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Abstract: We propose that the high energy Cosmic Ray particles around the spectral turn-down
commonly called the knee and up to the upturn, commonly called the ankle, mostly come from Blue
Super Giant star explosions. At the upturn, i.e. the ankle, Cosmic Rays probably switch to another
source class, most likely extragalactic sources. To show this we recently compiled a set of Radio
Supernova data to list the magnetic field, shock speed and radius scale (Biermann et al. 2018) [43].
Using particle acceleration theory at shocks, those numbers can be transformed into characteristic knee
and ankle energies. Without adjusting any free parameters both of these observed energies are directly
indicated by the supernova data. We now proceed to the next step in the argument, and use the
Supernova Remnant data of the starburst galaxy M82. Assuming that they are Blue Supergiant star
explosions, the shock will race to their outer edge with a magnetic field that follows B(r) r ∼ const..
We argue that the shock runs through the entire magnetic plasma wind region at full speed all the
way out to the wind-shell, which is of order parsec scale. The speed is observed to be ∼ 0.1 c at
about 1016 cm radius in the plasma wind. This demonstrates how Blue Supergiant star explosions
can provide the Cosmic Ray particles across the knee and up to the ankle energy range. The data from
the CREAM (Cosmic Ray Energetics and Mass Experiment) mission will test this cosmic ray concept
which is reasonably well grounded in two independent radio supernova data sets. The next step
in developing our understanding is to obtain accurate Cosmic Ray data near to the knee, and use
unstable isotopes of Cosmic Ray nuclei at high energy to probe the "piston" driving the explosion.
We plan to combine these data with the physics of the budding black hole which is probably forming
in each of these stars to learn more.

Keywords: Cosmic Rays; Massive Star Supernovae; Cosmic Ray Knee and Ankle.

1. Introduction

Energetic particles with energies far above thermal levels, called cosmic rays, were discovered
by Hess (1912) [78] and Kohlhörster (1913) [86], with their energies now known to range up to about
1020 ev, first seen by Linsley (1963) [100]. It was proposed very early (Baade & Zwicky 1934) [29] that
supernovae could easily provide the energies required for Galactic cosmic rays (GCRs). Ginzburg
& Syrovatskij (1963) [71] suggested that radio galaxies could provide the highest energy component.
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The mechanism of acceleration was originally proposed by Fermi (1949, 1954) as repeated reflections
between interstellar clouds with magnetic field bottle configurations which are approaching each other.
This was later generalized to today’s concept of energetic particles being reflected back and forth across
a shock wave, separating converging flows (Axford et al. 1977; Krymskii 1977; Bell 1978a,b; Blandford
& Ostriker 1978; [28,32,33,46,95]), with early general overviews by Ginzburg & Ptuskin (1976) [72]
and Drury (1983) [62]. It is now recognized that such particles permeate interstellar space, as well as
intergalactic space. Particle energies above order GeV are found throughout the Solar system. The
early arguments on their possible origin were all made on the grounds of sufficient energy supply, and
they still stand. However we now know of many other processes and events of stars and black holes
that clearly produce energetic particles.

In addition to the supernova origin of accelerated CRs and outflow (the theme of this paper), is
energy outflow and particle acceleration due to central supermassive black holes, and their jets and
lobes. Cosmic rays, magnetic fields and energy from SMBH-powered jets are additional phenomena to
SN- generated CRs. They have been discussed by e.g., Ginzburg & Syrovatskij (1963) [71], Lovelace
(1976) [101], Biermann & Strittmatter (1987) [35], Kronberg et al.( 2001) [92], Kronberg (2002) [93],
Colgate (2004) [56], Colgate et al. (2014) [57], Biermann et al. (2016) [42], and in many other papers.

Some recent relevant reviews and books are Aharonian (2004) [19], Stanev (2010) [133], Kotera &
Olinto (2011) [87], Letessier-Selvon & Stanev (2011) [99], Bykov et al. (2012) [49], Diehl (2013, 2017)
[60,61], Blasi (2013) [47], Gaisser et al. (2016) [68], Kronberg (2016) [94], Amato & Blasi (2017) [27],
and Biermann et al. (2018) [43], referred to as ASR18. Many further tests can now be done with new
results from Auger, the Telescope Array, IceCube, AMS, HAWC, HESS, MAGIC, CALET, DAMPE, and
Veritas, further balloon flights, such as TIGER, and other experiments in space, on balloons, and on
the ground. ISS-CREAM is the next major space experiment with new data yet to come, following on
AMS (Seo et al. 2014, Seo 2018, [126,127]).

