
1 
 

Formulated Mathematical Model for Delayed Particle Flow in Cascaded Sub-Surface Water Reservoirs with 
Validation on River Flow 

         Ombaki Richard,1+254727908185, Kerongo Joash2, +25472547208, Okwoyo M. James3, +254764602901 

1. Department of mathematics and actuarial science- (Kisii University); 

2. Department of mathematics and actuarial science- (Kisii University); 

3. School of mathematics -(University of Nairobi); 

ABSTRACT  

Pollution of sub-surface water reservoirs mainly rivers and streams through contaminated water point sources (CWPS) 
was studied. The objective was to formulate a discrete time delay mathematical model which describes the dynamics of 
reservoir pollution using mixing-problem processes that involve single species contaminants such as nitrates, 
phosphorous and detergents. The concentration 𝑥(𝑡) of pollutants was expressed as a function of the inflow and outflow 
rates using the principle for the conservation of mass. Systems of ODEs generated from principles of mixing problems 
were refined into a system of DDEs so that the concentration of pollutant leaving the reservoir at time would be 
determined at some earlier instant, for the delay. The formulated model is a mathematical discrete time delay model 
which would be used to describe the dynamics of sub-surface water reservoir pollution. The results from the validation 
of the model were analyzed   to determine how time delays in the mixing processes affect the rate of particle movement 
in water reservoirs.  
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1. Introduction 
In addition to groundwater, sub-surface water systems that include rivers, ponds, dams, and lakes are important water 
resource for municipalities, domestic, agriculture, and industry. Therefore, the capability to predict the levels of 
concentration and rate of movement of contaminants in the water resource is of vital importance for the reliable 
assessment of hazardous or risk arising from water contamination problems, and for the decision of efficient and 
effective techniques to mitigate them. Reliable and quantitative prediction of pollutants movement in water systems can 
be achieved only if we understand the processes controlling the migration of contaminants. These processes include 
advection, hydrodynamic dispersion, and physical, chemical and biological reactions that affect their soluble 
concentration in water systems (Nick, Foppen, Kulabako, Xavier, Samuel & Wagner, 2012). 

Reduction of sub-surface water pollution largely involves the scientific understanding of these processes which control 
the fate and movement of pollutants in the sub-surface environment. First, the advection transport involve movement of 
dissolved chemicals with the flowing water; second, hydrodynamic dispersion, involve molecular and ionic diffusion 
together with small-scale variations in the flow velocity through the porous media causing the paths of dissolved 
molecules and ions to diverge or spread from the average direction of water flow; third, reactions in which some amount 
of a particular dissolved chemical species (such as herbicides) may be removed from the water as a result of biological, 
chemical, and physical reactions in water or between the water and the solid aquifer materials or other liquid phases. 
Lastly, fluid point sources, where water of one composition is introduced into and mixed with water of a different 
composition. In addition, it is important to understand the most challenging problems associated with pollution of water 
systems, which include prevention of the introduction of contaminants in water systems; prediction of their movement if 
they are introduced; and methods of their removal, to some extent, in order to protect the biosphere effectively (Patil & 
Chore, 2014). 

The mathematical representation in the transport models to predict the contaminant migration in sub-surface water 
systems is one major area to supplement to the scientific knowledge on pollution processes. Formulation of the transport 
models involves determination of different parameters in the field and the laboratory using different methods and 
consequent applications of the established conceptual models for development of management measures to control 
and/or prevent the introduction of contaminants in water systems (EPA, 2007). 

2. Background 
Migration of dissolved (or undissolved) organic and inorganic substances into sub-surface water reservoirs through point 
sources, largely involve mixing processes within the system of flow. The mixing processes significantly alter the 
predictive rate of flow of pollutants in the water system, and therefore the time inherent in these processes need to be 
accounted for. The study considered changes in contaminant concentration which occur within dynamic sub-surface 
water systems of cascading water reservoirs due to fluid point sources, where water of one composition of pollutant is 
introduced into and mixed with water of a different composition. A numerical model for the process was formulated 
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using mixing-problem analyzes in water tanks (Antonin, 2013). The purpose was to apply the model to predict pollution 
concentration attenuation in water systems and this may be helpful to approximate time inherent in the process of 
pollutants accumulation in water reservoirs. 

3. Governing Equations and Principles  
3.1 Continuity Equation 

In water dynamical systems, development of mathematical equations to describe the groundwater flow and transport 
processes is achieved through the fundamental principle of mass conservation of fluid or solute. The general equation for 
conservation of mass may be represented in global variables, using a representative volume of porous medium as: 

                 𝑄
𝑖𝑛   

−  𝑄
𝑜𝑢𝑡  

−   𝑄
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

= 𝑄
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

                                                    3.1 

Where is the mass of fluid or solute. This is the equation for conservation of mass (or continuity equation) which may be 
combined with a mathematical expression of the relevant dynamic process to obtain a differential equation describing 
flow or transport (Anderson, Woessner,& Hunt, 2016). 

