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Abstract: The thermal lubrication of an entangled polymeric liquid in wall-driven shear flows
between parallel plates is investigated by using a multiscale hybrid method coupling molecular
dynamics and the hydrodynamics (i.e., the synchronized molecular dynamics method). The
temperature of the polymeric liquid rapidly increases due to viscous heating once the drive force
exceeds a certain threshold value. The rheological properties of the polymeric liquid drastically
change at around the critical drive force. In the weak viscous-heating regime, the conformation of
polymer chains is dominated by the local shear flow so that the anisotropy of the bond orientation
tensor grows as the drive force increases. However, in the large viscous-heating regime, the
conformation dynamics is dominated by the thermal agitation of polymer chains so that the bond
orientation tensor recovers more uniform and random structures as the drive force increases, even
though the local shear flows are further enhanced. Remarkably, these counter-intuitive transitional
behaviors give an interesting re-entrant transition in the stress–optical relation, where a linear
formalism in the stress–optical relation approximately holds even though each of the macroscopic
quantities behaves nonlinearly. The robustness of the linear stress–optical relation is also confirmed
in the spatiotemporal evolution at the hydrodynamic level.
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1. Introduction

Polymeric fluids exhibit complicated flow behaviors because the microscopic dynamics of
polymer chains are highly correlated with the global hydrodynamic transport. [1]. Especially, in
high-speed devices, the microscopic dynamics are significantly affected by viscous heating because
the polymeric fluid has a large Prandtl number, so the microscopic dynamics and the hydrodynamic
heat and momentum transports are mutually correlated. Predicting the microscopic dynamics and the
macroscopic thermal flows in high-speed devices is challenging from both scientific and engineering
points of view. Computer simulations are expected to be useful to solve these mutually-correlated
multiscale systems.

Multiscale simulations to tackle the flow behaviors of complex fluids have been developed by
various researchers. The CONNFFESSIT approach was first proposed for polymeric liquids by Laso
and Öttinger [2–4], where the local stress in the fluid solver is calculated by a microscopic simulation
without using any constitutive relations. The strategy exploited in the CONNFFESSIT approach is also
introduced into heterogeneous multiscale modeling (HMM), which was proposed by E and Enquist [6].
HMM has been applied to various problems [7–9]. The equation-free multiscale computation proposed
by Kevrekids et al. is based on a similar idea, and has been applied to various problems [10,11]. De
et al. proposed the scale-bridging method, which succeeded in reproducing the memory effect of
a polymeric liquid correctly and demonstrated the nonlinear viscoelastic behavior of a polymeric
liquid in slab and cylindrical geometries [12,13]. The multiscale simulation of polymeric flows with
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the advection of memory in two and three dimensions was developed by Murashima and Taniguchi
[14–16]. Noise reduction algorithms in filtering the microscopic particle-based simulation data in
hybrid multiscale moedling were also investigated in Ref. [17].

We have also developed multiscale simulations which couple the molecular dynamics and
hydrodynamic transports. The method was first developed for a simple Lennard-Jones fluid [18] and
subsequently extended to polymeric liquids with the memory effect [19–22]. Recently, we proposed the
synchronized molecular dynamics (SMD) method for thermal lubrication flows of polymeric liquids,
in which the local viscous heating is autonomously generated in the local MD cell according to the
local shear flow. The local MD cells are also synchronized to satisfy the global heat and momentum
transports [23–25].

In this paper, we tackle the thermal lubrication of entangled polymer chains by using the SMD
method (we only considered short polymer chains in the previous studies). The spatio-temporal
dynamics of entangled polymer chains in local fluid elements under high-speed lubrications is
investigated in detail. In the following, we first describe the problem and the model polymeric
liquid considered in this paper. Here we also clarify the intrinsic properties in the relaxation dynamics
of the entangled polymer chains in comparison to those described by the reptation theory [26]. The
SMD method is described in Section 3 and the results and their discussion are given in Section 4.
Finally we give a brief summary.

2. Problem

(a) Geometry of problem (b) Time marching scheme

Figure 1. Schematics of (a) the geometry of the problem and (b) the time marching scheme of
synchronized molecular dynamics simulation.

2.1. Geometry

We consider a polymeric liquid confined between parallel walls, as in Figure 1. The upper wall
starts to move in the x-direction at time t = 0 by an applied shear stress pw, while the temperature of
the walls Tw is kept constant.