2. Massive star plasma winds

Massive stars explode as Supernovae (SNe). The shock pushed out by the explosion can accelerate
cosmic ray (CR) particles. When this shock races through a stellar magnetic plasma wind, particle
energies can go as high a few 1018 eV (Stanev et al. 1993, referred to as CR-IV, [132]). Massive stars with
magnetized plasma winds come in two varieties, Red Supergiant (RSG) stars above about 25 M� Zero
Age Main Sequence (ZAMS) mass, and Blue Supergiant (BSG) stars, above about 33 M� ZAMS mass.
All of these are in binary systems, but not all of them are in tight orbits. RSG star magnetic plasma
winds have a low velocity and high density whereas BSG star magnetic plasma winds have a very high
velocity and low density. In the time period preceding the SN explosion, this plasma wind experiences
short episodes during which the star may enhance its mass loss, and magnetic fields (as summarized
with many references, e.g., in ASR18 [43]). The plasma wind terminates in a shell, where it encounters
the interstellar medium (ISM), the molecular cloud (MC), out of which the star formed, and/or the
wind-bubble environment of preceding SN explosions in its immediate environment. As the ram
pressure of RSG star plasma winds is two orders of magnitude lower than for BSG star plasma winds,
the wind shell may have a radial scale about an order of magnitude smaller than BSG star plasma winds.
It also follows that the life-time of activity for RSG star explosions is an order of magnitude shorter
than for BSG star explosions. This provides a strong counter selection effect in identifying such sources.
When the SN shock does hit the wind shell, it slows down considerably; for radio supernovae (RSNe)
the SN-shock speed is typically 0.1 c, while for the Super Nova Remnants (SNRs) in M82 (Kronberg
et al. 1985, hereafter referred to as KBS85, [90]) the observed velocities of expansion (e.g. Fenech
et al. 2008, 2010, [63,64]) are all far below this value; this observation matches the expectation that
upon encountering the wind shell the SN plasma shock reverts to environment-dominated expansion
(e.g. Cox 1972). That reversion causes the shocked region to be about 1/4 of the spherical volume
encompassed by the shock, rather than 3/4 as in the shocked region in a wind (Biermann & Cassinelli
1993, [38], Biermann & Strom 1993, [39], referred to as CR-II and CR-III; this uses a strong shock, see
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Landau & Lifshitz 1959, [98], and Drury 1983, [62]). When a SN shock races through a stellar plasma
wind, it produces radio emission that can be detected with interferometry (i.e. sub-arcsecond radio
imaging) to determine the magnetic field B(r), the mass loss Ṁ?, its radial scale r, and velocity VSN/c.
We note that VSN is the velocity of the shock in the medium, through which it propagates, here the
wind of the star. As these shocks are observed to show about 0.1 c, we can neglect the prior velocity of
the wind. From these three quantities, scale r, magnetic field B, and shock speed VSN/c we can derive
two critical energies for the maximal energies particles can reach in shock acceleration, Eknee and Eankle,
first the maximal energy of a particle fitting into the space available (for a plasma simulation see Meli
& Biermann 2006, [105], and for an analytical derivation see, e.g., Biermann 1993, referred to as CR-I,
[37], or ASR18 [43]),

Eankle =
1
8

Z e B0 r0 , (1)

where e is the elementary charge, Z is the charge of the particle under consideration (cgs units). We
have used here the Parker (1958) [121] plasma wind property that

Bφ(r) × r = B0 r0 ∼ const. (2)

consistent with the observations discussed here; here Bφ is the dominant component of the magnetic
field (Parker 1958, Weber & Davis 1967 [121,142]). We interpret the associated energy as the ankle in
the spectrum of Galactic CRs (GCRs). This corresponds to energies reached in perpendicular shocks
(see Jokipii 1987, [82], Völk & Biermann 1988, [138], CR-I, CR-IV, Meli & Biermann 2006, [37,105,132],
and ASR18 [43]). A lower break energy corresponds to the knee, where the spectrum turns down:

Eknee =
1
8

Z e B0 r0

(
VSN

c

)2
. (3)

For the observed numbers of RSNe (ASR18 [43]) the energies derived match the energies for
knee and ankle directly, to within the errors, without using any parameter adjustment. We note
that to obtain these numbers we take the observed data and average the products 〈 r × B(r) 〉 and
〈 r × B(r) × (VSN/c)2 〉. The numbers show that the ratio of these two averages is 10−1.6 between
them, instead of 10−2, as would be expected by multiplying separate averages, suggesting the
possibility that these numbers might be weakly correlated.

However, as these observations show the situation typically around r ' 1016 cm, due to opacity
effects, we need to ascertain what happens at the larger scale, when the SN-shock actually hits the
wind shell or other environment. This is possible with the data from M82:

We propose to test this concept with the observations of the SNRs in M82 (KBS85 [90]; Bartel et al.
1987, [30]; Muxlow et al. 1994, [117]; Golla et al. 1996, [73]; Allen & Kronberg 1998, [26]; Allen 1999,
[25]; Kronberg et al. 2000, [91]; McDonald et al. 2002, [104]; Muxlow et al. 2005, [118]; Fenech et al.
2008, 2010, [63,64]; Gendre et al. 2013, [69]).