3.2 Equations for Mixing-problem Processes in Cascade Reservoirs 

In modeling population dynamics, Antonin (2013) derives the following system of ODE from cascade arrangement of 
water tanks 

𝑑𝑥1(𝑡)

𝑑𝑡
 =  −𝑘1𝑥1(𝑡)                                                                                                              3.2  

𝑑𝑥𝑖(𝑡)

𝑑𝑡
=  𝑘𝑖−1𝑥𝑖−1(𝑡) −  𝑘𝑖𝑥𝑖 (𝑡),    2 ≤ 𝑖 ≤ 𝑛.                                                                3.3 

Where, 𝑥 is concentration of pollutant in the cascade;  𝑛 is number of reservoirs in the cascade; and 𝑘 =



. Equation 

(3.2) indicates that fresh water enters the initial water reservoir so that the particle concentration 𝑥1(𝑡) due to a single 
source is negative. Equation (3.3) is a global ordinary differential equation which describes the change in concentration 
between two consecutive reservoirs, (𝑖 − 1)𝑡ℎ and 𝑖𝑡ℎ in the cascade through 𝑛 reservoirs. It should be noted that in its 
application, such as on the dynamics of river flow involving pollution , the system of ordinary differential equation 
(equation 3.3) provides net concentration 𝑥(𝑡) of particles only between two progressive adjacent cascade reservoirs, 𝑖𝑡ℎ 
and (𝑖 + 1)𝑡ℎ.  

3.3 Equation for Single Species Population model with delay 

In modeling population dynamics, Erwin (2005) provides DDE model for a single species population as: 

𝑑𝑥

𝑑𝑡
= 𝑏𝑥(𝑡 − ℎ)𝑒−𝑎𝑥(𝑡−ℎ) −  𝑑𝑥(𝑡)                                                                                    3.4 

If 𝑏 > 𝑑, then the equation (3.4) will have nontrivial steady states. The study considered the case of equation (3.4) when 
the average death rate 𝑑 is constant, and the average birth rate 𝑏  has an exponential decaying factor. Examples where 
this type of model has been applied include ‘Nicholson’s blowfly data’ on laboratory populations of blowflies, in which 
the essential features of the model are two functions relating fecundity and egg-to-adult survival to the amount of food 
available to each individual. The model describes thresholds representing maintenance requirements in the two functions, 
𝑏 and 𝑑, together with a time delay 𝜏 due to the development that cause cycling in the blowfly populations. Similar 
thresholds and time delays occur in more complex biological systems with cycling in closely interacting populations of 
predators and prey (Gourley & Kuang, 2004).  

4. Results and Discussions 
4.1 Formulated Discrete Time Delay Mathematical Model  

Steady, uniform and three-directional flow in a river, stream or generally sub-surface water systems with cascade 
geological setting was considered. First, equations (3.2) and (3.3) derived from mixing-problem processes in a controlled 
set-up of water tanks (Antonin, 2013) were used to provide a conceptual framework (methodology) for natural sub-
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surface water reservoirs of cascading geological setting. Second, since pollution concentration in the reservoirs is never 
instantaneous, the equations were modified to include lag or delay time 𝜏. This modification considered concentration 
𝑥(𝑡) of a pollutant as a reducing or decaying factor so that the final model equation for particle transport would conform 
to equation (3.4) from population dynamics. To achieve this, the changes in concentration of particles in a particular 
reservoir were analogized to the dynamics of population change of a single species in an ecological niche, and therefore 
the following derivation was resourceful: 

Considering a simple population growth model with unlimited resources, the changes in population size 𝑁(𝑡) at any 
given time can be represented in global variables as, 

        
𝑑𝑁

𝑑𝑡
= (𝐵 − 𝐷)𝑁(𝑡),   𝐵, 𝐷 > 0                                                                                                  4.1 

The constants 𝐵 and 𝐷 are the birth and death rates, respectively. This model assumes that birth and death rates are 
directly commensurate! Natural realities in biological populations indicate that these rates are never commensurate. Can 
this model, therefore, be improved to simulate such realities in a population? Let 𝑁(𝑡) be the number of adults. The 
babies of the population species should take time 𝜏 to grow up and with probability 𝜌 to make it to full adults. Then, 

         
𝑑𝑁

𝑑𝑡
= 𝐵𝜌𝑁(𝑡 − 𝜏) − 𝐷𝑁(𝑡)                                                                                                      4.2 

This is a delay differential equation (DDE), named Hayes Equation (Erwin, 2005). In particular, by considering the 
independent variables 𝐵, 𝐷, 𝜌 and 𝜏, equation (4.2) is similar to equation (3.4).  

