice element (subset of 

variables) to the reals.  The Möbius function for this lattice is ߥ)ߤ, ߬) =  |߬|−|ߥ|(1−)

where ߬ is a subset of ߥ, |߬| is the cardinality of the subset. 

2a.  Möbius Inversion  

Consider a set of ݊ variables ߥ and define ݃, the dual of ݂ for the set of variables  

 
   
	

 
	

(ߟ)݃  = ∑ ,ߥ)ߤ ߬)݂(߬) =ఛ⊆ఎ ∑ (−1)|ఔ|ି|ఛ|݂(߬); ߟ	 ⊆ ఛ⊆ఎߥ
  (12a)          

 

Note that function ݃ is the interaction information if ݂ were the entropy function ܪ, 

adopting the sign convention of [2]. It can easily be shown that  the symmetric relation 
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holds,       	

(ߟ)݂  = ∑ (−1)|ఔ|ି|ఛ|݃(߬); ߟ	 ⊆ ఛ⊆ఎߥ        (12b) 

The relations defined in Equation 12(a,b) represent a symmetric form of Möbius 

inversion, and the functions ݂ and	g can be called  Möbius duals. 

  

Now consider an inclusion lattice.  The Möbius inversion is a convolution of the 

Möbius function with any function defined on the lattice over all its elements (subsets) 

between the argument subset, ߬, of the function and the empty set.  The summation in 

the inversion is over all the elements on all chains between ߬ and the empty set, 

counting the elements only once, which is called a down-set of the inclusion lattice (see 

section 2). The empty set, at the limit of the range of the convolution, can be considered 

as the “reference element”.  We use the idea of a reference element in section 6 in 

generalizing the inversion relations.  The range of the convolution can of course be 

limited at the top element (largest subset) and the bottom element of the lattice. In 

defining the Möbius operators below we need to carefully define how the range is 

determined. 

To illustrate the relations concretely the nodes and the Möbius function are shown 

graphically for three variables in Figure 1.  When the functions in Equation 12 are 

mapped onto the lattice for three variables, these equations represent the convolution 

of the lattice functions and the Möbius function over the lattice.
 

 

3 
2 

0 

1 

23 

13 

12 

123 

1 
1 

1 

-1 -1 -1 

1 

-1 
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Figure 1.  The Hasse diagram of the subset lattice for three variables.  The 
numbers in black are the variable subsets, while the Möbius function ߥ)ߤ, ߬) on 
this lattice (1 or -1) is indicated in red. 

 

3b. Möbius operators 

The convolutions with the Möbius function over the lattice in Equation 12 define 

mappings that can be expressed as operators.  The operators can be thought of as 

mapping of one function on the lattice into another.  A function on the lattice, in 

turn, is a map of the subsets of variables at each node into the real numbers. 

Definition: Möbius down-set operator.  Given a set of variables, ߬ which is the 

element in the inclusion lattice,  we define the Möbius down-set operator, ෝ݉ , that 

operates on a function on this lattice.   

 

ෝ݉ ൫݂(߬)൯ ≡ ∑ (−1)|ఎ|ିଵ݂(ߟ)ఎ⊆ఛ = ݃(߬), ߬ ⊆ 	(13a)    ߥ

 

The down-set operator is defined as an operator form of the convolution with the 

Möbius function:  the sum over the lattice of subsets of ߬, of product of the values of 

the function times the Möbius function. The upper bound of this convolution is the 

entire set, ߬, the lower bound is the empty set. 

 

Likewise, we can define a Mobius up-set operator.  The definition is significantly 

different in that the lower limit needs to be specified, whereas the downset operator 

uses the empty set unless otherwise specified.  

 

Definition: Mobius up-set operator.  Given a set of variables, ߥ, the operator, ܯ෡ , is 

defined as the convolution operator on a function on the inclusion lattice which is 

the sum is over the lattice of supersets of ߬.   

 

෡൫݂(߬)൯ܯ ≡ ∑ (−1)|ఎ|ାଵ݂(ߟ)ఎ⊇ఛ = ℎ(߬),		ߟ, ߬ ⊆  (13b)   ߥ
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The lower bound of this convolition is ߬ and the upper bound is the complete set ߥ. 

 

Given a function,  ݂, Equations 13(a,b) define the functions ݃ and ℎ, respectively: 

the down-set and up-set inverses, or duals, of  ݂.  The sum in the expression of Eqn. 

