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Abstract 

Full waveform (FW) LiDAR holds great potential for retrieving vegetation structure parameters at 

a high level of detail, but this prospect is constrained by practical factors such as lack of available 

handy processing tools and technical intricacy of waveform processing. This study introduces a 

new product, named the Hyper Point Cloud (HPC) derived from FW LiDAR data, and explore its 

potential applications such as tree crown delineation using the HPC-based intensity and percentile 

height (PH) surfaces, which show a promising solution to the constraints of using FW LiDAR data. 

Results of the HPC present a new direction to handle FW LiDAR data and offer prospects for 

studying the mid-story and understory of vegetation with high point density (~ 182 points/m2). The 

intensity-derived digital surface model (DSM) generated from the HPC shows that the ground 

region has larger maximum intensity (MAXI) and mean intensity (MI) than the vegetation region 

while having smaller total intensity (TI) and number of intensities (NI) at the given grid cell. Our 

analysis of intensity distribution contours at individual tree level exhibit similar patterns, indicating 

that the MAXI and MI are decreasing from the tree crown center to tree boundary while a rising 

trend is observed for TI and NI. These intensity variable contours provide a theoretical justification 

for using HPC-based intensity surfaces to segment tree crowns and exploit their potential for 

extracting tree attributes. The HPC-based intensity surfaces and the HPC-based PH Canopy Height 

Models (CHM) demonstrate promising tree segmentation results comparable to the LiDAR 

derived CHM for estimating tree attributes such as tree locations, crown widths and tree heights. 

We envision that products such as the HPC and the HPC-based intensity and height surfaces 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0222.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Remote Sens. 2018, 10, 1949; doi:10.3390/rs10121949

http://dx.doi.org/10.20944/preprints201811.0222.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/rs10121949


introduced in this study can open new perspectives to use FW LiDAR data and alleviate the 

technical barrier of exploring FW LiDAR data for detailed vegetation structure characterization.  

Keywords: hyper point cloud (HPC); HPC-based intensity surface; percentile height; gridding; 

full waveform LiDAR; tree segmentation; vegetation structure  

1 Introduction 

Light Detection and Ranging (LiDAR) remote sensing has demonstrated its advantages over 

traditional remote sensing (e.g. multispectral and radar) for forest inventory and vegetation 

structure characterization (Dubayah et al., 2010; Falkowski et al., 2009; Lefsky et al., 2002; 

Wulder et al., 2008; Zhao et al., 2009). With technological advances, commercial airborne LiDAR 

data such as small footprint full waveform (FW) LiDAR data have become available to wider 

remote sensing and ecological communities. Compared to conventional LiDAR systems, FW 

LiDAR can record the whole echo scattered from intercepted objects to inform their spatial 

arrangements (Chauve et al., 2009; Drake et al., 2002; Mallet and Bretar, 2009; Wagner et al., 

2006). Theoretically, such an advantage can enable FW LiDAR systems to better characterize 

vegetation structure with fine details. Past experience of FW LiDAR applications has also 

demonstrated their superior capacities for measuring vegetation structure (Hancock et al., 2017; 

McGlinchy et al., 2014; Reitberger et al., 2008; Zhou and Popescu, 2017). Yet, FW LiDAR remote 

sensing of vegetation structure has not reached an as well-established stage as the discrete-return 

(DR) LiDAR remote sensing. Developing alternative ways to analyze FW LiDAR data in relevant 

applications are critical to facilitating the widespread use of FW LiDAR data, as well as improving 

the accuracy of characterizing the three-dimensional structure of vegetation. 

Increased availability of FW LiDAR data over the past decades has spurred various applications 

targeted at estimating vegetation structural parameters and biomass through decoding the structural 

information inherent in waveforms (Allouis et al., 2013; Cao et al., 2014a; McGlinchy et al., 2014; 

Reitberger et al., 2009). Early applications of FW LiDAR data mainly focus on estimating 

elevation, canopy height, crown depth, canopy cover and biomass at the footprint level over large 

scale using large-footprint profilers such as the Laser Vegetation Imaging Sensor (LVIS) and the 

Geoscience Laser Altimeter System (GLAS) (Drake et al., 2002; Harding and Carabajal, 2005; 

Lefsky et al., 2005). More recent applications of FW LiDAR centered on individual tree analyses 

with small-footprint FW LiDAR data such as understory detection (Anderson et al., 2016), stem 

volume estimation (Yao et al., 2012), individual tree detection and tree species classification with 
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advanced statistical methods (Heinzel and Koch, 2011; Zhou et al., 2017a). There are also some 

studies that employed FW LiDAR to extract canopy fuel parameters (Hermosilla et al., 2014), 

classify land cover (Wang and Glennie, 2015) and predict biomass (Babcock et al., 2016; Cao et 

al., 2014a; Finley et al., 2013) with the synthetic use of other remote sensing data. These studies 

have accentuated the great potential of FW LiDAR for characterizing vegetation structure and 

demonstrate their advantages compared to DR LiDAR data. Despite the envisioned advantages, 

fewer practical FW LiDAR applications are available as compared to DR LiDAR applications. A 

notable challenge of FW LiDAR data application is related to the technical barrier such as 

complicated processing steps or approaches and the lack of available software tools for handling 

large data volume (Anderson et al., 2016; Mallet and Bretar, 2009). Moreover, currently available 

tools or software for LiDAR data analysis are primarily oriented for processing point cloud data 

while the commonly available FW LiDAR data are stored in the wave format. This conflict 

essentially makes FW LiDAR data become more difficult to adopt than DR LiDAR data, but it 

also leaves us considerable room to further investigate possible approaches for interpreting 

information from FW LiDAR data. In addition, directly visualizing complete FW LiDAR data is 

still hardly available to the remote sensing and ecological communities.  

Current endeavors of FW LiDAR data processing can mainly be categorized into two types. First, 

part of waveform signals that represent objects are converted into points through the 

decomposition or deconvolution methods using dedicated algorithms and functions (Roncat et al., 

2011; Wu et al., 2011; Zhou et al., 2017b). Simultaneously, these methods could render us 

additional information such as echo widths, the number of peaks and amplitudes for corresponding 

peaks, which provide valuable insights into vegetation structure characterization and dynamics 

(Anderson et al., 2016; Reitberger et al., 2008; Roncat et al., 2008). Essentially, this approach 

treats FW LiDAR data as DR LiDAR data to extract useful metrics for the subsequent analysis. 