The polymeric liquid is initially in a quiescent state with uniform density ρ0 and temperature
T0, where the initial temperature of the polymeric liquid is the same as the wall temperature (i.e.,
T0 = Tw).

The polymeric liquid starts to deform the quiescent state at t = 0 and forms non-uniform
distributions of velocity and temperature via the heat and momentum transfers described by

ρ0
∂vx

∂t
=

∂pxy

∂y
, (1a)

ρ0
∂e
∂t

= pxyγ̇ + λ
∂2T
∂y2 , (1b)
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Figure 2. (a) The time-correlation function of the end-to-end vector of polymer chain C(t) defined in
Equation (4) and (b) the stress relaxation function G(t) defined in Equation (5). In (a), the blue dashed
line shows the theoretical formalism of the reptation dynamics with the relaxation time td = 4.4× 105.
In (b), the theoretical formalisms of the stress relaxation function for the Rouse dynamics, GR(t) in
Equation (7), and for the reptation dynamics, Grep(t) in Equation (8), are also plotted.

where vα is the velocity, pαβ is the stress tensor, e is the internal energy per unit mass, and γ̇ is the shear
rate (i.e., γ̇ = ∂vx/∂y). Hereafter, the subscripts α, β, and γ represent the index of Cartesian coordinates
(i.e., {α, β, γ} ∈ {x, y, z}). Here, we assum that the macroscopic quantities are uniform in the x and z
directions, ∂/∂x = ∂/∂z = 0, and the density of the polymeric liquid is constant. Fourier’s law for heat
flux with a constant and uniform thermal conductivity λ is also considered in Equation (1b).

We also consider the non-slip and non-jump boundary conditions of velocity and temperature for
Equation (1). That is, the velocity and temperature of the polymeric liquid on the wall are the same as
those of the wall.

2.2. Model Polymeric Liquid

The polymeric liquid is composed of so-called Kremer–Grest chains of 250 beads, where each
bead particle interacts via the repulsive part of the Lennard-Jones potential,

ULJ(r) =

{
4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ ε, (r ≤ 21/6σ),

0, (r ≥ 21/6σ),
(2)

and consecutive beads on each chain are connected by an anharmonic spring potential,

UF(r) = −
1
2

kcR2
0 ln

[
1−

(
r

R0

)2
]

, (3)

with kc = 30ε/σ2 and R0 = 1.5σ [27]. Hereafter, unless otherwise stated, we measure the physical
quantities with the units of length σ, time

√
mσ2/ε, and temperature ε/kB, where m is the mass of the

bead particle and kB is Boltzmann’s constant.
In this study, we only consider a polymeric liquid with the initial density ρ0 = 0.85 and initial

temperature T0 = 0.4. Note that the wall temperature Tw = 0.4 and the number of beads in each
polymer chain Nb = 250 are fixed. With this bead number Nb = 250, the model polymeric liquid
shows the characteristic behaviors of entangled polymer chains in the relaxation dynamics.
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Figure 2 shows the normalized time-correlation function of the end-to-end vector of polymer
chain C(τ), which is calculated as

C(τ) =

〈
P(τ + t0) · P(t0)

〉
〈
|P(t0)|2

〉 , (4)

and the stress relaxation function G(τ), which is calculated as

G(τ) =
T0

V
pxy(τ + t0)pxy(t0) (5)

for the present model polymeric liquid. Here, P(t) represents end-to-end vectors of each polymer
chain, pxy(t) is the macroscopic shear stress, which is the average of the microscopic shear stresses of
each bead particle in the simulation box, and V is the volume of the simulation box. We also write
X(t0) as the average of X with respect to t0 and 〈X〉 as the ensemble average of X over all chains.

In Figure 2a , our numerical result of C(t) is compared with a theoretical formalism, which is
obtained in both the Rouse dynamics and the reptation dynamics,

Cr(τ) = ∑
oddp

8
π2 p2 exp(−p2τ/τd), (6)

where the summation is over odd p and 1 ≤ p ≤ Nb − 1.[26]
The relaxation time τd = 4.4× 105 is measured by fitting Equation (6) with our numerical result

at τ = τd (i.e., Cr(τd) = C(τd)). We note that the relaxation time τd corresponds to the disengagement
time τd of entangled polymer chains if we assume that the time correlation function is described by the
reptation dynamics.