3. The Super Nova Remnants in the starburst galaxy M82

Here we show the data on all supernova remnants (SNRs) in M82 that have published derived
estimated magnetic fields and for which the size was clearly established (Allen & Kronberg 1998, Allen
1999, [25,26] with many further references therein):

The flux density values listed in Table 1 for the non-thermal emission are referenced to a frequency
of 1 GHz, and were obtained by a fit across very many frequencies, from 408 MHz all the way to
23.46 GHz, using a screen model absorption and separating thermal from non-thermal emission. The
spectral index given is that of the non-thermal straight power-law component. The magnetic field
derived in Allen & Kronberg (1998) [26] has to be scaled with the factor{(1 + k)/φ}2/7, which is
highly uncertain; here k is the ratio of the CR proton energy density to that of CR electrons, at an
energy of a few GeV - at lower particle energy this ratio is expected to be smaller, since protons do not
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Table 1. Supernova remnants (SNRs) in starburst galaxy M82, based on Allen & Kronberg (their Table
5; 1998) [26], in turn based on Allen (1999) [25]

Coordinate name size 2 r flux density sp. index est. magnetic field log(B r)
in pc in mJy B in mGauss in Gauss× cm

40.68 + 550 3.72 17.9 −0.52 1.80 16.0
41.31 + 596 2.17 8.59 −0.54 2.32 15.9
41.96 + 574 0.33 122.8 −0.72 26.4 16.1
42.53 + 619 1.71 30.9 −1.84 11.7 16.5
42.67 + 556 3.02 4.44 −0.61 1.46 15.8
43.19 + 583 1.16 15.3 −0.67 4.79 15.9
43.31 + 591 3.02 30.3 −0.64 2.54 16.1
44.01 + 595 0.78 62.0 −0.51 9.83 16.1
44.52 + 581 3.72 7.2 −0.61 1.40 15.9
45.18 + 612 3.49 24.1 −0.68 2.13 16.1
45.86 + 640 1.09 4.10 −0.53 3.39 15.8
46.52 + 638 3.88 9.71 −0.73 1.53 16.0
46.70 + 670 3.4119 5.22 −0.57 1.37 15.9

contribute any extra energy below their rest mass energy, but electrons continue to contribute due to
their smaller rest mass. From above we adopt φ = 1/4, since clearly the SN-shock has encountered
the outer shell of the wind, and is observed to have slowed down. We list here the magnetic field
without any such correction.

3.1. The CR proton/electron ratio k

For the CR proton/electron ratio k, observed to be about 100 above a few GeV, we can make the
following argument, based on the observations of young RSNe (see ASR18 [43]): The first process that
happens in an electron-proton shock is the thermalization of these particles. Thermalization has to
work at all radii, from below 1016 cm out to parsec scale, rendering the density lower by a factor of
105 at least. The wind is magnetic with the basic configuration of the magnetic field a Parker type
spiral, so essentially yielding a perpendicular shock configuration. This process has been discussed in
Spitzer (1962) [131], but his treatment is non-relativistic and uses isotropic phase space distributions;
then simple electron-proton scattering is far too slow at high temperature. When the protons go
through the shock, they fill in phase space a torus with the radius in momentum mp VSN , and with
the relative width of the inverse of the Mach-number, so corresponding to the upstream speed of
sound. That entails that this anisotropic momentum distribution causes turbulence at all the scales
from the maximum on down, over a range of the Mach-number. But because the Mach-number is
close to mp/me the smallest scales in this range correspond to the waves matching the scales of the
electrons with the maximal momentum me VSN . This means that at all these scales the protons and
electrons are scattered in momentum phase space. We have argued in ASR18 [43] that the spectrum of
irregularities in the direct shock region is I(k) k ∼ 1 and so the power per log bin of wave-number is
equal at all scales. It follows that thermalization occurs. Due to all this turbulence the time scale of
thermalization is of order a small multiple of the thermal Larmor radius divided by the Alfén speed,
so highly adequate, by a factor of 2 Eknee/(mp V2

SN), and a fortiori 2 Eankle/(mp V2
SN). The time scale

for electrons might be mp/me times slower due to the anisotropy of the scattering, but that is still quite
adequate by many powers of ten. This time scale scales with the radius, and so works the same at all
relevant radii, the condition noted above.

Thermalization yields a first characteristic energy of the electrons, γe,sh c me. Beyond this energy,
our interpretation of the radio observations (ASR18 [43]) then says that the electrons gain energy only
by drifts (CR-I [37]); shock acceleration does not work yet, because the electrons do not see the shock.
In ASR18 [43] we noted that the electrons so only get stochastic shock drift acceleration, giving them a
spectrum of -3.06, from observations, say about -3 (this line was reasoning was also used for ions by
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Caprioli 2012 [51]). This drift dominated spectrum ranges to that momentum, at which the energetic
electron reach a Larmor radius that equals that of the shock thermal protons, γsh,inj c me, (i.e., the
electrons have the same Larmor radius as shock-protons; if another CR ion is dominant, corresponding
to the Larmor radius of that ion, with mass number Adom and charge at injection Zdom). From this
second momentum electrons "see" the shock, and have the normal CR accelerated spectrum, say −7/3
for the most common CR component of CRs accelerated in a wind (see ASR18 [43]). Protons attain
the maximal energy content only at a few GeV (i.e. just above their rest mass energy). This applies to
any particle number spectrum even slightly steeper than -2. That implies that electrons have a higher
energy content at that momentum, where the still are just above thermal in the post-shocked region.
We assume that at this stage that electrons are in equipartition with the protons (or dominant ions), at
the start due to charge neutrality.