4.1.1 Model Formulation 

The model DDE equation was provided in the form of equation (3.4) from population dynamics through equation (4.2) 
and then parameter setting mathematical approach was used to investigate the stable states of the resulting model 
equation. This approach involved combinations of a range of values of the time lags 𝜏 and coefficients 𝛽, 𝜕 in the DDE 
equation so as to obtain a steady stable (or unstable) state. 

Following the derivation of Hayes equation in equation (4.2), equation (3.3) was modified to the following model 
equation. 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝛽

𝑖
(𝑡)[𝑥(𝑡 − 𝜏)]𝑒−𝐴𝑥(𝑡−𝜏𝑖) −  𝜕𝑖(𝑡)𝑥(𝑡),       𝑖 = 1,2,3, … , 𝑛.                                     4.3 

Where 𝑖 is the position of reservoir in the cascades, 𝑥(𝑡) is the concentration of pollutant species in sub-surface water 
reservoir, 𝜏𝑖 is the time lag of pollutant flow in the cascade reservoir and is considered to be of unique value for a 
particular reservoir so that 𝜏1 < 𝜏2 <, , , < 𝜏𝑛, for reservoirs 1,2,3,…,𝑛. This specifies equation (4.3) as DDE with 
multiple discrete delays. The parameters 𝛽, 𝜕 are time-dependent coefficients, so that equation (4.3) is non-autonomous. 

The coefficient 𝛽(𝑡) is termed as the incursion term and represents pollutant particles that enter the 𝑖𝑡ℎ reservoir with a 
rate of flow 𝑓

𝑖−1
, which is the rate of flow in the previous adjacent reservoir. 𝛽(𝑡) is considered a continuous, positive, 

decreasing function, so that the average concentration rate (
ௗ௫

ௗ௧
) of the pollutant decreases with increased number of 

cascade water reservoirs. Similar consideration on this coefficient has been done for density-limited growth and the 
logistic models in population dynamics (Erwin, 2005). 

The coefficient 𝜕(𝑡) is called the dilution term which accounts for the spreading rate (flux divergence rate) of pollutant 
particles and therefore reducing the average concentration per unit volume of particles flowing in the 𝑖𝑡ℎ  reservoir. This 
term is comparable to the death rate 𝑑 of a single species in population dynamics, which is increased by factors like 
intraspecific competitions for survival. For example, in Nicholson’s blowfly model (Erwin, 2005), 𝑑 is considered 
constant and represents constant per capita death rate. Similarly, in applications of equation (4.3), 𝜕𝑖 in the 𝑖𝑡ℎreservoir is 
considered constant in that particular reservoir. 
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The invading particles in the 𝑖𝑡ℎ reservoir do not mix up instantaneously with water, but rather takes time 𝜏𝑖 in the 
mixing process. Some of these particles will be harbored in the reservoir due to chemical, biological and physical 
processes and therefore may or may not eventually flow into the (𝑖 + 1)௧ reservoir. With reference to equation 
(4.2), Hayes’ equation, this possibility is represented in the model equation (4.3) by the mathematical 
probability𝜌(𝑡) = 𝑒ି௫(௧ିఛ). This term is attached to the incursion term 𝛽(𝑡) to mathematically account for the 
progressive exponentially reducing (decaying) incursion rate of pollutant particles in the cascades. The constant 𝐴 is 
mathematically used as a scaling factor and is assigned a negative value so that the exponential term can reciprocally 
provide the decaying factor in the incursion term. 

The following mathematical definition was provided for particle concentration 𝑥(𝑡), so as to specify equation (4.3) 
for a solution which is bounded for each water reservoir in the cascade. 

Definition 

If  
ௗ௫(௧)

ௗ௧
= 𝐹(𝑡, 𝑥௧), 𝑥(𝑡) ∈ ℝ, where 𝑥𝑡(𝑡 + 𝜃), 𝜃 ∈ (−∞, 0] represent a trajectory of the solution in the past, then 

𝐹 represent a functional operator from ℝ × 𝐶ଵ to ℝ2 (Humphries T., 2016). 

The consequence of this definition is to specify the model equation (4.3) as a functional delay differential equation 
with the following properties: 

Á The delays 𝜏𝑖 are discrete with 𝜏1 < 𝜏2, < ⋯ <, 𝜏𝑛 for every 𝜏 ∈ ℝ. 