In Figure 2b, the numerical result of the stress relaxation function G(τ) is compared with the
theoretical formalisms for the Rouse dynamics GR(τ) and for the reptation dynamics Grep(τ) which
are written, respectively, as

GR(τ) =
ρ0T0

Nb

Nb−1

∑
p=1

exp(−p2t/τRN2
b ), (7)

and
Grep(τ) =

ρ0T0

Ne
Cr(τ). (8)

Here, the Rouse relaxation time τR = 1.0 × 105 and the average number of beads between
entanglements Ne = 175 are estimated from our numerical results. Numerical results of τd and
Ne for the Kremer–Grest chains with different parameters can be found in Ref. [29] and the references
therein.

The average number of beads between entanglements is measured by fitting the formula
Equation (8) with our numerical result at τ = τd. The Rouse relaxation time τR is calculated by
the formula τd/τR = 3Nb/Ne.

In Figure 2, it can be seen that the relaxation dynamics of the model polymeric liquid is
well-described by the reptation dynamics for entangled polymer chains at long times (i.e., τ > τr). The
transition of the Rouse dynamics to the reptation dynamics can also be clearly observed in the stress
relaxation function.

The viscosity of the model polymeric liquid in the quiescent state η0 = 980 is calculated from the
stress relaxation function G(τ) as η0 =

∫ τ∞
0 G(τ)dτ. The integral with respect to τ is almost saturated

at τ∞ = 2× 106 and the deviation of η0 in the period for τ∞ = 2× 106 to 5×106 is at most 8%.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0223.v1

Peer-reviewed version available at Polymers 2019, 11, 131; doi:10.3390/polym11010131

http://dx.doi.org/10.20944/preprints201811.0223.v1
http://dx.doi.org/10.3390/polym11010131


5 of 14

3. Simulation Method

We investigate the thermal lubrication of the polymeric liquid composed of entangled chains
by using the synchronized molecular dynamics (SMD) simulation [23]. In the SMD method, the
gap between the upper and lower walls is divided into M mesh intervals with a uniform width of
∆y = H/M, and the local velocities are calculated at each mesh node by using a usual finite volume
scheme of Equation (1a). The local shear stresses pxy(y) are calculated in the sub-MD cells associated
with each mesh interval according to the local shear rates by using the NEMD simulation with the
SLLOD algorithm [30,31]. The MD simulations are performed in a time interval ∆t, and the time
integrals of the instantaneous shear stresses Pxy in each MD cell are used to update the local velocities
at the next time step in accordance with the macroscopic momentum transport Equation (1a),

vn
x(y) = vn−1

x (y) +
∂

∂y

∫ n∆t

(n−1)∆t
Pxy(τ; γ̇n−1(y))dτ. (9)

Here, the superscript n represents the time step number, Pxy(τ; γ̇n−1(y)) is the instantaneous shear
stress in the NEMD simulation with the shear rate γ̇n−1(y), and τ is the time in the NEMD simulation.

We note that he final configuration obtained for the molecules in each MD cell at each time step
n∆t is retained as the initial configuration for the MD cell in the next time step (n + 1)∆t. Thus, we
trace the complete temporal evolution of the microscopic configurations with a microscopic time step
so the memory effects can be reproduced correctly.

MD cell

Global mesh

T n T ′n✲

∫
T ds

calculate δK

δK
ds

∆t

T n−1 T n+1

rescaling

Figure 3. Schematic for the calculation of the temperature in the synchronized molecular dynamics
(SMD) method. The upper side represents the progress on the global mesh system, and the lower side
represents the progress at each MD cell. The time-step size in the MD cell, ds, is much smaller than that
in the global transport ∆t.

The local viscous heating caused by shear flow (i.e., the first term of Equation (1b)), is
autonomously calculated in the NEMD simulations without using any thermostat algorithms, but at
each time interval ∆t, the instantaneous kinetic energies of the molecules per unit mass K in each MD
cell are corrected according to the heat fluxes between neighbor MD cells. That is,

δK =
λ

ρ0

∂2

∂y2

∫ n∆t

(n−1)∆t
T (s)ds, (10)

where T is the instantaneous temperature of the MD cell and s is the time progress in the MD cell. That
is, the molecular velocities in the MD cell are rescaled according to the corrected temperature T ′, i.e.,

