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1 Abstract: The practice of spatial econometrics revolves around a weighting matrix, which is often
2 supplied by the user on previous knowledge. This is the so called W issue. Probably, the aprioristic
s approach is not the best solution although, nowadays, there few alternatives for the user. Our
s contribution focuses on the problem of selecting a W matrix from among a finite set of matrices, all
s of them considerer appropriate for the case. We develop a new and simple method based on the
s  Entropy corresponding to the distribution of probability estimated for the data. Other alternatives,
»  which are common in current applied work, are also reviewed. The paper includes a large Monte
s  Carlo to calibrate the effectiveness of our approach compared to the others. A well-known case study
s isalsoincluded.

1o Keywords: Weights matrix, Model Selection, Entropy, Monte Carlo

1 1. Introduction

-

12 Let us begin with a mantra: the weighting matrix is the most characteristic element in a spatial
1z model. Most scholars agree with this popular commonplace. In fact, spatial models deal primarily with
12 phenomena such as spillovers, trans-boundary competition or cooperation, flows of trade, migration,
15 knowledge, etc. in complex networks. Rarely does the user know about how these events operate in
1s practice. Indeed, they are mostly unobservable phenomena which are, however, required to build the
1z model. Traditionally the gap has been solved by providing externally this information, in the form of a
1 weighting matrix. As an additional remark, we should note that W is not the unique solution to deal
1o with such kind of unobservables (1, for example, develop a latent variables approach that does not
20 need of W), but is the most simple.

2 Hays et al. [2] give a sensible explanation about the preference for a predefined W. Network
22 analysts are more interested in the formation of networks, taking units attributes and behaviors as
= given. This is spatial dependence due to selection, where relations of homophily and heterophily are
2a crucial. The spatial econometricians are more interested in what they call ‘computing the effects of alters
= actions on ego’s actions through the network’; in this case, the patterns of connectivity are taken as given.
26 This form of spatial dependence is due to the influence between the individuals, and the notions of
2z contagion and interdependence are capital. So, if the network is predefined, why not supplying it
2e  externally?

20 However, beyond this point, the W issue han been frequent cause of dispute. In the early stages,
30 terms like ‘join’ or ‘link” were very common (for instance, in 3, or 4). The focus at that time was mainly
a1 on testing for the presence of spatial effects, for which is not so important the specification of a highly
52 detailed weighting matrix; contiguity, nearness, rough measures of separation may be appropriate
33 notions for that purpose. The work of Ord [5] is a milestone in the evolution of this issue because of its
;s strong emphasis on the task of modelling spatial relationships. It is evident that the weights matrix
s needs more attention if we want to avoid estimation biases and wrong inference. Anselin [67] puts
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ss the W matrix in the center of the debate about specification of spatial models, but, after decades of
s»  practicing, the question still remains unclear.

38 The purpose of the so-called W is to "determine which ... units in the spatial system have an influence on
3o the particular unit under consideration ... expressed in notions of neighborhood and nearest neighbor’ relations,
s in words of Anselin [6, p.16] or "to define for any set of points or area objects the spatial relationships that
a1 exist between them’ as stated by Haining [8, p. 74]. The problem is how should it be done.

a2 Roughly speaking, we may distinguish two approaches: (i) specifying W exogenously; (ii)
«s  estimating W from data. The exogenous approach is by far the most popular and includes, for
«s example, use of a binary contiguity criterion, k-nearest neighbours, kernel functions based on distance,
4« etc. The second approach uses the topology of the space and the nature of the data, and takes many
s forms.We find ad-hoc procedures in which a predefined objective guides the search such as the
+z  maximization of Moran’s I in Kooijman [9] or the local statistical model of Getis and Aldstadt [10].
s Benjanuvatra and Burridge [11] develop a quasi maximum-likelihood, QML, algorithm to estimate the
4 weights in W assuming partial knowledge about the form of the weights. More flexible approaches are
so possible if we have panel information such as in Bhattacharjee and Jensen-Butler [12] or Beenstock and
s1  Felsenstein [13]. Endogeneity of the weight matrix is another topic introduced recently in the field
s2 (i.e., 14), which connects with the concept of coevolution put forward by Snijders et al. [15] and based
ss on the assumption that, in the long run, network connectivity must evolve endogenously with the
s« model. Much of the recent literature on spatial econometrics revolves around endogeneity, but our
ss contribution pertains to the exogenous approach where remains most part of the applied research.

56 Before continue, we may wonder if the W issue, even in our context of pure exogeneity, is really
sz a problem to worry for or it is the biggest myth of the discipline as claimed by LeSage and Pace [16].
ss Their argument is that only dramatic different choices for W would lead to significant differences in
so the estimates or in the inference. We partly agree with them in the sense that is a bit silly to argue
s Whether it is better the 5 or the 6 nearest-neighbor matrix; surely there will be almost no difference
&1 between the two. However, there is consistent evidence, obtained mainly by Monte Carlo [17-20]
e2 showing that the misspecification of W has a non-negligeable impact on the inference of the coefficients
es  of spatial dependence and other terms in the model. Moreover, the magnitude of the bias increases for
s« the estimates of the marginal direct/indirect effects. So, we are not pretty sure that 'far too much effort
es has gone into fine-tunning spatial weight matrices” as stated by LeSage and Pace [16]. Our impression is
es that any useful result should be welcomed in this field and, especially, we need practical, clear guides
ez to approach the problem.

68 Another question of concern are the criticisms of Gibbons and Overman [21]. As said, it is
eo common in spatial econometrics to assume that the weighting matrix is known, which is the cause of
7 identification problems; this flaw extends to the instruments, moment conditions, etc. There is little
= to say in relation to this point. In fact, spatial parameters (i.e., p) and weighting matrix, W, are only
72 jointly identified (we do estimate pW). Hays et al. [2] and Bhattacharjee and Jensen-Butler [12] agree in
73 this point.

74 Bavaud [22, p. 153], given this controversial debate, was very skeptic, ‘there is no such thing as
= “true”, “universal” spatial weights, optimal in all situations” and continues by stating that the weighting
76 matrix ‘must reflect the properties of the particular phenomena, properties which are bound to differ from field
7z to field’. We share his skepticism; perhaps it would suffice with a ‘reasonable” weighting matrix, the
s best among those considered. In practical terms, this means that the problem of selecting a weighting
7o matrix can be interpreted as a problem of model selection. In fact, different weighting matrices result
s in different spatial lags of the variables included in the model and different equations with different
a1 regressors amounts to a model selection problem.

o2 As said, our intention is to offer new evidence to help the user to select the most appropriate W
es matrix for the specification. Section 2 revises four selection criteria that fit well into the problem of
s« selecting a weighting matrix from among a finite set of them. Section 3 presents the main features of
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es the Monte Carlo solved in the fourth Section. Section 5 includes a well known case study which is
s revised in the light of our findings. Sixth Section concludes.

sz 2. Criteria to select a W matrix from among a finite set

88 The W issue has been present in the literature on spatial econometrics since very early. However
e the case of choosing one matrix from among a finite set of them is relatively recent. First, we review
oo the literature devoted to the | test and then we moved to the selection criteria, Bayesian methods and a
o1 new procedure based on Entropy.

02 Anselin [23] poses formally the problem suggesting a Cox statistic derived in a framework
o3 of non-nested models. Leenders [24], on this basis, elaborates a J-test using classical augmented
sa regressions. Later on, Kelejian [25] extends the approach of Leenders to a SAC model, with spatial
os lags of the endogenous variable and in the error terms, using GMM estimates. Piras and Lozano [26]
o6 confirm the adequacy of the J-test to compare different weighting matrices stressing that we should
oz make use of a full set of instrument to increase GMM accuracy. Burridge and Fingleton [27] show that
s the Chi-square asymptotic approximations for the J-tests produces irregular results, excessively liberal
9o Or conservative in a series of leading cases; they suggest a bootstrap resampling approach. Burridge
10 [28] focuses on the propensity of the spatial GMM algorithm to deliver spatial parameter estimates
11 lying outside the invertibility region which, in turn, affects the bootstrap; he suggest the use of a QML
102 algorithm to remove the problem. Kelejian and Piras [29] generalized and modify the original version
103 of Kelejian to account for all the available information, according to the findings of Piras and Lozano.
1s Finally, Kelejian and Piras [30] adapt the | test to a panel data setting with unobserved fixed effects
15 and additional endogenous variables which reinforces the adequacy of the GMM framework. Another
10 milestone in the | test literature is Hagemann [31], who copes with the reversion problem originated
17 by the lack of a well defined null hypothesis in the test. He introduces the minimum J test, M]J. His
10s approach is based on the idea that if there is a finite set of competing models, only the model with the
100 smallest | statistic can be the correct one. In this case, the | statistic will converge to the Chi-square
1o distribution but will diverge if none of the models is correct. The author proposes a wild bootstrap to
a1 test if the model with the minimum ] is correct. This approach has been applied by Debarsy and Ertur
12 [20] to a spatial setting with good results.

113 In the Monte Carlo that follows, we know that there is a correct model so are going to use only
ua the first part of the procedure of Hagemann. Assuming a collection of m different weighting matrices,
us  such as: W = {Wq; Wy; .., Wy, }, the M] approach works as follows:

116 1. We need the estimates of the m models; in each case, the same equation is employed but with a
117 different weighting matrix belonging to Y. Following Burridge [28] and given that our interest
118 lies on the small sample case, the models are estimated by ML.

119 2. For each model, we obtain the battery of | statistics as usual, after estimating, also by ML, the
120 corresponding extended equations.

121 3. The chosen matrix is the one associated with the minimum ] statistic. We do not test if this matrix
122 is really the correct matrix.

123 Another popular method for choosing between models deals with the so-called Information Criteria.

122 Most are developed around a loss function, such as the Kullback-Leibler, KL, quantity of information
125 which measures the closeness of two density functions. One of them corresponds to the true probability
126 distribution that generated the data, obviously not known, the other is the distribution estimated
12z from the data. The criteria differ in the role assigned to the aprioris and in the way of solving the
126 approximation to the unknown true density function [32]. The two most common procedures are the
120 AIC [33] and the Bayesian BIC criteria [34]. The first compares the models on equal basis whereas the
130 second incorporates the notion of model of the null. Both criteria are characterized by their lack of
11 specificity in the sense that the selected model is the closest to the true model, as measured by KL. We
132 should note that, as indicated by Potscher [35], a good global fit does not mean that the model is the
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133 best alternative to estimate the parameters of interest. AIC and BIC lead to single expressions that
13 depend on the accuracy of the ML estimation plus a penalty term related to the number of parameters
135 entering the model; that is:

AIC(k): —21(F) + 2k, O
BIC(k) : —2I(7) + klog(n),
136 where /() means the estimated log-likelihood at the ML estimates, 7, k is the number of non-zero

137 parameters in the model and # the number of observations. For the case that we are considering
132 the models only differ in the weighting matrix, so k and 7 are the same in every case. This means
13s  that the decision depends on the estimated log-likelihood, or on the balance between the estimated
140 variance and the Jacobian term. Note that, for a standard spatial model of, i.e., SLM type we can write:
1 [(7) xlog [(%n |I — pW |} , being ¢ the standard deviation and p the corresponding spatial dependence
12 coefficient. To minimize any of the two statistics in (1) the objective is to maximize the concentrated
s estimated log-likelihood, /(7). The same as before, the Information Criteria approach implies:

144 1. Estimate by ML of the m models corresponding to each weighting matrix in WV.

145 2. For each model, we obtain the corresponding AIC statistic (BIC produces the same results).

146 3. The matrix in the model with minimum AIC statistic should be chosen.

147 An important part of the recent literature on spatial econometrics has Bayesian basis; this extends

s also to the topic of choosing a weighting matrix. The Bayesians are well equipped to cope with these
s type of problems using the concept of posterior probability as the basis for taking a decision. There are
10 excellent reviews in Hepple [363738], Besag and Higdon [39] and especially, LeSage and Pace [40]. For
11 the sake of completeness, let us highlight the main points in this approach.

