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Abstract: Fatty Acid Amide Hydrolase (FAAH) is one of the enzymes responsible of 

endocannabinoids metabolism. The inhibition of FAAH is a useful and indirect strategy to raise 

endogenous cannabinoid concentrations, which would be useful for the treatment of various 

pathological processes in which cannabinoid concentrations are lowered. In the present work, we 

present an extensive 3D-QSAR/CoMSIA study on a series of 90 irreversible inhibitors of FAAH of 

pyrimidinyl-piperazine-carboxamide structure. The final model obtained was extensively validated 

(q2 = 0.734; r2test = 0.966; r2m = 0.723), and based on the information derived from the contour maps 

we reported a series of 10 new compounds designed as powerful FAAH inhibitors (pIC50 of the best-

proposed compounds = 12.196; 12.416). 

Keywords: Fatty Acid Amide Hydrolase; FAAH; cannabinoid; carboxamide inhibitors; 3D-QSAR; 

CoMSIA. 

 

1. Introduction 

The endocannabinoid system remains a highly relevant topic in the scientific community as it is 

involved in several pathophysiological conditions and has been associated to many different 

regulatory actions.[1] 

The knowledge of this system, constituted by the cannabinoid receptors (CB1 and CB2), the 

endogenous ligands Anandamide (AEA) and 2-Arachidonyl glycerol (2-AG) and the enzymes 

associated with its biosynthesis (N-acyl phosphatidylethanolamine phospholipase D, or NAPE-PLD) 

and degradation (Fatty Acid Amide Hydrolase or FAAH and Monoacylglycerol Lipase, or MAGL), 

have provided neurochemical tools for the design of new drugs.[2] 

FAAH was the first enzyme responsible for endocannabinoid hydrolysis to be purified and 

characterized. FAAH is an integral membrane protein of ~60kDa (579 amino acids) that belongs to 

the amidase family of enzymes.[3] It is highly expressed in the brain, liver, kidney, and testis, but not 

in the heart or skeletal muscle.[4]  FAAH exists as a dimer in its membrane-associated form,[3] and 

unlike most other mammalian serine hydrolases, which use a Ser-His-Asp triad for catalysis, FAAH 

possesses an unusual Ser-Ser-Lys triad.[4]   

FAAH cleaves and inactivates a broad range of lipid amides in vitro and can tolerate variations 

in the amide headgroup and lipid acyl chain. Bioactive lipid amide substrates for FAAH include, in 

addition to anandamide, related N-acylethanolamine (NAE) congeners, the sleep-inducing factor 
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oleamide (cis-9,10-octadecanoamide), and the transient receptor potential (TRP) ion channel agonists 

the N-acyl taurines (NATs) [4].   

Endogenous FAAH substrates such as anandamide serve key regulatory functions in the body 

and have been implicated in a variety of pathological conditions, including pain, anxiety, depression 

and vascular hypertension.[5]  Therefore, inhibition of the endocannabinoid hydrolases such as 

FAAH offers a rational therapeutic approach to treat conditions in which a higher endocannabinoid 

activity would be beneficial. An advantage of this indirect cannabinoid activation over the direct 

action of agonists could be higher selectivity, as the enzyme inhibition would increase the activity of 

the endocannabinoid system only at the sites where the endocannabinoids are produced. This 

hypothesis has been supported by animal studies in which the FAAH inhibitor URB597 elevated 

endocannabinoid tone and, unlike the nonselective cannabinoid agonists, did not produce any motor 

side effects, such as catalepsy.[6] As a result, pharmacological inhibition of intracellular FAAH 

activity has been the focus of intense drug-discovery efforts and diverse FAAH inhibitors have been 

developed.[5] 

The first-generation of FAAH inhibitors were substrate-derived in their structure and designed 

with reactive groups able to form a covalent bond with the catalytic residue Ser241.[3, 4] Although 

these first-generation inhibitors were capable of blocking FAAH in in vitro pharmacological assays, 

their lack of selectivity made them poor candidates for preclinical applications.[4] Subsequently, 

FAAH inhibitors were developed with significantly improved selectivity, including carbamates 

(ORG-231295), α-ketoheterocycles (OL-135) carbamoyl tetrazoles (LY-2183240), benzothiazole 

derivatives and piperidine/piperazine ureas[4] (PF-3845, PF-04457845, Figure 1). 

 
Figure 1. Reported FAAH inhibitors. 