Despite more information with higher density point cloud has been obtained with this approach as 

compared to DR LiDAR data, the intensity information embeds in waveforms which is the most 

conspicuous advantage of FW LiDAR data is still insufficiently studied. Through this intensity 

information, we can gain the unique insight into the energy or intensity distribution of vegetation 

and individual trees, but it is rarely being investigated. To make the most use of information raw 

waveform contained and enable practitioners to easily adopt FW LiDAR data, we delivered a new 

concept or product named the Hyper Point Cloud (HPC) with a density approximately 20 times 
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that of DR LiDAR data through directly transforming all waveform intensities into points with the 

aid of georeferenced data. This process will be detailed later in Section 2.3.1; Second, the other 

type of FW LiDAR data processing directly extracts vegetation’s vertical information from 

waveforms as waveform signatures or features for possible applications. Their effectiveness has 

been demonstrated in previous studies (Drake et al., 2002; Hermosilla et al., 2014; Zhou et al., 

2017a). This second concept was first used in the large-footprint waveform and it was introduced 

into the small-footprint waveform recently with the aid of tree crown boundary. The main reason 

for the necessity of tree crown boundary is that an individual small-footprint waveform only 

captures a small portion of tree crowns intercepted by the laser beam (Zhou et al., 2017a). More 

useful and representative vegetation information can be extracted through employing all 

waveforms within the tree crown boundary rather than only using an individual waveform as the 

large-footprint waveform. Actually, the demand for additional information such as tree crown 

boundary gives rises to another concern of directly using small-footprint FW LiDAR data. The 

waveform decomposition needs to be done to obtain the Canopy Height Model (CHM) as the input 

to tree crown segmentation, which possibly requires users to have a deep understanding of 

complicated waveform processing methods and precludes the practitioners’ willingness to explore 

FW LiDAR data’s potential. Therefore, we introduced the CHM-like products derived from the 

HPC without the aid of dedicated waveform processing algorithms, namely the HPC-based 

intensity and percentile height (PH) surfaces, for tree segmentation and further explored their 

potential applications.  

This study mainly aims to propose a new and convenient way to visualize and process FW LiDAR 

data and explore their potential for characterizing vegetation structure. More specifically, we 

attempted to: (1) introduce a new concept or product, named the HPC, to relax subsequent FW 

LiDAR data analysis through converting all waveforms into points that is easy to reconcile with 

existing LiDAR processing tools well known by practitioners; (2) exemplify potential applications 

of the HPC such as the HPC-based PH CHMs and the HPC-based intensity surfaces for tree crown 

segmentation by exploring height and intensity information inherent in waveforms; and (3) 

evaluate the effectiveness of the HPC-based surfaces for estimating fundamental tree dimensional 

variables such as tree location, crown width and tree height. The logic of these three objectives is 

that we start from proposing a new product, the HPC, and then explore its applications such as the 

HPC-based height and intensity surfaces in a practical way, to ultimately demonstrate their 
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usefulness for extracting tree attributes from the height and intensity information. Of particular 

note, the concepts or products of the HPC and the HPC-based surfaces are new to the remote 

sensing and ecological communities. It is anticipated that the novelty of these concepts or products 

could alleviate technical impediments for the extensive use of FW LiDAR data and could inspire 

more potential and innovative applications of FW LiDAR data.  

2 Materials and Methods  

2.1 Study area  

A 236 ha ecosystem research experimental area, part of San Joaquin Experimental Range with the 

center at 256,361.9 Easting, 4,109,518.0 Northing and UTM Zone 11N, was chosen for this study 

(Fig. 1). This study area is characterized by mixed patches of vegetation and complex topography 

including coarse, large hills and valleys with elevation ranging from 210 to 521m above sea level 

with a mean elevation of 366 m. The main vegetation of the study area consists of interior live oak 

(Quercus wislizeni), blue oak (Quercus douglasii), gray pine (Pinus sabiniana) and scattered shrubs 

with a nearly continuous cover of herbaceous plants. 
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Fig.1. An overview of the study area in the San Joaquin Experimental Range with false composite 

image and a subset with LiDAR data (right panel).  

 

2.2 Data 

2.2.1 LiDAR data 

Two airborne LiDAR datasets including DR LiDAR and FW LiDAR data were simultaneously 

collected through the National Ecological Observatory Network (NEON) Airborne Observation 

Platform (AOP) (Kampe et al., 2010) with an Optech Gemini instrument at a nominal range of 

1000 m (the aircraft flew at 1000 m above ground level). FW LiDAR data acquired with this 

platform generated a 0.8 m diameter footprint, a spacing of about 0.524 m in the across-track 

direction and 0.5 m in the along-track direction. DR LiDAR data for corresponding study regions 
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were also collected with the maximum horizontal accuracy of 0.4 m and maximum vertical 

accuracy of 0.36 m (Zhou et al., 2017b) with the average point density approximately 6 points/m2 

(ppm2). Both data were acquired in June 2013 during the leaf on season. These data can be 

downloaded from NEON data Portal (http://data.neonscience.org/home).  

Our study area is covered by two perpendicular direction flight lines, with four and two flight lines 

in an east-west direction and north-south direction, respectively. In total, the study region was 

covered by 40,000,812 waveforms and each waveform is composed of 500 time bins with 1 ns 

temporal resolution. The tail of each waveform is filled with zero values to keep the length of 

waveforms constant. In fact, the zero values in the waveform represent non-record values. Besides 

the waveform information, the reference geolocation information of these waveforms was also 

used in this study. Specifically, seven basic reference geolocation attributes are directly used to 

geo-transform the waveform data to the HPC. The seven items are the Easting of first return xr 

(m), the Northing of first return yr (m), the height of first return zr (m), dxr (m), dyr (m), dzr (m), 

and first return reference bin location tr (leading edge 50% point of the first return).  

2.1.3 Reference data 

The field data were collected through the NEON AOP and the Terrestrial Instrument System (TIS) 

programs (NEON, 2018a). In sum, there were 13 plots and totally 345 individual trees and shrubs 

(<=3m) in our study area. These plots were designed for the long-term plant, insect and soil 

measurements following the protocol of the NEON Terrestrial Observation System (Meier & 

Jones, 2014) and each plot is restricted to a region 20 × 20m. For each field-measured tree, key 

vegetation structure variables such as tree locations (Easing and Northing), tree height, and average 

crown width were provided (http://data.neonscience.org/prototype-search). 

2.3 Methods 

To get a better overview of the HPC generation process and their potential applications, we 

summarized the major steps of this study as shown in Fig. 2. A detailed description of these steps 

can be found in subsequent sections. 
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Fig. 2. The flowchart of utilizing the hyper point cloud to extract tree attributes. 

 

2.3.1 From raw waveforms to hyper point cloud 

The routine for extracting FW LiDAR information is to convert part of waveform signals to 

discrete points with the decomposition or deconvolution methods, which has been proven useful 

for tree species identification, forest inventory, and biomass estimation (Allouis et al., 2013; Cao 

et al., 2014a; Yao et al., 2012; Zhou et al., 2017a). However, most of the intensity information 

inherent in waveforms is being ignored with the conventional methods that undoubtedly degrades 

the value of FW LiDAR data. Moreover, the complicated waveform processing steps perplex users 

and further hinder the extensive use of FW LiDAR data for vegetation characterization. To tackle 

these challenges, we directly convert all raw waveform signals into points to form a point cloud, 

named the HPC, for subsequent analysis. A HPC is a set of data points converted from all 

waveform signals along the pulse path by combing geo-reference information (black) with raw 

waveform data (blue) (Fig. 3).  
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Specifically, we geo-transformed every time bin of the waveform into a point Pij = (Xij, Yij, Zij, Iij) 

(i = 1,…, nj, j =1, … ,m) through Eq. (1) based on the whole return waveform signals and 

corresponding geo-reference data. Here, Iij is the intensity of the ith time bin for the jth waveform.  