152 The analysis is made conditional to a model, which is not under discussion. Moreover, we have a
13 collection of m weighting matrices in WV, a set of k parameter in <, some of which are of dispersion,
1ss 0, others of position, , and others of spatial dependence, p and 6, and a panel data set with nT
155 Observations in y. The point of departure is the joint probability of data, parameters and matrices:

pWivy)=mn(Wi) (v [Wi) L(y | »Wi), ()

156 where 77 (-) are the prior distributions and L (y | ; W;) the likelihood for y conditional on the
17 parameters and the matrix. Bayes’ rule leads to the posterior joint probability for matrices and
158 parameters:

Tt (W)t (y [ W) L (y | v Wi)

p(Wiy ly) = L) , ®)
189 whose integration over the space of parameters, v € Y, produces the posterior probability for
160 matrix W;:
p(Wily) = /P(Ww | y)dy. (4)
Y
161 The presence of spatial structures in the model complicates the resolution of (4) which usually

162 Trequires of numerical integration. The priors are always a point of concern and, usually, practitioners
s prefer diffuse priors. LeSage and Pace [40, Section 6.3] suggest 77 (W;) = % Vi, a NIG conjugate prior
s for fand o where 715 (B [ o) ~ N (/30; o2 (kX' X)71>, being X the matrix of the exogenous variables
s in the model, and 77 (¢) a inverse gamma, IG(a,b). For the parameter of spatial dependence they
s suggest a Beta(d, d) distribution, being d the amplitude of the sampling space of p. The defaults in the
1z MATLAB codes of LeSage [41] are By = 0, x = 1072 and @ = b = 0. In sum, the Bayesian approach
16 implies the following:
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169 1. Fix the priors for all the terms appearing in the equation. In this point, we have followed the
170 suggestions of LeSage and Pace.
171 2. For each matrix, obtain the corresponding posterior probability of (4) for which we need (i) solve
172 the ML estimation of the corresponding model and (ii) solve the numerical integration of (4).
173 3. The matrix chosen will be that associated with the highest posterior probability.
174 This paper advocates for a selection procedure based on the notion of Entropy, which is used as

175 a measure of the information contained in a distribution of probability. Let us assume an univariate
17e  continuous variable, iy, whose probability density function is p(y); then, Entropy is defined as:

h(p) = — /1 p(y)log p(v)dy, (5)

177 being I the domain of the random variable y. As known, higher Entropy means less information
17s  or, what is the same, more uncertainty about y. Our case fits with Shannon’s framework (42): we
1o Observe a random variable, i, and there is a finite set of rival distribution functions capable of having
10 generated the data. Our decision problem is well defined because each distribution function differs
121 from the others only in the weighting matrix; the other elements are the same. However, we are not
12 interested in the Laplacian principle of indifference (select the density with maximum Entropy, less
13 informative, to avoid uncertain information). Quite the opposite: in our case there is no uncertain
s information and we are looking for the more informative probability distribution so our objective is to
185 minimize Entropy.

186 As with the other three cases, the application of this principle requires the complete specification
167 of the distribution function, which means that the user knows the form of the model (equations 7
s to 9 below, except the W matrix); additionally we add a Gaussian distribution. Next, we should
1o remind that for the case of a (n x 1) multivariate normal random variable, y ~ N(y; X), the entropy
wo is: h(y) = } [n+1log ((27)" |Z|)]. This measure does not depend, directly, on first order moments
11 (parameters of position of the model) but on second order moments (dependence and dispersion
102 parameters). For example, in the case of the SLM of (9) below, the entropy is:

W(y)som = 5 (nT +log((2ne?)" | (8'8) 7)) ©®)

103 where B = (I — pW). Note that the covariance matrix for y in the SDM is V(y) = B~V (u)B 1.
10a If u is indeed a white noise random term with variance o2, the covariance matrix of y is simply
ws V(y) =02 (B'B) . Let us note that the covariance matrix of y in the SDM of (7) coincides with that
we of the SLM case. The covariance matrix for the SDEM equation is V(y) = o2 (B'B), everything else
107 remains the same.

108 In order to apply the Entropy criterion we must must go through the following steps:

100 1. Estimate each one of the m versions of the model that we are considering. As said, each models
200 differs only in the weighting matrix. We obtain the ML estimates for reasons given above.

201 2. For each model, we obtain the corresponding value of the Entropy, in the h;; i = 1,2, ..., m statistic.
202 3. The decision criterion consists in choosing the weighting matrix corresponding to the model
203 with minimum value of the Entropy.

202 3. Description of the Monte Carlo

205 This part of the paper is devoted to the design of the Monte Carlo conducted in the next Section
20 in order to to calibrate the performance of the four criteria presented so far for selecting W: the M|
207 procedure, the Bayesian approach, the AIC criterion and the Entropy measure. The objective of the
20¢ analysis is to identify and select the matrix that intervened in the generation of the data. Moreover, our
200 focus is on small sample sizes. As will be clear below, the four criteria have good behaviour even in
20 small samples, so it is not necessary to employ very large sample sizes
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211 We are going to simulate a panel setting, with three of the most common DGPs in the applied
212 literature on spatial econometrics; namely, the spatial Durbin Model, SDM of (7), the spatial Durbin
z3 error model, SDEM in expression (8) and the spatial lag model of (9), SLM.!

n n
yit = Bo+ 0 Y wiiyjr + XitP1 + 0 Y wijxj + €it, @)
=1 j=1
n n
Vit = Bo+ X1+ 0 ) wijxjp + iy, uyp = p Y wijit + €. 8)
= =1
n
Yit = Bo+ 0 Y wiiyit + XitP1 + €it, 9)
j=1
214 Only one exogenous regressor, x variable, appears in the right hand side of the equations whose

215 Observations are obtained from a normal distribution, x;; ~ i.i.d.N (0; 0'%), where UJ% = 1; the same
216 applies with respect to the error terms: ¢;; ~ i.i.d.N (0;02), where 02 = 1. The two variables are not
a1z related, E (x;¢€;;) = 0. Our space is made of hexagonal pieces which are arranged regularly, one next
zs to the others without discontinuities nor empty spaces.

210 One weighting matrix appears in the three equations, which plays a central role in the functioning
220 Of the model. As said before, the weighting matrix is not observable and the user must take decisions
21 to resolve the uncertainty. The problem consists in choosing one matrix from among a finite set of
222 alternatives which in our simulation are composed by three candidates: Wj is built using the traditional
223 contiguity criterion between spatial units; the weights in W are the inverse of the distance between

224 the centroids of the spatial units, W, = {wi]- = % ;i ]}, whereas W3 incorporates a cut-off point to
ij

s the connections in Wy, so that W3 = {wi]' = diij;i #jif j€ Ng(i); 0 otherwise} being Ny (i) the set of
226 4 nearest neighbors to i. To keep things simple, the same weighting matrix plays with the endogenous
22z and exogenous variables in (7) and with the exogenous and error terms in (8). Following usual practice,
226 every matrix has been row-standardized. Due to the row-standardization, the three matrices are non
220 nNested in the sense that the sequence of weights are different among them.

230 Three different small cross-sectional sample sizes, n, have been used n € {25,49,100}; that
21 is enough because higher values of this parameter only improves marginally the results. For the
22 same reason, the number of cross-sections in the panel, T, are limited to only three, T € {1,5,10}.
233 The values for the coefficient of spatial dependence, p, ranges from negatives to positives, p =
aa {—0.8,—-0.5,—-0.2,0.2,0.5,0.8}. Other global parameters are those associated with the constant term,
as Bo = 1, the x variable, B; € {1,5}, and its spatial lag, 6 € {1,5}.

236 In sum, each case consists in:

237 o Generate the data using a given weighting matrix, Wy, k = 1,2, 3 and a spatial equation, SLM,
238 SDM or SDEM. There are 216 cases of interest for each equation (6 values in p, 3 values in n, 3
230 values in T, 2 values in $; and 2 values in 6).

240 o The spatial equation is assumed to be known so the model can be estimated by maximum
241 likelihood, ML, once the user supplies a W matrix.

242 o Compute the four selection criteria, M], Posterior probability, Entropy and AIC for the three
243 alternative weighting matrices for each draw.

248 o Select the corresponding matrix according to each criterion and compare the result with the true
245 matrix in the DGP.

240 o The process has been replicated 1,000 times.

Main conclusions can be extended to other processes like the spatial error model, which are not replicated here (details on
request from the authors).
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247 Note that the selection of the matrix is made conditional on a correct specification of the equation.
24s We are perfectly aware that this dichotomy is artificial; in fact, both decisions are intimately related
2e0 because the same matrix, but in different equations, plays different roles and bears different information.
20 However, this point is not further developed in the present paper. In order to give some intuition,
=1 we include the results corresponding to the case of a wrong specification (i.e, estimate a SDM model
22 whereas the true model in the DGP is a SDEM).

253 4. Results of the Monte Carlo

254 This Section summarizes the results obtained in the Monte Carlo. Let us advance an little spicy:
=5 in strictly quantitative terms, the Entropy measure is the best criterion. What is more surprising, the
26 Bayesian approach is marginally better than the AIC, but only when the amount of information is
=7 large and there is positive spatial correlation. Finally, the M| approach is the worse alternative among
zs  the four criteria. The last two observations are a bit surprising given the strong support that the two
20 procedures have received in the literature. Table 1 presents the percentage of correct selections attained
260 by each criterion after aggregating all the experiments in the Monte Carlo. A cell in bold indicates that
261 the respective criterion reaches the maximum rate of correct selections.

Table 1. Percentage of correct selections. Aggregated results

0 h(y) Bayes MJ AIC

—0.8 83.8 83.2 50.7 84.4
—0.5 71.4 69.7 52.8 71.4
—-0.2 55.9 494 54.2 54.6

0.2 60.8 54.6 58.3 60.5

0.5 75.7 73.6 58.2 73.5

0.8 85.9 85.4 53.6 78.7
AVERAGEH 72.3 69.3 54.6 70.5

262 Entropy dominates in 5 out of the 6 cases presented in the Table, and is the second in the sixth
263 case; AIC leads in two cases, is second in two and third in another two cases. Bayes does not do very
2ea  well for small values of the spatial coefficient (is fourth in +0.2) and the curve of correct selections of
265 the M] is very flat.
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Figure 1. Percentages of correct selections, disaggregated by n and T

CASE:n=25 CASE:T=1

——enTRoPY

— o TEsT

| [——enmmopy

— o TEsT

——enTRoPY

— o TEsT

266 Figure 1 disaggregates the accumulated percentages by number of spatial units, left, or number
26z Of cross-sections, right. Note that in each case, the data represent aggregated percentages (i.e, in
20 the case n = 25 we aggregate the three cross-sections corresponding to T = 1, T = 5 and T = 10).
200 These courves ratifies the ordering set out above. Note the asymmetry in all the curves and the
270 strange behaviour of the M] criterion that produces worst results at the extremes of the interval for
2 p. The other three criteria react positively to increases in the sample size (both in n or in T). Overall,
22 the improvement is more relevant according to T than to 7, specially for high values of the spatial
s coefficient.

274 Tables 2 to Table 5 present the details by type of DGP. A quick look at the Tables reveals that bold
zrs  percentages are concentrated, mainly, in the Entropy and AIC columns.
276 The prevalence of the Entropy criterion is quite regular (the exception is the SDEM process where

2z AIC has better results). The preference extends to the case of correctly specified models, as in Tables
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2re 2,3 and 4, and also for misspecified equations, as in Table 5, for negative and especially for positive
220 values of the spatial coefficient, for small and large number of individuals in the sample (1) and for
20 simple to large panels (T). Overall, Entropy attains the highest rate in 48% of the 180 cases in Tables 2
281 to 5.

