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Abstract: The practice of spatial econometrics revolves around a weighting matrix, which is often1

supplied by the user on previous knowledge. This is the so called W issue. Probably, the aprioristic2

approach is not the best solution although, nowadays, there few alternatives for the user. Our3

contribution focuses on the problem of selecting a W matrix from among a finite set of matrices, all4

of them considerer appropriate for the case. We develop a new and simple method based on the5

Entropy corresponding to the distribution of probability estimated for the data. Other alternatives,6

which are common in current applied work, are also reviewed. The paper includes a large Monte7

Carlo to calibrate the effectiveness of our approach compared to the others. A well-known case study8

is also included.9
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1. Introduction11

Let us begin with a mantra: the weighting matrix is the most characteristic element in a spatial12

model. Most scholars agree with this popular commonplace. In fact, spatial models deal primarily with13

phenomena such as spillovers, trans-boundary competition or cooperation, flows of trade, migration,14

knowledge, etc. in complex networks. Rarely does the user know about how these events operate in15

practice. Indeed, they are mostly unobservable phenomena which are, however, required to build the16

model. Traditionally the gap has been solved by providing externally this information, in the form of a17

weighting matrix. As an additional remark, we should note that W is not the unique solution to deal18

with such kind of unobservables (1, for example, develop a latent variables approach that does not19

need of W), but is the most simple.20

Hays et al. [2] give a sensible explanation about the preference for a predefined W. Network21

analysts are more interested in the formation of networks, taking units attributes and behaviors as22

given. This is spatial dependence due to selection, where relations of homophily and heterophily are23

crucial. The spatial econometricians are more interested in what they call ’computing the effects of alters24

actions on ego’s actions through the network’; in this case, the patterns of connectivity are taken as given.25

This form of spatial dependence is due to the influence between the individuals, and the notions of26

contagion and interdependence are capital. So, if the network is predefined, why not supplying it27

externally?28

However, beyond this point, the W issue han been frequent cause of dispute. In the early stages,29

terms like ’join’ or ’link’ were very common (for instance, in 3, or 4). The focus at that time was mainly30

on testing for the presence of spatial effects, for which is not so important the specification of a highly31

detailed weighting matrix; contiguity, nearness, rough measures of separation may be appropriate32

notions for that purpose. The work of Ord [5] is a milestone in the evolution of this issue because of its33

strong emphasis on the task of modelling spatial relationships. It is evident that the weights matrix34

needs more attention if we want to avoid estimation biases and wrong inference. Anselin [67] puts35
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the W matrix in the center of the debate about specification of spatial models, but, after decades of36

practicing, the question still remains unclear.37

The purpose of the so-called W is to ’determine which ... units in the spatial system have an influence on38

the particular unit under consideration ... expressed in notions of neighborhood and nearest neighbor’ relations,39

in words of Anselin [6, p.16] or ’to define for any set of points or area objects the spatial relationships that40

exist between them’ as stated by Haining [8, p. 74]. The problem is how should it be done.41

Roughly speaking, we may distinguish two approaches: (i) specifying W exogenously; (ii)42

estimating W from data. The exogenous approach is by far the most popular and includes, for43

example, use of a binary contiguity criterion, k-nearest neighbours, kernel functions based on distance,44

etc. The second approach uses the topology of the space and the nature of the data, and takes many45

forms.We find ad-hoc procedures in which a predefined objective guides the search such as the46

maximization of Moran’s I in Kooijman [9] or the local statistical model of Getis and Aldstadt [10].47

Benjanuvatra and Burridge [11] develop a quasi maximum-likelihood, QML, algorithm to estimate the48

weights in W assuming partial knowledge about the form of the weights. More flexible approaches are49

possible if we have panel information such as in Bhattacharjee and Jensen-Butler [12] or Beenstock and50

Felsenstein [13]. Endogeneity of the weight matrix is another topic introduced recently in the field51

(i.e., 14), which connects with the concept of coevolution put forward by Snijders et al. [15] and based52

on the assumption that, in the long run, network connectivity must evolve endogenously with the53

model. Much of the recent literature on spatial econometrics revolves around endogeneity, but our54

contribution pertains to the exogenous approach where remains most part of the applied research.55

Before continue, we may wonder if the W issue, even in our context of pure exogeneity, is really56

a problem to worry for or it is the biggest myth of the discipline as claimed by LeSage and Pace [16].57

Their argument is that only dramatic different choices for W would lead to significant differences in58

the estimates or in the inference. We partly agree with them in the sense that is a bit silly to argue59

whether it is better the 5 or the 6 nearest-neighbor matrix; surely there will be almost no difference60

between the two. However, there is consistent evidence, obtained mainly by Monte Carlo [17–20]61

showing that the misspecification of W has a non-negligeable impact on the inference of the coefficients62

of spatial dependence and other terms in the model. Moreover, the magnitude of the bias increases for63

the estimates of the marginal direct/indirect effects. So, we are not pretty sure that ’far too much effort64

has gone into fine-tunning spatial weight matrices’ as stated by LeSage and Pace [16]. Our impression is65

that any useful result should be welcomed in this field and, especially, we need practical, clear guides66

to approach the problem.67

Another question of concern are the criticisms of Gibbons and Overman [21]. As said, it is68

common in spatial econometrics to assume that the weighting matrix is known, which is the cause of69

identification problems; this flaw extends to the instruments, moment conditions, etc. There is little70

to say in relation to this point. In fact, spatial parameters (i.e., ρ) and weighting matrix, W, are only71

jointly identified (we do estimate ρW). Hays et al. [2] and Bhattacharjee and Jensen-Butler [12] agree in72

this point.73

Bavaud [22, p. 153], given this controversial debate, was very skeptic, ’there is no such thing as74