𝑋𝑖𝑗 = (𝑡𝑖𝑗 −  𝑡𝑟𝑗) ∗ 𝑑𝑥𝑟𝑗 + 𝑋𝑟𝑗 

                         𝑌𝑖𝑗 = (𝑡𝑖𝑗 − 𝑡𝑟𝑗) ∗ 𝑑𝑦𝑟𝑗 + 𝑌𝑟𝑗                     (1) 

𝑍𝑖𝑗 = (𝑡𝑖𝑗 − 𝑡𝑟𝑗) ∗ 𝑑𝑧𝑟𝑗 + 𝑍𝑟𝑗 

where 𝑋𝑖𝑗, 𝑌𝑖𝑗, 𝑍𝑖𝑗 is the geolocation of Iij, 𝑡𝑟𝑗 is the first return reference bin location for the jth 

waveform, 𝑑𝑥𝑟𝑗, 𝑑𝑦𝑟𝑗, 𝑑𝑧𝑟𝑗 are the position change for every nanosecond for the jth waveform, 

𝑋𝑟𝑗, 𝑌𝑟𝑗 , 𝑍𝑟𝑗 are the Easting, Northing and height of the first return for the jth waveform. 𝑡𝑟𝑗 , 𝑑𝑥𝑟𝑗, 

𝑑𝑦𝑟𝑗 , 𝑑𝑧𝑟𝑗 , 𝑋𝑟𝑗 , 𝑌𝑟𝑗, 𝑍𝑟𝑗  are provided by the NEON geolocation dataset. Subsequently, we 

explored the potential of FW LiDAR data to characterize vegetation structure using the HPC.  
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Fig. 3. Comparison of the discrete-return LiDAR point cloud and the hyper point cloud (HPC) 

over the same subset region. (a) Discrete-return LiDAR point cloud. (b) Illustration of the HPC 

generation process by combing raw waveform data (blue) and corresponding geo-reference data 

(black).  

2.3.2 Gridding of the hyper point cloud 

The HPC preserves as much information embed in original waveforms as possible and provides a 

convenient way to handle FW LiDAR data for most potential users. However, the large data 

volume of the HPC precludes their direct use for measuring vegetation structure. Additionally, not 

all signals converted from waveforms are useful for the subsequent analysis. Thus, we propose to 

apply a grid-net method for the HPC to reduce the data volume and generalize useful information 

it contains on the 3D vegetation structure.  

In this study, we first explored the intensity variation in grid cells with different sizes to investigate 

the capability of waveform intensity information for segmenting tree objects and the spatial pattern 

of waveform intensity across various objects. Specifically, we projected the HPC’ intensities into 

XY planes to obtain the spatial distribution of energy with self-defined grid sizes. As shown in 

Fig. 4, we directly applied a gridding process to the HPC and generated multiple grid-level 

variables such as the mean location of all intensities (Xc and Yc), the maximum intensity (MAXI), 

the mean intensity (MI), the total intensity of waveforms (TI) and the number of intensities (NI) 

for each grid. To find the appropriate grid size (based on the HPC density), multiple grid cell sizes 

including 0.5 m, 0.8 m, 1 m, 1.5 m, 2 m, 3 m, 4 m and 5 m were used. Besides height information, 

PHs such as 75th, 80th, 85th, 90th, 95th and 99th in each grid were also generated. At the current 

stage, we reduced the HPC to a manageable degree at grid level with various intensity and height 

metrics. 
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Fig. 4. The gridding of the hyper point cloud (HPC). (a) 3D view of the HPC with grid-nets. (b) 

Derivation of variables such as the mean intensity (MI), the maximum intensity (MAXI), the total 

intensity (TI), the number of intensities (NI) and multiple percentile heights (PHs) at the grid cell 

level with the gridding procedure from the 2D perspective. 

2.3.3 The intensity and height surfaces 

To further investigate the intensity distribution of vegetation and ground objects at the local level, 

we assumed these variables such as the MI, MAXI and PHs were Z values like the height 

information of DR LiDAR data. Subsequently, we converted Xc, Yc and one of these variables to 

the point cloud as the LiDAR data exchange binary format (LAS) and generated the digital surface 
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model (DSM) for each point cloud using the lasgrid function from LAStools (Isenburg, 2012). Fig. 

5 exhibits an overview of preliminary results of digital surface model (DSM) form DR LiDAR 

data and the HPC with representative variables such as the MAXI, MI and 99th PH.  

 

Fig. 5. Preliminary results of (a) the discrete-return (DR)-based digital surface model (DSM) and 

(b) the HPC-based MAXI DSM, (c) HPC-based MI DSM and (d) HPC-based 99th percentile height 

(PH) DSM from the hyper point cloud (HPC).   

It was evident that the HPC-based MAXI DSM, MI DSM and 99th PH DSM shared the similar 

spatial pattern with the DR-based DSM, which motivates us to further generate a surface analogous 

to the CHM surface. However, the HPC-based TI and NI DSMs did not provide as meaningful 

spatial distribution as the HPC-based MAXI and MI DSMs based on the visual inspection. Thus, 
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we did not carry out any further exploration of these two products for tree crown segmentation 

analysis in this study.  

For visual analysis and semantic extraction of canopy information, a multi-level rescaling process 

was conducted on intensity-DSMs to generate CHM-like surfaces as shown in Fig. 6. Specifically, 

the sign of values for the HPC-based intensity DSMs such as MAXI DSM and MI DSM were 

reversed to enable intensities over the vegetation higher than the ground region (Fig. 6(b)). 

Subsequently, the absolute mean value of ground samples was added to these reversed intensities 

to generate positive intensity values for vegetation regions and negative values for the ground 

regions (Fig. 6(c)). These negative values were reassigned to zero (Fig. 6(d)). Further, we rescaled 

the intensities to provide a more intuitive CHM-like surface (Fig. 6(e)). To mitigate the effect of 

gaps on the surface, a smooth process was conducted to generate the no-gap surface as shown in 

Fig. 6(f), named it the HPC-based MAXI surface in the following sections. 

For the HPC-based PH point clouds, we treated them as DR LiDAR data and generated the HPC-

based PH CHM with the steps we have described in the previous studies (Zhou and Popescu, 2017; 

Zhou et al., 2017b). Specifically, we first classified these HPC-based percentile heights point cloud 

into ground and non-ground categories using lasground function and then applied las2dem, lasgrid 

and lasmerge functions for these non-ground points to obtain the CHM.  Simultaneously, the same 

procedures were applied to DR LiDAR data and waveform-based point cloud from the Gaussian 

decomposition (Zhou et al., 2017b) to generate DR-based CHM and waveform-based CHM. 
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Fig. 6. An example of rescaling original HPC-based maximum intensity surface to generate a 

CHM-like surface. 

2.3.4 Tree crown delineation  

Tree crown segmentation is a preliminary and pivotal step for extracting and estimating individual 

tree attributes such as crown width and tree volume over large areas. Generally, the tree crown 

segmentation was conducted on the CHM derived from DR or FW LiDAR point cloud. In this 

study, we mainly aim to directly employ the HPC-based surfaces such as the MAXI intensity 

surface and PH CHMs to segment tree crowns and compared their results with the conventional 

surfaces such as the DR-based and waveform-based CHMs.  