 

Some structure-activity relationship studies have been performed on FAAH, most of them on 

carbamate-type structures. Dainese et al. reported a study of calculation of descriptors for QSAR in a 

series of naturally occurring FAAH inhibitor compounds.[7] Käsnänen et al. reported the synthesis 

and 3D-QSAR studies of carbamate structure inhibitors.[8] Mor et al. performed the construction of 

2D-QSAR equations for the explanation of biphenyl-alkylcarbamate inhibitory activity.[5] Vacondio 

et al. developed Structure-Property Relationships to explain the hydrolysis stability of carbamate 

inhibitors.[9] Han et al. reported a CoMFA study on a series of oleoylethanolamide structure 

inhibitors.[10] To date, there are no 3D-QSAR studies of irreversible inhibitors with the pyrimidinyl-

piperazine-carboxamides structure. 

In our present work, three-dimensional quantitative structure-activity relationships (3D-QSAR) 

studies based on comparative molecular similarity indices analysis (CoMSIA) studies were carried 

out on a set of different reported urea-based FAAH inhibitors. The aim of our 3D-QSAR is to derive 

useful binding information in order to guide the design of future FAAH inhibitors. The importance 

of steric, electrostatic and hydrogen-bond characteristics is revealed by aligning structurally similar 

analogues using pharmacophoric features as structural superimposition guides.[11] This will allow 
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us to derive predictive 3D-QSAR models for the design of new potent inhibitors and prediction of 

the activities of new derivatives for this class of compounds.  

2. Results and Discussion 

2.1. Statistical Results 

 

The statistical results for CoMSIA are presented in Table 1. All possible field combinations were 

tested for both CoMFA and CoMSIA. In the case of CoMFA, no combination was statistically 

significant. The CoMSIA models with the highest q2 values were those that considered the field 

combinations SEDA, EDA, EHDA, and SEHDA. The SEDA and EHDA models presented a donor 

hydrogen-bond contribution of 0.099 and 0.093 respectively. While in the EDA model the H-bond 

donor contribution was 0.111 versus 0.889 of the Electrostatic and H-bond Acceptor contributions. 

This imbalance in the field contribution of these models made us discard them. The final model 

selected SEHDA presents a good balance between the field contributions, a high value of q2 (0.734) 

and r2ncv (0.937) and higher value of F (138.36). In order to test the predictive quality of this model, 

extensive additional validation was carried out. 

Table 1. Statistical parameters and Field combinations for CoMSIA. 

   Model q2 N  SEP SEE r2ncv F Field Contributions 

              S E H D A 

CoMSIA-S 0.293 3  1.042 0.903 0.470 20.383 1     
CoMSIA-E 0.534 10  0.893 0.476 0.867 40.592  1    
CoMSIA-H 0.317 4  1.032 0.788 0.602 25.722   1   
CoMSIA-D 0.253 8  1.112 1.031 0.359 4.482    1  
CoMSIA-A 0.520 5  0.871 0.638 0.743 38.785     1 

CoMSIA-SE 0.519 10  0.907 0.417 0.898 54.799 0.314 0.686    
CoMSIA-SEH 0.534 8  0.879 0.216 0.977 110.701 0.183 0.492 0.324   

CoMSIA-SEHD 0.628 7  0.779 0.382 0.910 94.448 0.159 0.458 0.260 0.123  
CoMSIA-SEHA 0.688 7  0.713 0.332 0.933 128.486 0.131 0.346 0.177  0.347 

CoMSIA-SED 0.626 9  0.793 0.382 0.913 73.600 0.245 0.639  0.116  
CoMSIA-SEA 0.725 7  0.670 0.350 0.925 114.665 0.182 0.387   0.421 

CoMSIA-SEDA 0.765 7  0.620 0.327 0.934 132.475 0.154 0.357  0.099 0.389 

CoMSIA-SH 0.316 4  1.033 0.772 0.618 27.502 0.408  0.592   

CoMSIA-SD 0.364 19  1.128 0.525 0.862 17.433 0.814   0.186  

CoMSIA-SA 0.572 7  0.836 0.484 0.857 55.453 0.344    0.656 

CoMSIA-SHD 0.426 3  0.939 0.799 0.585 32.396 0.219  0.479 0.303  

CoMSIA-SHA 0.529 6  0.870 0.483 0.855 64.909 0.201  0.303  0.496 

CoMSIA-SDA 0.719 7  0.678 0.404 0.900 83.485 0.235   0.210 0.555 

CoMSIA-SHDA 0.673 7  0.731 0.366 0.918 103.744 0.156  0.240 0.164 0.440 

CoMSIA-EH 0.550 10  0.877 0.391 0.911 63.307  0.537 0.427   

CoMSIA-ED 0.616 9  0.804 0.407 0.902 64.163  0.856  0.144  

CoMSIA-EA 0.701 6  0.693 0.408 0.896 95.020  0.498   0.502 

CoMSIA-EHD 0.641 8  0.771 0.376 0.915 85.695  0.525 0.343 0.132  

CoMSIA-EHA 0.691 7  0.710 0.390 0.925 115.138  0.390 0.234  0.376 

CoMSIA-EDA 0.752 7  0.636 0.366 0.918 103.539  0.453    0.111 0.437 

CoMSIA-EHDA 0.742 8  0.654 0.311 0.942 128.936  0.341 0.211 0.093 0.355 

CoMSIA-HD 0.428 9  0.981 0.528 0.834 35.186   0.804 0.196  

CoMSIA-HA 0.537 6  0.862 0.493 0.849 61.685   0.426  0.574 

CoMSIA-HDA 0.682 10  0.738 0.331 0.936 90.828   0.356 0.155 0.490 
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CoMSIA-DA 0.705 11  0.716 0.465 0.876 39.132    0.240 0.760 