13a is the same as the symmetric form of the Möbius inversion [2]: ݂ and ݃ in Eqn. 

13a are interchangable, dual with respect to the down set operator (see Eqn. 12a 

and 12b). Given a set to begin with, the up-set operator is referenced to the full set, 

and the down-set operator to the empty set.   

 

From Equation 13a Möbius inversion implies that applying the down-set 

operator twice yields the identity, ݉ෝଶ =  መ. Similarly, using Equation 13b we canܫ

show that ܯ෡ଶ =  መ . This is an expression of the duality: this idempotent property ofܫ

the Möbius operators is equivalent to the symmetry in Equation 12; in other words, 

the exchangability in these equations, or duality of the functions is exactly the same 

property as the idempotecy of the operators.  The relationships between pairs of the 

dual functions, generated by the operators are shown in the diagram in Figure 2. 

The range of the convolution operator is clear here, but this is not always true, and 

where it is ambiguous we use a subscript on the operator to identify the reference 

set.  We will need this in section 4. 

                                       Figure 2. The Möbius operators define the duality relationships between the 

functions on the subset  lattice. 

 
To advance this formalism further we need to define another operator on the 

inclusion lattice.  The inversion, or complementation, operator ෠ܺ has the effect of 

mapping function values of all elements of the lattice (subsets) into the function 

values of the corresponding set complement elements.  For example, node 1 maps 

into node 23 in Figure 1. Viewed as a 3D geometric space, as shown in Figure 1, the 

complementation corresponds to an inversion of the lattice, all such 3-D coordinates 
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mapping into their opposites through the origin at the geometic center of the cube.  

We define the operator ෠ܺ, acting  on functions whose arguments are subsets  ߬ of the 

set ߥ      
෠݂ܺ(߬) = (−1)|ఔ|݂(߬̃):		߬ ⊆ ߬		,ߥ ∩ ߬̃ = ∅,		߬ ∪ ߬̃ = 	(14)  ߥ

 

The sign change factor is added since inversion of the lattice also has the effect of 

shifting the Möbius function by a sign for odd numbers of total variables on the 

lattice.  

 

If we define the composite operators, ෠ܲ  and ෠ܴ, as  
෠ܲ = ෠ܺܯ෡, ෠ܴ = ෠ܺ ෝ݉        (15) 

the pairwise relations among the functions and the operators shown in Figure 3 

then follow.  The three- and four-variable case for the relationships in Figure 3  can 

easily be confirmed by  direct calculation,  and as it happens the general case is also 

easy to prove.  The proofs are direct and follow from the Möbius inversion sums, by 

keeping track of the effects of each of the inversion and convolution operators, and 

are not presented here. 

 
 

Figure 3.  Diagram of the mappings of the functions on the subset lattice into one 
another by the operators.  The operators ෠ܲ  and ෠ܴ are:  ܲ ෠ = ෠ܺܯ෡, ෠ܴ = ෠ܺ ෝ݉ . 

 

Let us collect the operators of Figure 3, add the identity operator and the composite 

operators ෠ܲ and ෠ܴ , and calculate the full product table of the set of operators.   

The full product table of the operators is shown in Table 1. 
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  right 

መ ෝ݉ܫ    ෠ܺ ܯ෡  ෠ܲ  ෠ܴ  

le
ft 

መ ෝ݉ܫ መܫ  ෠ܺ ܯ෡  ෠ܲ  ෠ܴ  

ෝ݉  ෝ݉ መ ෠ܲܫ   ෠ܴ  ෠ܺ ܯ෡  
෠ܺ ෠ܺ ෠ܴ ܫመ ෠ܲ ෡ܯ   ෝ݉  

෡ܯ ෡ܯ   ෠ܲ ෠ܴ መ ෝ݉ܫ   ෠ܺ 
෠ܲ ෠ܲ ܯ෡  ෝ݉  ෠ܺ ෠ܴ  መܫ 
෠ܴ ෠ܴ ෠ܺ ܯ෡  ෝ݉ መ ෠ܲܫ   

 

Table 1.  The product table for the 6 operators above.  The operators ෠ܲ and ܴ ෠  are 
defined as ܲ ෠ = ෠ܺܯ෡, ෠ܴ = ෠ܺ ෝ݉ .  The convention is that the top row is on the right and 
the left column on the left in the products indicated; e.g. ܯ෡ ෠ܺ = ෠ܴ, ෠ܺܯ෡ = ෠ܲ. 