Specifically, the tree crown segmentation was conducted on the DR and waveform-based CHMs, 

the HPC-based MAXI surface and HPC-based PH CHMs with the TW (the combination of 

TreeVaW and watershed algorithms) method (Zhou et al., 2017a). First, the TW method adopted 

adaptive variable window filtering approach (Popescu et al., 2002) to identify tree tops using the 

local maxima algorithm. The core of the adaptive window filtering is that the size of the moving 

window varied with the height based on an empirical equation of the field-measured crown width 

(CW) and tree height (H). After the rescaling process, the HPC-based MAXI surface had a similar 
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intensity range with the height range of CHMs which enable us to use the same empirical equations 

to initiate the tree top identification process. The minimum height (MINH) was the threshold used 

to filter ground for both CHMs and HPC-based intensity surface, while the MINH became the 

rescaled intensity instead of the height for the HPC-based intensity surface. The MINH was 

determined by averaging the heights or rescaled intensities from group samples in terms of visual 

inspection. To obtain reasonable tree top results, we refined the parameters with a trial and error 

method, with the ultimate parameters we used in this study summarized in Table 1. However, there 

is a distinct difference in the MINH between the LiDAR derived CHMs and the HPC-based MAXI 

surface. The main reason may be that the HPC-based MAXI surface stored relative intensity 

information rather than height information.  

As a further step, we followed the procedure described by Zhou et al. (2017a) to tackle the over-

segmentation problem and acquire the adjusted tree top locations for the whole study. For each 

adjusted tree top, a tree crown was delineated using the marker-control watershed segmentation 

algorithm (Chen et al., 2007). The tree location and tree crown results from the above step were 

compared with results from LiDAR derived CHMs and field-measured data to evaluate the 

performance of tree crown segmentation using the HPC-based MAXI surface and the HPC-based 

PH CHMs. 

Table 1. Key parameters for tree crown segmentation using the LiDAR derived CHMs, the HPC-

based MAXI surface and percentile height CHMs (m) 

 DR & waveform 

-based CHMs 

HPC-based maximum  

intensity surface 

HPC based percentile height 

 CHMs  

Resolution 1m 0.5m 0.8m 1m 2m 1m (90th) 1m (95th) 1m (99th) 

Function  0.25x +2 0.12x+1 0.24x+0.9 0.28x+0.5 0.28x+0.6 0.18x+2 0.18x+2 0.2x+2 

MINH  3 8.5 8.5 8 7.5 2.5 2.5 2.1 

 

*when it came to the intensity surface, the MINH represent the Minimum rescaled intensity; 

Function is the linear relationship between the tree height and crown width which is used to control 

the size of adaptive variable window; x is the height value from the CHM or rescaled intensity 

from the HPC-based MAXI surface. 
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2.3.5 Individual tree intensity distribution 

Besides the exploration of FW LiDAR data at the local level in Section 2.3.4, we also investigated 

the intensity distribution of FW LiDAR data at individual tree level. Specifically, we employed 

the individual tree crowns obtained from the above step to subset the HPC and obtained individual 

trees’ HPCs. Subsequently, we applied a 0.8 m (the footprint diameter is approximately 0.8 m) 

grid-net described above to these individual HPCs and obtained corresponding grid statistics or 

variables such as the MI, MAXI, TI and NI (Fig. 4). Three representative tree segments were 

chosen to demonstrate the intensity or energy distribution of individual trees in the contour line 

format.  

2.3.6 Individual tree attributes 

We next explored potential applications of the HPC-based surfaces for identifying tree top 

location, estimating tree crown width, and tree height using the delineated tree crowns and the 

HPC. Briefly, the tree top location in each delineated crown was identified as the MAXI’s location 

through the local maximal algorithm; the crown width was calculated as the diameter of each 

individual delineated tree crown by assuming that the tree crown was circular. To quantitatively 

assess the HPC-based MAXI surface and the HPC-based PH CHMs’ capacity for measuring these 

tree attributes, we computed the mean difference (MD) between the estimated attributes and the 

field-measured data, their corresponding standard deviation (SD) and root mean square error 

(RMSE). Additionally, the percentage of estimated tree locations within the 2.5 m buffer of field-

measured tree locations (Pdis<2.5) was also calculated.  

For the tree height estimation, we directly derived tree height from the CHMs (the DR-based, 

waveform-based and HPC-based PH) by obtaining the maximum value within a 2.5 m circle 

around each estimated tree location. However, the HPC-based MAXI surface only stored intensity 

information which was not directly relevant to tree height and required additional steps for 

estimating tree height from it. We considered two methods to extract tree height from fine 

resolution HPC-based MAXI surface alone: (1) building a linear relationship between intensity 

variables and heights using the training data (70% of all reference data) and applying this 

relationship to the testing data (30% of all reference data) to assess the performance of tree height 

estimation. The simple linear relationship used here was mainly to ensure the model’s generality 

and transferability. The intensity variables were extracted from 2.5 m circle buffers initiated from 

the identified tree locations and calculated the minimum, maximum, mean and total intensities in 
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each buffer as variables. (2) combing tree top locations derived from the HPC-based MAXI surface 

with the HPC to estimate tree height through filtering procedures using intensity and height 

information. The assumption of this approach is that the ground and tree top correspond to the 

points whose intensities are around the MAXI of each estimated tree crown. More specifically, we 

first selected points within a circle of estimated tree top locations to obtain possible ground and 

top of the canopy points. The range of radius for the circle was determined with a trial-and-error 

approach that worked efficiently in our study site was 2 - 3 m. Next, these points whose intensity 

falling into the intensity range [MAXI - ratio*MAXI, MAXI + ratio*MAXI] were assumed to 

contain useful ground and tree height information as the filtered point cloud. Here, the MAXI 

represents the maximum intensity in the selected points in each circle. We achieve the robust 

estimates when the ratio was in [0.02, 0.06]. Further, the tree height was calculated as the average 

of difference between the tree top PH (97th, 98th, 99th) and ground PH (1st, 2nd, 3rd) of the filtered 

point cloud. These percentiles were mainly to avoid the negative effect of outliers and were 

determined based on the experiment of multiple adjacent ranges of percentiles. Additionally, 

multiple percentiles can mitigate the error caused by practical factors such as various terrain 

conditions and irregular tree structures. The effectiveness of this method was evaluated by 

comparing estimated tree height with corresponding field data.  

3 Results 

3.1 Hyper point cloud 

The comparison between the DR LiDAR point cloud and the HPC over a small subset region is 

presented in Fig. 2. Overall, the HPC was consistent with DR point cloud to some extent in terms 

of the spatial arrangements of ground and vegetation. However, the HPC of a subset region was 

much denser than DR LiDAR point cloud with the point density approximately 177 vs. 10 ppm2, 

and the average spacing among points 0.07 vs. 0.32 m. As shown in Fig. 2, more signals were over 

the top of the canopy and beneath the ground, which consequently contributed to larger ranges of 

height for the HPC. A closer examination revealed that the mid-story of vegetation for the HPC 

was also filled with signals. In contrast, most of the mid-story height levels of vegetation were 

empty for the DR point cloud. Nevertheless, the HPC did not present as explicit vegetation object 

shapes as the DR LiDAR point cloud, which became more evident when we compared them at the 

individual tree level as shown in Fig. 8. In sum, the HPC provides a new way to visualize FW 
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LiDAR data and preserve a wealth of information inherent in FW LiDAR data with promising 

potentials for characterizing vegetation structure.   

3.2 HPC-based intensity and height surfaces 

Fig. 5 illustrates the HPC-based intensity and PH DSMs with the LiDAR derived DSM. Overall, 

these DSMs shared similar pattern with consistent spatial arrangements of vegetation and ground. 

For the HPC-based intensity DSMs, the vegetation parts (blue) are prone to have lower MAXI and 

MI values compared to the ground parts (red). The HPC-based PH DSM was almost identical to 

the DR-based DSM except for the height range. More specifically, the HPC-based PH DSM was 

consistently higher than DR-based DSM with approximately 3m.  