CoMSIA-ALL 0.734 7  0.659 0.320 0.937 138.360 0.110 0.304 0.156 0.100 0.330 
a q2 = the square of the LOO cross-validation (CV) coefficient; N = the optimum number of components; SEP = 

standard error of prediction; SEE is the standard error of estimation of non CV analysis; r2ncv is the square of the 

non CV coefficient; F is the F-test value; S, E, H, D and A are the steric, electrostatic, hydrophobic, hydrogen-

bond donor, and hydrogen-bond acceptor contributions respectively. 

Table 2 presents the summary of the external validation of the CoMSIA model. The model has a 

high value for r2test (0.966), which is indicative of an adequate external predictive capacity. However, 

according to Golbraikh and Tropsha, high values of q2 and r2test (conditions 1 and 2) are necessary but 

not sufficient conditions for the validation of a model. For a QSAR model to have a reliable predictive 

capability, the line of experimental versus predicted activity should be as close as possible to the line 

y = x. This is observed in the fulfillment of conditions [3a or 3b], [4a or 4b] and [5a or 5b] listed in table 

2. Finally, condition 6 known as r2m metrics, is a quantitative measure to determine the proximity 

between the observed and the predicted activity for the test set. The CoMSIA model reported here 

fulfilled all the conditions for internal and external validation. 

Table 2. Summary of external validation parameters for CoMSIA. 

Condition Parameters Threshold value CoMSIA 

1 𝑞2 >0.5    0.734 

2 𝑟𝑡𝑒𝑠𝑡
2  >0.6    0.966 

3a 𝑟0
2 Close to value of 𝑟𝑡𝑒𝑠𝑡

2     0.920 

3b 𝑟′0
2 Close to value of  𝑟𝑡𝑒𝑠𝑡

2     0.944 

4a 𝑘 0.85 < 𝑘 < 1.15    1.004 

4b 𝑘′ 0.85 < k′ < 1.15    0.995 

5a (𝑟2 − 𝑟0
2)/𝑟2 <0.1    0.048 

5b (𝑟2 − 𝑟′0
2)/𝑟2  <0.1    0.023 

06 |𝑟0
2 − 𝑟′0

2| <0.3    0.024 

7 𝑟𝑚
2  >0.5    0.723 

q2 and r2test are the same parameters as listed in table 1; r02 and k are the correlation coefficient between the actual 

and predicted activities for test set and the respective slope of regression; and r0’2 and k’ are the correlation 

coefficient between the predicted and actual activities for test set and the respective slope of regression. r2m was 

defined in equation 6. 

Furthermore, the Y-randomization test [12] was applied to assess the robustness of the model 

(see Table S1 of the Supplementary Material for randomizations). The dependent variable (biological 

activity) was randomly shuffled and a new QSAR model was developed using the original 

independent variable matrix. If after multiple randomizations the new values of q2 and r2ncv are 

negative or below the limit of acceptability (q2<0.5, r2ncv<0.6) it is corroborated that the results obtained 

in the formulation of the final models are not by chance. In our case, the new QSAR models (after 

several repetitions) have low q2 and r2ncv values (Table 3). 

 

Table 3. Y-randomization test for CoMSIA model. 

Iteration q2 r2ncv 
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Random 1 -0.013 0.107 

Random 2 -0.030 0.087 

Random 3 -0.052 0.082 

Random 4 -0.198 0.108 

Random 5 -0.202 0.179 

Random 6 0.006 0.119 

Random 7 -0.093 0.183 

Random 8 0.085 0.188 

Random 9 -0.034 0.086 

Random 10 -0.100 0.073 

 

The values of experimental activity, predicted activity, and residual values for the best CoMSIA 

model is shown in Table 4. All the compounds showed low residual values and deviations in the 

predicted activity over a logarithmic unit were not observed. Figure 2 shows the graphs of 

experimental versus predicted activity and it can be seen that the data distribution is close to the y=x 

line. The model shows a good balance in terms of predictive capacity. The model presents 42 

compounds with negative residual values and 48 with positive deviations (Figure 2B). The residual 

range was -0.82 to 0.89. As shown in Figure 2C CoMSIA model shows a satisfactory predictive 

capability throughout the whole data set (training and test set) as well as a good predictive power for 

both, less active (1, 6 and 7) and most active compounds (65, 66, and 67). 