282 The complete relation of results for the 864 different experiments in the MC (3 ns, 3 T's, 6 ps, 2 s,
2e3 2 0s and four configurations for the DGP/estimated equation pair) appear in Tables 10 to 21 in the
2ea  Appendix. Let us note the good results attained in the case of small samples (n = 25 and T = 1) where
2es  the average rate of correct selections for Entropy and AIC is above 40% criteria (a little worse for the
26 Other two). The percentage exceeds 60% at the extremes of the spatial parameter interval, +0.8. The
207 average rate improves upto 65% - 75%, for the case of n = 25 and T = 5 and continues improving
22e  When T = 10, where most cases have a rate of correct selections above 90%. In general, the rate of
2e0  correct selections is nearly 100%, using 5 to 10 cross-sections.

Table 2. Average percentage of correct selections. DGP: SDM. Equation estimated: SDM.

Aggregated by cross-section, sample size (1) Aggregated by time series, sample size (T)
0 h(y) Bayes MJ AIC 0 h(y) Bayes M] AIC
-0.8 78.1 77.8 524 79.6 —-0.8 67.4 66.2 39.4 68.8
-0.5 62.9 62.5 52.0 61.8 —-0.5 54.4 54.3 38.5 57.5
n— 05 -0.2 53.5 48.7 53.1 50.2 T—1 -0.2 411 38.4 40.0 41.7
0.2 61.5 59.8 65.0 61.2 0.2 43.2 35.8 48.4 40.8
0.5 74.7 56.5 50.8 721 0.5 56.5 50.8 55.2 54.3
0.8 84.3 81.7 74.5 75.5 0.8 69.7 68.1 63.4 63.8
—0.8 88.9 88.7 57.6 90.1 -0.8 91.9 93.0 62.3 93.5
-0.5 76.4 77.5 58.6 78.7 -0.5 79.4 80.2 63.7 79.5
" — 49 -0.2 59.6 55.5 58.6 58.8 T—5 -0.2 63.3 57.3 62.4 60.1
0.2 71.0 67.9 73.1 70.0 0.2 79.1 76.6 78.1 76.1
0.5 84.1 81.7 81.6 82.0 0.5 92.3 92.5 87.1 89.8
0.8 93.3 93.8 88.1 87.4 0.8 98.4 98.3 88.2 89.9
-0.8 94.4 94.3 63.9 95.2 -0.8 97.3 97 .4 69.2 97.9
-0.5 87.3 87.2 66.6 88.7 -0.5 88.8 88.7 72.1 87.9
-0.2 67.6 61.9 62.8 66.6 -0.2 72.3 66.5 68.2 69.8
n =100 T=10
0.2 80.5 76.4 79.4 77.1 0.2 86.6 87.7 86.4 87.4
0.5 91.9 90.5 85.6 89.7 0.5 97.0 97.5 929 95.4
0.8 97.3 96.3 89.5 92.4 0.8 99.8 99.8 94.6 95.8

Table 3. Average percentage of correct selections. DGP: SDEM. Equation estimated: SDEM.

Aggregated by cross-section, sample size (1) Aggregated by time series, sample size (T)
0 h(y) Bayes Mj AIC 0 h(y) Bayes Mj AIC
—0.8 80.5 773 56.7 82.5 -0.8 66.7 65.3 42.5 70.4
—0.5 69.6 65.2 57.5 69.6 -0.5 55.4 55.6 44.0 62.1
w—05 -0.2 59.6 52.5 56.5 58.2 T-1 -0.2 425 42.8 43.8 49.3
0.2 55.6 524 56.9 57.7 0.2 39.5 36.1 45.7 434
0.5 63.5 62.6 55.7 63.7 0.5 49.5 454 46.5 48.7
0.8 74.4 73.8 54.0 67.0 0.8 59.3 58.1 48.9 53.2
—0.8 88.1 88.5 64.5 91.0 -0.8 94.0 94.7 71.1 95.4
—0.5 78.2 78.8 65.6 81.9 -0.5 84.1 84.8 72.5 84.9
n— 49 —0.2 64.6 62.6 65.2 66.3 T_5 —0.2 70.2 67.1 71.6 69.6
0.2 64.8 614 65.2 65.9 0.2 712 69.3 70.3 73.1
0.5 78.0 75.7 64.5 75.1 0.5 83.1 85.5 67.8 83.7
0.8 88.0 87.1 64.0 79.6 0.8 94.7 95.4 64.6 86.8
—0.8 95.1 95.8 75.1 96.4 -0.8 97.7 98.2 78.9 98.6
-0.5 88.9 91.3 76.4 92.1 —0.5 924 91.6 79.3 91.7
-0.2 742 75.1 76.4 77.2 —0.2 815 774 78.8 783
n =100 T=10
0.2 75.6 749 75.1 78.3 0.2 814 80.3 773 81.7
0.5 87.9 89.1 729 88.1 0.5 93.3 93.5 75.2 91.3
0.8 94.3 95.6 69.4 90.7 0.8 99.1 99.4 70.0 93.9
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Table 4. Average percentage of correct selections. DGP: SLM. Equation estimated: SLM.
Aggregated by cross-section, sample size (1) Aggregated by time series, sample size (T)
0 h(y) Bayes MJ AIC 0 h(y) Bayes M] AIC
—0.8 58.7 59.7 27.3 58.3 —-0.8 54.0 53.1 23.7 54.5
-0.5 41.9 36.2 27.0 38.4 -0.5 36.3 33.3 243 37.7
"= 25 -0.2 28.3 15.8 28.3 26.5 T—1 -0.2 22.6 14.2 28.3 225
0.2 33.4 21.0 30.2 33.5 0.2 30.8 12.6 32.5 30.0
0.5 54.0 49.6 31.8 54.2 0.5 46.3 37.4 34.6 454
0.8 72.4 70.8 31.9 70.0 0.8 61.0 61.0 36.2 56.6
-0.8 73.6 73.2 221 74.4 -0.8 79.7 81.4 19.9 80.7
-0.5 53.2 47.7 254 515 -0.5 57.9 53.0 24.1 55.9
n— 49 -0.2 32.3 17.9 289 30.5 T—5 -0.2 32.8 15.1 28.1 30.2
0.2 41.7 249 31.5 39.9 0.2 44.4 27.4 29.2 43.0
0.5 68.8 64.3 26.9 67.7 0.5 73.0 72.8 244 71.5
0.8 86.8 87.1 26.2 82.1 0.8 93.5 93.3 248 88.3
-0.8 86.7 87.0 12.0 87.6 -0.8 85.4 85.3 17.7 85.1
-0.5 68.0 65.2 18.0 68.3 -0.5 68.8 62.8 22.0 64.7
= 100 -0.2 37.8 222 27.1 36.3 T =10 -0.2 43.0 26.6 28.0 40.6
0.2 51.3 35.4 27.6 50.6 0.2 51.1 41.3 27.6 51.1
0.5 81.4 79.8 20.6 79.0 0.5 84.9 83.4 20.2 84.0
0.8 92.3 92.9 20.2 86.9 0.8 97.0 96.5 17.3 94.0
Table 5. Average percentage of correct selections. DGP: SDEM. Equation estimated: SDM.
Aggregated by cross-section, sample size (1) Aggregated by time series, sample size (T)
0 h(y) Bayes MJ AIC 0 h(y) Bayes Mj AIC
—0.8 79.2 77.2 51.4 77.6 -0.8 66.2 66.0 38.1 68.9
-0.5 66.5 64.1 55.1 62.3 —-0.5 54.3 55.5 40.8 58.1
"= 25 -0.2 57.9 524 57.4 52.7 T—1 —-0.2 422 40.2 423 427
0.2 54.8 54.0 59.1 55.4 0.2 38.2 32.3 44.8 37.7
0.5 62.8 62.4 55.9 59.4 0.5 46.4 42.3 45.4 43.6
0.8 719 72.2 425 59.4 0.8 55.1 54.1 425 47.3
—0.8 87.9 88.6 60.4 89.9 —-0.8 92.3 92.3 64.3 91.7
-0.5 77.5 78.9 62.7 79.8 —-0.5 83.3 81.6 67.4 80.0
" — 49 -0.2 64.2 61.3 64.7 63.1 T—5 —-0.2 69.4 63.4 69.5 64.5
0.2 64.8 60.7 65.5 64.1 0.2 71.9 68.5 69.4 70.9
0.5 75.1 73.5 63.2 70.2 0.5 82.2 83.9 65.7 78.2
0.8 84.3 84.3 47.1 721 0.8 92.2 93.7 443 77.9
—0.8 94.9 95.0 67.0 95.8 —-0.8 97.2 97.2 72.6 96.9
-0.5 87.9 88.6 70.4 89.8 -0.5 89.9 89.9 76.1 88.8
-0.2 72.4 68.9 715 71.3 -0.2 78.6 74.9 77.7 75.6
n =100 T=10
0.2 74.9 70.0 71.1 73.4 0.2 80.8 80.2 77.0 80.5
0.5 85.9 85.9 68.2 83.3 0.5 91.8 92.5 72.0 87.9
0.8 92.7 93.3 39.6 84.4 0.8 98.3 98.8 38.3 87.6

In a similar vein, the increase in the cross-sectional size, 1, maintaining constant the number of

cross-sections, T, also has positive effects in the four criteria. The rate of correct selections for the case
of a hundred of spatial units is above 70%, on average, for the case of a single cross-section (T = 1),
but these percentages improve quickly if the time dimension of the panel increases.

The value of parameter 1, as expected, has a weak impact in the four criteria; on the contrary,
the signal of 6; plays a crucial role in the SDEM case. Another interesting feature is the asymmetry of
the selection curves, that tends to be diluted with T. Negative spatial dependence helps to detect the
correctly weighting matrix, especially when the number of time cross-sections is small. The asymmetry
exists in Entropy, Bayes and AIC. However, the behavior of the MJ worsens in case of negative values
in parameter p.

To complete the picture, we estimate a response-surface for each DGP/Estimated-equation
combination, with the aim of modelling the empirical probability of choosing the correct weighting
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2 mMmatrix for each criterion, p;. As usual, a logit transformation of the empirical probabilities is carried
;03 out, so the estimated equation is:

-1
pi + (27’) *
log| ————————= | =p; =n+zip+e, (10)
g <1Pi+(27’)1 pi =N Tz T€
308 where p7 is the logit transformation, often known as the logit, r the number of replications of each

305 experiment (1000 in all the cases); (21’)71 assures that the logit is defined even when the probability
s0s  Of correct selection is 0 or 1 (43); 7 is an intercept term, z; the design matrix whose columns reflect
sz the conditions of each experiment, ¢ is a vector of parameters and ¢; the error term assumed to be
s independent and identically distributed (this assumption is reasonable if all experiments come from
a0 the same study, as ours, and are obtained under identical circumstances; 44). Let us remind that the
a0 number of observations for each response-surface equation is 216 (so i = 1, 2, ..., 216). Table 6 shows the
su  results for the four DGP/Estimated-equation combinations.

312 In general, the estimates confirm previous facts. The main factor influencing the empirical
a3 probability of choosing the correct weights matrix is the spatial parameter, absolute value of p in Table
ae 6. Its contribution is crucial in the case of the Bayesian criteria and, to a lesser extend, also in the cases
ais of Entroy and AIC. This parameter is not significant, for the case of the M] approach and SDEM
as  processes whereas its contribution is negative in the SLM and in misspecified equations. The second
a1z more influential factor is the parameter 6, associated to spatial spillovers. Its impact is beneficial for
sz all the cases though it appears to be more important for the MJ; the other three criteria are a bit less
s1e  sensitive. Sample size is also relevant in all the cases and T has a relatively higher impact than n.
;20 Finally, as said before, parameter f; is not significant in any circumstance, with the exception of the
sz SLM case; this means that the signal-fo-noise ratio should not be a major factor to consider when the
;22 problem is select the best weighting matrix.