To further demonstrate the potential usefulness of these products, we generated a CHM-like 

surface with multi-level rescaling steps. As an example, Fig. 6 showed detailed steps of rescaling 

the HPC-based MAXI surface over a subset region to elaborate on the usefulness of these steps. 

These steps were mainly intended to generate representative intensity information for 

distinguishing the vegetation and ground with the simple linear conversion.  

The comparisons between these two HPC-based intensity surfaces (the MAXI and MI) and the 

HPC-based 99th PH CHM are shown in Fig. 7. As expected, the HPC-based intensity surfaces 

exhibited a spatial pattern similar to CHMs after multi-level rescaling: the higher rescaled 

intensities corresponded to vegetation areas with high CHM values and smaller rescaled intensities 

were located on the ground with low CHM values. However, the height variance (the CHM) for 

vegetation was larger than the corresponding region’s rescaled intensity variance (the HPC-based 

intensity surfaces) with more homogenous intensity (red) (Fig. 7(c) & (d)). Regarding the ground 

areas, more variations of the rescaled intensity for the HP-based intensity surfaces were observed 

compared to these CHMs, especially when the HPC-based MI surface was taken into account (Fig. 

7(d)). Interestingly, we found some “mixed” areas that could be classified either as ground or 

vegetation in both HPC-based intensity surfaces as depicted with blue circles while they were 

deemed as the ground in the CHMs (Fig. 7(a) & (b)) with low heights. Moreover, the HPC-based 

MI surface appeared to generate more “mixed” areas than the HPC-based MAXI surface, which 

gave rise to the problematic tree crown segmentation in the later stage. Therefore, the HPC-based 

MAXI surface might hold greater potential for characterizing vegetation and ground. For the HPC-

based PH surfaces, the 99th PH CHM was prone to better captured the vegetation than 95th PH 

CHM with closer height values and less “noise” parts compared to the DR-based CHM. 
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Fig. 7. Comparisons of the (a) DR-based CHM, (b) waveform-based CHM, (c) HPC-based 

maximum intensity (MAXI) surface, (d) HPC-based mean intensity (MAXI) surface, (e) HPC-

based 99th PH CHM and (f) HPC-based 95th PH CHM over a subset region. 

3.3 Individual tree intensity distribution 

Beyond the local level, the energy (intensity) distributions of FW LiDAR data at the individual 

tree level was also examined and three representative individual trees were selected as examples 

to demonstrate the spatial energy distribution patterns at the individual tree level. To get an 

overview of DR LiDAR point cloud and the HPC at individual tree level, we present them in Fig. 

8 with four intensity distributions of these trees in a contour line format. It was evident that the 

HPC was denser that DR LiDAR data, especially at the mid-story height levels of trees. Another 

significant difference was that the shape of trees can be easily discerned from DR LiDAR data 

while these become more obscure for the HPC. However, different trees of the HPC still exhibited 

their unique characteristic with different clustering patterns and crown shapes. Moreover, the non-

vertical pulse path of FW LiDAR data was also clearly demonstrated. 

Regarding the intensity distribution, these four intensity variables followed the anisotropic 

distribution whether within one tree or across different trees (Fig. 8). However, some consistent 

spatial distribution patterns were observed across different trees. For example, the individual trees’ 
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MAXI and MI contours demonstrated that the original intensity value was increasing from the 

center to the boundary of tree crown with the lowest value in the center of tree crown. Conversely, 

the contours of the TI and NI exhibited totally opposite changing pattern that they were decreasing 

from the center to the boundary of tree crown with the highest values at the center of tree crown. 

These individual tree level contours provided valuable insight into the potential of the HPC-based 

intensity surfaces for identifying tree top locations and delineating tree crowns.  

3.4 Potential applications 

3.4.1 Tree crown delineation 

Preliminary results of tree crown segmentation demonstrated that the HPC-based MAXI surface 

was superior to the MI surface for delineating tree crowns. Thus, the subsequent tree attributes 

analysis was only conducted on the HPC-based MAXI surface. Various grid cell sizes affected 

performances of tree crown delineation using the HPC-based MAXI surface. As shown in Fig. 9, 

several representative crown delineation results of HPC-based MAXI surfaces (black) and HPC-

based PH CHMs’ (blue) are presented as compared to the DR-based, waveform-based CHMs (red). 

Based on the visual inspection, there is no significant differences among tree crown segmentation 

results.  

To further quantitatively assess the tree crown delineation results, Table 2 summarizes vegetation 

area, ratio of vegetation areas, and tree crown detection rate for both CHMs and WISs after 

comparing with reference data. As illustrated in the visual comparisons, the HPC-based MAXI 

surfaces with the fine grid cell sizes such as 0.5, 0.8 and 1m can give comparable results as the 

LiDAR-derived CHMs with overall tree crown detection rate centering on 90%. However, results 

of tree crown detection rate significantly decrease when the grid cell size became larger than 1m.  

Overall, visual comparisons of tree crown segmentation results between CHMs and the HPC-based 

MAXI surfaces (Fig. 9 (c) - (f)) reveal consistently satisfactory segmentation results, but the HPC-

based MAXI surfaces are prone to generate additional tree crowns at “mixed” regions (red circle).  
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Fig. 8. Discrete-return point cloud, the HPC and the energy distributions of three representative 

individual trees including the gray pine, blue oak and interior live oak. (a - l) The contours of mean 

intensity (MI), maximum intensity (MAXI), total intensity (TI) and the number of intensity/grid 

cell (0.8 m) (NI) of three representative individual trees. *K: 1,000. 

non-vertical 

pulse path 
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Table 2. Summary statistics of comparisons among the DR-based CHM (DR-CHM), waveform-

based CHM (waveform-CHM) and the HPC-based MAXI (HPC-MAXI) and the HPC-based 

percentile height (HPC - PH) surfaces over the study area. 

Ssscca 

 

Surfaces 

Veg 

Ratio 

(%) 

Veg 

Areas 

(ha) 

Detection 

Rate (%) 

Tree top location (m) Crown width (m) 

MD SD RMSE Pdis<2.5 (%) MD SD RMSE 

DR-CHM 30.04 40.95 91.01 1.87 1.13 2.18 72.76 -0.38 3.67 3.69 

Waveform-

CHM 

28.49 38.83 89.86 

2.31 1.76 2.90 

64.73 -0.27 3.81 3.81 

HPC-MAXI0.5 31.43 42.84 93.04 2.20 3.01 3.72 74.09 -0.30 2.38 2.39 

HPC-MAXI0.8 32.02 43.60 88.12 2.36 2.69 3.57 70.10 0.88 2.50 2.62 

HPC-MAXI1 33.00 44.97 93.91 2.58 2.85 3.84 65.45 0.81 2.79 2.85 

HPC-MAXI2 38.45 52.40 92.34 2.90 3.60 4.62 64.45 0.79 3.20 3.29 

HPC-99thPH 31.58 43.03 89.86 1.65 2.19 2.45 73.52 0.32 2.54 2.86 

HPC-95thPH 31.06 42.33 91.86 1.89 2.88 3.32 70.25 0.56 2.74 2.84 

HPC-90thPH 29.91 40.76 90.11 1.96 3.05 3.28 71.93 1.05 2.95 2.98 

*MD: The mean difference between reference and estimated values. SD: Standard deviation of these 

differences. RMSE: The root mean square error of these differences. Pdis<2.5: The proportion of distances 

between measured tree locations and estimated tree location smaller than 2.5 m. 
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Fig. 9. Tree crown segmentation results using discrete-return and waveform based CHMs (red), 

HPC-based intensity surfaces with different grid cell sizes (black) and HPC-based PH CHMs 

(blue) over the subset region.  