 
 

It is immediately clear that this set of 6 operators forms a group: the set is 

closed, it contains an identity element, all its elements have an inverse included, and 

they demonstrate associativity.  Furthermore, examination of the table immediately 

shows that it is isomorphic to the symmetric group ܵଷ, the group of permutations of 

three objects. Table 2 shows the 3x3 matrix representation of the group ܵଷ, with the 

one line notation of the operator effect, and the correspondence between the 

Möbius operators and the ܵଷ representation.  

One line 
Notation: 

(Permutation) 

Matrix 
Representation 

(left action 
convention) 

Möbius 
Operator 

123  
 መܫ

213  ෝ݉  

 

1 0 0
0 1 0
0 0 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

 

0 1 0
1 0 0
0 0 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
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෡ܯ  132  

321  ෠ܺ 

231  ෠ܲ 

312  ෠ܴ 

 

Table 2.  The 3x3 matrix representation of symmetric group ܵ ଷ and the 
corresponding Möbius operators. The one-line notation on the left shows the 
permutations.  

 

Note that while the operators themselves, which act on functions, depend on the 

number of variables since they define convolutions, their relationships do not.  Thus, 

the group structure is independent of the number of variables in the lattice.  For any 

number of variables the structure is simply the permutation group, ܵଷ.   

 

4.  Connections to the Deltas 

The differential interaction information and the symmetric deltas were defined 

in [4] as overall measures of both dependence and complexity (see definitions in 

Equations 8 and 9). We will now show the connection between these deltas and our 

operator algebra.  We will use the three-variable case to illustrate the connection. If 

the marginal entropies are identified with the function ݂ in Equation 12, and the 

interaction informations with ݃,  then the differential interaction information is 

identified with ℎ.  For the three-variable case these examples are shown using 

simplifed notation, 

 

1 0 0
0 0 1
0 1 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

 

0 0 1
0 1 0
1 0 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

0 1 0
0 0 1
1 0 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

 

0 0 1
1 0 0
0 1 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
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ℎ(1) = Δ(23;1),			ℎ(2) = Δ(13;2),			ℎ(3) = Δ(12; 3)  (16b) 

Simplifying the notation we can express the relations between these functions using 

the Möbius operator as  

Δ(߬;ܺ) = (ܺ)ܪ෡ܯ =  (16c)     (ܺ|߬)ܫ−

The full set of the lattice is ߬ ∪ {ܺ}	and the variable ܺ is singled out as in Equations 

11 and 16a.  Furthermore, the convolution takes place over the set ߬ ∪ {ܺ}.  

Equation 16c, if interpreted properly, provides a simple connection between the 

deltas and the Möbius operator algebra, and expresses a key relation (Theorem 1).  

We have proved the following theorem.  

Theorem 1.  The Möbius up-set operator acting on the join-irreducible elements of 

the lattice of marginal entropies generates the conditional interaction 

informations, the deltas, for the full set of variables of the lattice.  

Join-irreducible lattice elements are all those that cannot be expressed as the 

join, or union, of other elements.  In this case they are all the single variables.  Since 

the deltas are differentials of the interaction information at the top of the lattice (the 

argument of the function is the full set), their expression in terms of the join-

irreducible elements is the most fundamental form.  To illustrate the relation more 

concretely, Figure 4  shows the specific connection between the join-irreducible 

elements and deltas for the four-variable lattice.   
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Figure 4.  The four-variable lattice showing the 4 join-irreducible elements that 
generate the symmetric deltas as in Equation 16c.  Möbius function values are 
shown on the right, and the  red lines connect the elements of the delta function,  
Δ(234;1), which form a 3D-cube. 

 

A general statement of this connection emerging from this geometric picture is a 

general property of the algebraic structure of the subset lattice.   

Corollary:  The differential of one function on the lattice corresponds to the up-set 

operator on another function of the join-irreducible elements. 

Written in terms of the functions related by the inversions, and using the same 

set notation as above, ܺ indicating a join-irreducible element, we can state this 

general result as follows. 