Á Concentration, 𝑥(𝑡) ∈ ℝ. 

Á 𝑋(𝑡) = { 𝑥(𝜏): 𝜏 ≤ 𝑡}. 

Á Initial conditions: ∅: [−𝜏, 0] →  ℝ. 

Á The characteristic equation is transcendental. 

4.1.2  Linearized Stability of Model Equation (4.3) 

This sub-section was aimed at setting conditions for the determination of values of the coefficients 𝛽 and 𝜕 as a pair 
in equation (4.3) that will always give rise to a stable (or unstable) state on application of the DDE. This was 
achieved through a criterion derived to evaluate a critical delay, 𝜏𝑐 from a suitable combination of values of  𝛽 and 
𝜕. The delays, 𝜏𝑖 will then be determined based on the value of  𝜏𝑐 so as to sustain stability of resulting DDE.  

The study derived a lot of insight from stability analysis of equilibria. An equilibrium point in the state space was 
considered for which 𝑥(𝑡) = �̅�  is a solution of equation (4.3) for all 𝑡, so that equilibrium points satisfy. 

  𝑓(�̅�, �̅�, �̅�, … , �̅� ) = 0                                                                                                      4.4 

In principle, when a solution or solutions of the characteristic equation has positive real part, then the equilibrium 
point is unstable. If they all have negative real parts, the equilibrium point is stable. When the leading characteristic 
values are zero, then the stability is unreduceable to linear order. 

It should be realized that the basic properties of this model are the type of functions 𝛽 and 𝜕 which might lead to the 
existence of periodic solutions of equation (4.3). The study specified the use of the case 𝛽(𝑡) = 𝛽𝑒ି௫(௧ିఈ) and 
𝜕(𝑡) constant in each of the cascade reservoir in cascade, so as to prove the existence of the periodic solution of the 
model equation. 

4.1.3 Preliminary Analysis of Model Equation 
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An analytical approach was provided to establish basic properties of solutions to the equation (4.3) under the 
following projections: 
 
¶ Given positive initial data of concentration 𝑥(𝑡), solutions remain positive in all time 𝑡. This positivity of 

solutions is important in modeling physical and biological phenomena because negative solutions (values) 
will be meaningless.  

¶ Solutions are bounded and eventually uniform bounded regardless of initial data. Pollution in a flow is 
characterized with particles moving along a concentration gradient. The rate of the mixing process of 
pollutant particles is affected by initial concentration. Such rates are expressed in terms of time delays in 
any dynamics of flow. Eventually a uniform particle flow is attained for every initial concentration when 
particles concentration is minimum constant or otherwise zero in the long run, or maximum levels. 

¶ Determine steady state solutions and their stability: 
-identify delays that cause instability to non-trivial steady states of equation (4.3). If the non-trivial steady 
states exist for a solution, then there is a critical delay corresponding to every such non-trivial steady state.  
-propagate the existence of periodic solutions. DDEs that model physical dynamics exhibit oscillatory 
phenomena whose analytical results provide periodic solutions (Erwin, 2005). 

To achieve the above set projections the following analytical approach provided in Erwin (2005) was applied. 

The study relied on the condition that 𝛽 >  𝜕, so as to be lead by the case of Theorem (4.1) below, where the non-
trivial steady state exists. Besides, for particles to flow in a water reservoir, their rate of ‘production’ must be higher 
than their ‘death’ rates. 

Theorem (4.1) 

Let 𝛽 and 𝜕 be positive functions. Suppose that their exists an 𝑥 ഥ ∈ 𝑥 such that: 

𝑠𝑖𝑔𝑛൫𝛽(𝑥) − 𝜕(𝑥)൯ = −𝑠𝑖𝑔𝑛(𝑥 − 𝑥 ഥ  ), and 𝛽′(𝑥 ഥ )< 𝜕ᇱ(𝑥 ഥ).  Then  𝑥 ഥ is a positive steady state, and the trivial steady 

state is unstable. If  𝛽′(𝑥 ഥ  )𝑥 ഥ > −2𝜕(𝑥 ഥ) − 𝜕′(𝑥 ഥ)𝑥 ഥ , then 𝑥 ഥ is linearly stable for all 𝜏. Otherwise, there exists a 𝜏𝑖 >

0  such that 𝑥 ഥ is stable for 𝜏𝑖 < 𝜏𝑐, and unstable for 𝜏𝑖 > 𝜏𝑐 (Erwin, 2005). 

Using Theorem (4.1) above, the particulars of the case 𝛽 > 𝜕 were analyzed, which is a necessary condition for 
particle flow to occur and for completeness of the mixing process within a water reservoir. The analysis leads to a 
condition for the boundedness of the delays 𝜏𝑖 in SWR.  