3.4.2 Individual tree attributes 

We further assessed the accuracy of tree attributes extracted from the HPC-based MAXI surface 

and PH CHMs such as the crown width, tree top location and tree height. Overall, the HPC-based 

MAXI surface (<= 1m) and PH CHMs generated comparable estimates of the crown width, tree 

top location and tree height compared to the LiDAR derived CHMs in terms of MD, SD, RMSE 
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and Pdis<2.5. Nevertheless, the crown width estimation results demonstrated that the HPC-based 

MAXI surfaces with fine resolution (<=1m) yielded more accurate estimates than the LiDAR 

derived CHMs (e.g., RMSEHPC-MAXI0.5 = 2.39 vs. RMSEDR =3.69 m) (Table 2). In contrast, tree top 

locations were better captured by the LiDAR derived CHMs than the HPC-based MAXI surface 

from the perspective of the MD and RMSE. Among the HPC-based MAXI surfaces, coarse 

resolution surfaces were prone to give less accurate estimates and the HPC-MAXI0.5 outperformed 

other HPC-based intensity surfaces in terms of the crown width and tree location estimation results. 

Although the HPC-based PH DSMs appeared to be shifted form DR-based DSM, the various HPC-

based PH CHMs demonstrated a promising estimation of crown width and tree location 

comparable to the LiDAR-derived CHMs with all RMSE values smaller than 3m.  

Regarding the tree height estimation, the HPC-based PH CHM almost yielded the same results as 

the LiDAR derived CHMs, especially for the 99th PH CHM (Table 3). Given that the HPC-based 

MAXI surface did not directly store height information like the CHMs, we proposed two methods 

to extract height information. Results of the first method using a linear relationship between height 

and rescaled intensity were demonstrated in Fig. 10. A general trend emerged from this figure that 

higher heights were more likely to have higher rescaled intensities. However, there is a weak 

relationship between rescaled intensities and reference height with low R-square but acceptable 

RMSE (~ 2.5m). Moreover, there was no significant difference among using minimum, maximum, 

mean and total rescaled intensities of the buffer to estimate tree height.  

Table 3. Tree height estimation using DR-based CHM, waveform-based CHM, the HPC-based 

MAXI surfaces with the first method (HPC-MAXI0.5_first & HPC-MAXI0.8_first) and the second method 

(HPC-MAXI0.5_second (before adjustment), HPC-MAXI0.5_second (after adjustment), HPC-MAXI0.8_second (before adjustment) & HPC-

MAXI0.8_second (after adjustment)) and HPC-based PH (99th, 95th, 90th) CHMs  

ss Surfaces MD SD RMSE 

DR-CHM 0.20 0.52 0.55 

Waveform-CHM -0.11 0.75 0.78 

HPC-MAXI0.5_first -0.28 2.49 2.50 

HPC-MAXI0.8_first -0.23 2.52 2.52 

HPC-MAXI0.5_second (before adjustment) -1.21 1.85 1.92 

HPC-MAXI0.5_second (after adjustment) -0.21 1.55 1.58 

HPC-MAXI0.8_second (before adjustment) -1.10 1.75 1.78 
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HPC-MAXI0.8_second (after adjustment) -0.10 1.37 1.40 

HPC-99thPH -0.52 0.71 0.75 

HPC-95thPH -0.56 0.94 0.98 

HPC-90thPH -1.05 1.35 1.41 

 

For the second method, we obtained robust estimates of tree height using various tree top and 

ground percentiles with appropriate radius and filtering intensity ranges. Various tree top and 

ground percentiles used here were mainly intended to leverage the bias of the estimate. Our 

experiment showed that the choice of radius has larger impact than the intensity range for 

accurately estimating tree height from the HPC. The suitable range for the radius is [2, 3]m and 

for the intensity range or ratio is [0.03 ,0.06] according to our experiment. The preliminary results 

(before adjustment) of the second method exhibited that tree height was overestimated consistently 

with approximately 1m from the HPC-based MAXI surface (Fig.11 (a)). After subtracting 1m from 

original estimated heights, we obtained smaller average bias (-1.10 vs. -0.10 m) and RMSE (1.78 

vs. 1.40 m) of differences between the estimated tree height and reference tree height (Fig. 11). In 

terms of the MD and RMSE, the second method outperformed the first method for estimating 

height information from the HPC-based MAXI surface. However, the height estimation results 

from the HPC-based MAXI surface did not generate as good results as the HPC-based PH CHMs. 

Among various PHs, the 99th HPC-based PH CHM gives the best height estimation result. 

Interestingly, all height estimation from FW LiDAR data including waveform-based and HPC-

based products overestimated the tree height with the MD are less than zero while DR LiDAR data 

underestimate the tree height. 
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Fig. 10. The linear relationship between reference tree height and mean rescaled intensity 

(minimum, maximum, mean and total rescaled intensities) within the 2.5 m buffer of the waveform 

intensity surface (WIS, 0.5m resolution).  

 

Fig. 11. The comparisons between (a) original height estimation from the HPC-based MAXI 

surface and (b) adjusted height estimation with simple subtraction refine process using the radius 

= 3m and intensity range = 0.05. 
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4 Discussion 

The emphasis of this study was expanding potential uses of FW LiDAR data from a new 

perspective and enhancing their values for vegetation characterization. We introduced the HPC 

and the HPC-based products or concepts through directly using FW LiDAR data without 

complicated processing algorithms, and exemplified their uses for characterizing vegetation 

structure.  

4.1 Hyper point cloud 

A plethora of information inherent in FW LiDAR data is stored in the wave format which is not 

easily processed by most of the practitioners to extract useful vegetation biophysical parameters. 

We proposed an approach to directly converting waveform data into a point cloud with a structure 

that is well known to remote sensing and ecological scientists. To some extent, this will alleviate 

the difficulty we experienced in understanding and employing sophisticated algorithms for 

extracting information from FW LiDAR data (Wu et al., 2011; Zhou et al., 2017b). Moreover, our 

approach also provides a competitive alternative way to the conventional method for processing 

FW LiDAR data. Previous studies have explored potential uses of FW LiDAR for vegetation 

characterization such as tree species identification and global canopy height mapping using 

features extracted from waveforms (Lefsky et al., 2005; Zhou et al., 2017a). However, some 

amount of raw information will automatically be lost during these existing procedures. With the 

advent of the HPC, all original information contained in FW LiDAR data is preserved by 

converting every signal of waveforms into a point.  

Additionally, how to directly visualize complete FW LiDAR data over a region like DR LiDAR 

data is still an open question that challenges the remote sensing community. The HPC provides a 

solution to this question and enables users to straightforwardly visualize FW LiDAR data using 

available handy tools designed for DR LiDAR data as shown over a subset region (Fig. 2) and 

individual trees (Fig. 8). This point cloud is analogous in format to terrestrial LiDAR data to some 

extent with detailed information in the mid-story of the canopy. As anticipated, the HPC is 

approximately 18 times or more on average (varies on the overlap of flight lines) denser than 

corresponding DR LiDAR data by keeping all signal intensities along the pulse path. It is worthy 

to note that the vegetation or canopy parts of the HPC are composed of a substantial number of 

points instead of sparsely sampling points from the top of the canopy for the DR LiDAR point 

cloud (Fig. 8). This could overcome the disadvantage of airborne DR LiDAR data that cannot 
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provide detailed information in the mid-story of vegetation. Meanwhile, it also leaves us 

considerable room and flexibility to exploit their potential applications such as semantic 

segmentation and vegetation structure reconstruction.   