T ′ = T +
2
3

δK, (11)

at each time interval ∆t. See also Figure 3.
Thus, the MD simulations assigned to each fluid element are synchronized at time intervals of

∆t to satisfy the macroscopic heat and momentum transport equations, as illustrated in Figure 1(b).
Note that the temperature rise caused by local viscous heating is calculated autonomously in the MD
simulation, and satisfies the macroscopic energy balance of Equation (1b).
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4. Results and Discussion

The SMD simulation is performed for the geometry shown in Figure 1. At time t = 0, the shear
stress pw is applied on the upper wall and the upper wall starts to move in the x direction. The upper
wall drives the polymeric liquid, and spatial profiles of the velocity vx(y), temperature T(y), and
polymer conformation (i.e., the bond-orientation tensor) Qαβ(y) are created between the walls.

The local bond-orientation tensors Qαβ(y) are calculated in each MD cell as

Qαβ =
1

Np
∑

chains

1
Nb − 1

Nb−1

∑
j=1

bjα

bmin

bjβ

bmin
, (12)

where Np is the number of polymer chains in each MD cell, bj for 1 ≤ j ≤ Nb − 1 is the bond vector
between consecutive beads in the same chain, and bmin is the distance at which the sum ULJ(r) +UF(r)
has a minimum (i.e., bmin ' 0.97).

The initial density and temperature, ρ0 = 0.85 and T0 = 0.4, the wall temperature Tw = 0.4, and
the channel width H = 5000 are fixed while the drive force on the upper wall is varied as pw = 0.0005,
0.001. 0.002. 0.005, 0.01, 0.02, 0.03, 0.05, 0.07, and 0.09.

In the numerical scheme, the number of mesh intervals M = 32, that is, ∆y = 156.25, the time
interval in Equation (9) ∆t = 1, the time-step size of MD simulation ∆tMD = 0.0025, and the number
of polymer chains in each MD cell Np = 32 are also fixed. Thus, Nb × Np = 8000 bead particles are
included in each MD cell with the side length lMD = 21. We also fix the thermal conductivity in
Equation (10) as λ/ρ0 = 100.

4.1. Spatial Distribution

Figure 4 shows the spatial distribution of the velocity, temperature, shear stress, and bond
orientation in the stationary state. The local quantities are time-averaged over t = [1× 106, 1.5× 106]

for pw < 0.01 and t = [1.3× 106, 1.5× 106] for pw ≥ 0.01.
It can be seen that the local shear stresses are spatially uniform and coincid with the drive forces

pw on the upper wall. This confirms that the momentum transport is balanced so that the macroscopic
quantities are in the stationary state.

For small drive forces (i.e., pw ≤ 0.01), the temperature and bond orientation are almost uniform
and the velocity is linear. On the contrary, for large drive forces (i.e., pw ≥ 0.03), the spatial variations
of the temperature and bond orientation become remarkable and the velocity profile becomes S-shaped.
This velocity profile indicates that shear thinning occurrs near the walls.

The temperature rise in the middle of the channel due to viscous heating, and this affects the
local polymer conformation in the bond orientation. Interestingly, the local bond orientation Qxy

monotonically increases as the drive force pw in the vicinities of walls while, in the middle of the
channel, it behaves non-monotonically against the drive force. This nonlinear behavior is related to the
viscous heating.

4.2. Gross Rheological Properties

In this subsection we consider the gross rheological properties of the lubrication system (i.e., the
apparent viscosity η̄), which can be measured from the upper-wall velocity and drive force, the spatial
average of the temperature T̄, and the spatial average of the bond orientation Q̄αβ.

We define the gross shear rate Γ̇ by Γ̇ = vw/H, where vw is the upper-wall velocity. Because
we consider the non-slip boundary condition, the upper-wall velocity is obtained from the velocity
of polymeric liquid at y = H (i.e., vw = vx(y = H)). Then, the apparent viscosity is calculated as
η̄ = pw/Γ̇.