323 Table 7 completes the response-surface analysis with the F tests of equality in the coefficients of
224 the estimates of Table 6. According to the sequence of F tests, the most dissimilar method is the
25 M] approach, and then Bayes. On the other hand, Entropy and AIC emerge as similar strategies to
;2 compare weighting matrices; in fact, in what respect this simple response-surface analysis, they are
;27 almost indistinguishable in the four types of DGPs.


http://dx.doi.org/10.20944/preprints201811.0188.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 November 2018 d0i:10.20944/preprints201811.0188.v1

12 of 30
Table 6. Estimated response surfaces.
SDEM case constant n T B1 0 o R? Fay
-5.9410 0.0037 0.0566 0.0005 0.0748 0.5568 117.90
Entropy 0.74
(0.0000)  (0.0000)  (0.0000)  (0.9402)  (0.0000)  (0.0000) (0.0000
Bayes -6.2233 0.0051 0.0660 -0.0017 0.0904 0.6813 0.66 81.57
(0.0000) (0.0000) (0.0000) (0.8553) (0.0000) (0.0000) (0.0000
M] test -6.1295 0.0044 0.0520 0.0106 0.1569 -0.0377 0.82 196.74
(0.0000) (0.0000) (0.0000) (0.0910) (0.0000) (0.4612) (0.0000
AIC -5.9177 0.0043 0.0506 0.0044 0.0795 0.4590 067 87.21
(0.0000)  (0.0000)  (0.0000)  (0.5407)  (0.0000)  (0.0000) (0.0000
SDM case constant n T B1 0 o] R? Fav
-5.8902 0.0033 0.0481 0.0053 0.0702 0.06348 83.35
Entropy 0.66
(0.0000)  (0.0000)  (0.0000)  (0.4614)  (0.0000)  (0.0000) (0.0000
Bayes -6.1117 0.0033 0.0548 0.0052 0.0861 0.8116 0.60 63.33
(0.0000) (0.0000) (0.0000) (0.5974) (0.0000) (0.0000) (0.0000
M] test -5.8998 0.0024 0.0476 0.0186 0.1036 0.1668 047 36.74
(0.0000)  (0.0004)  (0.0000)  (0.0813)  (0.0000)  (0.0552) (0.0000
AIC -5.9339 0.0034 0.0479 0.0092 0.0722 0.6301 0.67 83.61
(0.0000) (0.0000) (0.0000) (0.2051) (0.0000) (0.0000) (0.0000
SLM case constant n T B1 ol R? Fay
Entropy -6.3435 0.0049 0.0613 -0.0390 1.2505 0.81 113.60
(0.0000)  (0.0000)  (0.0000)  (0.0001) (0.0000) (0.0000
Bayes -7.0854 0.0054 0.0786 -0.0709 2.2207 0.83 122.53
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000
1.3129 -0.0131 -0.0896 -0.2215 -1.4089 16.92
MJtest (0.0000)  (0.0000)  (0.0006)  (0.0000) (0.0004) 040 (0.0000
AlC -6.3808 0.0050 0.0599 -0.0396 1.2678 0.79 96.74
(0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0000
MISS case constant n T B1 0 ol R? Fay
-5.9736 0.0039 0.0583 -0.0004 0.0745 0.5505 109.13
Entropy 0.72
(0.0000) (0.0000) (0.0000) (0.9511) (0.0000) (0.0000) (0.0000
Bayes -6.1882 0.0040 0.0648 -0.0001 0.0916 0.7103 0.67 85.13
(0.0000) (0.0000) (0.0000) (0.9887) (0.0000) (0.0000) (0.0000
M test -5.6677 0.0020 0.0379 0.0007 0.1162 -0.3854 055 50.92
(0.0000)  (0.0000)  (0.0000)  (0.9431)  (0.0000)  (0.0000) (0.0000
AlC -5.9741 0.0043 0.0558 -1.9169 0.0696 0.4728 0.68 88.38

(0.0000)  (0.0000)  (0.0000)  (0.9979)  (0.0000)  (0.0000) (0.0000

Note: pvalue appear between brackets. F 4}, means F test of the null that all coefficients are zero except the constant. MISS means that the model in the DGP is a SDEM but we estimate a SDM equation
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Table 7. F test for the equality of coefficients in the response-surface estimates
SDEM case Bayes M] test AIC
Entropy 55.000 (0.00) 87.331 (0.00) 1.535 (0.17)
Bayes - 34.720 (0.00) 4.558 (0.00)
M] test - - 61.774 (0.00)
SDM case Bayes M] test AIC
Entropy 4.699 (0.00) 34.886 (0.00) 0.471 (0.83)
Bayes Z 14.791 (0.00) 3.300 (0.00)
M] test - - 28553 (0.00)
SLM case Bayes M] test AIC
Entropy 61.544 (0.00) 8685.34 (0.00) 0.500 (0.78)
Bayes Z 432.170 (0.00) 45475 (0.00)
M] test - - 7423.01 (0.00)
MISS case Bayes M] test AIC
Entropy 4.454 (0.00) 118.882 (0.00) 2.056 (0.06)
Bayes - 65.420 (0.00) 5.171 (0.00)
M] test - — 85.234 (0.00)
Note: p-value appear between brackets.
s2s 5. Empirical application
320 The case studied in this section is based on a well-known economic model. It is a model of

30 economic growth estimated by Ertur and Koch (2007) using a cross-section of 91 countries for the
a1 period 1960-1995. The purpose of this section is to illustrate the use of the selection procedures
sz discussed before.

a3 5.1. Study case: Ertur and Koch (2007)

334 Ertur and Koch [45] build a growth equation to model technological interdependence between
335 countries using spatial externalities. The main hypotheses of interaction is that the stock of knowledge
336 in one country produces externalities that cross national borders and spill over into neighboring
s37  countries, with an intensity which decreases with distance. The authors use a geographical distance
338 Ineasure.

330 The benchmark model assumes an aggregated Cobb-Douglas production function with constant
a0 returns to scale in labour and physical capital:

Yi(t) = A(OKF(OL (1), (11)
sa1 where Y;(t) is output, K;(¢) is the level of reproducible physical capital, L;(t) is the level of labour,
sz and A;(f) is the aggregate level of technology specified as:

n
Sw;;
Ai(t) = QKT () [ T4 (1), (12)
j#i
243 The aggregate level of technology A;(f) in a country i depends on three elements. First, a certain

sas  proportion of technological progress is exogenous and identical in all countries: Q(t) = Q(0)e*!, where
as ) is a constant rate of technological growth. Second, each country’s aggregate level of technology
s increases with the aggregate level of physical capital per worker k? (t) = (K;(t)/Li(t))? with parameter
sz € [0;1] capturing the strength of home externalities by physical capital accumulation. Finally, the
sas  third term captures the external effects of knowledge embodied in capital located in a different country,
se0  whose impact crosses national borders at a diminishing intensity, § € [0;1]. The terms w;; represent
0 the connectivity between country 7 and its neighbours; these weights are assumed to be exogenous,
1 non-negative and finite.

352 Following Solow, the authors assume that a constant fraction of output s;, in every country i, is
3 saved and that labour grows exogenously at the rate n;. Also, they assume a constant and identical
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s« annual rate of depreciation of physical capital for all countries, denoted 7. The evolution of output
355 per worker in country i is governed by the usual fundamental dynamics of the Solow equation which,
s after some manipulations, lead to a steady-state real income per worker [45, p. 1038, eq. 9]:

y=0Q+ («+¢) k — adWk + Wy. (13)

357 This is a spatially augmented Solow model and coincides with the predictor obtained by Solow
s adding spillover effects. In terms of spatial econometrics, we have a Spatial Durbin Model, SD M, which
30 can be expressed as:

y=xB+pWy+ Wx0 +e. (14)

360 Equation (14) is estimated using information on real income, investment and population growth
se1  for a sample of 91 countries for the period 1960 — 1995. Regarding the spatial weighting matrix, Ertur
sz and Koch consider two geographical distance functions: the inverse of squared distance (which is
:es  the main hypothesis) and the negative exponential of squared distance (to check robustness in the
sea  specification). We also consider a third matrix based on the inverse of the distance.

365 Let us call the three weighting matrices as W1, W, and W3 which are row-standardized: Wpij =

n
366 wzi]-/];l cu;;ij; h =1,2,3 where:

. 0 ifi=j . 0 ifi=j . 0 ifi=j
Wlij:{ ’ “Jzi]’:{ ~2d S i=] ’ “’31']':{ , (1)

dl.;z otherwise e % otherwise dl.;l otherwise

367 with dj; as the great-distance between the capitals of countries i and ;.

368 The authors analyze several specifications checking for different theoretical restrictions and
se0  alternative spatial equations. We concentrate our revision in the so-called non-restricted equation, in
a0 the sense that it includes more coefficients than advised by theory. Table 8 presents the SDM version of
sn  this equation using the three alternative weighting matrices specified before (the first two columns
sz coincide with those in Table I, columns 3-4, pp. 1047, of 45). The last four rows in the Table show the
s73 value of the selection criteria corresponding to each case.

374 The preferred model by Ertur and Koch is the SDM/W; which coincides with the selection
a5 attained by minimum Entropy, the Bayesian posterior probability and AIC. The selection of the M|
s7e  approach is Wo.

377 Other results in Ertur and Koch refer to the Spatial Error Model version of the steady-state
s7s  equation of (13), or SEM model. The intention of the authors is to visualize the presence of spatial
sro  correlation in the traditional non spatial Solow equations; we use this case as an example of selection of
;0 weighting matrices in misspecified models. The main results appear in Table 9 (which can be compared
s with columns 2-3 of Table 11, in 45, p. 1048).
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Table 8. Ertur & Koch case. Unrestricted SDM estimates
Model/Weight matrix SDM | W1 SDM | W2 SDM | W3
constant 0967 (0.51) 0499 (0.27) 5197 (0.99)
log(s) 0.825 (8.26) 0792 (7.62) 0910 (8.49)
log(n + 0.05) —1.498 (—2.64) —1.451 (—2.62) —1.710 (—2.67)
W x log(s) —0.326 (—1.78) —0.378 (—2.29) 0500 (1.25)
W x log(n + 0.05) 0574 (0.68) 0.141 (0.18) 2150 (1.01)
W x log(y) 0.742 (10.70) 0.661 (9.01) 0.883 (11.60)
Selection Criteria
Entropy 28.001 29.615 34.615
Bayesian 0.864 0.133 0.003
M]J 11.158 9.388 10.208
AIC 95.885 99.100 109.132
Note: t-ratios appear between brackets.
Table 9. Ertur & Koch case. Unrestricted SEM estimates
Model/Weight matrix SEM /| W1 SEM | W2 SEM | W3
constant 6458 (4.23) 6.706 (4.62) 5892 (3.02)
log(s;) 0.828 (8.37) 0.804 (7.88) 0992 (8.95)
log(n; 4 0.05) ~1.702 (—3.03) —1.553 (—2.85) —2.269 (—3.65)
W x g 0.823 (15.69) 0.737 (12.19) 0.937 (22.08)
Selection Criteria
Entropy 30.973 31.734 42.049
Bayesian 0.690 0.310 0.000
M]J 0.171e~12 0.043e~12 0.085¢~12
AIC 97.870 99.391 120.021
Note: t-ratios appear between brackets.
382 The selection of the most adequate W matrix does not change. Using the values of Entropy criterion

;a3 we select the model in which intervenes the matrix Wy, the same as with the Bayesian approach and
;e the AIC criterion; M] continues selecting W».

sss 6. Conclusion

386 Much of the applied spatial econometrics literature seems to prefer an exogenous approximation
se7  to the W matrix. Implicitly, it is assumed that the user has relevant knowledge with respect to the way
ses  individuals in the sample interact. In recent years, new literature advocates for a more data driven
se0 approach to the W issue. We strongly support this tendency, which should be dominant in the future;
30 however, our focus in this paper is on the exogenous approach.