From Theorem (4.1) and considering the case 𝛽 > 𝜕, the non-trivial steady state occurs whenever, 

                   𝛽 = 𝜕𝑒௫̅                                                                                                          4.5 

               or, 

                   𝑥 ഥ =
1

A
ln

β

∂
                                                                                                      4.6 

Then, according to Theorem (4.1), 𝑥 ഥ is stable for all 𝜕 if and only if 

           
𝑑

𝑑𝑥
[𝛽𝑒ି௫]௫ୀ௫ ഥ > −2

𝜕

𝑥
                                                                                       4.7 

This is equivalent to the condition that 𝛽 < 𝜕𝑒ଶ, which is a contradiction to the necessary requirement that  𝛽 > 𝜕 
for particles to flow in solution.   

This condition was used to validate model equation (4.3) by determining a pair of measured values (𝛽, 𝜕) from the 
dynamics of water flow involving change of concentration of pollutant particles, so that 𝛽 > 𝜕 for unstable solution 
that is essential for the periodic property of the DDEs. So as to determine the range of values of delay 𝜏 that would 
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give rise to a stable or unstable state solution of equation (4.3) in its application, the following criterion based on 
Theorem (4.1) was applied (Erwin, 2005). 

The condition 𝛽 > 𝜕𝑒ଶ was considered for a steady state of equation (4.3). Laplace transforms show that all analytic 
solutions of autonomous constant delay DDEs are exponentials (Humphries T.,  2016). To obtain a characteristic 
equation, therefore, the simple exponential 𝑒𝑘𝑡  may be chosen and posted in equation (4.3) to get, 

        𝑘𝑒௧ = 𝛽𝑒( ௧ିఛ) ቂ𝑒ିೖ(షഓ)
ቃ − 𝜕𝑒௧                                                                  4.8 

Dividing by 𝑒𝑘𝑡 and rearranging gives a transcendental exponential. 

𝑘 + 𝜕 ൬𝑙𝑛
𝛽

𝜕
− 1൰ 𝑒ିఛ + 𝜕 = 0                                                                                      4.9 

Taking 𝜎 = ቀ𝑙𝑛
ఉ

డ
− 1ቁ leads to the roots: 

𝑥(𝑘) = −𝜕𝜎𝑒ିఛ − 𝜕 = 0                                                                                              4.10 

The roots 𝑘 have two cases to address on the application of equation (4.3). When there is no delay, like in the case of 
flow without mixing processes, 𝜏 = 0 resulting to simple polynomial, 𝑘 = −𝜕𝜎 − 𝜕, which is insignificant as far as 
pollution is concerned. But, if 𝜏 > 0, then 𝑘 = 𝑘ଵ + 𝑘ଶ𝑖, which is a complex root. Taking the real and imaginary 
parts: 

                     𝑘1 = −𝜕𝜎cos (𝑘2𝜏)                                                                                      4.11  

        and, 
                      𝑘2 = −𝜕𝜎𝑠𝑖𝑛(𝑘2𝜏)                                                                                      4.12 

Squaring and summing up yields 

           𝑘1
2 + 𝑘2

2 = 𝜕2𝜎2                                                                                                        4.13 
  or,   

𝑘1 = 𝑘2(𝜎2 − 1)
1/2

                                                                                                              4.14 

Rewriting the real and imaginary parts of the roots of the characteristic equations, 

cos(𝑘2𝜏) = −
1

𝜎
< 0                                                                                                              4.15 

          and               

𝑠𝑖𝑛(𝑘ଶ𝜏) =
(𝜎ଶ − 1)ଵ/ଶ 

𝜎
> 0                                                                                             4.16 

Thus, there exists a critical delay 𝜏𝑐, at which an eigen value crosses into the right half-plane, 𝑘2𝜏𝑐 ∈ ቀ
𝜋

2
, 𝜋ቁ, and the 

critical delay is given by 

𝜏𝑐 =
1

𝜕(𝜎2 − 1)
1
2

𝑐𝑜𝑠−1 ൬−
1

𝜎
൰ .                                                                                        4.17   
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4.2 Time 𝒕 Necessary for Transport of Pollutants through Cascaded SWR 

The formulated model (equation 4.3) was solved in matlab dde23 software to obtain time 𝑡 necessary for transport of 
single species pollutant in cascading sub-surface water reservoirs (SWR). It should be realized that the basic 
properties (such as linearity, stability and oscillatory) of equation (4.3) are determined by the types of functions 𝛽 
and  𝜕. 