“true”, “universal” spatial weights, optimal in all situations’ and continues by stating that the weighting75

matrix ’must reflect the properties of the particular phenomena, properties which are bound to differ from field76

to field’. We share his skepticism; perhaps it would suffice with a ’reasonable’ weighting matrix, the77

best among those considered. In practical terms, this means that the problem of selecting a weighting78

matrix can be interpreted as a problem of model selection. In fact, different weighting matrices result79

in different spatial lags of the variables included in the model and different equations with different80

regressors amounts to a model selection problem.81

As said, our intention is to offer new evidence to help the user to select the most appropriate W82

matrix for the specification. Section 2 revises four selection criteria that fit well into the problem of83

selecting a weighting matrix from among a finite set of them. Section 3 presents the main features of84
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the Monte Carlo solved in the fourth Section. Section 5 includes a well known case study which is85

revised in the light of our findings. Sixth Section concludes.86

2. Criteria to select a W matrix from among a finite set87

The W issue has been present in the literature on spatial econometrics since very early. However88

the case of choosing one matrix from among a finite set of them is relatively recent. First, we review89

the literature devoted to the J test and then we moved to the selection criteria, Bayesian methods and a90

new procedure based on Entropy.91

Anselin [23] poses formally the problem suggesting a Cox statistic derived in a framework92

of non-nested models. Leenders [24], on this basis, elaborates a J-test using classical augmented93

regressions. Later on, Kelejian [25] extends the approach of Leenders to a SAC model, with spatial94

lags of the endogenous variable and in the error terms, using GMM estimates. Piras and Lozano [26]95

confirm the adequacy of the J-test to compare different weighting matrices stressing that we should96

make use of a full set of instrument to increase GMM accuracy. Burridge and Fingleton [27] show that97

the Chi-square asymptotic approximations for the J-tests produces irregular results, excessively liberal98

or conservative in a series of leading cases; they suggest a bootstrap resampling approach. Burridge99

[28] focuses on the propensity of the spatial GMM algorithm to deliver spatial parameter estimates100

lying outside the invertibility region which, in turn, affects the bootstrap; he suggest the use of a QML101

algorithm to remove the problem. Kelejian and Piras [29] generalized and modify the original version102

of Kelejian to account for all the available information, according to the findings of Piras and Lozano.103

Finally, Kelejian and Piras [30] adapt the J test to a panel data setting with unobserved fixed effects104

and additional endogenous variables which reinforces the adequacy of the GMM framework. Another105

milestone in the J test literature is Hagemann [31], who copes with the reversion problem originated106

by the lack of a well defined null hypothesis in the test. He introduces the minimum J test, MJ. His107

approach is based on the idea that if there is a finite set of competing models, only the model with the108

smallest J statistic can be the correct one. In this case, the J statistic will converge to the Chi-square109

distribution but will diverge if none of the models is correct. The author proposes a wild bootstrap to110

test if the model with the minimum J is correct. This approach has been applied by Debarsy and Ertur111

[20] to a spatial setting with good results.112

In the Monte Carlo that follows, we know that there is a correct model so are going to use only113

the first part of the procedure of Hagemann. Assuming a collection of m different weighting matrices,114

such as: W = {W1; W2; ...; Wm}, the MJ approach works as follows:115

1. We need the estimates of the m models; in each case, the same equation is employed but with a116

different weighting matrix belonging toW . Following Burridge [28] and given that our interest117

lies on the small sample case, the models are estimated by ML.118

2. For each model, we obtain the battery of J statistics as usual, after estimating, also by ML, the119

corresponding extended equations.120

3. The chosen matrix is the one associated with the minimum J statistic. We do not test if this matrix121

is really the correct matrix.122

Another popular method for choosing between models deals with the so-called Information Criteria.123

Most are developed around a loss function, such as the Kullback-Leibler, KL, quantity of information124

which measures the closeness of two density functions. One of them corresponds to the true probability125

distribution that generated the data, obviously not known, the other is the distribution estimated126

from the data. The criteria differ in the role assigned to the aprioris and in the way of solving the127

approximation to the unknown true density function [32]. The two most common procedures are the128

AIC [33] and the Bayesian BIC criteria [34]. The first compares the models on equal basis whereas the129

second incorporates the notion of model of the null. Both criteria are characterized by their lack of130

specificity in the sense that the selected model is the closest to the true model, as measured by KL. We131

should note that, as indicated by Potscher [35], a good global fit does not mean that the model is the132
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best alternative to estimate the parameters of interest. AIC and BIC lead to single expressions that133

depend on the accuracy of the ML estimation plus a penalty term related to the number of parameters134

entering the model; that is:135

AIC(k) : −2l(γ̃) + 2k,
BIC(k) : −2l(γ̃) + k log(n),

}
(1)

where l(γ̃) means the estimated log-likelihood at the ML estimates, γ̃, k is the number of non-zero136

parameters in the model and n the number of observations. For the case that we are considering137

the models only differ in the weighting matrix, so k and n are the same in every case. This means138

that the decision depends on the estimated log-likelihood, or on the balance between the estimated139

variance and the Jacobian term. Note that, for a standard spatial model of, i.e., SLM type we can write:140

l(γ̃) ∝ log
[

1
σ̃n |I − ρ̃W|

]
, being σ the standard deviation and ρ the corresponding spatial dependence141

coefficient. To minimize any of the two statistics in (1) the objective is to maximize the concentrated142

estimated log-likelihood, l(γ̃). The same as before, the Information Criteria approach implies:143

1. Estimate by ML of the m models corresponding to each weighting matrix inW .144

2. For each model, we obtain the corresponding AIC statistic (BIC produces the same results).145

3. The matrix in the model with minimum AIC statistic should be chosen.146

An important part of the recent literature on spatial econometrics has Bayesian basis; this extends147

also to the topic of choosing a weighting matrix. The Bayesians are well equipped to cope with these148

type of problems using the concept of posterior probability as the basis for taking a decision. There are149

excellent reviews in Hepple [363738], Besag and Higdon [39] and especially, LeSage and Pace [40]. For150

the sake of completeness, let us highlight the main points in this approach.151

The analysis is made conditional to a model, which is not under discussion. Moreover, we have a152

collection of m weighting matrices inW , a set of k parameter in γ, some of which are of dispersion,153