 

Table 4. Experimental and predicted pIC50 and residual values for analyzed compounds according 

CoMSIA. 

 

    

Molecule 
Experimental 

pIC50 

Predicted 

pIC50 

      

Residual 

1 5.331 5.620 -0.29 

2t 6.076 6.034 0.04 

3 6.893 6.317 0.58 

4t 5.607 5.961 -0.35 

5 5.558 6.107 -0.55 

6 5.176 5.295 -0.12 

7 5.331 5.438 -0.11 

8 6.456 6.032 0.42 

9t 5.815 6.141 -0.33 

10 6.310 6.291 0.02 

11 7.131 6.816 0.31 

12 7.208 7.689 -0.48 

13 7.921 7.810 0.11 

14t 7.337 7.386 -0.05 
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15 7.824 7.497 0.33 

16 8.854 8.718 0.14 

17 7.921 8.062 -0.14 

18 8.319 7.972 0.35 

19 8.432 8.206 0.23 

20t 6.959 7.170 -0.21 

21 8.770 8.758 0.01 

22 8.538 8.559 -0.02 

23t 6.921 7.421 -0.50 

24 8.620 8.273 0.35 

25 9.036 9.126 -0.09 

26 8.678 8.415 0.26 

27 9.174 9.057 0.12 

28 8.495 8.427 0.07 

29 8.921 9.236 -0.32 

30t 9.066 8.814 0.25 

31 7.482 6.743 0.74 

32 6.818 6.490 0.33 

33 5.731 6.422 -0.69 

34 6.762 6.654 0.11 

35 5.886 6.710 -0.82 

36 6.714 6.734 -0.02 

37t 6.460 6.848 -0.39 

38 6.590 6.753 -0.16 

39 7.499 7.072 0.43 

40 7.018 6.901 0.12 

41t 6.845 6.878 -0.03 

42 5.972 6.412 -0.44 

43 6.079 6.471 -0.39 

44 7.161 7.148 0.01 

45t 7.574 7.855 -0.28 

46t 8.009 7.774 0.23 

47 6.575 6.286 0.29 

48 7.987 7.699 0.29 

49 7.886 7.915 -0.03 

50 7.301 7.231 0.07 

51 5.574 6.018 -0.44 

52t 7.638 7.624 0.01 

53 5.933 6.164 -0.23 

54 5.984 5.876 0.11 

55 6.495 6.381 0.11 

56 7.155 7.619 -0.46 

57 6.495 6.436 0.06 

58t 7.155 7.268 -0.11 

59 7.638 7.512 0.13 

60 7.444 7.467 -0.02 

61 7.553 7.408 0.14 

62 6.854 6.741 0.11 

63 8.658 8.820 -0.16 
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64 8.824 8.740 0.08 

65 10.143 10.287 -0.14 

66 10.602 10.685 -0.08 

67t 10.143 9.759 0.38 

68 10.097 10.144 -0.05 

69 8.061 8.023 0.04 

70 8.114 8.106 0.01 

71 7.495 7.397 0.10 

72 6.987 6.787 0.20 

73t 7.553 7.707 -0.15 

74 7.553 7.757 -0.20 

75 8.237 7.347 0.89 

76 5.886 5.739 0.15 

77 8.174 8.153 0.02 

78t 8.469 8.155 0.31 

79 7.161 7.463 -0.30 

80 8.000 8.225 -0.23 

81 7.658 8.237 -0.58 

82 9.301 9.394 -0.09 

83 7.337 7.216 0.12 

84t 7.482 7.278 0.20 

85 7.000 7.134 -0.13 

86 7.770 8.110 -0.34 

87 6.854 6.957 -0.10 

88 9.000 8.926 0.07 

89 8.886 8.686 0.20 

90 9.000 8.960 0.04 
t test set compound 
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Figure 2. A. Plots of experimental versus predicted pIC50 values for the training and test set molecules. 

B. Residual plots between predicted and experimental values. C. CoMSIA predictions for every 

molecule in the complete set. 

2.2 Applicability domain 

 

The applicability domain (AD) is a theoretical region in chemical space encompassing both the 

model descriptors and modeled response, which allows one to estimate the uncertainty in the 

prediction of a compound based on how similar it is to the training compounds employed in the 

model development. In this work, we used the method developed by Roy et al. [13] for the 

determination of AD. This method is based on the basic theory of the standardization approach. 

 

The calculation was carried out using the free application available on the author's page and all 

compounds were found to be within the domain of applicability, except compounds 83-87. These 

compounds are the only ones bearing an imidazopyridine or imidazopyrimidine ring and the only 

difference between them is the position through which the heterocycle is connected to the urea 

moiety. For this reason, compounds with these heterocyclic systems connected to urea were not 

proposed as new molecules.  
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In summary, the CoMSIA model generated here presents good internal and external validation 

parameters (q2 = 0.734 ; r2test = 0.966), and meets the validation criteria of Tropsha and Roy (r2m = 0.723). 