This means that

γe,shc2me =
1
2

Adommpc2β2
sh (4)

and

γsh,injcme =
Adom
Zdom

mpcβsh (5)

So between these two energies the energy density of CR electrons runs down by a factor of

2
βsh

1
Zdom

(6)

in the first step. Here we use the observations of a spectral index of about E−3 implying that the
energy content above a given energy runs as E−1, so here giving a factor of about 20, with the observed
βsh = 0.1 (see ASR18 [43]).

There is an observational check on this, as the electron energies required to explain the radio
observations of RSNe need to be above that first energy: We observe the emission at a frequency of 5
GHz, at a magnetic field of order Gauss requiring a Lorentz factor of γe ' 30, while γe,sh for protons is
about 10, so well below this. However, this argument implies that the emission should have a cutoff on
the low frequency side, perhaps visible somewhat early in the emission phase and at lower frequency,
such as 400 MHz. It also implies that at that stage of the emission there are constraints for what ions
could possibly dominate to explain the emission, implying that in this numerical example Adom . 3,
eliminating basically all common elements other than Hydrogen.

In the second step, using a spectrum of p−7/3 (see ASR18 [43]) the electrons reduce their energy in
that range, where the protons do not contribute anything. Being below relativistic, so up to the energy
of the proton rest mass (or dominant ion again) the factor is(

Zdom
βsh

)+1/3
(7)

which is about 2, using the same data again, with protons. So the CR electron energy density is reduced
by a combined factor of k ' 40 when their momentum reaches that of the relativistic protons, where
this factor is determined by observations. Already Allen & Kronberg (1998) [26] mentioned 40 as a
possible value for k.

The argument makes it obvious that other sources, for which βsh is smaller, contribute even less.
That in turn implies that the combination of various sources contributing to electrons and protons
reduces the electron net contribution even more, down to the observed factor of 1 in 100. All this starts
with the energetic electrons having exactly the same energy density as the dominant ions in the shock,
due to charge conservation. To the degree that protons have a strong contribution from ISM-SN-CRs,
which have a slightly steeper spectrum than the most common wind-SN-CR component as well as
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slower shocks, this suggests that at moderate energies the CR electrons have a spectrum slightly flatter
than protons.

3.2. The magnetic field in the SN-shocked wind, and the implications

All this suggests that k = 40 is appropriate; covering this range of added assumptions implies
an uncertainty of order 10± 0.2. This leads to a correction factor of 4.29 over the magnetic field values
listed in Allen & Kronberg (1998) [26], and repeated above. However as we argued above, that the
shock must have slowed down significantly already from its free expansion phase through the wind,
and used the ISM-Sedov volume fraction of the shocked shell of 1/4, we need to recognize that the
magnetic field is likely to have been squashed by a new reverse shock pushed back through the
material, giving the magnetic field an extra factor of 4, effectively cancelling the factor of 4.29. The
magnetic field which we wanted to test was the value before any additional enhancement, still in the
pure wind-shock mode; therefore we should reduce the magnetic field value obtained by a factor of 4,
coming back to the original numbers by Allen & Kronberg (1998) [26]. This supports the argument by
Allen & Kronberg (1998) [26] to give their magnetic field value without such an uncertain correction.

The average of the last column is 16.0: Using the calibration from Allen & Kronberg (1998) [26]
and their flux density values we can also estimate the corresponding value of < log{B × r} > from
the table in Fenech et al. (2010) [64], who did not include a separation of thermal and non-thermal
emission, nor any absorption. However, to within the errors, we obtain the same number with a larger
scatter confirming the analysis done by Allen & Kronberg (1998) [26]. Using the specific numbers here,
a factor of 100.1 higher than in ASR18 [43], gives for the ankle energy

Eankle = Z 1017.6± 0.2 eV , (8)

with the larger error due to the systematics, and now using eV for energy as is custom in the CR
community.

Observations of the CR spectrum, mass composition and arrival direction anisotropy between
knee and ankle, and to higher energies above the ankle, such as in Aab et al. (2017a, b, 2018) [1–3],
Abbasi et al. (2018a, b, c) [8–10] and Abeysekara et al. (2018a) [14] will allow us to discern the details
of highest energy tails of GCRs and the transition to extragalactic CRs.