The time series solutions for the system of equation (4.3) were generated graphically through Matlab by assigning 
paired values of the coefficients 𝛽

𝑖
 and 𝜕𝑖 in a particular reservoir, that were predetermined for the boundedness of 

the corresponding delay 𝜏𝑖 using equation (4.17). These time series curves displayed similar tendencies downstream 
from the point source to the last reservoir in the cascade, and therefore they constitute characteristic curves. Curves 
resulting from the dynamics in reservoirs nearer the point source have longer times to cover than those far from the 
point source. The intensity (magnitude) of the point source pollutant also affect the duration of the curves. Higher 
levels of the pollutant concentration at point source cause longer amplitudes, and vice versa. One remarkable result 
of the DDE model was obtained on comparing its results to the results of ODEs it modifies under the same dynamic 
system of flow. The time series solutions obtained for the DDE model displayed longer curves than the ODE 
counterparts in the same reservoir for the same single species pollutant. 

Therefore, the time 𝑡 necessary for transport of pollutant in cascading SWR can be evaluated numerically using the 
DDE model. Further, since the process of water reservoir pollution is not instantaneous, but rather takes time to 
occur, the model provides the time inherent for this process as time delays, (𝑡 − 𝜏).    

4.2.1Assumptions for the Model 

The following assumptions were found necessary for the formulation and application of the model: 

I.            Flow in sub-surface water reservoirs was assumed steady, uniform and uni-directional. 
II. Water free from pollutant-species flows into the first reservoir in the cascade and pollutant in solution 

flows out of every reservoir at the same rate, ensuring that the amount of fluid flow remains constant in 
the cascade. This way, the time 𝑡 was determined that accounted for movement of pollutant through 
the cascades since its injection into water reservoirs through a point source until maximum 
concentration is reached in the whole system of water flow. 

III. Only a single point source of pollutant species into water system was considered. 
IV. It was assumed that mixing of pollutant particles in water (in every reservoir) was perfect and complete 

and that the flow rates (in and out) of reservoir were well observed (measurable).  
 

4.3 Model Validation 
The described mathematical model was validated on the dynamics of flow involving pollution on river Nyakomisaro 
in Kisii town. The river is of shallow water with average depth 0.5 metres (at minimum during dry season) and 1- 2 
metres (at maximum during high rainfall) and average width below 3 metres. The river transverses densily populated 
Kisii town and therefore is characterized with several point sources of pollution from the municipal solid and 
dissolved wastes flowing into the river through its banks. Concentration, for pollutant species were selected at 
particular point sources along the river banks.  
From the studies conducted on the river involving pollution (Omoko, Onyatta, Nyabaro &Kenanda, 2016), the initial 
pollutant concentrations at the identified point sources for SECTIONS A, B, and C were taken as 2.228ppm, 
4.50ppm and 6.80pmm, respectively. 
 
4.3.1 Determination of Flow Volume  

Each reservoir volume 𝑉 was calculated from the length (𝐿) and average cross-sectional area (𝐴) for every 𝑖௧ 
reservoir as: 

𝑉𝑖 = (𝐴𝑖𝐿𝑖)                                                                                                                                4.18 
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Where, 𝐴 = (𝑑𝑒𝑝𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ). Measurements of depth, width and length were take downstream at every discretized 
endpoint of a reservoir using meter-rule and string. 

4.3.2 Discretization of Time-Lags 

In the physical applications of the DDE equation (4.3), the lags are parameters distinctively calculated as a ratio of 
the cascade length to total length of the cascade zone:      

𝜏 =
𝐿

𝐿்

                                                                                                                                         4.19 

where,   𝐿 = ∑ (𝐿

ଵ ), for 𝑖 = 1,2, , , 𝑛,. These proportions were necessary to maintain that 𝜏ଵ < 𝜏ଶ <, , , < 𝜏, so that 

the time lags are distinctively discrete and in series. 

Table 4.1 Boundedness of Delays, 𝝉𝒊 

𝒊𝒕𝒉 Reservoir          Length of Reservoir, L(m) 
For Sections: 
‘A, B and C’ 

𝝉𝒊 > 𝝉𝒄 
 

0 20 0.000 

1 50 0.091> 0.064 

2 60 0.200> 0.166 

3 80 0.345> 0.286 
4 100 0.527>0.497 
5 120 0.745>0.623 

Table 4.2 Kinetic Parameters from River Nyakomisaro 
 

 

4.3.3 Coefficients for Model Equation 

Using the results in table 4.2, the incursion term 𝛽
𝑖
(𝑡) to every cascade was calculated from the relation: 

             𝛽
𝑖
(𝑡) =

𝑓
𝑖−1

𝑉𝑛

                                                                                                           4.20 

where, 

𝑉𝑛 = (𝑉𝑖

𝑛

1

),     𝑖 = 1,2, , , 𝑛, .                                                                                           4.21 

The computed results for the six cascade zones were recorded in table 4.3 below. 