All the molecules studied are within the applicability domain (except compounds 83-87) and the 

model was validated by the Y-randomization test. Therefore reliable information can be extracted 

from the contour maps as discussed in the next section. 

 

2.3 Contour maps analysis 

 

The result of a 3D-QSAR study can be visualized graphically unlike a traditional 2D-QSAR 

equation. Contour maps represented by colored polyhedrons can be seen around molecules. The 

maps obtained in our study correspond to the steric, electrostatic, hydrophobic, H-bond donor and 

H-bond acceptor contour maps. Regions where a molecular property is favorable or unfavorable are 

indicated by different colored polyhedrons. Figure 3 presents the different maps around the most 

active compound (66, pIC50 = 10.602; on the left) and the least active compound (6, pIC50 = 5.176; on 

the right).  

 

2.3.1 Steric Contour Map 

 

The steric contour map shows a large yellow polyhedron close to the pyridazine ring of the most 

active compound indicating that bulky substituents in this region should be avoided in order to favor 

biological activity (Figure 3A, B).  Alternatively, a smaller five-membered ring could replace the 

pyridazine ring following same steric requirement.  This can be seen in the proposed molecules 

(Table 5) where the analog 2x shows a considerable increase in activity when the pyridazine ring is 

replaced by a pyrazole ring.  This relation is further supported by compounds 54 and 55 (Table 6) 

which bear phenyl substituentes in the corresponding position and show low activity consistent with 

their bulkier nature.  

On the other side, the yellow polyhedron that surrounds the pyrimidine ring indicates that 

reducing the size of this ring or replacing it with a smaller linker while maintaining the electronic 

characteristics would be beneficial for activity. Additionally, the green polyhedrons around the ortho 

and meta positions of the disubstituted benzene ring indicate that bulky substituents in these 

positions can be favorable for activity.  This can also be seen in table 5 where substitution with a 

methyl group considerably increases the activity in all the proposed molecules. For the least active 

compounds (Figure 3B), the steric factor by itself does not seem to explain the lower activity values 

(Table 1). 
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Figure 3. CoMSIA steric (A, B), electrostatic (C, D), hydrophobic (E, F), donor (G, H) and acceptor (I, 

J) contour maps around compounds 66 (left) and 6 (right), the most active and less active of the series 

respectively. Sterically favored areas are in green and disfavored areas are in yellow. Electropositive 

favoured areas are in blue and electronegative favoured areas are in red. Hydrophobic favoured areas 

are in yellow and unfavourable areas in grey. Donor and acceptor favoured areas are in cyan and 

magenta respectively, and donor and acceptor unfavourable areas are in purple and red, respectively. 

 

 

 

 

 

 

2.3.2 Electrostatic Contour Map 
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Regarding the electrostatic contour maps, the red polyhedrons around the pyridazine ring 

(Figure 3C) highlight the importance of nitrogenated heterocycles that can confer electronegative 

areas in this region.  This may explain why molecules 1, 6 and 7 (Table 6) bearing benzene rings with 

more homogeneous charge distribution show lower activity.  Inside the pyridazine ring the blue 

polyhedron shows that an electropositive center is beneficial for activity, therefore, incorporating 

electro withdrawing substituents in positions 5 and 6 of the pyridazine ring could increase activity.  

This electron distribution with an electron rich edge and electron deficient center suggests possible 

pi-stacking or pi-cation interactions with the target enzyme. Similarly, the expansion of the blue 

contour at position 4 of the pyridazine ring indicates that electron withdrawing substituents 

particularly at this position are favorable for activity. Proposed analogues 1x, 9x and 10x (Table 5) 

that follow this substitution pattern display high activity.  The polarization of the carbon atom 

directly attached to the electroattractive or electronegative groups nitrile and fluorine lower the 

electron density right where the blue polyhedron lies.  

On the other side, the red contour over the pyrimidinic nitrogen (Figure 3C) shows the 

importance of an electronegative atom at this position, which is present in the most active molecules 

(65, 66, 67 and 68 from table 6) and absent in the least active one (compound 6).  Likewise, an electron 

rich benzene ring is favorable and thus replacing the fluorine atom for an electrodonating group 

would be recommended. Accordingly, the proposed molecules 9x and 10x substituted with 

electrodonating methylene groups show the highest predicted activities.  In figure 3D the red 

contour over the electron deficient nitrile carbon atom can explain the lower activity of this analog. 