301 The problem posed in the paper is very frequent in applied work: the user has a finite collection
2 of weighting matrices, they all are coherent with the case of study, and one needs to select one of them.
303 Which is the best W? We can address this question using different proposals: the Bayesian posterior
s0s probability, the | approach with all its variants, by means of simple model selection criteria, such as
ss AIC or BIC and several other alternatives not used in this study. We add a fourth one, based on the
a6 Entropy of the estimated distribution function. This new criterion h(y) is a measure of uncertainty, and
307 fits well with the W decision problem. The h(y) statistics depends on the estimated covariance matrix
ss  Of the corresponding model offering a more complete picture of the suitability of the distribution
a0 function (related to a particular choice of W), to deal with the data at hand.

400 The conclusions of our Monte Carlo are very illuminating. First, we can confirm that it is possible
«01 to identify, with confidence, the true weighting matrix (if it exists); in this sense, the selection criteria
202 do a good job. However, the four criteria should not be taken as indifferent, especially in samples of
a3 small size (n or T). The ordering is clear: Entropy in first place, AIC and Bayesian posterior probability
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a0s slightly worse, and then M] in the fourth position. As shown in the paper, the value of the spatial
s0s parameter has a great impact to guarantee a correct selection, but this aspect is unobservable to the
s0s researcher. However, the user effectively controls the amount of information involved in the exercise,
«07 and this is also a key factor. The advice is clear: use as much information as you have because the
as quality of the decision improves with the amount of information. Once again, the way the information
a0 accrues is not neutral: the length of the time series in the panel is more relevant than the number of
a0 cross-sectional units in the sample.

a11 Our final recommendation for applied researchers is to care for the adequacy of the weighting
sz matrix and, in case of having various candidates, take a decision using well-defined criteria such as
a3 the Entropy. The empirical application presented in Section 5 illustrates the procedure.
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Table 10. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T=1

CASE n=25 CASE n=49 CASE n=100
T| p B1 | 0 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC
1]1-08| 111 53.3 54.0 | 357 | 57.7 67.0 683 | 283 | 70.6 80.7 79.8 | 342 | 819
110511 45.8 427 | 321 | 485 52.3 51.1 | 29.8 | 54.9 59.1 574 | 32.3 | 63.2
110211 33.7 332 | 349 | 382 36.0 309 | 329 | 347 30.8 25.0 | 30.2 | 33.0
1102|111 24.3 231 | 35.7 | 255 29.5 183 | 37.1 | 281 37.9 18.6 | 37.6 | 349
110511 27.8 233 | 416 | 27.6 452 33.5 | 46.1 | 40.6 63.4 571 | 421 | 60.7
1108 |11 36.8 31.1 | 40.7 | 334 62.8 61.7 | 534 | 55.1 80.5 823 | 55.0 | 67.3
11-08] 1|5 65.9 57.7 | 439 | 61.9 81.4 753 | 53.1 | 77.7 90.5 91.0 | 694 | 929
1]1-05] 1|5 55.0 535 | 455 | 57.2 67.4 715 | 55.3 | 72.6 81.4 839 | 711 | 84.3
1]1-02] 115 51.2 48.2 | 471 | 49.7 57.8 56.5 | 56.6 | 54.4 72.7 709 | 721 | 71.0
1102115 45.9 451 | 532 | 433 57.6 51.6 | 63.6 | 53.8 73.4 65.7 | 742 | 69.8
1105|115 52.7 448 | 57.4 | 464 66.2 615 | 68.6 | 67.6 83.3 790 | 747 | 79.8
1108 | 1|5 62.1 515 | 60.1 | 56.6 81.1 87.6 | 82.6 | 78.8 94.9 938 | 779 | 844
11-08] 5 |1 59.8 57.7 | 42.6 | 62.2 75.8 748 | 464 | 76.6 84.0 85.7 | 55.3 | 88.2
1]1-05| 5 |1 46.4 461 | 34.2 | 50.4 52.7 55.6 | 33.7 | 58.7 65.6 63.5 | 38,5 | 68.1
11-02]5 |1 34.7 31.0 | 319 | 36.2 28.5 28.6 | 29.1 | 33.0 28.6 223 | 269 | 325
1102]5 |1 29.0 274 | 413 | 30.1 31.9 234 | 448 | 309 46.7 269 | 458 | 394
1]105|5 |1 39.6 357 | 49.3 | 375 55.7 48.7 | 58.1 | 55.1 74.6 703 | 59.2 | 69.8
1108 |5 |1 58.0 49.1 | 55.2 | 50.6 76.7 85.7 | 782 | 76.0 93.3 920 | 739 | 81.3
1]|-08] 5|5 56.8 51.1 | 36.1 | 55.1 67.7 69.8 | 30.1 | 73.6 82.6 80.2 | 33.7 | 82.0
1105|515 48.1 471 | 349 | 511 56.6 56.4 | 39.6 | 59.0 70.6 702 | 495 | 73.6
11025 |5 47.9 46.8 | 464 | 48.6 53.7 53.0 | 54.0 | 53.7 66.0 60.8 | 64.0 | 63.6
1102] 5|5 49.6 471 | 56.5 | 484 65.2 555 | 67.5 | 58.9 76.7 745 | 795 | 74.6
1105] 5|5 58.1 485 | 625 | 521 77.0 67.6 | 774 | 78.2 92.5 88.4 | 879 | 887
1108 |5 |5 72.4 671 | 70.0 | 69.9 90.7 946 | 91.8 | 904 98.9 87.6 | 920 | 91.7

0€Joe6l

i
®
=
=
~—+
)
3
s
=
=
®
o
é.
2
©
=
=z
O
_|
o
I
m
o
2Y)
m
<
=
m
W)
o
o
2
®
=
o)
Z
o
<
@
3
o
@
N
o
=
9]

TA'88TO'TT8TOZSIULIAD]



http://dx.doi.org/10.20944/preprints201811.0188.v1

1

g

g.

(7]

8

=

=

Table 11. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T=5 %

©

| Other parameters | CASE n=25 CASE n=49 CASE n=100 5

‘ T ‘ r ‘ bl ‘ ql ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ g

5|-08]|1 1 75.4 770 | 30.7 | 78.3 922 926 | 352 | 939 98.2 98.2 33 99 =

5]-05|1 1 51.0 465 | 33.6 | 46.7 65.7 69.7 | 357 | 724 88.5 88.0 | 34.6 | 89.7 ;

5]1-02|1 1 34.4 226 | 341 | 269 38.3 304 | 401 | 37.7 51.3 39.7 | 45.8 | 485 @

5102 |1 1 41.5 33.8 | 39.6 | 41.1 53.9 495 | 51.7 | 55.8 71.3 67.1 | 63.0 | 485 ;

5105 |1 1 68.5 669 | 482 | 64.6 80.7 82.0 | 641 | 749 92.6 93.7 | 76.7 | 88.6 i

5108 |1 1 88.3 89.1 | 524 | 729 97.1 965 | 722 | 79.6 99.7 995 | 81.8 | 91.1 T

5|-08]|1 5 90.3 926 | 79.8 | 91.8 97.9 989 | 939 | 99.3 99.8 99.9 | 983 | 99.9 ~

5]-05]|1 5 84.6 858 | 822 | 79.5 96.6 96.7 | 947 | 97.0 99.7 99.6 | 99.3 | 99.8 %

5]1-02|1 5 82.3 80.8 | 85.0 | 71.8 92.3 95.1 | 951 | 93.3 99.6 99.6 | 994 | 99.4 =

5102 |1 5 88.5 859 | 89.7 | 85.7 96.6 973 | 975 | 954 99.8 100 100 | 99.5 u

5105 |1 5 94.6 92.7 | 90.5 | 90.4 98.5 99.6 | 99.3 | 96.4 100 100 100 | 99.6 —

5108 |1 5 98.3 974 | 841 | 83.0 99.9 99.9 | 994 | 935 100 100 100 | 98.5 p

5|-08] 5 1 85.3 89.1 | 70.3 | 89.5 96.0 964 | 79.6 | 98.0 99.4 994 | 91.3 | 99.8 %

5]|-05] 5 1 54.3 55.1 | 444 | 51.7 73.2 763 | 520 | 77.0 922 93.8 | 68.6 | 94.2 =

5|-021]5 1 27.9 17.6 | 27.0 | 245 30.0 183 | 289 | 31.8 39.1 25.7 | 293 | 39.3 g

510215 1 56.4 456 | 53.1 | 51.3 66.1 66.6 | 68.8 | 69.1 83.7 855 | 84.1 | 82.6 )

51055 1 83.5 833 | 79.2 | 83.5 93.0 95.8 | 929 | 89.0 98.3 98.8 | 97.8 | 95.8 =

5|08 | 5 1 97.5 97.8 | 785 | 81.7 99.7 99.7 | 985 | 89.5 100 100 100 | 979 =

5|-08|5 |5 78.0 79.7 | 387 | 80.4 93.0 93.8 | 44.0 | 941 97.7 984 | 52.6 | 98,5 o

51055 |5 67.2 66.6 | 61.8 | 60.8 83.3 872 | 724 | 87.6 96.9 96.7 | 853 | 97.1 g
5|-02|5 |5 78.6 703 | 764 | 65.6 88.0 89.0 | 90.6 | 85.3 97.2 98 97.3 | 974
51025 |5 93.5 88.8 | 909 | 86.9 98.2 99.3 | 99.1 | 97.6 100 100 100 | 100
5105 |5 |5 98.5 96.8 | 96.3 | 96.1 99.6 100 | 999 | 98.5 100 100 100 | 99.7
5|08 5|5 99.8 99.8 | 91.3 | 929 100 99.9 | 100 | 98.6 100 100 100 | 100
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Table 12. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T=10 %

©

| Other parameters | CASE n=25 \ CASE n=49 \ CASE n=100 5

T r bl | q1 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC g

10 | -0.8 | 1 1 89.7 89.9 | 32.8 | 92.2 98.2 972 | 34.0 | 98.6 99.7 99.6 | 35.3 | 100 &

10 | -05 | 1 1 62.6 618 | 329 | 613 84.5 815 | 37.7 | 829 96.1 95.6 | 412 | 96.2 =

10 | -02 | 1 1 40.0 29.1 | 385 | 36.7 53.4 41.0 | 485 | 474 68.0 59.2 | 60.3 | 61.2 (ZD

10 | 02 | 1 1 49.7 529 | 53.2 | 54.6 69.6 69.1 | 645 | 68.9 81.8 84.7 | 77.1 | 843 =

10 | 05 | 1 1 80.7 84.1 | 61.6 | 80.0 93.3 927 | 75.1 | 884 98.6 99.0 | 895 | 944 o

10 | 08 | 1 1 98.3 98.0 | 67.0 | 84.1 99.3 99.7 | 81.3 | 913 100 100 | 929 | 97.2 1

10 | -0.8 | 1 5 98.3 98.8 | 935 | 984 100 99.9 | 98.1 | 99.9 100 100 | 999 | 100 Iﬁ

10 | -05 | 1 5 93.1 96.2 | 945 | 93.7 99.6 99.8 | 99.2 | 99.9 100 99.9 | 999 | 100 <

10 | -02 | 1 5 91.5 94.2 95 | 90.8 99.3 99.4 | 99.0 | 99.1 100 100 100 | 100 g

10 | 02 | 1 5 95.6 98.1 | 983 | 97.7 99.9 99.3 | 994 | 988 100 100 100 | 100 m

10 | 05 1 5 99 99.7 994 | 97.8 100 100 100 100 100 100 100 | 99.9 =

10 | 08 | 1 5 100 100 | 985 | 92.8 100 100 | 999 | 98.6 100 100 100 | 99.9 ;

10 | -0.8 | 5 1 95.5 971 | 829 | 971 99.2 99.5 | 92.6 | 99.8 100 100 | 98.3 | 100 @,

10 | -05 | 5 1 67.5 68.9 | 53.5 | 66.5 89.9 875 | 66.0 | 86.4 97.9 978 | 81.7 | 98 _8__

10 | -02 | 5 1 334 21.0 | 28.0 | 29.7 40.8 254 | 31.0 | 38.0 57.9 414 | 283 | 53.7 o