 

𝒊𝒕𝒉  Reservoir 
 

Flow rate 𝒇
𝒊−𝟏

(m/s ) 
At Sections:   
‘A and B’         ‘C’ 

       Reservoir Volume, 
𝑽𝒊(𝒎𝟑) 
       At Sections: 
      ‘A and B’               ‘C’ 

0 1.55                 3.20        400,000              220,000 
1 1.50                 2.96        536,000              145,000 
2 1.10                 2.66        250,000              156,800 
3 0.92                 2.35        400,000              172,000 
4 0.80                 1.90        381,700              182,400 
5 0.60                 1.76        402,000              188,000 
6 0.50                 1.62        322,000              192,000  
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Table 4.3 Values of 𝜷, 𝝏  and Initial Concentration, 𝑿(𝒕) 

𝒊𝒕𝒉    
Reservoir  

              𝜷
𝒊
 

                         (× 𝟏𝟎ି𝟔) (𝒎𝟐𝒔)ି𝟏         
𝝏𝒊 

              A         B             C  

𝑿(𝒕)            2.228       4.500           6.800                0 
𝒊            2.800       2.800          0.204              1/4 

𝒊 + 𝟏            1.399       1.399          0.169               1/16 

𝒊 + 𝟐            0.776       0.776          0.136               1/64 

𝒊 + 𝟑            0.509       0.509          0.104               1/256 
𝒊 + 𝟒            0.304       0.304          0.093               1/1024 

𝒊 + 𝟓            0.218       0.218          0.084               1/4096 

 
The coefficient 𝜕𝑖(𝑡), for every cascade reservoir was determined using the method of ‘serial dilution’. The dilution 
factor (DF) for each step was computed as the ratio of the total volume,𝑉𝑇 (obtained by summing up 𝑉𝑖 for 𝑖 =
1,2,3, … , 𝑛 where 𝑛 is the number of zones in the cascade) to 𝑉, volume of water (assumed to be free of single 
species pollutant) entering the cascade zone. Thus, 

𝐷𝐹 =
𝑉௧

𝑉

=
1630800

400000
≈ 4                                                                                                          4.22 

𝑉0 is the volume of  pre-cascade reservoir which is determined just before entering the first cascade reservoirs. 
Using this approach, and with the assumption that ‘freshwater’ enters the contaminated cascade through the first 
reservoir (at the point source), the dilution term 𝜕𝑖 was computed as the DF of the system. Thus the DF up to sixth 
reservoir was reached as: 

1

4
,

1

16
,

1

64
,

1

256
,

1

1024
,

1

4096
                                                                                                   4.23 

This computation was necessary to show that the concentration of the pollutant reduces downstream leading up to 
the sixth reservoir where it is 4096 times less than the original ‘undiluted’ solution inside the first reservoir. 

4.3.4 Particle Flow for 𝝉 = 𝟎 

The model equation (4.3) was transformed into its ordinary differential equation counterpart by setting the delays 
𝜏𝑖 = 0, which resulted to: 

𝑑𝑥

𝑑𝑡
= 𝛽

0
𝑥(𝑡)𝑒−𝐴𝑥(𝑡) − 𝜕𝑖𝑥(𝑡)                                                                                           4.24 

The coefficient  𝛽
0
 represents the rate per unit volume (flow flux) at which pollutant particles are entering the 𝑖𝑡ℎ 

reservoir at the boundary point. Because no history of particle flow is required to solve ODEs, a solution for 
equation (4.3) is guaranteed at the entry boundary point of each reservoir. The consequence of the choice of this 
boundary point as an ordinary point for the ODEs is to calculate 𝛽

0
 using the relation: 

𝛽
0

=
𝑓

𝑖

𝑉𝑖

                                                                                                                                   4.25 

Where, 𝑓
𝑖
 and 𝑉𝑖 represents rate of flow (velocity) of pollutant particles and the water volume in the 𝑖𝑡ℎ reservoir, 

respectively. It turns out that 𝛽
0
  for a given reservoir is a constant defined at the commencement of the flow process 

of pollutant particles in solution for that particular reservoir. This specification of 𝛽
0
 executes the mixing process of 

pollutant particles in water flow as ‘instantaneous’, so that particle concentration in all other points in a reservoir is 
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uniform without any time elapse. The coefficient 𝜕 remains the serial dilution factor in each reservoir and was 
computed using relation (4.22). Graphical displays of time series solutions for each reservoir in the cascade were 
demonstrated in comparison for both model equation (4.3) and ODE equation (4.24) in the following section. 