Overall, the HPC with its point cloud format and rich information it contains gives interpreters or 

users more accessibility and flexibility to investigate the potentials of FW LiDAR data for multiple 

purposes. Certainly, the HPC requires more storage space and calls for more efforts to exploit and 

interpret the ample information inherent in waveforms. However, there is little doubt that the HPC 

can render us a new perspective on investigating vegetation structure and facilitate extensive 

applications of FW LiDAR data with the continued technological advances.   

 

4.2 HPC-based intensity and height surfaces 

To enhance the practical value and use efficiency of the HPC, we exemplify a grid-based statistical 

method to generate the thinned version of point cloud for characterizing vegetation structure. The 

HPC-based intensity (MAXI and MI) DSMs exhibit promising prospects for distinguishing 

vegetation and ground as shown in Fig. 5. Interestingly, higher MAXI and MI are more likely to 

present at the ground sections rather than vegetation sections. One possible reason emerges from 

this is that more energy loss occurs during the process of the pulse passing through the gaps of 

vegetation layers compared to directly interacting with ground given the same amount of pulse 

energy. This is also substantiated by the fact that the first peak intensity of the waveform 

(amplitude) generally has larger values than the subsequent amplitudes (Zhou et al., 2017b). 

However, the vegetation could give rise to more signal returns that result in higher TI and NI for 

a given region. Surprisingly, the spatial patterns of the HPC-based TI and NI DSMs are not as 

evident as the HPC-based MI and MAXI DSMs (Fig. 5). A closer examination of these HPC-based 

intensity DSMs reveals that a different number of overlapping flight lines mainly contributed to 

this discrepancy. At this point, the vegetation and ground can be well captured by the HPC-based 

intensity products.  

LiDAR-derived CHM is deemed as the most fundamental and valuable model to characterize 

vegetation parameters such as tree height, crown width and biomass for complementing forest 

inventory (Allouis et al., 2013; Cao et al., 2014b; Popescu et al., 2002; Zhao et al., 2018). The 

motivation for rescaling the original intensity information is to generate a CHM-like product and 

further assess the feasibility of the HPC-based intensity surface for augmenting or substituting 

CHM to study forest structure and improve the accuracy of estimating individual tree attributes. 
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To generalize the rescaling steps and preserve original intensity information inherent in the HPC, 

all steps are done with the simple linear conversion. The HPC-based MAXI surface shows a 

promising spatial pattern which is anticipated to promote the efficient use of intensity information 

from FW LiDAR data for vegetation characterization. Among four representative HPC-based 

intensity surfaces, the HPC-based MAXI surface is more likely to give us a better separation of 

vegetation and ground. The possible reason is that the MAXIs (amplitude) of waveforms generally 

correspond to the objects such as trees and ground that the pulses interact with, and different 

objects give different amplitude values. For instance, the waveforms coming from ground sections 

yield similar maximum intensities while they differ significantly from the maximum intensities 

from vegetation components, which results in the discernible boundary between ground and 

vegetation. Of particular note, multiple possible variables or features such as intensity percentiles 

can also be extracted from the HPC. We encourage researchers to further exploit other variables 

or features from the HPC to further test their utilities and validity over various types of forest. 

As expected, the HPC-based PH CHMs demonstrate the promising prospects of the PHs as 

surrogates for canopy structure variables from the HPC. These CHMs show consistent or identical 

spatial distribution with the DR-based and waveform-based CHMs. Overall, the proposed 

approaches for obtaining the HPC-based intensity and height surface not only expand existing 

approaches for processing FW LiDAR data, but also provide a new insight into fully using FW 

LiDAR data for characterizing canopy structure.  

4.3 Individual tree energy distribution 

Along with the HPC-based intensity and height surface results, the detailed energy distribution at 

the individual tree level is also examined (Fig.8). The waveform intensity contours of three 

representative trees provide a theoretical justification for potential applications of the HPC-based 

surfaces. For instance, the most inner contour of an individual tree is more prone to be the tree top 

locations and the outer contour is similar to the shape of a tree crown boundary.  

The intensity contours such as the MAXI, MI, TI and NI at the individual tree level provide insight 

into the changing pattern of energy over the vegetation at a high level of details. Both the MAXI 

and MI contours reveal that the intensities are increasing from the center of tree crown to the 

boundary of the tree. This can be explained by the fact that more energy loss occurred during the 

penetration process over the center of tree crown, where more dense vegetation is present 

compared to the boundary of the tree in general (Hovi, 2015). As a consequence, smaller 
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amplitudes or maximum intensities were returned from the region with dense vegetation. 

Analogous to the TI and NI WISs, the TI and NI contours at the individual tree level exhibit 

decreasing pattern from the center of tree crown to the boundary of the tree. More signal returns 

are generated from the center of tree crowns or dense vegetation areas can attribute to this pattern. 

Additionally, there is a pronounced difference of contour center and changing patterns between 

the MAXI & MI and TI & NI contours. These inconsistencies are possibly due to the TI and NI 

contours being obtained from more “noise” in the point clouds resulted from multiple flight lines 

compared to the MAXI and MI contours. In addition, the lack of calibration or proper 

normalization steps for the TI and NI products also potentially counteract their usefulness for 

subsequent tree analysis. Of course, the calibration of the MAXI and MI products is also needed 

to enhance their capability for vegetation characterization or extend new potential applications. 

However, it is beyond the scope of this study to investigate proper intensity calibration procedures. 

Our further research will aim to explore the proper calibration or normalization steps for efficiently 

using the HPC or the HPC-based surfaces.  

Although we only examine these four variables from the HPC, there is little doubt that other 

variables or features extracted from the HPC are useful as competitive alternatives for solving 

potential research problems, such as using contour boundaries or intensity percentiles to estimate 

fuel loads of forests, crown base height, or to better characterize the horizontal and vertical 

vegetation structure. Overall, the contours of intensity distribution at the individual tree level 

provide a theoretical justification to extract attributes from the HPC-based surfaces for 

characterizing tree structure and ultimately promote the extensive use of FW LiDAR data. 

4.4 Potential applications 

The HPC-based intensity and height surfaces provides a new perspective for employing intensity 

information to characterize vegetation structure and exhibits the HPC’s potential usefulness, which 

is expected to spur more efforts to explore these products for practical and scientific applications. 

We exemplify the utility of these surfaces for delineating tree crowns, identifying tree top 

locations, estimating crown width and tree height in this study. These applications offer an 

alternative way to extract information from FW LiDAR data and boost the use of information 

inherent in waveforms.    