10| 02 | 5 1 66.5 707 | 69.8 | 713 83.5 85.2 | 834 | 833 94.4 939 | 920 | 91.0 Z

10 | 05 | 5 1 93.8 95.7 | 919 | 90.8 99.6 98.8 | 97.8 | 95.8 100 100 | 99.7 | 99.0 =

10 | 08 | 5 1 99.7 100 | 96.7 | 90.6 100 100 | 99.8 | 98.0 100 100 100 | 995 g

10 | -08 | 5 5 89.0 889 | 423 | 904 97.8 98.3 | 55.5 | 98.5 99.7 99.7 | 65.6 | 99.9 g

10 | -05| 5 | 5 79.3 80.0 | 744 | 742 95.3 96.1 | 872 | 954 99.8 99.8 | 97.0 | 99.8 §

10 |-02| 5 | 5 86.1 895 | 923 | 84 97.6 98.1 | 97.7 | 97.1 99.9 999 | 99.8 | 100 o
10| 02 | 5 5 97.9 99.2 | 99.1 | 98.5 100 99.8 | 99.8 | 99.8 100 100 100 | 100
10 05| 5 | 5 99.0 100 100 | 98.9 100 100 100 | 100 100 100 100 | 100
10 08 | 5 | 5 100 100 | 995 | 97.6 100 100 100 | 99.9 100 100 100 | 100
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Table 13. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=1

CASE n=25 CASE n=49 CASE n=100
T| p B1 | 0 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC
1]1-08| 111 56.6 523 | 23.1 | 58.1 64.6 67.0 | 243 | 70.5 81.2 80.5 | 28.2 | 828
110511 45.8 423 | 224 | 489 46.0 51.1 | 24.0 | 56.7 60.7 60.0 | 31.2 | 65.3
110211 36.9 31.8 | 23.8 | 384 30.4 319 | 269 | 37.0 33.6 26.6 | 31.0 | 34.9
1102|111 28.3 207 | 244 | 265 28.3 170 | 33.1 | 264 36.0 179 | 359 | 341
110511 29.1 21.0 | 30.2 | 26.1 43.9 30.6 | 422 | 37.8 61.5 55.8 | 37.1 | 58.8
1108 |11 31.9 26.3 | 359 | 28.0 61.5 56.2 | 469 | 489 77.1 79.4 | 440 | 67.7
1]1-08] 1|5 63.6 54.7 | 40.0 | 64.7 75.6 775 | 634 | 818 92.2 918 | 751 | 92.7
1]1-05] 1|5 58.7 48.8 | 43.0 | 58.6 66.5 735 | 647 | 77.6 84.2 852 | 77.6 | 86.2
1]1-02] 1|5 51.5 427 | 422 | 518 49.8 59.9 | 623 | 61.8 76.3 745 | 76.1 | 76.2
1102] 1|5 443 39.1 | 46.1 | 452 49.4 554 | 64.3 | 58.5 72.8 672 | 744 | 729
1105|115 44.6 389 | 44.7 | 403 58.0 59.7 | 61.2 | 61.2 80.8 786 | 716 | 795
1108 |15 44.6 376 | 43.8 | 36.8 723 714 | 63.8 | 684 89.8 91.6 | 66.1 | 83.7
11-08] 5 |1 57.9 40.7 | 22.6 | 56.2 63.7 62.8 | 23.6 | 70.2 80.9 91.8 | 751 | 92.7
11055 |1 47.6 311 | 234 | 49.5 46.6 418 | 26.5 | 55.8 63.5 852 | 77.6 | 86.2
1]1-02]5 |1 39.4 194 | 21.5 | 381 29.4 229 | 26.7 | 35.5 324 745 | 76.1 | 76.2
1102] 5|1 30.0 135 | 27.7 | 275 28.7 153 | 323 | 27.3 36.2 672 | 744 | 729
1105 |5 |1 30.2 149 | 285 | 242 46.8 309 | 418 | 36.3 60.3 786 | 716 | 79.5
1]108]|5 |1 30.6 25 36.3 | 26.6 67.2 59.5 | 51.9 | 4838 76.6 91.6 | 66.1 | 83.7
1108|515 64.2 420 | 46.0 | 66.2 72.8 75.0 | 62.1 | 83.9 91.0 88.9 | 724 | 90.6
1]1-05| 5 |5 57.8 36.0 | 449 | 60.0 61.2 649 | 62.7 | 73.3 84.1 83.2 | 74.7 | 86.9
1]1-02]5 |5 50.0 345 | 46.7 | 53.1 53.4 56.5 | 64.3 | 66.1 77.1 728 | 746 | 754
1102] 5|5 46.0 34.8 | 46.3 | 44.0 48.1 52.8 | 629 | 58.7 71.9 672 | 734 | 71.1
1]105] 5 |5 41.9 355 | 42.8 | 393 57.3 57.8 | 59.3 | 59.1 80.9 785 | 702 | 811
1108 |5 |5 41.7 442 | 475 | 40.3 70.2 70.8 | 64.2 | 64.7 90.3 876 | 67.7 | 81.1
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Table 14. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=5 %

©

| Other parameters | CASE n=25 \ CASE n=49 \ CASE n=100 \ 5

‘ T ‘ r ‘ bl ‘ ql ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ g

5-08]| 1 1 78.3 785 | 36.6 | 81.0 92.9 933 | 443 | 949 98.5 98.5 | 53.9 | 99.2 =

51-05| 1 1 52.2 50.2 | 39.7 | 50.6 724 735 | 475 | 74.5 90.5 909 | 56.6 | 92.8 ;

51-02| 1 1 34.3 26.7 | 35.8 | 30.6 449 38.8 | 46.0 | 43.9 58.1 522 | 56.8 | 57.8 (@)

5102 |1 1 34.6 31.7 | 371 | 379 49.5 423 | 453 | 52.6 67.9 58.8 | 524 | 64.0 ;

5105 |1 1 55.0 60.2 | 37.3 | 62.7 77.1 773 | 415 | 722 88.7 92.7 | 509 | 86.5 i

5108 |1 1 84.0 86.5 | 358 | 71.6 93.2 94.3 | 45.6 | 78.8 99.1 98.9 | 485 | 90.6 T

5-08]| 1 5 96.3 98 944 | 979 99.2 99.8 | 98.8 | 99.7 99.9 100 | 99.8 | 100 &

51-05| 1 5 90.6 94.6 | 939 | 93.0 98.6 99.0 | 98.6 | 98.9 99.8 99.9 | 100 | 99.9 %

51-02| 1 5 85.2 89.9 | 929 | 887 96.7 98.5 | 984 | 98.2 99.8 100 100 | 100 =

5102 |1 5 78.9 87.1 90 | 89.0 95.9 96.8 | 96.8 | 96.4 99.4 99.7 | 99.7 | 99.5 0

5105 |1 5 81.8 87.8 | 84.2 | 875 97.6 971 | 932 | 96.9 99.9 99.9 | 992 | 99.7 —

5108 |1 5 90.5 93.3 | 759 | 86.5 99.1 99.4 | 88.0 | 95.0 100 100 | 96.1 | 98.6 p

5|-08| 5 1 779 81.0 | 32.1 | 819 93.0 915 | 45.7 | 93.8 97.7 98.1 | 54.7 | 98.6 %

5|1-05| 5 1 52.2 519 | 36,5 | 49.6 71.6 709 | 472 | 73.6 89.8 929 | 57.7 | 93.5 =

5|-02| 5 1 35.5 26.9 36 | 322 44.0 35.0 | 45.3 | 42.0 59.3 51.8 | 594 | 57.7 g

5102 |5 1 35.2 302 | 37.0 | 37.7 50.7 413 | 446 | 492 65.2 621 | 56.1 | 68.1 S

5105 |5 1 55.7 57.2 | 37.2 | 56.6 76.8 778 | 454 | 734 88.1 911 | 493 | 85.9 (312

5|08 |5 1 86.5 863 | 376 | 71.1 94.2 954 | 433 | 778 98.8 98.6 | 46.8 | 90.7 =

5|-08| 5|5 95.2 98.0 | 943 | 98.1 99.3 99.5 | 98.6 | 99.6 100 100 100 | 100 N

5|1-05| 5 |5 92.1 94.8 | 94.0 | 93.0 98.9 99.3 | 98.3 | 98.9 100 99.9 | 99.9 | 100 =

51-02| 5 | 5 87.8 87.7 | 90.7 | 86.5 97.4 98.4 | 98.1 | 98.2 99.7 99.8 | 99.5 | 99.8 <
5102 | 5|5 80.3 85.5 | 88.7 | 88.0 97.3 96.3 | 964 | 955 99.5 99.9 | 99.7 | 99.8
5105 | 5|5 80.8 87.9 84 | 872 95.7 97.2 93 | 96.4 99.8 99.7 | 989 | 99.4
5|08 | 5|5 91.2 93.1 | 755 | 87.0 99.7 994 | 86.5 | 954 100 100 | 95.1 | 99
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Table 15. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=10

1

o

5.

(%)

8

=

=

=

@

=

| Other parameters | CASE n=25 \ CASE n=49 \ CASE n=100 \ 5

T r bl | q1 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC g

10 | 08 | 1 1 89.6 927 | 474 | 94.2 98.4 978 | 56.7 | 98.9 100 99.9 | 70.8 | 100 &

10 | 05| 1 1 68.0 68.8 | 48.2 | 68.6 88.2 85.7 | 58.3 | 86.7 97.0 97.7 | 71.1 | 97.6 =

10 | -02 | 1 1 49.4 369 | 43.8 | 41.5 65.3 542 | 56.6 | 56.3 75.9 741 | 717 | 733 (ZD

10 02 | 1 1 46.9 453 | 456 | 49.8 67.1 60.8 | 542 | 63.7 78.0 80.9 | 69.3 | 80.8 —

101 05 | 1 1 76.8 763 | 456 | 73.3 91.4 89.8 | 49.6 | 853 97.3 96.8 | 62.1 | 93.0 o

10 | 08 | 1 1 95.5 97.2 | 43.1 | 83.0 99.4 99.7 | 43.6 | 90.5 99.9 100 | 519 | 97.1 1l

10 | -08 | 1 5 99.5 99.7 | 99.0 | 99.9 100 100 | 99.8 | 100 100 100 100 | 100 rjﬁ

10 | -05 | 1 5 99.4 99.6 | 99.1 | 99.3 100 99.9 | 999 | 99.9 100 100 100 | 100 <

10 | -02 | 1 5 98.1 98.3 | 98.2 | 98.0 99.8 99.7 | 99.6 | 99.7 100 100 100 | 100 g

10102 | 1 5 95.9 98.0 | 979 | 98.1 99.8 99.1 | 99.0 | 98.8 100 100 100 | 100 i

101 05 | 1 5 95.5 98.1 | 96.1 | 97.2 99.5 99.7 | 98.8 | 99.6 100 100 100 | 100 e

10 | 08 | 1 5 99.4 994 | 889 | 97.0 100 100 | 95.1 | 99.2 100 100 99.8 | 100 ;

10 | -08 | 5 1 87.4 90.5 | 46.0 | 924 97.8 97.9 57 | 98.3 99.7 99.8 | 70.6 | 99.8 z

10 | -05 | 5 1 71.9 639 | 454 | 648 88.5 86.5 | 59.3 | 87.2 96.8 96.8 | 70.7 | 96.8 _8__

10 | -02 1| 5 1 49.3 36.9 | 479 | 40.8 64.6 55.6 | 57.7 | 56.9 78 746 | 713 | 747 ©

10 02| 5 1 50.8 46.1 | 46.0 | 52 62.7 59.4 | 54.0 | 64.6 79.8 784 | 66.1 | 76.8 Z

10 | 05 | 5 1 74.6 764 | 433 | 73.2 91.7 90.7 | 49.3 | 83.9 97.1 97.2 | 642 | 93.7 =

10 08 | 5 1 96.8 97.7 | 40.5 | 80.8 98.6 99.5 | 435 | 89.0 100 99.8 | 51.5 | 959 g