 

2.3.3 Hydrophobic Contour Map 

 

The hydrophobic contour maps (Figure 3E and 3F) show a gray polyhedron over the pyridazine 

nitrogen atoms of the most active molecules, indicating that incorporating hydrophilic atoms in this 

region can favor activity. A yellow polyhedron over the pyrimidine ring shows that a hydrophobic 

linker region is important and additional yellow polyhedrons surrounding the disubstituted benzene 

ring suggest hydrophobic substituents in the meta and ortho positions to increase activity.  

Following both the hydrophobic and the previously mentioned steric requirement all proposed 

molecules (table 5) possess an ortho-methyl substituent in the benzene ring. 

 

2.3.4 Donor and Acceptor Contour Maps 

 

In the hydrogen bond donor map (Figure 3G and 3H) cyan polyhedrons surrounding the 

pyridazine ring suggest incorporating hydrogen bond donor groups to favor activity.  For this 

reason, the proposed molecule 3x (Table 5) was design with a hydroxyl group able to form hydrogen 

bonds. Furthermore, cyan polyhedrons around the urea linker suggest that the urea moiety is 

involved in a hydrogen bond interaction with the target enzyme. 

Finally, the hydrogen bond acceptor map shows red polyhedrons next to position 4 of the 

pyridazine ring (Figure 3I and 3J), position 5 of the pyrimidine ring and over the urea carbonyl, which 

indicates that incorporating hydrogen bond acceptor groups in these positions is unfavorable for 

activity.  Therefore, using different linker groups without hydrogen bond acceptor groups could be 

advisable to in order to design new inhibitors.  

 

 

 

2.4 Design of new FAAH inhibitors 
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Based on the information obtained from the contour maps, we have designed a series of 

compounds evaluating multiple combinations of fragments. Substituents and functional groups were 

proposed taking into consideration the electronic, steric, hydrophobic and hydrogen bonding 

properties suggested by the contour maps. Table 5 shows the compounds that presented the best-

predicted inhibitory activity. All proposed molecules have better activity than the most active 

compound in the series (66, pIC50 = 10.602). In general, the presence of 6-member rings or fused 

systems on the left side did not greatly increase activity (1x pIC50 = 10.889; 4x pIC50 = 10.990). However, 

the insertion of a pyrazole ring generated derivatives with a significant increase in the pIC50 value 

(best compounds: 9x, pIC50 = 12.416; 10x, pIC50 = 12.196). This is because the pyrazole system meets 

the electronic, hydrophilic and hydrogen bonding requirements suggested by the contour maps. On 

the right side, the insertion of halogens and alkyl groups slightly increased the activity. 

 

Table 5. The proposed structures of new molecules and their predicted pIC50 values using the 

CoMSIA model. 

N° Structure Predicted pIC50 

1x 

 

10.889 

2x 

 

11.388 

3x 

 

11.490 

4x 

 

10.990 

5x 

 

11.253 

6x 

 

11.744 
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7x 

 

11.599 

8x 

 

11.822 

9x 

 

12.416 

10x 

 

12.196 

 

3. Materials and Methods 

3.1 Selection of Conformers and Molecular Alignment 

 

CoMSIA studies were performed with Sybyl X-1.2 software [14] installed in a Windows 10 

environment on a PC with an Intel core i7 CPU. In order to acquire the best conformers for each 

molecule, every compound was drawing in ChemDraw and then were subjected to a preliminary 

geometry optimization using MM2 molecular mechanics as is implemented in ChemBio3D software. 

Following, the structures were further minimized by Tripos force field implemented in Sybyl. 

MMFF94 charges were assigned to each atom. The minimized structures were superimposed by the 

atom fit method choosing the piperazinylurea nucleus as the common scaffold for alignment (Figure 

4). 

 

Figure 4. The superimposed structures of all compounds used in the CoMSIA model. 
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3.2 CoMSIA field calculation 

 

To derive the CoMSIA descriptor fields, the aligned training set molecules were placed in a 3D 

cubic lattice with grid spacing of 2Å in x, y, and z directions such that the entire set was included in 

it. The CoMSIA analysis, the standard settings (probe with charge +1.0, radius 1Å, hydrophobicity 

+1.0, hydrogen-bond donating +1.0, hydrogen bond accepting +1.0 [15]) were used to calculate five 

different fields: steric, electrostatic, hydrophobic, donor and acceptor. Gaussian-type distance 

dependence was used to measure the relative attenuation of the field position of each atom in the 

lattice, and led to much smoother sampling of the fields around the molecules when compared to 

CoMFA. The default value of 0.3 was set for attenuation factor α. 