σ, others of position, β, and others of spatial dependence, ρ and θ, and a panel data set with nT154

observations in y. The point of departure is the joint probability of data, parameters and matrices:155

p (Wi; γ; y) = π (Wi)π (γ |Wi) L (y | γ; Wi) , (2)

where π (·) are the prior distributions and L (y | γ; Wi) the likelihood for y conditional on the156

parameters and the matrix. Bayes’ rule leads to the posterior joint probability for matrices and157

parameters:158

p (Wi; γ | y) =
π (Wi)π (γ |Wi) L (y | γ; Wi)

L (y)
, (3)

whose integration over the space of parameters, γ ∈ Υ, produces the posterior probability for159

matrix Wi:160

p (Wi | y) =
∫
Υ

p (Wi; γ | y) dγ. (4)

The presence of spatial structures in the model complicates the resolution of (4) which usually161

requires of numerical integration. The priors are always a point of concern and, usually, practitioners162

prefer diffuse priors. LeSage and Pace [40, Section 6.3] suggest π (Wi) =
1
m ∀i, a NIG conjugate prior163

for β and σ where πβ (β | σ) ∼ N
(

β0; σ2 (κX′X)−1
)

, being X the matrix of the exogenous variables164

in the model, and π (σ) a inverse gamma, IG(a, b). For the parameter of spatial dependence they165

suggest a Beta(d, d) distribution, being d the amplitude of the sampling space of ρ. The defaults in the166

MATLAB codes of LeSage [41] are β0 = 0, κ = 10−12 and a = b = 0. In sum, the Bayesian approach167

implies the following:168
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1. Fix the priors for all the terms appearing in the equation. In this point, we have followed the169

suggestions of LeSage and Pace.170

2. For each matrix, obtain the corresponding posterior probability of (4) for which we need (i) solve171

the ML estimation of the corresponding model and (ii) solve the numerical integration of (4).172

3. The matrix chosen will be that associated with the highest posterior probability.173

This paper advocates for a selection procedure based on the notion of Entropy, which is used as174

a measure of the information contained in a distribution of probability. Let us assume an univariate175

continuous variable, y, whose probability density function is p(y); then, Entropy is defined as:176

h(p) = −
∫

I
p(y) log p(y)dy, (5)

being I the domain of the random variable y. As known, higher Entropy means less information177

or, what is the same, more uncertainty about y. Our case fits with Shannon’s framework (42): we178

observe a random variable, y, and there is a finite set of rival distribution functions capable of having179

generated the data. Our decision problem is well defined because each distribution function differs180

from the others only in the weighting matrix; the other elements are the same. However, we are not181

interested in the Laplacian principle of indifference (select the density with maximum Entropy, less182

informative, to avoid uncertain information). Quite the opposite: in our case there is no uncertain183

information and we are looking for the more informative probability distribution so our objective is to184

minimize Entropy.185

As with the other three cases, the application of this principle requires the complete specification186

of the distribution function, which means that the user knows the form of the model (equations 7187

to 9 below, except the W matrix); additionally we add a Gaussian distribution. Next, we should188

remind that for the case of a (n× 1) multivariate normal random variable, y ∼ N(µ; Σ), the entropy189

is: h(y) = 1
2
[
n + log

(
(2π)n |Σ|

)]
. This measure does not depend, directly, on first order moments190

(parameters of position of the model) but on second order moments (dependence and dispersion191

parameters). For example, in the case of the SLM of (9) below, the entropy is:192

h(y)SDM =
1
2

(
nT + log((2πσ2

)nT ∣∣∣(B′B)−1
∣∣∣)) (6)

where B = (I − ρW). Note that the covariance matrix for y in the SDM is V(y) = B−1V(u)B
′−1.193

If u is indeed a white noise random term with variance σ2, the covariance matrix of y is simply194

V(y) = σ2 (B′B)−1. Let us note that the covariance matrix of y in the SDM of (7) coincides with that195

of the SLM case. The covariance matrix for the SDEM equation is V(y) = σ2 (B′B), everything else196

remains the same.197

In order to apply the Entropy criterion we must must go through the following steps:198

1. Estimate each one of the m versions of the model that we are considering. As said, each models199

differs only in the weighting matrix. We obtain the ML estimates for reasons given above.200

2. For each model, we obtain the corresponding value of the Entropy, in the hi; i = 1, 2, ..., m statistic.201

3. The decision criterion consists in choosing the weighting matrix corresponding to the model202

with minimum value of the Entropy.203

3. Description of the Monte Carlo204

This part of the paper is devoted to the design of the Monte Carlo conducted in the next Section205

in order to to calibrate the performance of the four criteria presented so far for selecting W: the MJ206

procedure, the Bayesian approach, the AIC criterion and the Entropy measure. The objective of the207

analysis is to identify and select the matrix that intervened in the generation of the data. Moreover, our208

focus is on small sample sizes. As will be clear below, the four criteria have good behaviour even in209

small samples, so it is not necessary to employ very large sample sizes210
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We are going to simulate a panel setting, with three of the most common DGPs in the applied211

literature on spatial econometrics; namely, the spatial Durbin Model, SDM of (7), the spatial Durbin212

error model, SDEM in expression (8) and the spatial lag model of (9), SLM.1213

yit = β0 + ρ
n

∑
j=1

ωijyjt + xitβ1 + θ
n

∑
j=1

ωijxjt + εit, (7)

yit = β0 + xitβ1 + θ
n

∑
j=1

ωijxjt + uit, uit = ρ
n

∑
j=1

ωijujt + εit. (8)

yit = β0 + ρ
n

∑
j=1

ωijyjt + xitβ1 + εit, (9)