Two questions remain, (i) whether the plasma wind maintains its magnetic profile Bφ ∼ r−1

(Parker 1958, Weber & Davis 1967, [121,142]), and (ii) whether the SN-shock slows down. We have
shown in ASR18 [43] from simple estimates of the ram-pressure in RSG star winds, and BSG star
winds, that a RSG wind shell may be an order of magnitude smaller than a BSG star wind shell. That
difference entails (see for a detailed estimate ASR18 [43]) that both in RSG star winds as in BSG star
winds the SN-shock has the chance to race all the way to the wind shell, before converting into a more
Cox-like Sedov expansion (Cox 1972 [58]; a Sedov expansion implies conservation of energy, Sedov
1958, [125]) through the wind shell and outer medium; the sparse data on velocities (e.g. Fenech et
al. 2008, 2010 [63,64]) show that all measured velocities are below 0.1 c, usually far below. In the data
listed above in Table 1 there is no hint of any correlation between size and spectral index. Just from
simple mass function arguments, the ratio of RSG star explosions to BSG star explosions is expected to
be of order 1 to 2; however, in RSG star wind shells the density is far higher than in BSG star wind
shells. Therefore the cooling is much more efficient. This implies that we have two development
phases: First we have the racing phase, when the SN-shock goes through the plasma wind; for RSG
star winds we may have an intermediate wind-Sedov phase (see ASR18 [43]); then we have the cooling
phase, when the shock hits the outer shell, and the shock region transforms rapidly from a Sedov-like
shock to a cooling shock. Both these stages for RSG star explosions are much shorter than for BSG star
explosions. Consistently with such an expectation, in these data the typical size is about 1 pc, with
only 1 source at about 0.1 pc, which may be a RSG star explosion, or a BSG star explosion in a very
high pressure environment.
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In ASR18 [43] we also derived the required piston mass to keep driving the shock; the number
we obtained from γ-ray line observations was about 0.1 M�. The question is whether this could be
the 56Ni mass derived from optical observations (Maeda et al. 2010; Hamuy 2003; Utrobin et al. 2017;
Nakar et al. 2016; Lusk & Baron 2017, [75,102,103,119,134]). Extrapolating from lower mass stars this
seems possible, however, the numbers derived are highly model dependent, so for instance adopt
usually 1D modelling rather then 3D modelling (for a 3D model see Utrobin et al. 2017) [134], so
plumes of heavy elements cannot easily be accounted for (e.g., Biermann et al. 1992 [36], Wesson
et al. 2015 [144]): Using just the energy in the 56Ni decay chain (56Ni −> 56Co −> 56Fe, e.g., Lusk
& Baron 2017 [102]) should allow reliable numbers barring any issues with radiation transfer. We
note (following again ASR18 [43]) that the mass suggested by the γ-ray line observation is certainly
sufficient to drive a SN-shock all the way out to parsec scale radial distances in BSG star plasma winds,
and do so at maximal velocity: the mass accumulated in a BSG star wind can be written as

∆MBSG,wind = 10−2.3 M�
Ṁ?−5

VW,8.3

r
pc

, (9)

where Ṁ?−5 is the mass loss of the star prior to the explosion in units of 10−5 M�yr−1, and VW,8.3 is
its wind velocity in units of 2000 km/s. The mass loss is directly determined in modelling the radio
observations of the radio supernovae (ASR18 [43] and all its references in its Tables 1 and 2), and the
wind velocity is typical for such stars. This shows that a piston of 0.1 M� could drive the SN-shock
unimpeded to scales of order 10 parsec, as long as the ram pressure is sufficient to overcome the
environment.

This allows another consistency test of our concept and its numbers: The kinetic energy should
exceed the magnetic field energy significantly. A piston of 0.1 M� at 0.1 c corresponds to 1051 erg, while
the typical magnetic field strength of about ' 5 mGauss corresponds to 1049.5 erg << 1051 erg, using
the volume fraction of 1/4 adopted above.

For the ram pressure we need to consider first the wind ram pressure against the outside medium,
and then the SN-shock ram pressure. The wind ram pressure condition for matching the ISM pressure
is

r < 30 pc Ṁ?
1/2
−5 V1/2

W,8.3 P−1/2
ISM,−12 (10)

where PISM,−12 is the outside pressure in units of 10−12 dyn cm−2, a typical number for the outside
pressure in our Galaxy. The higher pressure in M82 would allow smaller sizes for the wind shell, but of
course the local pressure where the SNRs are seen, may be lower than in the central region. A pressure
103 times higher would still allow the size scales observed for the SNRs in M82. The region where the
SNRs are seen has been described as a ring of about 500 pc radius (Weliachew et al. 1984, Kronberg
& Wilkinson 1975, and Kronberg et al. 1981, [88,89,143]). Inside that ring the pressure might be even
higher. If the ISM-pressure inside that ring were two orders of magnitude higher, for instance, as
argued in KBS85, then the maximal size would only be 3 pc, still somewhat larger than the SNRs seen.