 

 

3.3 Data Set Selection and inhibitory activity 

CoMSIA studies were performed on a set of 90 piperazinyl ureas derivatives reported in 

literature[16-23] (Table 6). The derivatives displayed potent fatty acid amide hydrolase (FAAH) 

inhibitors activity.The IC50 values were converted to pIC50 (-logIC50). The compounds were randomly 

divided into training (73 compounds, 81%) and test sets (17 compounds, 19%), ensuring that both 

sets contained structurally diverse compounds with high, medium and low activity, and a uniform 

distribution to avoid possible problems during the external validation. The distribution of pIC50 

values for the whole set, the training set and the test set is shown in Figure 5. In all three cases the 

biological activity follows a Gaussian distribution. 
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Figure 5. Histogram of frequency distribution data. 
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Table 6. Chemical structure and pIC50 values of the studied molecules.a 

N° Structure IC50 (nM) pIC50 (M) 

1  

 

4670 5.331 

 

2  

 

840 6.076 

 

 

 

3  

 

128 6.893 

 

 

 

4  

 

2470  5.607 

 

 

 

5  

 

2770  5.558 

 

 

 

 

6  

 

6670  5.176 

 

 

 

7  

 

4670  5.331 

 

8  

 

350 6.456 

 

 

 

 

9  

 

1530 5.815 

 

 

 

 

10  

 

490 6.310 

 

 

 

11  74 7.131 
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12  

 

62 7.208 

 

 

 

13  

 

12 7.921 

 

 

 

 

14  

 

46 7.337 

 

 

 

15  

 

15 7.824 

 

 

 

16  

 

1.4 8.854 

 

 

 

 

17  

 

12 7.921 

 

 

 

 

18  

 

4.8 8.319 

 

 

 

 

19  

 

3.7 8.432 

 

 

 

 

 

20  

 

110 6.959 

 

 

 

 

21  1.7 8.770 
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22  

 

2.9 8.538 

 

 

 

 

23  

 

120 6.921 

 

 

 

 

24  

 

2.4 8.620 

 

 

 

 

25  

 

0.92 

 

9.036 

 

 

 

 

26  

 

2.1 8.678 

 

 

 

 

27  

 

0.67 9.174 

 

 

 

 

28  

 

3.2 8.495 

 

 

 

 

29  

 

1.2 8.921 

 

 

 

 

30  0.86 9.066 
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31  

 

33 

 

7.482 

 

 

 

 

32  

 

152  6.818 

 

 

 

 

33  

 

1860 

 

5.731 

 

 

 

 

34  

 

173 

 

6.762 

 

 

 

 

35  

 

1300 

 

5.886 

 

 

 

 

36  

 

193 

 

6.714 

 

 

 

 

37  

 

347 

 

6.460 

 

 

 

 

38  

 

257 

 

6.590 

 

 

 

 

39  

 

31.7  

 

7.499 
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40  

 

96 

 

7.018 

 

 

 

 

41  

 

143 

 

6.845 

 

 

 

 

42  

 

1066 

 

5.972 

 

 

 

 

43  

 

833 

 

6.079 

 

 

 

 

44  

 

69 

 

7.161 

 

 

 

 

 

45  

 

26.7 

 

7.574 

 

 

 

 

 

46  

 

9.8 

 

8.009 

 

 

 

 

47  

 

266 

 

6.575 

 

 

 

 

 

48  10.3 

 

7.987 
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49  

 

13 

 

7.886 

 

 

 

 

 

50  

 

50 

 

7.301 

 

 

 

 

51  

 

2667 

 

5.574 

 

 

 

 

52  

 

23 

 

7.638 

 

 

 

 

 

53  

 

1167 

 

5.933 

 

 

 

 

54  

 

1037 5.984 

 

55  

 

320 

 

6.495 

 

 

 

 

56  

 

70 

 

7.155 

 

 

 

 

57  320 

 

6.495 
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58 

 

70 

 

7.155 

 

 

 

59  

 

23 7.638 

 

 

 

 

60  

 

36 7.444 

 

 

 

 

61  

 

28 7.553 

 

 

 

 

62  

 

140 6.854 

 

 

 

 

63  

 

2.2 8.658 

 

 

 

 

64  

 

1.5 8.824 

 

 

 

 

65  

 

0.072 10.143 

 

 

 

 

66  

 

0.025 10.602 

 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0221.v1

http://dx.doi.org/10.20944/preprints201811.0221.v1


 

67  

 

0.072 10.143 

 

 

 

 

68  

 

0.08 10.097 

 

 

 

 

69  

  

8.7 8.061 

 

 

 

 

70  

  

7.7 8.114 

 

 

 

 

71  

  

32 7.495 

 

 

 

 

72  

  

103 6.987 

 

 

 

 

73  

  

28 7.553 

 

 

 

 

74  

 

28 7.553 

 

 

 

 

75  

 

5.8 8.237 

 

 

 

 

76  1300 5.886 
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77  

 

6.7 8.174 

 

 

 

 

78  

 

3,4 8.469 

 

 

 

 

79  

 

69 7.161 

 

 

 

 

80  

 

10 8.000 

 

 

 

 

81  

 