Only one exogenous regressor, x variable, appears in the right hand side of the equations whose214

observations are obtained from a normal distribution, xit ∼ i.i.d.N
(
0; σ2

x
)
, where σ2

x = 1; the same215

applies with respect to the error terms: εit ∼ i.i.d.N
(
0; σ2

ε

)
, where σ2

ε = 1. The two variables are not216

related, E (xitεit) = 0. Our space is made of hexagonal pieces which are arranged regularly, one next217

to the others without discontinuities nor empty spaces.218

One weighting matrix appears in the three equations, which plays a central role in the functioning219

of the model. As said before, the weighting matrix is not observable and the user must take decisions220

to resolve the uncertainty. The problem consists in choosing one matrix from among a finite set of221

alternatives which in our simulation are composed by three candidates: W1 is built using the traditional222

contiguity criterion between spatial units; the weights in W2 are the inverse of the distance between223

the centroids of the spatial units, W2 =
{

ωij =
1

dij
; i 6= j

}
; whereas W3 incorporates a cut-off point to224

the connections in W2, so that W3 =
{

ωij =
1

dij
; i 6= j i f j ∈ N4(i); 0 otherwise

}
being N4(i) the set of225

4 nearest neighbors to i. To keep things simple, the same weighting matrix plays with the endogenous226

and exogenous variables in (7) and with the exogenous and error terms in (8). Following usual practice,227

every matrix has been row-standardized. Due to the row-standardization, the three matrices are non228

nested in the sense that the sequence of weights are different among them.229

Three different small cross-sectional sample sizes, n, have been used n ∈ {25, 49, 100}; that230

is enough because higher values of this parameter only improves marginally the results. For the231

same reason, the number of cross-sections in the panel, T, are limited to only three, T ∈ {1, 5, 10}.232

The values for the coefficient of spatial dependence, ρ, ranges from negatives to positives, ρ =233

{−0.8,−0.5,−0.2, 0.2, 0.5, 0.8}. Other global parameters are those associated with the constant term,234

β0 = 1, the x variable, β1 ∈ {1, 5}, and its spatial lag, θ ∈ {1, 5}.235

In sum, each case consists in:236

• Generate the data using a given weighting matrix, Wk, k = 1, 2, 3 and a spatial equation, SLM,237

SDM or SDEM. There are 216 cases of interest for each equation (6 values in ρ, 3 values in n, 3238

values in T, 2 values in β1 and 2 values in θ).239

• The spatial equation is assumed to be known so the model can be estimated by maximum240

likelihood, ML, once the user supplies a W matrix.241

• Compute the four selection criteria, MJ, Posterior probability, Entropy and AIC for the three242

alternative weighting matrices for each draw.243

• Select the corresponding matrix according to each criterion and compare the result with the true244

matrix in the DGP.245

• The process has been replicated 1, 000 times.246

1 Main conclusions can be extended to other processes like the spatial error model, which are not replicated here (details on
request from the authors).
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Note that the selection of the matrix is made conditional on a correct specification of the equation.247

We are perfectly aware that this dichotomy is artificial; in fact, both decisions are intimately related248

because the same matrix, but in different equations, plays different roles and bears different information.249

However, this point is not further developed in the present paper. In order to give some intuition,250

we include the results corresponding to the case of a wrong specification (i.e, estimate a SDM model251

whereas the true model in the DGP is a SDEM).252

4. Results of the Monte Carlo253

This Section summarizes the results obtained in the Monte Carlo. Let us advance an little spicy:254

in strictly quantitative terms, the Entropy measure is the best criterion. What is more surprising, the255

Bayesian approach is marginally better than the AIC, but only when the amount of information is256

large and there is positive spatial correlation. Finally, the MJ approach is the worse alternative among257

the four criteria. The last two observations are a bit surprising given the strong support that the two258

procedures have received in the literature. Table 1 presents the percentage of correct selections attained259

by each criterion after aggregating all the experiments in the Monte Carlo. A cell in bold indicates that260

the respective criterion reaches the maximum rate of correct selections.261

Table 1. Percentage of correct selections. Aggregated results

ρ h(y) Bayes MJ AIC
−0.8 83.8 83.2 50.7 84.4
−0.5 71.4 69.7 52.8 71.4
−0.2 55.9 49.4 54.2 54.6

0.2 60.8 54.6 58.3 60.5
0.5 75.7 73.6 58.2 73.5
0.8 85.9 85.4 53.6 78.7

AVERAGE 72.3 69.3 54.6 70.5

Entropy dominates in 5 out of the 6 cases presented in the Table, and is the second in the sixth262

case; AIC leads in two cases, is second in two and third in another two cases. Bayes does not do very263

well for small values of the spatial coefficient (is fourth in ±0.2) and the curve of correct selections of264

the MJ is very flat.265
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Figure 1. Percentages of correct selections, disaggregated by n and T

CASE : n = 25 CASE : T = 1

CASE : n = 49 CASE : T = 5

CASE : n = 100 CASE : T = 10

Figure 1 disaggregates the accumulated percentages by number of spatial units, left, or number266

of cross-sections, right. Note that in each case, the data represent aggregated percentages (i.e, in267

the case n = 25 we aggregate the three cross-sections corresponding to T = 1, T = 5 and T = 10).268

These courves ratifies the ordering set out above. Note the asymmetry in all the curves and the269

strange behaviour of the MJ criterion that produces worst results at the extremes of the interval for270

ρ. The other three criteria react positively to increases in the sample size (both in n or in T). Overall,271

the improvement is more relevant according to T than to n, specially for high values of the spatial272

coefficient.273

Tables 2 to Table 5 present the details by type of DGP. A quick look at the Tables reveals that bold274

percentages are concentrated, mainly, in the Entropy and AIC columns.275

The prevalence of the Entropy criterion is quite regular (the exception is the SDEM process where276

AIC has better results). The preference extends to the case of correctly specified models, as in Tables277