The corresponding SN-shock ram pressure condition is

r < 102.7 pc Ṁ?
1/2
−5 V−1/2

W,8.3 VSN,−1 P−1/2
ISM,−12 (11)

where VSN,−1 is the shock speed in units of 0.1 c. However, we also need to double-check when the
mass accumulated outside within the extra radial range ∆ r slows down the progression of the shock,
and that is given by (

∆ r
r

)
= 10−0.7 Mpist,−1 r−3

pc n−1 (12)

where Mpist,−1 is the mass of the piston in units of 0.1 M�, rpc is the radius in pc when the SN-shock
hits the outer medium, and n is the outside medium density in units of cm−3. That implies that
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once the SN-shock hits the wind shell and outside medium at full speed, the shock slows almost
immediately to the Sedov stage, and only shortly later to the cooling phase. Adding in the mass
accumulated in the wind does not modify this conclusion significantly. Nothing earlier slows down
the SN-shock in a BSG star wind.

It follows that the knee energy predicted here is

Eknee = Z 1016.0±0.2 Z eV , (13)

We conclude that to within the errors these numbers on the product of radial scale and magnetic
field in the table 1 and in tables 1 and 2 in ASR18 [43] are the same, supporting our argument, that in
these examples the SN-shock pushed out without losing significant strength, and so maintaining these
energies. Also, all of these examples in M82 are consistent with being BSG star explosions. All of the
SNRs seen in M82 are consistent with being in the slow-down phase, after the SN-shock has hit the
wind shell or other environment.

4. The origin of high energy Galactic cosmic rays

As we discussed and have shown above: RSG star explosions produce high energy (HE) Galactic
cosmic rays (GCRs), i.e. energies around the knee, with a near normal abundances but not to the highest
energies, and BSG star explosions give HE GCRs with all heavy elements enhanced and to the highest
energies for GCRs. If our simple picture, deduced above, is correct, that RSG star explosions just
terminate earlier, at a radius about 1/10 of that of BSG star explosions; the anti-proton data (ASR18
[43]) in our Galaxy suggest, that the RSG star explosions run their shock down in velocity, while the
BSG star explosions hit their respective wind shell at full speed. We note that this distinction may be
different in the galaxy M82, due to the higher environmental pressure. Therefore the characteristic
energies, Eknee and Eankle are maintained only for the BSG type of explosion. It ensues that at the
highest CR energies, RSG star explosions contribute less than the BSG star explosions. Since in our
model these energies scale with nuclear charge number Z, at a down-turn of the spectrum, near the knee
the heavier elements go into dominance (see CR-IV [132]), and at the final cutoff, at the ankle energy,
protons will disappear very much earlier than Carbon, Oxygen or heavier elements such as Iron (see
Fig 6 in CR-IV, as well as Fig.1 in ASR18 [43,132]). We emphasize again, that the observed characteristic
energies Eknee and Eankle are directly reproduced by two independent data sets on RSNe and SNRs.
This is based on RSNe in other galaxies, and SNRs in the starburst galaxies M82, without invoking
any special parameter to be adjusted. The two data sets agree well within the errors. The spectrum
both below and above the knee, can be explained with a combination of Diffusive Shock Acceleration
(DSA) and Stochastic Shock Drift Acceleration (StSDA), as shown first in CR-I, CR-II, CR-III, and CR-IV,
rederived in ASR18 [37–39,43,132], all based on earlier work by Drury (1983), Jokipii (1987), Völk &
Biermann (1988), [62,82,138] and others as cited in CR-I, and ASR18 [37,43]. One consequence is that
most interaction happens in the wind-shell, when the SN-driven shock hits (e.g. Biermann et al. 2001
[40]). In ASR18 [43] we discussed a number of consequences, that allow this concept to be tested with
the spectra of secondary particles. Here we just note that the concept entails that the γ-ray -spectra
of the Galaxy should reflect this early interaction, showing evidence for a spectrum of mostly E−7/3

from the 4 π component in wind-SN-CRs, and a weaker polar cap component of E−2: A thorough
analysis of the Fermi data already demonstrates that the data require two such spectral components (de
Boer et al. 2017 [48]). HAWC (High Altitude Water Cherenkov Observatory) and HESS (High Energy
Stereoscopic System) data are fully consistent with this prediction of a dominant 4 π component (e.g.
Nayerhoda et al. 2018 [120]). At higher γ-ray energies the spectrum produced is predicted to become
flatter due to the emergence of the polar-cap component with E−2 in wind-SN-CRs (CR-IV [132]).
Other new data, e.g. from AMS (Alpha Magnetic Spectrometer on the ISS) or HAWC, such as the
spectra of various elements and secondary and primary contributions to Ni in cosmic rays (ASR18,
Alfaro et al. 2017, Aguilar et al. 2017, 2018a, b [16–18,23,43]) can also be used as further tests.