Tree crown segmentation is the fundamental procedure for forest inventory and monitoring, which 

is commonly conducted on the LiDAR-derived CHM (Chen et al., 2007; Reitberger et al., 2009; 
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Zhou et al., 2017a). Our tree detection comparisons suggest that the fine resolution HPC-based 

MAXI surfaces can generate comparable results to the DR and waveform-based CHMs with the 

tree detection rates being around 90%. The accurate tree detection and crown segmentation results 

render promising prospects for subsequent tree attribute estimation. Our results also suggest that 

the HPC-based intensity surfaces with various resolution are prone to detect additional vegetation 

areas compared to the CHMs. As noted from the blue circles in Fig. 7, the WISs appear to have 

some “noise” compared to CHMs, but a closer examination reveals that these regions are covered 

with low vegetation (< 3m) such as California sagebrush. This finding may shed light on detecting 

understory layers or studying savanna ecosystems using intensity information of FW LiDAR data 

(Zhou et al., 2017b). Overall, the performance of the WIS’s tree crown segmentation is comparable 

to the CHM and demonstrate the potential of the HPC-based MAXI surface as an alternative 

product to the CHM for vegetation characterization.  

Results of individual tree attributes estimated from the HPC-based intensity and height surfaces 

further confirmed the promising prospect of the HPC. Interestingly, the crown width is better 

captured by the fine resolution HPC-based MAXI surfaces than the CHMs (DR and waveform-

based and HPC-based PH CHMs) while the HPC-based PH CHMs outperform the others in terms 

of the tree top identification results. Various factors may contribute to this discrepancy, such as 

field data’s uncertainties (Zhao et al., 2018) and tree top identification assumption. For instances, 

the in-suit tree location directly measured at the tree trunk location while our approach mainly 

identified the tree location with the highest height or the MAXI of the estimated tree crown area. 

This inconsistency confounds our tree location estimation especially when it comes to the trees 

with irregular stand structure in our study site. Undoubtedly, this may also indicate that our method 

for identifying tree locations using the HPC-based MAXI surface does not always work 

effectively. Although results of the individual tree intensity distribution (Fig. 8) show that the 

center of tree crowns can be distinguished from the rest of the areas and support our method 

theoretically, a robust, dedicated and accurate tree top identification method using the intensity 

information of FW LiDAR data seems not yet established. It is not surprising that the crown width 

estimation with the HPC-based MAXI surface is better than the CHMs according to the contours 

of individual tree intensity distribution. Because the crown width is calculated based on the crown 

area and the bias is more likely to be leveraged compared to when only one location is used for 

identifying tree locations.  
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Compared to the tree location identification and crown width estimation, the tree height estimation 

from the HPC-based MAXI surface is less direct and more challenging to derive than the CHMs. 

We developed two methods to explore the potential of tree height estimation directly from the 

HPC-based MAXI surface. The motivation of the first method was to examine whether a simple 

relationship between the height and normalized intensity exists. Despite the fact that the 

parsimonious linear relationship does not exist in this study (low R-square), a general trend 

between the height and normalized intensity is observed without the field-based intensity 

calibration step. Nevertheless, this method holds promise for enhancing the tree height predictive 

capability after conducting proper calibrations. Compared to the results of the first method, the 

second method can achieve better results through additional processing steps. We integrated the 

HPC-based MAXI surface with the HPC to search possible points containing ground and tree top 

through the criteria such as the radius around the estimated tree locations and intensity ranges of 

these points. Our results demonstrate that the robust tree height estimation can be obtained when 

the radius and filtering intensity range are in proper intervals. Despite the original HPC-based 

MAXI surface’s height estimation results without the refining process being not as good as the 

CHMs, comparable height estimation results can be achieved with a simple bias adjustment as 

demonstrated in Fig. 11. Moreover, our results may be improved with other possible tree height 

estimation methods such as combing the tree locations identified by the HPC-based MAXI surface 

with the height from the HPC-based PH CHM. Ultimately, these potential applications of the WIS 

exhibit promising prospects of HPC and provide significant implications for measuring fine-scale 

vegetation attributes with intensity information. We strongly encourage researchers to further 

explore their utilities and potential applications in various biomes and relevant fields. As 

anticipated, the HPC-based PH CHMs outperform the HPC-based MAXI surface for estimating 

tree height and generate similar tree height estimation to the DR and waveform-based CHMs in 

terms of the MD and RMSE.  

To our best knowledge, the concepts or products of the HPC, the HPC-based intensity and height 

surfaces are new to remote sensing and ecological communities. It is anticipated that these new 

concepts and products can pave a new way to make the most use of waveform intensity 

information, facilitate extensive use of FW LiDAR data and expand their promising applications 

for characterizing vegetation structure. A wealth of original information is contained in the HPC, 

but practical applications such as biomass estimation or fuel load assessment require us to identify 
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representative and critical variables or features. We hope our potential application examples could 

encourage more efforts to recognize and draw out significant information from the HPC for 

characterizing vegetation structure. Moreover, there are also opportunities to advance the 

understanding the energy or radiative transfer modeling of vegetation through integrating optical 

earth observations with these products. Certainly, careful calibration of the intensity is needed to 

ensure the consistent performance or accuracy of models. Overall, the HPC and the HPC-based 

intensity and height surfaces presented in this study represent a new means for studying vegetation 

structure using FW LiDAR data and offer promising prospects for serving different user groups 

with a deep understanding of waveform intensity and height information.  

5 Conclusion 

Conventional ways of extracting FW LiDAR information such as using the decomposition or 

waveform signatures requires sophisticated algorithms and deep understanding of waveform data, 

which curbs the widespread use of FW LiDAR data and further obstruct their potential and 

extensive applications for vegetation characterization. The HPC proposed in this study not only 

presents a direct way to visualize FW LiDAR data with available software but also mitigates the 

technical barriers for most potential practitioners, and further enables FW LiDAR data processing 

to become more accessible to remote sensing and ecological communities. Simultaneously, this 

product preserves as much information of raw FW LiDAR data as possible that render users more 

flexibility to interpret and decode the information inherent in waveforms. The HPC-based intensity 

and height surfaces exemplify the potential applications of the HPC. For example, the HPC-based 

MAXI surface gives a snapshot of the intensity distribution of vegetation and ground at the local 

level which produces the high level of agreement with the height distribution (the CHM). This 

observation not only expands existing ways or products for vegetation characterization but may 

also enlighten an exciting new direction for vegetation structure characterization using intensity 

information of FW LiDAR data. The intensity distribution of vegetation at the tree level with 

contours provide the theoretical justification for subsequent individual tree analysis using the 

HPC-based MAXI surfaces. Results of individual tree crown delineation demonstrate encouraging 

potential applications of the HPC-based MAXI surface and the HPC-based PH CHMs, which is 

further confirmed by individual tree attribute analysis such as tree location identification, crown 

width and tree height estimation. These provide initial proofs for the usefulness of the HPC and 

the HPC-based intensity and height surfaces from the practical perspective rather than just a 
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conceptual approach. Despite that the HPC-based MAXI surface can achieve comparable or better 

results compared to the CHMs in some aspects, we made no attempt to substitute the CHM with 

the HPC-based MAXI surface but instead to complement each other for accurately characterizing 

vegetation structure using both height and intensity information. Given the high density and mid-

story detection capacity of the HPC, it is feasible to analyze the detailed internal structure of 

individual trees or vegetation over a large region. Additionally, the contours of individual tree’s 

intensity distribution also provide insights into other potential applications such as estimating the 

crown base heights and forest surface fuel load or even identifying tree species. Actually, the HPC-

based intensity and height surfaces provides promising prospects in the 2D perspective, further 

research is also needed to develop approaches to obtain vegetation structure or biophysical 

attributes with detailed 3D reconstruction models using FW LiDAR data.  
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