If  ݃(߬) = ෝ݂݉(߬) and ܺ is a join-irreducible element of lattice, then 

(ܺ)෡݂ܯ = ℎ(߬; ܺ) = ݃(߬|ܺ)      (17) 

where the final term is a conditional form of the ݃  function in which ܺ  is 

instantiated.  This is defined as function over all ߬ for which ܺ ∈ ߬.  These deltas, and 

1234 

123 124 134 234 

12 13 14 23 24 34 

1 2 3 4 

0 

-1 
 
 
1 
 
 
-1 
 
 
1 
 
 
-1 

Join irreducible  
elements 
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delta-like functions more generally, are represented as convolutions over a lattice 

that is one dimension less than the  full variable set lattice.  

We have previously proposed the symmetric delta (the product of all variable 

permutations of the delta function, ℎ) as a measure of complexity, and of collective 

variable dependence [6].  The symmetric delta expression simply the product of the 

individual deltas is seen to be the product of the results of the up-set operator acting 

on the functions of all of the join-irreducible elements of the entropy lattice.  Note that 

by Equation 11 both the conditional entropies and conditional interaction 

informations, since they correspond to the differentials, imply a path independent 

chain rule.  Note that these kinds of differential functions include more than just 

those keyed on the join-irreducible elements as  shown in the next section.   

 

5.  Symmetries reveal a wide range of new relations 

The system of functions and operators defined in the previous section reveals a 

wide range of relationships.  Examination of Equation 11 and comparision with 16c 

shows that delta is also related to the differential entropy (defined by Equation 1) 

measuring the change in the entropy of a set when we consider an additional 

variable.  Applying the down-set operator to Equation 1, and using sets ߥ௡ and ߥ௡ିଵ 

as the upper bounds, gives us 

Theorem 2.  Given the definition of the differential entropy (Equation 1), and the 

definitions of the up-set and down-set operators:     

ෝ݉ܪߜ(ߥ௡) = ෝ݉൫ܪ(ߥ௡) − ൯(௡ିଵߥ)ܪ = (௡ߥ)ܫ − (௡ିଵߥ)ܫ = (௡|ܺ௡ߥ)ܫ−
ෝ݉ܪߜ(ߥ௡) = ൯(௡ܺ)ܪ෡൫ܯ

  (18) 

where ܺ௡ is the element that is the difference between the sets ߥ௡ and ߥ௡ିଵ.   

We can consider ߜ	as an operator, but note that it does not define a convolution 

over elements of the lattice as do the Möbius operators.  Considering  ߜ as an 

operator  we note that ߜ and ෝ݉  commute.  The duality between ܪ and ܫ implies a 

dual version of Equation 18 as well, which we will not derive.  If we apply other 
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operators to the expression in equaton 18 we find another set of relations among 

these marginal entropy functions.  For example, another remarkable symmetry 

emerges. 

(௡ߥ)ܪߜ = ෝ݉ܯ෡ܪ(ܺ௡) = ෠ܺ ෝ݉ܪ(ܺ௡) = ෠ܴܪ(ܺ௡)
(௡ܺ)ܪ = ෠ܲܪߜ(ߥ௡)

   (19) 

Equations 18 and 19 relate functions of the lattice elements to functions of join 

irreducible elements.  

There are further symmetries in this set of  information functions.  Consider the 

mapping diagram of Figure 3.  If we define a function which is simply the delta 

function with each lattice element mapped into its set complement, that is, acted on 

by the lattice inversion operator, from Equation 16c we have   

Φ ≡ ෠ܺΔ,				 ෠ܺ ෝ݉Φ = X෡mෝX෡Δ = H     (20) 

Then these functions occupy different positions in the mapping diagram as seen in 

Figure 5.  Several other such modifications can be generated by similar operations.   

 

Figure 5.  A simple modifcation of one of the functions by lattice inversion modifies 
the postion of functions in the mapping diagram.  The original diagram is on the left, 
the result of Δ modified by inversion is on the right.  Note that the idempotent 
property of ܯ෡  is applied to the Φ function relation. 

 

There are a large number of similar relations that can be generated by such 

considerations. 

There are other information-based measures that we can express using the 

operator algebra.  Because it is a widely used measure for multi-variable 
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dependence we will now examine the example of multi-information Ω defined by 

Equation 10. In terms of entropy functions on the lattice elements, Ω, as expressed 

in this equation, can be thought of as the sum of the join-irreducible elements, minus 

the top element or the join of the inclusion lattice.  To apply the down-set operator 

to the terms in Equation 10 we must carefully define the bounds of the convolutions.  