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 November 2018                   doi:10.20944/preprints201811.0188.v1

http://dx.doi.org/10.20944/preprints201811.0188.v1


9 of 30

2, 3 and 4, and also for misspecified equations, as in Table 5, for negative and especially for positive278

values of the spatial coefficient, for small and large number of individuals in the sample (n) and for279

simple to large panels (T). Overall, Entropy attains the highest rate in 48% of the 180 cases in Tables 2280

to 5.281

The complete relation of results for the 864 different experiments in the MC (3 ns, 3 Ts, 6 ρs, 2 βs,282

2 θs and four configurations for the DGP/estimated equation pair) appear in Tables 10 to 21 in the283

Appendix. Let us note the good results attained in the case of small samples (n = 25 and T = 1) where284

the average rate of correct selections for Entropy and AIC is above 40% criteria (a little worse for the285

other two). The percentage exceeds 60% at the extremes of the spatial parameter interval, ±0.8. The286

average rate improves upto 65% - 75%, for the case of n = 25 and T = 5 and continues improving287

when T = 10, where most cases have a rate of correct selections above 90%. In general, the rate of288

correct selections is nearly 100%, using 5 to 10 cross-sections.289

Table 2. Average percentage of correct selections. DGP: SDM. Equation estimated: SDM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T)
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 78.1 77.8 52.4 79.6

T = 1

−0.8 67.4 66.2 39.4 68.8
−0.5 62.9 62.5 52.0 61.8 −0.5 54.4 54.3 38.5 57.5
−0.2 53.5 48.7 53.1 50.2 −0.2 41.1 38.4 40.0 41.7

0.2 61.5 59.8 65.0 61.2 0.2 43.2 35.8 48.4 40.8
0.5 74.7 56.5 50.8 72.1 0.5 56.5 50.8 55.2 54.3
0.8 84.3 81.7 74.5 75.5 0.8 69.7 68.1 63.4 63.8

n = 49

−0.8 88.9 88.7 57.6 90.1

T = 5

−0.8 91.9 93.0 62.3 93.5
−0.5 76.4 77.5 58.6 78.7 −0.5 79.4 80.2 63.7 79.5
−0.2 59.6 55.5 58.6 58.8 −0.2 63.3 57.3 62.4 60.1

0.2 71.0 67.9 73.1 70.0 0.2 79.1 76.6 78.1 76.1
0.5 84.1 81.7 81.6 82.0 0.5 92.3 92.5 87.1 89.8
0.8 93.3 93.8 88.1 87.4 0.8 98.4 98.3 88.2 89.9

n = 100

−0.8 94.4 94.3 63.9 95.2

T = 10

−0.8 97.3 97.4 69.2 97.9
−0.5 87.3 87.2 66.6 88.7 −0.5 88.8 88.7 72.1 87.9
−0.2 67.6 61.9 62.8 66.6 −0.2 72.3 66.5 68.2 69.8

0.2 80.5 76.4 79.4 77.1 0.2 86.6 87.7 86.4 87.4
0.5 91.9 90.5 85.6 89.7 0.5 97.0 97.5 92.9 95.4
0.8 97.3 96.3 89.5 92.4 0.8 99.8 99.8 94.6 95.8

Table 3. Average percentage of correct selections. DGP: SDEM. Equation estimated: SDEM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T)
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 80.5 77.3 56.7 82.5

T = 1

−0.8 66.7 65.3 42.5 70.4
−0.5 69.6 65.2 57.5 69.6 −0.5 55.4 55.6 44.0 62.1
−0.2 59.6 52.5 56.5 58.2 −0.2 42.5 42.8 43.8 49.3

0.2 55.6 52.4 56.9 57.7 0.2 39.5 36.1 45.7 43.4
0.5 63.5 62.6 55.7 63.7 0.5 49.5 45.4 46.5 48.7
0.8 74.4 73.8 54.0 67.0 0.8 59.3 58.1 48.9 53.2

n = 49

−0.8 88.1 88.5 64.5 91.0

T = 5

−0.8 94.0 94.7 71.1 95.4
−0.5 78.2 78.8 65.6 81.9 −0.5 84.1 84.8 72.5 84.9
−0.2 64.6 62.6 65.2 66.3 −0.2 70.2 67.1 71.6 69.6

0.2 64.8 61.4 65.2 65.9 0.2 71.2 69.3 70.3 73.1
0.5 78.0 75.7 64.5 75.1 0.5 83.1 85.5 67.8 83.7
0.8 88.0 87.1 64.0 79.6 0.8 94.7 95.4 64.6 86.8

n = 100

−0.8 95.1 95.8 75.1 96.4

T = 10

−0.8 97.7 98.2 78.9 98.6
−0.5 88.9 91.3 76.4 92.1 −0.5 92.4 91.6 79.3 91.7
−0.2 74.2 75.1 76.4 77.2 −0.2 81.5 77.4 78.8 78.3

0.2 75.6 74.9 75.1 78.3 0.2 81.4 80.3 77.3 81.7
0.5 87.9 89.1 72.9 88.1 0.5 93.3 93.5 75.2 91.3
0.8 94.3 95.6 69.4 90.7 0.8 99.1 99.4 70.0 93.9
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Table 4. Average percentage of correct selections. DGP: SLM. Equation estimated: SLM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T)
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 58.7 59.7 27.3 58.3

T = 1

−0.8 54.0 53.1 23.7 54.5
−0.5 41.9 36.2 27.0 38.4 −0.5 36.3 33.3 24.3 37.7
−0.2 28.3 15.8 28.3 26.5 −0.2 22.6 14.2 28.3 22.5

0.2 33.4 21.0 30.2 33.5 0.2 30.8 12.6 32.5 30.0
0.5 54.0 49.6 31.8 54.2 0.5 46.3 37.4 34.6 45.4
0.8 72.4 70.8 31.9 70.0 0.8 61.0 61.0 36.2 56.6

n = 49

−0.8 73.6 73.2 22.1 74.4

T = 5

−0.8 79.7 81.4 19.9 80.7
−0.5 53.2 47.7 25.4 51.5 −0.5 57.9 53.0 24.1 55.9
−0.2 32.3 17.9 28.9 30.5 −0.2 32.8 15.1 28.1 30.2