Figure 5 shows the apparent viscosity η̄ and the spatial averages of temperature T̄ and bond
orientation of polymer chains Q̄αβ. The apparent viscosity approaches the intrinsic viscosity η0 in
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Figure 4. Spatial distributions of the (a) velocity, (b) temperature, (c) shear stress, and (d) bond
orientation in the stationary state. The results for the different drive forces pw = 0.005, 0.01, 0.03, and
0.05 are shown.
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Figure 5. (a) The apparent viscosity η̄ and the spatial average of the local temperature T̄ against the
gross shear rate Γ̇, which is defined by the ratio of the upper-wall velocity vw to the channel width H,
Γ̇ = vw/H. (b) The spatial average of the local bond-orientation tensor Q̄αβ against the gross shear
rate Γ̇. The viscosity of the model polymeric liquid in the quiescent state η0 is also shown in (a). The
rate of disengagement of entangled polymer chains in the reptation dynamics τ−1

d are also shown in (a)
and (b).
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the quiescent state as the gross shear rate Γ̇ decreases. When the gross shear rate exceeds the inverse
of the disengagement time of the entangled polymer chains (i.e., Γ̇ > τ−1

d ), shear thinning behavior
is observed, where the index of the power-law approximation is −0.6. However, the shear thinning
behavior ends at Γ̇ ' 5× 10−4 and, unexpectedly, even a weak shear thickening behavior is observed
for Γ̇ > 10−3. The weak shear thickening behavior is obviously related to the rapid temperature rise
due to the viscous heating in the large Γ̇ regime. We note that the shear thickening behavior was not
observed in the previous study for the super-cooled polymeric liquid composed of short chains, where
the shear thinning behavior is even enhanced when the rapid temperature rise due to the viscous
heating occurrs.

The transitional behavior triggered by the viscous heating is also observed in the bond orientation
of polymer chains. It can be seen from the bond-orientation tensor that polymer chains are stretched in
the x direction, and the xy component of the bond-orientation tensor linearly increases as the gross
shear rate when the gross shear rate is in the regime Γ̇ . 5× 10−4. However, when Γ̇ > 10−3, the
anisotropic conformation of polymer chains starts to be recovered to the uniform random conformation.

0 0.005 0.01
0

0.01

0.02

0.03

0.04

In
cr
ea
sin

g
pw

re-entrant

Figure 6. The stress–optical relation pw/T̄ vs. Q̄xy. The drive force pw increases in the direction of the
arrow. The re-entrant transition of the linear stress–optical relation is observed at large gross shear
rates.

Figure 6 shows the stress–optical relation for the present problem. When the drive force pw is
small, the bond orientation Q̄xy is linearly proportional to the drive force pw, while the temperature is
almost constant. Thus, a linear stress–optical relation is observed for Q̄xy < 0.005. As the drive force
pw increases, the results deviate from the linear relation.

However, surprisingly, the re-entrant transition of the linear stress–optical relation is observed at
large drive force, where the temperature T̄ rapidly increases and the bond orientations are recovered
to be uniform and random. We note that the re-entrant transition of the linear stress–optical relation
was also observed in the previous study for short polymer chains. These results confirm the robustness
of the linear stress–optical relation of the polymeric liquid.

4.3. Time Evolution

Figure 7 shows the time evolutions of local velocities vx, temperatures T, shear stresses pxy, and
bond orientations Qxy at different positions for the drive force pw = 0.01. It can be seen that the local
shear stresses and bond orientations start to increase in the order of upper to lower positions because
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Figure 7. Time evolutions of (a) local velocity, (b) temperature, (c) shear stress, and (d) bond orientation
for the drive force pw = 0.01. The upper-wall velocity vw and local velocities at y = 2500 and 625 are
shown in (a). The local temperatures, local shear stresses, and local bond orientations at the upper (y
= 4453), middle (y = 2423), and lower (y = 547) regions between the walls are shown in (b), (c), and
(d), respectively. The vertical dashed line on the horizontal axis shows the disengagement time of
entangled polymer chains in the quiescent state.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0223.v1

Peer-reviewed version available at Polymers 2019, 11, 131; doi:10.3390/polym11010131

http://dx.doi.org/10.20944/preprints201811.0223.v1
http://dx.doi.org/10.3390/polym11010131


11 of 14

the momentum is conducted from upper to lower positions. The shear stress and bond orientation
increase rapidly and have local maxima at t ∼ 105.

Yielding behaviors are clearly observed in the local shear stresses and bond orientations in
105 . t . τd. After the yielding, the velocity and temperature increase rapidly while the shear stress
and bond orientation only vary slightly. It should be noted that the behaviors of the shear stress and
bond orientation are quite similar to each other at each local position.
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Figure 8. Time evolutions of (a) local velocity, (b) temperature, (c) shear stress, and (d) bond orientation
for the drive force pw = 0.05. See also the caption in Figure 7.