If we calculate the convolution over the Ω function, we have 

ෝ݉Ω(ߥ௡) =෍ ෝ݉ܪ(ܺ௜) − (௡ߥ)ܫ
௑೔

 

           (21) 

Since the upper bound of the down-set operator is defined as the argument set of 

the function, the down-set of a single variable function is the function itself  (since 

௜ܪ − 0 =   .௜).  Note that we are using the distributive property of the operator hereܪ

The application of the up-set operator to the multi-information function on the 

lattice, on the other hand, gives  us

(௡ߥ)෡Ωܯ   =෍Δ(ߥ௡ିଵ; ܺ௜) − (௡ߥ)ܪ
௑೔

            (22) 
 
 
Note that the multi-information is a composite function and therefore the results of 

the action of the (distributive) Möbius operators are also composite functions. 

 

6.  Relation to probability densities 

6a.  Conditional log Likelihoods and Deltas 

Writing the differential entropy in terms of the probability distributions, using the 

definitions of the joint entropies and the probability chain rule, gives 

(௡ߥ)ܪߜ = − 〈ln
Pr(ߥ௡)
Pr(ߥ௡ିଵ)

〉 = −⟨ln Pr(ܺ௡|ߥ௡ିଵ)⟩ =  (௡ିଵߥ|௡ܺ)ܪ

 
          (23a) 
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For simplicity of notation we define ߨas the expectation value on the right.  We 

have   

(௡ିଵߥ|௡ܺ)ߨ ≡ − 〈ln
Pr(ߥ௡)
Pr(ߥ௡ିଵ)

〉 = ⟨ln Pr(ߥ௡ିଵ) − ln Pr(ߥ௡)⟩ 

           (23b) 

From Equation 23 we see that ߨ is a conditional log likelihood function. By applying 

the down-set operator, ݉ෝ , to ߨ we generate some interesting relations.  As seen in 

Equations 18, the result of this operation is the delta, the conditional interaction 

information, 

ෝ݉ߨ(ܺ௡|ߥ௡ିଵ) = ෝ݉ܪߜ(ߥ௡) = (௡ܺ)ܪ෡ܯ = (௡ିଵ|ܺ௡ߥ)ܫ− = Δ(ߥ௡ିଵ; ܺ௡) (24) 

Expressing this in another way, using the group table, we have the expressions from 

Equation 19, and therefore 

(௡ିଵߥ|௡ܺ)ߨ = −〈ln Pr(ܺ௡|ߥ௡ିଵ)〉 = (௡ߥ)ܪߜ = ෠ܴܪ(ܺ௡)  (25a) 

The expected value of the log of the probability of a given, single variable, 

conditioned on the other variables in the subset, can therefore be expressed simply 

in terms of Möbius operators acting on the entropy functions of a lattice.  This is the 

result of this section, embodied in Theorem 3.   

Theorem 3. The symmetric delta is the product of all conditional log likelihood 

functions acted on by the down-set operator: 

Δഥ(ߥ௡) = ෑ Δ(ߥ௡ିଵ; ܺ௡)
all	choices	of	௑೙

= ෑ ෝ݉ߨ(ܺ௡|ߥ௡ିଵ)
all	choices	of	௑೙

 

                 (25b) 

 

The relation of the ߨ’s  to the deltas is clear here, and the subsets of the variables 

under consideration can then generate a series of conditional log likelihoods (CLL’s) 

for |ߥ௠| = ݉ {(௠ିଵߥ|௠ܺ)ߨ} ,  for ݉ ≥ 2.  The simplest approximation for 

dependencies among variables is realized in the case ݉	 = 	2, where CLL’s are 
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approximated by those with a single conditional variable.  In this case (using 

simplified notation)    

(1|2)ߨ = ଵଶܪ − ଵܪ
(1|3)ߨ = ଵଷܪ − ଵܪ

     (26a) 

and we have for the three-variable case 

Δ(23; 1) = ଵܪ ଵଶܪ− ଵଷܪ− ଵଶଷܪ+ = (1|2)ߨ− + (13|2)ߨ
Δ(23; 1) = (1|3)ߨ− + (12|3)ߨ  (26b) 

There are two different ways to express  deltas as sums of the ߨ’s.  Several 

conclusions follow from these considerations.  Since the group table for the Möbius 

operators exhibits several different, equivalent operators, ෠ܴ = ෝ݉ܯ෡ = ෠ܺ ෝ݉ = ෡ܯ ෠ܺ =
෠ܲଶ , we can express the correspondence between Δ and the CLL’s in several 

equivalent ways. These expressions then provide direct links with other information 

functions. 