0.2 41.7 24.9 31.5 39.9 0.2 44.4 27.4 29.2 43.0
0.5 68.8 64.3 26.9 67.7 0.5 73.0 72.8 24.4 71.5
0.8 86.8 87.1 26.2 82.1 0.8 93.5 93.3 24.8 88.3

n = 100

−0.8 86.7 87.0 12.0 87.6

T = 10

−0.8 85.4 85.3 17.7 85.1
−0.5 68.0 65.2 18.0 68.3 −0.5 68.8 62.8 22.0 64.7
−0.2 37.8 22.2 27.1 36.3 −0.2 43.0 26.6 28.0 40.6

0.2 51.3 35.4 27.6 50.6 0.2 51.1 41.3 27.6 51.1
0.5 81.4 79.8 20.6 79.0 0.5 84.9 83.4 20.2 84.0
0.8 92.3 92.9 20.2 86.9 0.8 97.0 96.5 17.3 94.0

Table 5. Average percentage of correct selections. DGP: SDEM. Equation estimated: SDM.

Aggregated by cross-section, sample size (n) Aggregated by time series, sample size (T)
ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 79.2 77.2 51.4 77.6

T = 1

−0.8 66.2 66.0 38.1 68.9
−0.5 66.5 64.1 55.1 62.3 −0.5 54.3 55.5 40.8 58.1
−0.2 57.9 52.4 57.4 52.7 −0.2 42.2 40.2 42.3 42.7

0.2 54.8 54.0 59.1 55.4 0.2 38.2 32.3 44.8 37.7
0.5 62.8 62.4 55.9 59.4 0.5 46.4 42.3 45.4 43.6
0.8 71.9 72.2 42.5 59.4 0.8 55.1 54.1 42.5 47.3

n = 49

−0.8 87.9 88.6 60.4 89.9

T = 5

−0.8 92.3 92.3 64.3 91.7
−0.5 77.5 78.9 62.7 79.8 −0.5 83.3 81.6 67.4 80.0
−0.2 64.2 61.3 64.7 63.1 −0.2 69.4 63.4 69.5 64.5

0.2 64.8 60.7 65.5 64.1 0.2 71.9 68.5 69.4 70.9
0.5 75.1 73.5 63.2 70.2 0.5 82.2 83.9 65.7 78.2
0.8 84.3 84.3 47.1 72.1 0.8 92.2 93.7 44.3 77.9

n = 100

−0.8 94.9 95.0 67.0 95.8

T = 10

−0.8 97.2 97.2 72.6 96.9
−0.5 87.9 88.6 70.4 89.8 −0.5 89.9 89.9 76.1 88.8
−0.2 72.4 68.9 71.5 71.3 −0.2 78.6 74.9 77.7 75.6

0.2 74.9 70.0 71.1 73.4 0.2 80.8 80.2 77.0 80.5
0.5 85.9 85.9 68.2 83.3 0.5 91.8 92.5 72.0 87.9
0.8 92.7 93.3 39.6 84.4 0.8 98.3 98.8 38.3 87.6

In a similar vein, the increase in the cross-sectional size, n, maintaining constant the number of290

cross-sections, T, also has positive effects in the four criteria. The rate of correct selections for the case291

of a hundred of spatial units is above 70%, on average, for the case of a single cross-section (T = 1),292

but these percentages improve quickly if the time dimension of the panel increases.293

The value of parameter β1, as expected, has a weak impact in the four criteria; on the contrary,294

the signal of θ1 plays a crucial role in the SDEM case. Another interesting feature is the asymmetry of295

the selection curves, that tends to be diluted with T. Negative spatial dependence helps to detect the296

correctly weighting matrix, especially when the number of time cross-sections is small. The asymmetry297

exists in Entropy, Bayes and AIC. However, the behavior of the MJ worsens in case of negative values298

in parameter ρ.299

To complete the picture, we estimate a response-surface for each DGP/Estimated-equation300

combination, with the aim of modelling the empirical probability of choosing the correct weighting301
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matrix for each criterion, pi. As usual, a logit transformation of the empirical probabilities is carried302

out, so the estimated equation is:303

log

(
pi + (2r)−1

1− pi + (2r)−1

)
= p∗i = η + zi ϕ + εi, (10)

where p∗i is the logit transformation, often known as the logit, r the number of replications of each304

experiment (1000 in all the cases); (2r)−1 assures that the logit is defined even when the probability305

of correct selection is 0 or 1 (43); η is an intercept term, zi the design matrix whose columns reflect306

the conditions of each experiment, ϕ is a vector of parameters and εi the error term assumed to be307

independent and identically distributed (this assumption is reasonable if all experiments come from308

the same study, as ours, and are obtained under identical circumstances; 44). Let us remind that the309

number of observations for each response-surface equation is 216 (so i = 1, 2, ..., 216). Table 6 shows the310

results for the four DGP/Estimated-equation combinations.311

In general, the estimates confirm previous facts. The main factor influencing the empirical312

probability of choosing the correct weights matrix is the spatial parameter, absolute value of ρ in Table313

6. Its contribution is crucial in the case of the Bayesian criteria and, to a lesser extend, also in the cases314

of Entroy and AIC. This parameter is not significant, for the case of the MJ approach and SDEM315

processes whereas its contribution is negative in the SLM and in misspecified equations. The second316

more influential factor is the parameter θ, associated to spatial spillovers. Its impact is beneficial for317

all the cases though it appears to be more important for the MJ; the other three criteria are a bit less318

sensitive. Sample size is also relevant in all the cases and T has a relatively higher impact than n.319

Finally, as said before, parameter β1 is not significant in any circumstance, with the exception of the320

SLM case; this means that the signal-to-noise ratio should not be a major factor to consider when the321

problem is select the best weighting matrix.322

Table 7 completes the response-surface analysis with the F tests of equality in the coefficients of323

the estimates of Table 6. According to the sequence of F tests, the most dissimilar method is the324

MJ approach, and then Bayes. On the other hand, Entropy and AIC emerge as similar strategies to325

compare weighting matrices; in fact, in what respect this simple response-surface analysis, they are326

almost indistinguishable in the four types of DGPs.327
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Table 6. Estimated response surfaces.