However, there are a number of unanswered questions with this simple picture:
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1) Very rarely we do have Gamma Ray Bursts (GBRs) in any star forming galaxy, at a rate of order
10−2 of massive stars. There is no question again, that they accelerate particles to high energy. Where
is their contribution from GRBs in our own Galaxy? Could they contribute also below the ankle? Or is
this already part of the extragalactic contribution, as argued in many papers, such as Milgrom & Usov
(1995, 1996) [108,109]; Vietri (1995, 1996, 1998) [135–137]; Waxman (1995), Miralda-Escudé & Waxman
(1996), Waxman & Bahcall (1997) [115,140,141]; Zhang & Mészáros (2004) [146]; Piran (2004) [122]. In
ASR18 [43] we proposed that the compact radio source 41.9+58 in the starburst galaxy M82 (KBS85
[90]) is in fact the result of a recent merger of two stellar black holes (BHs), with a concurrent GRB (see
Muxlow et al. 2005 [118], who argued first for a misaligned GRB for this source). The argument then
proceeds to propose that this BH merger could explain the Ultra High Energy CR (UHECR) particles
detected by the Telescope Array (TA) detector (Abbasi et al. 2014, 2018a [7,8]; and as cited in Biermann
et al. 2016 [42]). Statistically GRBs do not seem to contribute much to UHECRs (Meli et al. 2008, Abbasi
et al. 2012, Albert et al. 2017a, [6,20,106]). Meli et al. (2008) [106] also argued that GRBs in simulations
and using a diffuse model do not contribute significantly to the UHECR population. All this depends
on the model assumptions, and so may not be in contradiction.

2) There are many arguments in support of the sources of UHECRs from radio galaxies (e.g.,
Ginzburg & Syrovatskij 1963, Hillas 1984, Biermann & Strittmatter 1987, Meli et al. 2008, [35,71,80,106]),
with a special interest in the case, when their relativistic jets are pointed at us, visible in the form of
flat-spectrum-radio quasars (FSRQs) or blazars (Kadler et al. 2016; Kun et al. 2017, 2018; Aartsen et al.
2018a, b, [4,5,83,96,97]): There are now a total of nine candidate identifications for high energy neutrino
events with FSRQs (see also the lectures of F. Halzen at Erice 2018 [74]), many of them suggestive of an
ongoing merger of two super-massive black holes (Gergely & Biermann 2009, Caramete & Biermann
2010, Kun et al. 2017, [52,70,96]). One of these candidates, TXS0506+056 is the most convincing, since
it shows evidence for several neutrino events. To make HE neutrinos requires the acceleration of HE
and plausibly UHECR particles first, so this tentative finding allows the speculation that mergers of
super-massive black holes may lead to ubiquitous production of UHECR particles. This entails that
UHECR production is highly episodic. Do these sources also contribute below the ankle?

3) These BSG explosions can yield the energy, but can the CRs produced actually reach us? This
is especially an issue for electrons and positrons: in ASR18 we argued that we need electrons up to
30 TeV in the source region; HESS has now detected electrons at 20 TeV, so far published only on its
website [79], and in conference proceedings. The CR electron spectrum shown on the HESS website is
consistent with our 2009 prediction (Biermann et al. 2009 [41]) of at lower energies first E−10/3, then
E−3, and last, at the highest energies, E−4, all based on the idea that many sources contribute under
lots of losses (Kardashev 1962 [84]); at the highest energies the observed spectrum is slightly flatter
than E−4, possibly due to local and/or recent nearby sources. We note that the synchrotron loss time
of electrons at 20 TeV is of order 3 · 104 yrs (using a magnetic field strength of order 5 µGauss: Beck et
al. 1996 [31]; a crude estimate of 5 µGauss was first made in the 1940s), implying a source rather close
by (as has been argued by many, e.g., Yüksel et al. 2009 [145]), or a very anisotropic transport to allow
larger distances; an alternate way of phrasing this speculation could be that the magnetic fields are
extremely structured allowing some transport over large distances.

4) The relative contribution of CR particles from RSG star explosions and BSG star explosions
at low energy is about 4:1, following Binns et al. (e.g. Murphy et al. 2016 [116]); what is it at high
energy? The anti-proton data suggest, that the RSG star explosions shocks run out of steam, and so
that RSG star explosions in our Galaxy contribute much less at the maximal energies than the BSG star
explosions. This may imply that the piston mass in RSG star explosions is smaller than in BSG star
explosions, consistent with a naive interpretation of the 56Ni data:

5) Can the 56Ni mass derived from optical observations (Hamuy et al. 2003, Maeda et al. 2010,
Nakar et al. 2016, Lusk & Baron, 2017, Utrobin et al. 2017, [75,102,103,119,134]) be identified with the
piston? The numbers seem to match rather well, but have not been derived for BSG star explosions, and
rely mostly on rather simple 1D models, as we discussed above, and of course on using the bolometric
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light-curve; and in fact, the numbers suggest a lower mass for RSG stars, as speculated above. We
need to emphasize that we do not actually know the explosion mechanism for very massive stars, be it
due to neutrinos (e.g. Bethe 1990 [34]), magnetic fields (e.g. Bisnovatyi-Kogan 1970, Bisnovatyi-Kogan
et al. 2008 [44,45]), or - a newly worked out suggestion - quark deconfinement (Fischer et al. 2018 [67])
as the engine.