10 | -08 | 5 5 99.9 99.8 | 99.0 | 99.8 100 100 100 | 100 100 100 100 | 100 T

10 | -05 | 5 5 99.3 100 | 99.7 | 995 100 100 | 999 | 100 100 100 100 | 100 §

10 | -021| 5 5 98.1 98.5 | 98.6 | 98.5 99.9 99.8 | 99.9 | 99.7 100 100 100 | 100 ©
10| 02 | 5 5 95.7 96.2 | 96.2 | 96.2 99.8 99.9 | 99.7 | 99.5 99.9 100 100 | 100
10| 05 | 5 5 95.9 974 | 941 | 96.9 99.8 99.5 | 99.1 | 99.2 100 100 | 99.9 | 100
10 08 | 5 5 99.7 99.0 | 871 | 95.2 100 100 | 95.7 | 98.9 100 100 | 99.6 | 100
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Table 16. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=1

CASE n=25 CASE n=49 CASE n=100

T| p B1 | 0 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC
1]1-08| 111 49.6 475 | 29.6 | 50.2 64.5 624 | 30.1 | 66.4 78.8 795 | 265 | 80.3
1]1-05] 1|1 33.3 32.8 | 259 | 36.3 423 40.6 | 252 | 45.2 544 542 | 254 | 59.6
110211 24.5 20.6 | 283 | 267 242 19.8 | 294 | 256 26.8 175 | 29.0 | 28.0
1102|111 23.7 162 | 325 | 252 29.1 11.8 | 349 | 281 36.6 155 | 314 | 354
110511 26.1 19.8 | 359 | 269 47.0 372 | 415 | 452 62.6 60.3 | 39.5 | 59.8
1108 |11 37.6 351 | 47.0 | 36.6 62.2 63.2 | 456 | 57.1 76.7 785 | 41.0 | 64.0
1]1-08] 1|5 33.3 347 | 223 | 31.0 42.7 404 | 24.0 | 429 55.0 54.0 9.6 | 55.9
1105115 22.7 184 | 233 | 199 31.0 263 | 25.7 | 311 34.3 27.7 | 201 | 339
1]1-02] 1|5 20.2 101 | 27.2 | 17.0 21.3 9.4 28,5 | 19.7 18.7 7.5 274 | 17.7
1102] 1|5 27.6 9.5 31.3 | 27.0 32.7 109 | 345 | 312 35.2 114 | 30.1 | 328
1105|115 349 22.8 | 37.7 | 349 50.0 36.0 | 31.6 | 499 57.2 484 | 214 | 55.6
1108 |15 42.3 39.3 | 383 | 416 69.3 69.8 | 30.3 | 69.5 779 80.0 | 148 | 70.7
11-08] 5 |1 49.6 475 | 29.6 | 50.2 64.5 624 | 30.1 | 66.4 78.8 795 | 265 | 80.3
1]1-05|5 |1 33.3 328 | 259 | 36.3 423 40.6 | 252 | 45.2 54.4 542 | 254 | 59.6
1]1-02]5 |1 24.5 20.6 | 283 | 26.7 24.2 19.8 | 294 | 25.6 26.8 17.5 | 29.0 | 28.0
1102] 5|1 23.7 162 | 325 | 25.2 29.1 11.8 | 349 | 281 36.6 155 | 314 | 354
1105 |5 |1 26.1 19.8 | 359 | 269 47.0 372 | 415 | 452 62.6 60.3 | 39.5 | 59.8
1]108]|5 |1 37.6 351 | 47.0 | 36.6 62.2 63.2 | 456 | 57.1 76.7 785 | 410 | 64

1108|515 33.3 347 | 223 | 310 42.7 404 | 24.0 | 429 55.0 54.0 9.6 | 55.9
1]1-05| 5 |5 22.7 184 | 233 | 199 31.0 263 | 25.7 | 311 34.3 27.7 | 20.1 | 33.9
11025 |5 20.2 10.1 | 27.2 | 17.0 21.3 9.4 285 | 19.7 18.7 7.5 274 | 17.7
1102|515 27.6 9.5 313 | 27.0 32.7 109 | 345 | 312 35.2 114 | 30.1 | 32.8
1]105] 5 |5 34.9 228 | 37.7 | 349 50.0 36.0 | 31.6 | 49.9 57.2 484 | 214 | 55.6
1]108] 5|5 42.3 39.3 | 383 | 41.6 69.3 69.8 | 30.3 | 69.5 779 80.0 | 148 | 70.7
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Table 17. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=5

| Other parameters |

CASE n=25

CASE n=49

CASE n=100

‘ T ‘ r ‘ bl ‘ ql ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘
51-08| 1 1 78.5 823 | 29.8 | 81.1 90.8 919 | 25.7 | 92.7 98.2 98.3 | 17.7 | 98.2
51-05| 1 1 52.3 484 | 28.6 | 49.8 64.9 64.3 | 28.0 | 65.9 86.0 86.6 | 24.1 | 87.9
5(1-02| 1 1 28.3 138 | 273 | 255 34.6 175 | 285 | 313 44.2 248 | 275 | 421
5102 |1 1 36.0 22.0 | 284 | 354 49.1 26.6 | 30.2 | 42.1 56.8 443 | 294 | 57.5
5105 |1 1 60.0 60.7 | 32.2 | 58.8 76.1 779 | 344 | 731 87.3 89.0 | 29.8 | 827
5108 |1 1 86.6 87.8 | 389 | 72.7 95.7 96.5 | 42.2 | 81.8 99.3 99.0 | 39.8 | 90.5
5-08| 1 5 52.7 55.2 | 24.7 | 51.8 66.9 68.2 | 18.8 | 67.1 91.2 92.7 25 | 93.2
51-05| 1 5 37.1 294 | 272 | 324 44.6 336 | 258 | 393 62.6 55.4 | 109 | 59.8
51-02| 1 5 27.9 116 | 265 | 24.6 31.2 124 | 31.7 | 294 30.3 106 | 27.1 | 282
5102 |1 5 33.9 189 | 299 | 33.9 40.0 223 | 311 | 39.2 50.5 30.0 | 264 | 49.9
5105 |1 5 60.1 578 | 27.7 | 61.5 66.9 642 | 174 | 66.7 87.5 87.1 51 | 86.2
5108 |1 5 84.8 82.6 | 21.1 | 89.8 94.6 93.9 6.3 | 95.5 100 100 02 | 997
5|-08|5 1 78.5 823 | 29.8 | 81.1 90.8 919 | 25.7 | 92.7 98.2 98.3 | 17.7 | 98.2
5|-05| 5 1 52.3 48.4 | 28.6 | 49.8 64.9 643 | 28.0 | 65.9 86.0 86.6 | 24.1 | 879
5|-02| 5 1 28.3 13.8 | 27.3 | 255 34.6 175 | 285 | 31.3 44.2 248 | 275 | 421
51025 1 36.0 220 | 284 | 354 49.1 26.6 | 30.2 | 421 56.8 443 | 294 | 57.5
5105 |5 1 60.0 60.7 | 32.2 | 58.8 76.1 779 | 344 | 731 87.3 89.0 | 29.8 | 827
5|08 |5 1 86.6 87.8 | 389 | 72.7 95.7 96.5 | 42.2 | 81.8 99.3 99.0 | 39.8 | 90.5
5|-08|5 5 52.7 55.2 | 24.7 | 51.8 66.9 68.2 | 188 | 67.1 91.2 92.7 25 | 93.2
5|-05| 5 5 37.1 294 | 27.2 | 324 44.6 33.6 | 25.8 | 39.3 62.6 554 | 109 | 59.8
51-02| 5 5 27.9 11,6 | 265 | 24.6 31.2 124 | 31.7 | 294 30.3 106 | 27.1 | 28.2
5102 |5 5 33.9 189 | 299 | 339 40.0 223 | 311 | 392 50.5 300 | 26.4 | 49.9
5105 |5 5 60.1 57.8 | 27.7 | 61.5 66.9 642 | 174 | 66.7 87.5 87.1 51 | 86.2
5|08 |5 5 84.8 82.6 | 21.1 | 89.8 94.6 93.9 6.3 | 95.5 100 100 02 | 997
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Table 18. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=10

i

o

5.

w

=

=

2

=

)

S

| Other parameters | CASE n=25 \ CASE n=49 \ CASE n=100 5

T r bl | q1 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC g

10 | -08 | 1 1 89.3 89.1 29.7 | 90.1 97.9 97.7 24.0 | 98.3 99.7 99.7 15.0 | 99.7 )

10| 05| 1 1 64.7 58.3 27.0 | 58.2 80.9 78.1 23.6 | 79.8 95.5 95.6 20.3 | 95.8 =

10 | -02 | 1 1 37.1 21.8 30.0 | 34.7 45.9 27.3 252 | 421 60.2 45.7 26.8 | 57.7 (ZD

10 | 0.2 1 1 40.3 30.8 28.7 | 40.7 53.6 43.1 30.3 | 52.8 69.7 64.5 299 | 68.6 =

10 | 0.5 1 1 76.7 75.9 348 | 73.5 90.0 90.4 29.3 | 84.8 97.0 97.2 26.1 | 92.2 r-ﬁ

10 | 0.8 1 1 96.1 96.0 36.5 | 84.6 99.7 99.8 315 | 88.6 100 100 25.1 | 96.2 %

10 | -08 | 1 5 49.0 49.2 27.6 | 45.5 79.0 78.5 9.7 | 78.8 97.4 97.8 0.4 | 98.2 |-I;|g|

10| 05| 1 5 41.5 29.9 30.1 | 33.8 55.2 434 241 | 479 75.0 71.5 7.0 | 72.7 <

10 | -02 | 1 5 31.8 16.9 30.7 | 30.2 36.7 20.7 30.3 | 34.8 46.5 27.3 247 | 44.1 g

10 | 0.2 1 5 38.6 28.3 30.4 | 38.8 459 34.7 27.7 | 46.2 58.7 46.6 18.4 | 59.6 m

10 | 0.5 1 5 66.1 60.5 22.2 | 69.6 82.7 79.9 72 | 86.3 96.8 96.7 14 | 97.3 O

10 | 0.8 1 5 86.7 83.9 9.6 | 94.8 99.2 99.1 1.2 100 100 100 0.0 100 ;

10 | -08 | 5 1 89.3 89.1 29.7 | 90.1 97.9 97.7 24.0 | 98.3 99.7 99.7 15.0 | 99.7 z

10 | -05 | 5 1 64.7 58.3 27.0 | 58.2 80.9 78.1 236 | 79.8 95.5 95.6 20.3 | 95.8 g

10 | -02 | 5 1 37.1 21.8 30.0 | 34.7 45.9 27.3 252 | 42.1 60.2 45.7 26.8 | 57.7 ©

10 | 0.2 5 1 40.3 30.8 28.7 | 40.7 53.6 43.1 30.3 | 52.8 69.7 64.5 29.9 | 68.6 g

10 | 0.5 5 1 76.7 75.9 348 | 73.5 90.0 90.4 293 | 84.8 97.0 97.2 26.1 | 92.2 =

10 | 0.8 5 1 96.1 96.0 36.5 | 84.6 99.7 99.8 315 | 88.6 100 100 25.1 | 96.2 g

10 | -08 | 5 5 49.0 49.2 27.6 | 45.5 79.0 78.5 9.7 | 78.8 97.4 97.8 04 | 98.2 Q

10 | -05 | 5 5 41.5 29.9 30.1 | 33.8 55.2 434 24.1 | 479 75.0 71.5 7.0 | 727 §

10 | -02 | 5 5 31.8 16.9 30.7 | 30.2 36.7 20.7 30.3 | 34.8 46.5 27.3 24.7 | 44.1 ©
10 | 0.2 5 5 38.6 28.3 30.4 | 38.8 459 34.7 27.7 | 46.2 58.7 46.6 18.4 | 59.6
10 | 0.5 5 5 66.1 60.5 22.2 | 69.6 82.7 79.9 72 | 86.3 96.8 96.7 14 | 97.3
10 | 0.8 5 5 86.7 83.9 9.6 | 94.8 99.2 99.1 1.2 100 100 100 0.0 100