22 7.658 

 

 

 

 

82  

 

0.5 9.301 

 

 

 

 

83  

 

46 7.337 

 

 

 

 

84  

 

33 7.482 

 

 

 

 

85  

 

100 7.000 

 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0221.v1

http://dx.doi.org/10.20944/preprints201811.0221.v1


 

 

86  

 

17 7.770 

 

 

 

 

87  

 

140 6.854 

 

 

 

 

88  

 

1 9.000 

 

 

 

 

89   

 

1.3 8.886 

 

 

 

 

90  

 

1 9.000 

 

 

 

 
a IC50 = Half maximal inhibitory concentration; pIC50 = -logIC50; M = molL-1 

 

3.4 Internal validation and Partial Least Squares (PLS) Analysis  

 

PLS analysis was used to construct a linear correlation between the CoMFA and CoMSIA 

descriptors (independent variables) and the activity values (dependent variables) [24]. To select the 

best model, the cross-validation analysis was performed by using the LOO method (and SAMPLS), 

which generates the square of the cross-validation coefficient (q2) and the optimum number of 

components (N). The non-cross-validation was performed with a column filter value of 2.0 in order 

to speed up the analysis and reduce the noise. The q2, which is a measure of the internal quality of 

the models was obtained according to the following equation (1): 

 

 𝑞2 = 1 − 
∑(𝑦𝑖− 𝑦𝑝𝑟𝑒𝑑)

2

∑(𝑦𝑖− 𝑦̅)2                                       (1) 

 

Where 𝑦𝑖 , 𝑦̅ , and 𝑦𝑝𝑟𝑒𝑑  are observed, mean, and predicted activity in the training set, 

respectively. 

 

3.5 External validation 
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The models were subjected to external validation criteria according to the proposed test by 

Golbraikh and Tropsha[25, 26], which considers a QSAR model predictive, if the following conditions 

are satisfied: 

 

𝑞2 > 0.5                   (2) 

𝑟𝑡𝑒𝑠𝑡
2 > 0.6             (3) 

(𝑟2−𝑟0
2)

𝑟2 < 0.1 or 
(𝑟2−𝑟 0

′2)

𝑟2 < 0.1       (4) 

0.85 ≤ 𝑘 ≤ 1.15 or 0.85 ≤  𝑘’ ≤ 1.15     (5) 

 

It has been demonstrated[25] that all of the above criteria are indeed necessary to adequately 

assess the predictive ability of a QSAR model.  

 

Furthermore, the external predictive power of the developed 3D-QSAR models using the test set 

was examined by considering 𝑟𝑚
2  metrics as shown below[27]:  

 

𝑟𝑚
2 = 𝑟2 (1 − |√𝑟2 − 𝑟0

2|)                               (6) 

 

Where 𝑟2  and 𝑟0
2  are squared correlation coefficients between the observed and predicted 

activities of the test set with and without intercept, respectively. For a significant external model 

validation, the value of 𝑟𝑚
2  should be greater than 0.5. 

 

3.6 Applicability domain calculation 

 

The AD was evaluated based on the simple standardization method reported by Roy et al. [13]. 

First, each descriptor "i" for each compound "k" is standardized (Sik). Every compound must have a 

maximum value [Si]max(k) ≤ 3. In the case that [Si]max(k) > 3 and its minimum value [si]min(k) < 3, 

then the Snew(k) parameter must be calculated and has to fulfill the condition: Snew(k) = 𝑆𝑘̅ + 1.28 ∗

𝜎𝑆𝑘
, where 𝑆𝑘̅ is the mean of Sik values for compound k and 𝜎𝑆𝑘

 is the standard deviation for such 

values. The software is available free of charge on the authors' website: 

http://dtclab.webs.com/software-tools and http://teqip.jdvu.ac.in/QSAR_Tools/. 

  

4. Conclusions 

In this contribution, a 3D-QSAR CoMSIA study was carried out on an extensive database of 90 

irreversible inhibitors of the enzyme FAAH of pyrimidinyl-piperazine-carboxamide general 

structure. The best model obtained considered all the field contributions, being the electrostatic and 

hydrogen-bond acceptor properties the ones that contributed most to the activity (30.4 % and 33.0 % 

respectively). The model was validated internally (q2 = 0.734) and externally (r2test = 0.966) and was 

also submitted to Tropsha validation criteria, r2m calculation (0.723) and Y-randomization test, 

passing all tests. Finally, the information derived from the contour maps was used to design new 

compounds that showed promising predicted activities (pIC50 of the most active compounds = 12.196 

and 12.416). The main structure-activity relationships found in this study and summarized in Figure 

6, are a useful tool to guide the future design of promising new FAAH inhibitors.  
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Figure 6. Main structure-activity relationships derived from this study. 
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Randomizations of biological activity for Y-randomizarion test. 
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