Figure 8 shows the time evolutions of local velocities, temperatures, shear stresses, and bond
orientations for the drive force pw = 0.05. Remarkable yielding behaviors are observed in the shear
stress and bond orientation at the upper and lower positions (i.e., near the walls), where the local shear
rates are very large (see also Figure 4). The local maxima are reached in the order of upper to lower
positions, and the times to reach the local maxima are shorter than those in the case pw = 0.01 (see
Figure 7).

After the yielding, the velocity and temperature start to increase rapidly. This feature is also
seen in Figure 7. However, the yielding behaviors of the shear stress and bond orientation are quite
different from each other. The local shear stresses increase even after the yielding, and converge to the
uniform value pxy = pw while the local bond orientation decrease at the upper and middle positions
but increase at the lower position.

The increase of shear stress after the yielding is highly correlated to the increase of temperature.
This can be seen in Figure 9, where the time evolutions of the local shear stress divided by the local
temperature pxy/T are shown. Surprisingly, it can be seen in comparison with Figure 8d that the time
evolutions of pxy/T are similar to those of the bond orientations Qxy at each position.
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Figure 9. Time evolution of the local shear stress (shown in Figure 8c)) divided by the local temperature
(shown in Figure 8b), pxy/T for pw = 0.05.
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Figure 10. (a) Time evolutions of the spatial averages of the local shear stresses divided by the
temperatures p̄xy/T̄ and (b) the spatial averages of the local bond orientations Q̄xy for different drive
forces pw.
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Figure 10 shows the relations between p̄xy/T̄ and Q̄xy, where the spatial averages are considered,
for different drive forces pw. It can be seen that for a small drive force (i.e., pw = 0.01), both behaviors
are almost synchronous. Even for large drive forces, the behaviors are similar to each other. These
facts demonstrate that the linear stress–optical relation shown in Figure 6 approximately holds even
locally and instantaneously at the hydrodynamic level.

5. Summary

We investigate the thermal lubrication of an entangled polymeric liquid in wall-driven shear
flows between parallel plates by using the SMD method. The model polymeric liquid shows the
characteristic behaviors of entangled polymer chains in the relaxation dynamics. That is, the transient
behavior from the Rouse dynamics to the reptation dynamics is clearly observed in the stress relaxation
function, as can be seen in Figure 2.

In the lubrication system, the temperature of the polymeric liquid increases in the middle of
the channel due to viscous heating. The spatial profiles of other macroscopic quantities become also
heterogeneous. The viscous heating becomes rapidly significant once the drive force exceeds a certain
threshold value (i.e., pw & 0.02), as can be seen in Figure 4.

The gross rheological properties are also affected by the viscous heating. As can be seen in
Figure 5a, the shear viscosity shows shear thinning behavior in the weak viscous-heating regime,
while in the strong viscous-heating regime, it shows a weak viscous thickening behavior related to
the rapid temperature rise. This behavior is quite different from that observed in the previous study,
where a supercooled polymeric liquid composed of short chains was considered. In the previous study,
the shear thinning behavior was further enhanced when the temperature rapidly increased in the
strong viscous-heating regime. The physical mechanism for the qualitative different behaviors is not
addressed in this paper.

Another remarkable observation is the transitional behavior of the conformational dynamics of
polymer chains shown in Figure 5b. The transition is also triggered by the viscous heating. In the
weak viscous-heating regime, the conformation of polymer chains is dominated by the local shear flow,
so that the anisotropy of the bond orientation grows as the drive force increases. Surprisingly, in the
strong viscous-heating regime, the conformation dynamics is dominated by the thermal agitation of
polymer chains rather than the local flow field, so that the bond orientation tensor recovers the uniform
random structure as the drive force increases, even though the local shear flow is further enhanced.

This counter-intuitive transitional behavior produces an interesting re-entrant transition in the
stress–optical relation shown in Figure 6. The linear stress–optical relation shown in Figure 6 also
approximately holds even locally and instantaneously at the hydrodynamic level. The robustness of
the linear stress–optical relation can be observed in Figures 7–10.

The physical mechanism of the viscous-heating-induced transitional behavior in the entangled
polymeric liquids will be addressed in detail in future studies.
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