0€J0 L¢

=
D

=
>

—
n

N
o
—
[ee]
[
=
o
[y
co
2
<

[



http://dx.doi.org/10.20944/preprints201811.0188.v1

Table 19. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T=1

CASE n=25 CASE n=49 CASE n=100
T| p B1 | 0 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC
1]1-08| 111 53.5 53.5 | 36.1 | 59.8 65.3 67.0 | 282 | 704 81.7 80.6 | 34.2 | 825
110511 46.4 445 | 328 | 49.5 49.6 51.7 | 29.1 | 56.3 61.0 59.8 | 34.3 | 63.6
110211 349 337 | 351 | 382 30.8 324 | 34.0 | 35.8 33.1 26.1 | 32.7 | 34.3
1102|111 23.9 219 | 34.0 | 25.0 25.1 16.7 | 37.1 | 263 35.7 16.7 | 348 | 333
110511 25.7 223 | 39.8 | 253 42.0 29.1 | 41.1 | 36.2 59.6 553 | 42.0 | 56.9
1108 |11 29.3 26.8 | 37.5 | 283 56.2 553 | 481 | 487 77.7 79.4 | 52.3 | 65.7
1]1-08] 1|5 66.0 60.2 | 44.0 | 64.8 73.8 729 | 479 | 741 90.0 912 | 599 | 931
1]1-05] 1|5 53.8 53.8 | 49.2 | 57.0 64.0 68.2 | 54.0 | 68.1 78.9 80.7 | 70.3 | 82.0
1]1-02] 1|5 51.2 484 | 481 | 48.1 57.4 55.7 | 581 | 53.5 71.6 69.1 | 729 | 694
1102] 1|5 45.0 438 | 50.2 | 43.1 50.7 513 | 62.6 | 53.3 70.6 64.6 | 729 | 66.8
1105|115 442 39.3 | 51.0 | 37.8 54.2 544 | 57.8 | 52.3 74.4 737 | 642 | 71.0
1108 |15 41.0 359 | 44.5 | 352 63.6 625 | 495 | 53.6 81.0 83.5 | 438 | 70.3
11-08] 5 |1 54.0 522 | 358 | 57.7 66.4 677 | 314 | 715 81.6 834 | 33.1 | 854
11055 |1 45.1 449 | 32.7 | 50.5 46.4 50.4 | 30.8 | 55.6 61.8 634 | 33.3 | 66.4
1]1-02]5 |1 35.6 333 | 353 | 37.2 31.8 30.1 | 31.0 | 34.2 31.6 258 | 31.6 | 34.5
1102] 5|1 23.7 224 | 385 | 26.0 25.8 16.6 | 382 | 263 35.8 15.1 | 35.7 | 309
1105 |5 |1 24.7 211 | 36.7 | 22.7 439 29.1 | 44.6 | 355 59.3 56.4 | 41.5 | 60.4
1]108]|5 |1 29.9 26.6 | 40.6 | 274 59.4 58.1 | 489 | 49.2 774 81.1 | 498 | 694
1108|515 67.5 64.1 | 455 | 67.8 73.3 749 | 47.7 | 76.7 89.2 879 | 583 | 90.4
1]1-05| 5 |5 53.7 55.9 | 46.8 | 59.0 64.6 66.9 | 54.0 | 64.5 79.4 815 | 69.0 | 83.3
11025 |5 51.4 51.2 | 49.1 | 51.6 54.8 57.5 | 58,5 | 57.1 73.2 69.8 | 70.2 | 69.6
1102|515 44.5 441 | 522 | 454 52.0 522 | 61.8 | 53.7 69.7 65.8 | 72.3 | 68.0
1]105] 5 |5 423 362 | 504 | 37.2 54.6 52.6 | 60.2 | 52.8 73.9 739 | 654 | 72.7
1]108] 5|5 40.1 40.0 | 48.7 | 37.3 64.4 59.5 | 514 | 50.7 80.7 80.2 | 43.2 | 69.1
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Table 20. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T=5 %

©

| Other parameters | CASE n=25 \ CASE n=49 \ CASE n=100 \ 5

‘ T ‘ r ‘ bl ‘ ql ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ Entropy ‘ Bayes ‘ M]j ‘ AIC ‘ g

5-08]| 1 1 76.1 76.6 | 36.1 | 77.8 90.8 942 | 41.7 | 94.9 98.6 98.7 | 48.3 | 99.3 =

51-05| 1 1 54.4 49.0 | 389 | 481 714 719 | 429 | 74.3 90.4 90.3 | 50.0 | 92.3 ;

51-02| 1 1 38.1 25.0 | 36.7 | 289 414 353 | 46.0 | 423 55.5 48.6 | 53.8 | 53.4 (@)

5102 |1 1 36.9 30.0 | 365 | 36.7 50.9 413 | 438 | 51.2 67.7 58.7 | 51.2 | 63.7 ;

5105 |1 1 61.9 59.7 | 36.6 | 60.9 79.0 76.8 | 433 | 69.7 88.2 91.8 | 485 | 859 1

5108 |1 1 85.7 86.7 | 43.8 | 69.7 94.3 94.4 | 472 | 77.7 98.9 98.9 | 489 | 887 T

5-08]| 1 5 93.3 844 | 66.0 | 77.1 99.0 99.6 | 93.6 | 995 99.8 100 | 99.3 | 100 &

51-05| 1 5 87.8 783 | 75.7 | 67.2 96.4 98.1 | 96.8 | 974 99.9 100 | 99.7 | 99.9 %

51-02| 1 5 85.2 784 | 832 | 70.2 96.6 958 | 96.8 | 93.7 100 99.8 | 99.8 | 99.5 =

5102 |1 5 82.6 86.3 | 88.7 | 83.0 94.8 95.0 | 95.8 | 92.6 98.8 99.2 | 99.3 | 98.3 0

5105 |1 5 80.6 844 | 781 | 774 88.7 93.6 | 88.6 | 844 97.5 979 | 952 | 934 —

5108 |1 5 83.6 87.5 | 434 | 664 91.6 94.2 | 49.6 | 75.0 99.2 99.6 | 32.2 | 885 p

5|-08| 5 1 75.1 783 | 364 | 79.0 91.7 91.7 | 425 | 94.2 98.1 98.1 | 479 | 98.9 %

5|1-05| 5 1 55.1 49.7 | 374 | 489 68.4 71.8 | 43.1 | 73.7 89.5 92.6 | 53.2 | 93.6 =

5|-02| 5 1 38.1 254 | 36.6 | 29.4 39.7 328 | 45.3 | 39.8 55.1 478 | 57.7 | 53.9 g

5102 |5 1 38.6 29.7 | 37.6 | 36.7 49.5 40.7 | 44.0 | 49.5 65.5 625 | 54.6 | 66.3 )

5105 |5 1 58.8 579 | 399 | 56.7 75.4 77.7 | 436 | 71.0 87.4 90.2 | 519 | 85.0 (312

5|08 |5 1 83.5 87.1 | 425 | 69.2 94.1 95.0 | 489 | 76.6 98.8 98.5 | 494 | 90.5 =

5|-08| 5|5 93.0 86.5 | 65.6 | 804 99.0 99.5 | 95.0 | 99.8 100 100 | 99.3 | 100 N

5|1-05| 5 |5 88.6 793 | 752 | 68.1 97.4 98.0 | 95.8 | 96.9 99.8 100 | 99.7 | 100 =

51-02| 5 | 5 87.9 76.5 | 815 | 69.0 95.6 95.6 | 96.6 | 93.8 99.6 99.8 | 99.7 | 99.9 -
5102 | 5|5 82.9 849 | 86.7 | 81.6 95.6 946 | 947 | 924 98.8 99.6 | 994 | 98.8
5105 | 5|5 80.9 86.2 | 79.6 | 77.0 89.4 92.7 | 885 | 83.3 98.4 983 | 949 | 93.7
5|08 | 5|5 84.9 89.0 | 437 | 679 92.5 94.7 | 474 | 752 99.2 98.7 | 351 | 88.9
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Table 21. (continues) Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T=10

i

o

5.

w

=

=

2

=

)

S

| Other parameters | CASE n=25 \ CASE n=49 \ CASE n=100 5

T r bl | q1 | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC | Entropy | Bayes | MJ | AIC g

10 | -08 | 1 1 89.1 91.2 42.1 | 92.6 97.7 97.9 50.5 | 99.1 100 99.9 61.1 | 100 e

10| 05| 1 1 64.3 64.0 447 | 63.7 86.2 85.1 52.8 | 859 96.9 97.9 67.8 | 98.3 =

10 | -02 | 1 1 43.6 33.6 45.5 | 39.1 62.2 499 54.8 | 53.7 73.3 69.2 69.8 | 69.6 (ZD

10 | 0.2 1 1 45.6 459 45.8 | 48.2 68.6 62.2 553 | 639 76.7 79.6 674 | 794 =

10 | 05 1 1 75.9 76.8 44.2 | 73.0 90.4 89.6 484 | 84.1 96.7 96.5 60.8 | 91.6 r-ﬁ

10 | 0.8 1 1 97.7 97.3 47.0 | 81.9 99.1 99.6 48.3 | 89.8 99.9 100 47.6 | 96.1 %

10 | -08 | 1 5 96.5 95.4 82.8 | 92.7 100 100 98.6 | 100 100 100 100 | 100 rjﬁ

10 | -05 | 1 5 91.5 94.4 93.0 | 88.4 100 100 999 | 999 100 100 100 | 100 <

10 | -02 | 1 5 93.4 94.2 95.1 | 90.1 99.9 99.7 99.7 | 99.6 100 100 100 | 100 g

10 | 0.2 1 5 93.0 97.3 97.1 | 95.2 99.8 98.2 985 | 979 100 100 999 | 99.8 m

10 | 0.5 1 5 90.4 94.7 86.5 | 85.6 98.5 98.4 95.0 | 95.2 99.8 99.9 989 | 99.2 O

10 | 0.8 1 5 94.9 97.0 38.7 | 73.8 98.6 99.6 39.0 | 90.0 99.8 100 13.2 | 95.8 ;

10 | -08 | 5 1 89.9 89.4 42.2 | 90.5 98.0 97.7 484 | 98.2 99.7 99.6 62.7 | 99.8 z

10 | -05 | 5 1 63.5 61.4 43.6 | 61.0 85.7 84.2 53.0 | 855 97.0 97.1 67.4 | 97.8 _8__

10 | -02 | 5 1 42.6 35.2 45.8 | 39.7 59.9 51.4 55.7 | 54.3 76.2 71.2 69.7 | 71.6 ®

10 | 0.2 5 1 48.1 46.2 45.1 | 51.2 65.9 59.9 545 | 63.7 79.7 78.2 65.3 | 75.3 g

10 | 0.5 5 1 75.4 75.7 431 | 714 88.1 89.8 51.2 | 82.7 96.3 96.8 56.8 | 91.7 =

10 | 0.8 5 1 96.9 97.5 422 | 81.1 99.0 99.7 47.7 | 89.0 100 99.8 479 | 95.1 g

10 | -08 | 5 5 95.8 95.1 83.7 | 90.4 100 100 98.8 | 100 100 100 100 | 100 Q

10 | -05 | 5 5 93.7 94.5 91.6 | 85.7 100 100 99.7 | 999 100 100 100 | 100 §

10 | -02 | 5 5 92.6 94.4 96.8 | 90.6 99.9 99.7 995 | 99.1 100 100 100 | 100 (e
10 | 0.2 5 5 92.6 95.7 96.4 | 93.2 99.4 99.5 99.1 | 98.3 99.7 100 100 | 99.9
10 | 0.5 5 5 93.0 94.1 852 | 875 97.2 98.0 95.6 | 94.6 99.7 99.9 979 | 97.8
10 | 0.8 5 5 95.5 95.5 372 | 743 98.3 99.0 38.7 | 89.5 100 100 12.1 | 94.8
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