SDEM case constant n T β1 θ |ρ| R2 FAV

Entropy
-5.9410 0.0037 0.0566 0.0005 0.0748 0.5568

0.74
117.90

(0.0000) (0.0000) (0.0000) (0.9402) (0.0000) (0.0000) (0.0000

Bayes
-6.2233 0.0051 0.0660 -0.0017 0.0904 0.6813

0.66
81.57

(0.0000) (0.0000) (0.0000) (0.8553) (0.0000) (0.0000) (0.0000

MJ test
-6.1295 0.0044 0.0520 0.0106 0.1569 -0.0377

0.82
196.74

(0.0000) (0.0000) (0.0000) (0.0910) (0.0000) (0.4612) (0.0000

AIC
-5.9177 0.0043 0.0506 0.0044 0.0795 0.4590

0.67
87.21

(0.0000) (0.0000) (0.0000) (0.5407) (0.0000) (0.0000) (0.0000

SDM case constant n T β1 θ |ρ| R2 FAV

Entropy
-5.8902 0.0033 0.0481 0.0053 0.0702 0.06348

0.66
83.35

(0.0000) (0.0000) (0.0000) (0.4614) (0.0000) (0.0000) (0.0000

Bayes
-6.1117 0.0033 0.0548 0.0052 0.0861 0.8116

0.60
63.33

(0.0000) (0.0000) (0.0000) (0.5974) (0.0000) (0.0000) (0.0000

MJ test
-5.8998 0.0024 0.0476 0.0186 0.1036 0.1668

0.47
36.74

(0.0000) (0.0004) (0.0000) (0.0813) (0.0000) (0.0552) (0.0000

AIC
-5.9339 0.0034 0.0479 0.0092 0.0722 0.6301

0.67
83.61

(0.0000) (0.0000) (0.0000) (0.2051) (0.0000) (0.0000) (0.0000

SLM case constant n T β1 |ρ| R2 FAV

Entropy
-6.3435 0.0049 0.0613 -0.0390 1.2505

0.81
113.60

(0.0000) (0.0000) (0.0000) (0.0001) (0.0000) (0.0000

Bayes
-7.0854 0.0054 0.0786 -0.0709 2.2207

0.83
122.53

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000

MJtest
1.3129 -0.0131 -0.0896 -0.2215 -1.4089

0.40
16.92

(0.0000) (0.0000) (0.0006) (0.0000) (0.0004) (0.0000

AIC
-6.3808 0.0050 0.0599 -0.0396 1.2678

0.79
96.74

(0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0000

MISS case constant n T β1 θ |ρ| R2 FAV

Entropy
-5.9736 0.0039 0.0583 -0.0004 0.0745 0.5505

0.72
109.13

(0.0000) (0.0000) (0.0000) (0.9511) (0.0000) (0.0000) (0.0000

Bayes
-6.1882 0.0040 0.0648 -0.0001 0.0916 0.7103

0.67
85.13

(0.0000) (0.0000) (0.0000) (0.9887) (0.0000) (0.0000) (0.0000

MJ test
-5.6677 0.0020 0.0379 0.0007 0.1162 -0.3854

0.55
50.92

(0.0000) (0.0000) (0.0000) (0.9431) (0.0000) (0.0000) (0.0000

AIC
-5.9741 0.0043 0.0558 -1.9169 0.0696 0.4728

0.68
88.38

(0.0000) (0.0000) (0.0000) (0.9979) (0.0000) (0.0000) (0.0000
Note: pvalue appear between brackets. FAV means F test of the null that all coefficients are zero except the constant. MISS means that the model in the DGP is a SDEM but we estimate a SDM equation
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Table 7. F test for the equality of coefficients in the response-surface estimates

SDEM case Bayes MJ test AIC
Entropy 55.000 (0.00) 87.331 (0.00) 1.535 (0.17)
Bayes – 34.720 (0.00) 4.558 (0.00)
MJ test – – 61.774 (0.00)

SDM case Bayes MJ test AIC
Entropy 4.699 (0.00) 34.886 (0.00) 0.471 (0.83)
Bayes – 14.791 (0.00) 3.300 (0.00)
MJ test – – 28.553 (0.00)

SLM case Bayes MJ test AIC
Entropy 61.544 (0.00) 8685.34 (0.00) 0.500 (0.78)
Bayes – 432.170 (0.00) 45.475 (0.00)
MJ test – – 7423.01 (0.00)

MISS case Bayes MJ test AIC
Entropy 4.454 (0.00) 118.882 (0.00) 2.056 (0.06)
Bayes – 65.420 (0.00) 5.171 (0.00)
MJ test – – 85.234 (0.00)
Note: p-value appear between brackets.