4.3.5 Validation of Results and Discussion  

When the model equation (4.3) was ran using MATLAB for the data sets for β୧, ∂୧ , τ୧ where i = 1,2,3, … ,6 obtained 
from river Nyakomisaro, it produced graphical view that varied from the paired parameter values for β, 𝜕 and 𝜏 in 
each reservoir, downstream. From the graphs 4.1(a), 4.1(b) and 4.1(c), it was realized that as the values of the 
parameters β, 𝜕 become smaller, the curve is less clear and has shorter times to cover than when the parameter 
values are larger.  

This also agreed with the pattern of the natural phenomenon in mixing-problems that the rate of particle flow 
decreases with decreased concentration, a condition described as ‘concentration attenuation’. Therefore, particle 
migration is faster and more feasible at early stages (front reservoirs) of pollutant incursion into water system than 
when particles must have stayed (rare reservoirs) in the system. 

Further, it was observed (from the graphs in Figures 4.1(a) to 4.1(c)) that as the values of the parameters β, ∂ were 
varied downstream in a river flow, the resulting curves change pattern. The dips (troughs) of the curves change 
gradually and eventually to linear with zero slopes. 

Figures 4.1 Time Series Trajectories for Particle Flow in Reservoirs 

 
  

𝒕 (𝐦𝐢𝐧) 
Figure 4.1(a) plot of  𝒙(𝒕) vs  𝒕 for ‘SECTION A’ 

 

 

                               𝒕 (𝐦𝐢𝐧) 

Figure 4.1(b) plot of  𝒙(𝒕) vs  𝒕 for ‘SECTION B’ 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0201.v1

http://dx.doi.org/10.20944/preprints201811.0201.v1


11 
 

 

           𝒕 (𝐦𝐢𝐧) 

Figure 4.1(c) plot of  𝒙(𝒕) vs  𝒕 for ‘SECTION C’ 
 

Figures 4.3 Graphs of 𝒙(𝒕) vs 𝒕 for Comparison of DDEs and ODEs in Reservoirs 

     
    𝒕(𝒎𝒊𝒏) 

Figure 4.2(i) Reservoir 1 of ‘SECTION A’ 

 
         𝒕(𝒎𝒊𝒏) 

Figure 4.2(ii) Reservoir 2 of ‘SECTION A’ 
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    𝒕(𝒎𝒊𝒏) 
          Figure 4.2(iii) Reservoir 3 of ‘SECTION A’ 

 
                                 𝒕(𝒎𝒊𝒏) 
             Figure 4.2(iv) Reservoir 4 of ‘SECTION A’ 

From the graphs given in figures 4.2(i) to 4.2(iv), it was observed that for the same reservoir, under similar physical 
properties, an ODE curve has shorter times to cover than its DDE curve counterpart. It implies that if the time delays 
in the mixing processes are not accounted for in particle (pollutant) transport in water reservoirs, and since mixing 
processes are never instantaneous, then the time required for transport of a species of pollutant in the water reservoir 
is underestimated. The time series solution that include delays generated by model equation (4.3) offers a better 
approximate value of the time necessary for particle flow in cascade sub-surface water reservoirs than mathematical 
models without delays (Antonin, 2013). 

       5. Conclusion 

The numerical model formulated  in this study describes the kind of time delays observed in mixing-problems that 
govern the dynamics of water pollution in sub-surface water reservoirs. The results from the validation of the model, 
displayed in figures (4.1) and (4.2), imply that if the average time elapsing for mixing-process of pollutant particles 
within a water reservoir are accounted for (in models with time delays), and if the duration of the particle movement 
within the reservoir up to their possible maximum accumulation in water systems are approximately negative 
exponential in distribution, then such a model is more appropriate (than models without delays) to estimate time 
evolution of particle transport in water reservoirs.   

The model was applied on three stretch sections on river Nyakomisaro in Kisii town, labeled ‘SECTION A, 
SECTION B and SECTION C’. These three sections were identified by recognizing possible potential pollutants 
entering the river at particular points (point sources). The three stretches were of equal lengths and each was 
partitioned into six cascade zones. Physical parameters of the river at these sections were measured and the 
coefficients of model equation (4.3) were evaluated. It turned out that the graphical views generated displayed 
similar tendencies (characteristics) even though initial values of concentration 𝑥(𝑡) were different for every 
potentially recognized single species pollutant chosen for each section. The graphical comparisons for three sections 
with different starting points (but with constant delays) were given in figures (4.1).  
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  6. Recommendations 

More validation of model equation to different natural river flow systems is recommended. 
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