 

6b. Towards prediction 

An approach to extracting relations predictive of a variable from the information 

in a data set is suggested by the above considerations.  The general problem can be 

defined as how to determine the “best” prediction formula for the value of one 

variable in the set,  say ܺଵ, from analysis of a data set of all variables.  We sketch the 

suggested approach here.  Step one in a high level description of the process, is to 

define the maximum degree of dependence to consider (the number of variables 

involved.)  Step two is to calculate the symmetric deltas to determine the set of 

variables that are dependent on one another [9].  Step three is to find the maximum 

expected CLL, from the set ൛ߨ(ܺଵ|ܺ௜), ൫ܺଵหܺ௜ߨ , ௝ܺ൯, ൫ߨ ଵܺหܺ௜ , ௝ܺ , ܺ௞൯… ൟ by calculating 

the expectations of the entropy differentials.  Note that the specifc, expected entropy 

differences tend to zero as the dependence of the single variable, ܺଵ, on the other 

variables increases.  Finally, once the “best” likelihood function is found, a predictive 

function is estimated based on the data: an estimate of the probabilities of ܺଵ 

conditioned on all the other variables of the set.  The general framework for 
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inference is clear.  This procedure is reminiscent of the Chow-Liu algorithm [12] 

which is entirely pairwise and based on mutual information.  Our approach is a 

direct way towards generating predictive rules from large, multivariable data sets.  

We will develop this approach further in a future paper.  

 

7.  Generalizing the Möbius operators 

The up-set and down-set operators, ܯ෡  and ෝ݉ , defined above, generate 

convolutions over chains from each element of the inclusion lattice to the top 

element (full set) or to the bottom element (empty set) respectively.  The 

convolutions are either “down”, towards subset elements, or “up” toward supersets.  

The chains over which the convolutions, sums of the product of function and Möbius 

function, are taken are clear and are defined by the subset lattice for these two 

operators.  No element is included more than once in the sum.  Moreover,  the sign 

of the Möbius function is the same across all elements at the same distance from the 

extreme elements. 

We can generalize the Möbius operators by defining the range of the 

convolution, the end elements of the paths, to be any pair of elements of the lattice, 

an upper and lower element, rather than the bounds of the lattice.  Two elements 

are required: the starting element, and an ending element.  The starting element 

may be determined by the argument of the function being operated on.  We can call 

the ending element a reference element and associate it with the operator. The 

specification of both the upper and lower element is essential.  Instead of the up-set 

operator, for example, with the full set ߥ as its reference element, we could 

designate an arbitrary subset element like {1,2} as the reference and thereby define 

another operator.  Consider now a lattice of the full set ߥ, where ߟ designates a 

reference element.   

Definition:  The generalized Möbius operator ܨఎ , acting on a function of a subset,  

݂(߬), ߬ ⊆  is defined by Equation 27, where the subsets of variables, ߫, ranges over  ,ߥ
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all of the shortest paths between ߬	and	ߟ, and the functions  ݂ (߫) only occur once in 

the sum, even if they are on more than one path. 

(߬)ఎ݂ܨ = ෍ (−1)|ఔ|ି|చ|݂(߫)
చ	on	all	shortest	paths
between	ఛ	and	ఎ

 

                  (27) 

There are often multiple shortest paths between any two elements in the lattice, 

since the subset lattice is a hypercube.  In this case, we are specifying the upper and 

lower elements by the reference and the element specified by the function.  The two 

extreme reference elements, the empty set and the full set, then yield the down-set 

and up-set  operators respectively  

଴݂ܨ = ෝ݂݉
ఔ݂ܨ =  ෡݂      (28)ܯ

The reference element ߟ establishes a relation between the lattice sums and the 

Möbius function.  It is the juxtaposition of the lattice, anchored at ߟ, to the Möbius 

function that defines the symmetries of the generalized Möbius operator algebra.  

Note that we now have the possibility of including elements that are not ordered 

along the paths by inclusion since the reference element can be chosen from any 

lattice element.  For example, the convolution between {1} and {2,3} for the 3D-cube 

lattice,  shows this clearly (see Figure 1) as it inclues {1,2}, {2} and the empty set. 