6) Do SN Ia explosions contribute anything to the observed CR particle population? The D6

scenario seems to be favored now (Shen et al. 2018a [129]; D6 here stands for Dynamically Driven
Double-degenerate Double-detonation), especially with now also identifying some dwarf stars remaining
from SN Ia explosions (Shen et al. 2018b, Raddi et al. 2018 [123,130]) in the Gaia data. The radio data
(e.g. Dickel et al. 1991 [59]) and the interpretation of the radio and X-ray data (e.g. Chevalier 1982 [53])
demonstrate unequivocally that these explosions do accelerate energetic particles (Bykov et al. 2018
[50]). But what do they contribute to what is observed?

7) Pulsars and pulsar wind nebulae are directly observed to accelerate particles to high energy,
and for one there is even a possible hint of neutrinos (TeVPA 2018 IceCube lectures; e.g. Aliu et al.
2014 [24]). What is their contribution? The high energy gamma data data clearly demonstrate that
they produce energetic particles very significantly, but they cannot contribute easily to the observed
positrons (Yüksel et al. 2009; Abeysekara et al. 2017 [13,145]).

8) Relativistic SNe: this is amply discussed in Bykov et al. 2018 [50], in ASR18, and in many
earlier papers cited therein. They surely contribute, as they are a variant of GRBs; however, is their
contribution mostly at the very highest energies, and what ratio to GRB contributions do they show?

9) Active single and binary stars: Any massive star with a powerful wind contributes (Seo et al.
2018 [128]). Microquasars are binary stars, as are all massive stars (Chini et al. 2012, 2013 [54,55] ).
Micro-quasars surely produce energetic particles and cosmic rays (e.g. Heinz & Sunyaev 2002, Mirabel
2004, 2011 [77,110,111]). So all of the final evolutionary stages will be active contributors to energetic
particles (e.g. Vulic et al. 2018, Abeysekara et al. 2018b [15,139]). But is their contribution discernible
in the CR data?

10) Neutron star and stellar mass BH mergers; as this may lead to a GRB, as observed, they clearly
can contribute (Abbott et al. 2017a, b; Albert et al. 2017b [11,12,21]).

11) Transport out of the Galaxy? Radio data allowed Heesen et al. (2018) [76], and Krause et al.
(2018) [85] to show that CR transport is typically convective, i.e. in a galactic plasma wind. They give a
threshold condition in the form of star formation rate per area (see also Rossa & Dettmar 2003 [124]).
This confirms some very old ideas, going back to Weber & Davis (1967) [142], Parker (1958) [121] and
even earlier notions in the late 1940s.

12) A CR contribution from the wind-shock of the Galactic plasma wind? This has been explored
repeatedly (Jokipii & Morfill 1987 [81]), most recently by Merten et al. (2018) [107]; they find that such
a contribution is possible.

13) Neutrino production in the Galaxy? The IceCube and Antares observations begin to constrain
the models (Albert et al. 2018 [22]). The γ-ray data already suggest plausible models, all consistent with
the concept here, that interaction is dominant when the SN-shock hits the wind-shell. Analogously
to our comments on diffuse γ-ray emission ensues that there should be two underlying spectra of
neutrinos, one at E−7/3 from the 4 π component, and at higher energy a lower E−2 from the polar-cap
component (CR-IV [132]): These emission spectra have a transition at an energy which is not well
determined right now. At TeV energies we cannot easily separate the RSG and BSG contributions,
where the BSG star contributions may or may not dominate the neutrino emission. The stronger
interaction in the RSG star explosions leading to anti-protons in our model proposed may push the
transition energy to a higher value in the observations summed over a line of sight.

The overall diffuse Galactic neutrino emission is predicted to show a sharp turn-off of both
components near 1/20 of the knee energy for protons, so here

Eν o f f = 1014.7±0.2 eV , (14)
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IceCube will surely be able to test this prediction in the future.
14) What is the explosion mechanism, and do we obtain a BH every time, or most of the time,

when BSG stars explode? What is the nature of the piston? The innermost layers that get ejected come
from a zone just outside the budding black hole, may reflect on the situation there, as regards density,
pressure, E.O.S., and magnetic fields. Are there some stars that produce a black hole without any
significant explosion at all (see Mirabel 2017a, b, c [112–114])? Do we have a chance to learn about BH
physics from these explosions?

5. Summary

Our main task that we set ourselves was to check whether the characteristic energies implied by
the numbers for radius, magnetic field, and shock velocity deduced from Radio Super Nova (RSN)
data (listed in ASR18 [43]) can be confirmed with the observations of the compact sources, interpreted
as Super Nova Remnants (SNRs) in the starburst galaxy M82 (KBS85, Allen & Kronberg 1998, Allen
1999, [25,26,90] as well as earlier and later references): The answer is positive: The energies for knee
and ankle seen in the Cosmic Ray (CR) data can be derived directly, without any free parameter, from
these data. That supports the interpretation, that the observed CRs in the energy range from just below
the knee all the way to the ankle derive directly from Blue Super Giant (BSG) star explosions. As BSG
star explosions are suspected to produce black holes, and to drive the piston pushing out the shock
giving rise to CRs, can we learn from CRs and their detailed properties about BH formation?
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