 

Definition: Given ߤ, ߟ ⊆  we define the complement generalized operator Möbius ߥ

operator as ܨ෨ఓ ≡ ෠ܺܨఓ ෠ܺ. 

The products of the generalized operators can easy be calculated for the 3- and 

4- element sets.  We can identify some similarities of these general operators to the 

operators ܯ෡  and ݉ෝ .  First, we note that the operators, ܨఓ , are all idempotent.  This is 

easy to calculate for the 3D and 4D case, and to derive using the relations indicated 

in Equation 27.  The idempotent property implies that there are pairs of functions 

that are related by each general Möbius operator – a generalized Möbius inversion 
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on the inclusion lattice, a generalized duality.  Furthermore, the products exhibit 

other familiar symmetries. The notable relationships that involve a subset and its 

complement are summarized in the following theorem. 

Theorem 4.  For all ߤ, ߟ ⊆  the following properties of the generalized Möbius ߥ

operator  and its complement hold:  

ఎܨఓܨ =  ෨ఓ         (29a)ܨ෨ఎܨ

෨ఎܨఓܨ =  ෨ఓ         (29b)ܨఎܨ

ఓܨ = ෨ఓ෥ܨ−          (29c) 

(෤ߤ)ఓ݂ܨ =  (29d)        (෤ߟ)ఎ݂ܨ

where ߤ෤ and ߟ෤ are set complements of  ߤ and ߟ correspondingly. 

Equation 29a is true since the products of the generalized Möbius operators 

involve the operator ෠ܺ, namely ܨఓܨఎ = ෠ܺܨఎܨఓ ෠ܺ, which in the geometric metaphor is 

like a rotation of the hypercube (inclusion lattice).  Applying Equation 29a to ܨఓܨ෨ఎ 

results in Equation 29b. The property shown in Equation 29c follows directly from 

the definition of ܨఓ and its complement. The proof of the last property (Equation 

29d) is direct.  Since the limiting elements of the convolution are a subset and its 

complement, it encompasses the whole lattice.  Thus ܨఊ݂(ߛ෤) for any subset ߛ	is seen 

to describe the convolution over all subsets of the entire lattice and therfore 

Equation 29d holds.   

 The full group structure of the general operator algebra is more complex 

than the group defined by the up-set and down-set operators as there are many 

more operators, defined by the full range of reference elements. (If ܰ is the number 

of subsets on the lattice there are ܰ − 1 down-set operators, while for the 

generalized case there are (ܰ − 1)ଶ operators.)   The symmetry of the subgroups 

determined by pairs of complementary subsets are preserved, remaining 

isomorphic to ܵଷ (seen to be true for the 3D, and 4D case by direct calculation, and it 

appears to be generally true, though we do not yet have a proof of the general case.)   
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The relations between these pairs of functions on the lattice is described by the 

diagram in Figure 6.  It appears that the sets of three functions, specific to a 

reference set ߟ, with the operators that map one into the other exhibit the same 

overall symmetries reflected in the group ܵଷ.  The pairs of operators identified with 

a subset and its complement are the key elements of the group.  This is because this 

particular combination of operator and function defines a convolution over the 

entire set, ߥThis identity therefore includes the specific up-set and down set 

relations, and is equal to the interaction information if ݂ is the entropy function.   

 

 
Figure 6.  Generalized Möbius operator relations.  A diagram of the relations among 
the functions as determined by the operators.  The upper two arrows represent the 
generalized Möbius inversion relations. The function ݃ఎ(߬) is the designation of 
the function created by the operator ܨఎ.  The ܵଷ structure is reflected in the 
similarity with the diagram of Figure 3.  Note that when ߟ = ∅	the figure becomes 
identical to Figure 3. 

 

We ask now if sums of such operator-function pairs can be used to decompose a 

convolution.  This decomposition issue can be addressed by asking this specific 

question: are there sums of operators acting on functions that add up to a given 

specific operator on another function? If this is possible how do we decompose such 

convolutions and what do they mean?  The simple decomposition of the hypercube 

into sub-lattices can be shown to be equivalent to the process of finding these 

convolutions, or operator decompositions.  We will not deal with the decomposition 

relations in a general dimension here, but rather demonstrate them for {1,2,3} and 

{1,2,3,4}.  First, let’s consider the 3D case.  There are three possible ways to 
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decompose the 3D-cube Hasse diagram into two squares (2D hypercubes), which is 

done by passing a plane through the cube parallel to the faces (see Figure 7) 

 
Figure 7. Decomposing the 3D-cube Hasse diagram into two squares (2D 
hypercubes), by passing a plane through the center of the cube three different ways. 

Considering one of these decompositions (the leftmost decomposition in Figure 7) 

results in the following  

଴ܨ ଵ݂ଶଷ = ଶܨ ଵ݂ଶଷ + ଴ܨ ଵ݂ଷ   (30) 

 

Each of the two terms on the right-hand side could be expressed in operator terms 

in eight ways (each of the four elements of the sub-lattice being a reference 

element). There are thus a total of 192 decompositions of the full 3-set convolution, 

64 per each of the three decompositions of the cube into two squares.  Note that 

each decomposition leads to the same set of functions, but it is a distinct operator 

expression.   

 

For the 4-set decomposition, there are four ways of decomposing the 4-hypercube 

into 2 cubes, so the total number of possible decompositions is 4 x 192 x 192 = 

147456. 
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8. Discussion 

Many diverse measures have been used in descriptions of order and dependence 

in complex systems and as data analysis tools [1-9].  While the mathematical 

properties and relationships among these information-related measures are of 

significant interest in several fields, there has been, to our knowledge, no systematic 

examination of the full range of relationships and symmetries, and no unification of 

this diverse range of functions into a single formalism as we do here.  Beginning 

with the duality relationships, based on Möbius inversions of functions on lattices, 

we define a set of operators on functions on subset inclusion lattices that map the 

functions into one another.  We show here that they form a simple group, 

isomorphic to the symmetric group ܵଷ.  A wide range of relationships among the set 

of functions on the lattice can be expressed simply in terms of this operator algebra 

formalism.  When applied to the information-related measures they can express a 

wide range of relationships among various measures, providing a unified picture 

and allowing new ways to calculate one from the other using the subset lattice 

functions. For example, we can express the conditional mutual information in the 

4D, {1,2,3,4} lattice as sums of convolutions of entropy functions with few terms for 

multiple 3D and 2D lattices, or create new information functions with specific 

symmetries and desired practical properties for a given system.  Much is left to 

explore in the full range of implications of this system, including algorithms for 

prediction from complex data sets, and other issues about how these functions may 

be used or computed. 

We can make also connections with any other areas where lattices are useful.  

Since any distributive lattice is isomorphic to the lattice of sets ordered by inclusion, 

all the results presented here apply to any system of functions defined on a 

distributive lattice [13,14], so this unification extends beyond the information 

measure functions.  Distributive lattices are widespread and include the following:  

every Boolean algebra is a distributive lattice; the Lindebaum algebra of most logics 

that support conjunction and disjunction is a distributive lattice; every Heyting 

algebra is a distributive lattice, every totally ordered set is a distributive lattice with 
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max as the join and min as the meet. The natural numbers also form a distributive 

lattice with the greatest common divisor as the meet and the least common multiple 

as the join (this infinite lattice, however, requires some extension of the equivalence 

proof.) 

The relationships shown here unify, clarify, and can serve to guide the use of a 

range of measures in the development of the theoretical characterization of 

information and complexity, and in the algorithms and estimation methods needed 

for the computational analysis of multi-variable data.  We have addressed the 

relationships between the interaction information, the deltas (conditional 

interaction information), and the underlying probability densities.  We find that the 

deltas can be expressed as Möbius sums of conditional entropies, the multi-

information is simply related by the operators to other information functions, and 

we made an initial connection  to the maximum entropy method.  We also note that 

Knuth has proposed generalizations of the zeta and Möbius functions that define 

degrees of inclusion on the lattices [11].  Knuth’s formalism, integrated with ours, 

could lead to a more general set of relations, and add another dimension to this 

theory by incorporating uncertainty or variance in the information-related 

measures.  This could be particularly useful in developing future methods for 

complexity descriptions and data analysis.  Since the information-related functions 

have been directly linked to interpretations in algebraic topology [15] it will also be 

interesting to explore the topological interpretation of the Möbius operators. 

From the simple symmetries of these functions and operators it is clear there is 

more to uncover in this complex of relationships.  The information theory-based 

measures  have a surprising richness and internal relatedness in addition to their 

practical value in data analysis.  While we have described here a systematic 

structure of relationships and symmetries, the full range of possible relationships, 

insights and applications using Möbius pairs of functions remains to be explored.   
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