5. Empirical application328

The case studied in this section is based on a well-known economic model. It is a model of329

economic growth estimated by Ertur and Koch (2007) using a cross-section of 91 countries for the330

period 1960–1995. The purpose of this section is to illustrate the use of the selection procedures331

discussed before.332

5.1. Study case: Ertur and Koch (2007)333

Ertur and Koch [45] build a growth equation to model technological interdependence between334

countries using spatial externalities. The main hypotheses of interaction is that the stock of knowledge335

in one country produces externalities that cross national borders and spill over into neighboring336

countries, with an intensity which decreases with distance. The authors use a geographical distance337

measure.338

The benchmark model assumes an aggregated Cobb-Douglas production function with constant339

returns to scale in labour and physical capital:340

Yi(t) = Ai(t)Kα
i (t)L1−α

i (t), (11)

where Yi(t) is output, Ki(t) is the level of reproducible physical capital, Li(t) is the level of labour,341

and Ai(t) is the aggregate level of technology specified as:342

Ai(t) = Ω(t)kφ
i (t)

n

∏
j 6=i

A
δωij
i (t). (12)

The aggregate level of technology Ai(t) in a country i depends on three elements. First, a certain343

proportion of technological progress is exogenous and identical in all countries: Ω(t) = Ω(0)eµt, where344

µ is a constant rate of technological growth. Second, each country’s aggregate level of technology345

increases with the aggregate level of physical capital per worker kφ
i (t) = (Ki(t)/Li(t))

φ with parameter346

φ ∈ [0; 1] capturing the strength of home externalities by physical capital accumulation. Finally, the347

third term captures the external effects of knowledge embodied in capital located in a different country,348

whose impact crosses national borders at a diminishing intensity, δ ∈ [0; 1]. The terms ωij represent349

the connectivity between country i and its neighbours; these weights are assumed to be exogenous,350

non-negative and finite.351

Following Solow, the authors assume that a constant fraction of output si, in every country i, is352

saved and that labour grows exogenously at the rate ni. Also, they assume a constant and identical353
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annual rate of depreciation of physical capital for all countries, denoted τ. The evolution of output354

per worker in country i is governed by the usual fundamental dynamics of the Solow equation which,355

after some manipulations, lead to a steady-state real income per worker [45, p. 1038, eq. 9]:356

y = Ω + (α + φ) k− αδWk + δWy. (13)

This is a spatially augmented Solow model and coincides with the predictor obtained by Solow357

adding spillover effects. In terms of spatial econometrics, we have a Spatial Durbin Model, SDM, which358

can be expressed as:359

y = xβ + ρWy + Wxθ + ε. (14)

Equation (14) is estimated using information on real income, investment and population growth360

for a sample of 91 countries for the period 1960− 1995. Regarding the spatial weighting matrix, Ertur361

and Koch consider two geographical distance functions: the inverse of squared distance (which is362

the main hypothesis) and the negative exponential of squared distance (to check robustness in the363

specification). We also consider a third matrix based on the inverse of the distance.364

Let us call the three weighting matrices as W1, W2 and W3 which are row-standardized: ωhij =365

ω∗hij/
n
∑

j=1
ω∗hij; h = 1, 2, 3 where:366

ω∗1ij =

{
0 i f i = j
d−2

ij otherwise ; ω∗2ij =

{
0 i f i = j
e−2dij otherwise

; ω∗3ij =

{
0 i f i = j
d−1

ij otherwise , (15)

with dij as the great-distance between the capitals of countries i and j.367

The authors analyze several specifications checking for different theoretical restrictions and368

alternative spatial equations. We concentrate our revision in the so-called non-restricted equation, in369

the sense that it includes more coefficients than advised by theory. Table 8 presents the SDM version of370

this equation using the three alternative weighting matrices specified before (the first two columns371

coincide with those in Table I, columns 3-4, pp. 1047, of 45). The last four rows in the Table show the372

value of the selection criteria corresponding to each case.373

The preferred model by Ertur and Koch is the SDM/W1 which coincides with the selection374

attained by minimum Entropy, the Bayesian posterior probability and AIC. The selection of the MJ375

approach is W2.376

Other results in Ertur and Koch refer to the Spatial Error Model version of the steady-state377

equation of (13), or SEM model. The intention of the authors is to visualize the presence of spatial378

correlation in the traditional non spatial Solow equations; we use this case as an example of selection of379

weighting matrices in misspecified models. The main results appear in Table 9 (which can be compared380

with columns 2-3 of Table II, in 45, p. 1048).381
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Table 8. Ertur & Koch case. Unrestricted SDM estimates

Model/Weight matrix SDM / W1 SDM / W2 SDM / W3
constant 0.967−(0.51) 0.499−(0.27) 5.197−(0.99)
log(s) 0.825−(8.26) 0.792−(7.62) 0.910−(8.49)
log(n + 0.05) −1.498 (−2.64) −1.451 (−2.62) −1.710 (−2.67)
W× log(s) −0.326 (−1.78) −0.378 (−2.29) 0.500−(1.25)
W× log(n + 0.05) 0.574−(0.68) 0.141−(0.18) 2.150−(1.01)
W× log(y) 0.742 (10.70) 0.661−(9.01) 0.883 (11.60)
Selection Criteria
Entropy 28.001∗∗∗ 29.615∗∗∗ 34.615∗∗∗

Bayesian 0.864∗∗∗ 0.133∗∗∗ 0.003∗∗∗

MJ 11.158∗∗∗ 9.388∗∗∗ 10.208∗∗∗

AIC 95.885∗∗∗ 99.100∗∗∗ 109.132∗∗∗

Note: t-ratios appear between brackets.

Table 9. Ertur & Koch case. Unrestricted SEM estimates

Model/Weight matrix SEM / W1 SEM / W2 SEM / W3
constant 6.458−(4.23) 6.706−(4.62) 5.892−(3.02)
log(si) 0.828−(8.37) 0.804−(7.88) 0.992−(8.95)
log(ni + 0.05) −1.702 (−3.03) −1.553 (−2.85) −2.269 (−3.65)
W× εi 0.823 (15.69) 0.737 (12.19) 0.937 (22.08)
Selection Criteria
Entropy 30.973 31.734 42.049
Bayesian 0.690 0.310 0.000
MJ 0.171e−12 0.043e−12 0.085e−12

AIC 97.870 99.391 120.021
Note: t-ratios appear between brackets.

The selection of the most adequate W matrix does not change. Using the values of Entropy criterion382

we select the model in which intervenes the matrix W1, the same as with the Bayesian approach and383

the AIC criterion; MJ continues selecting W2.384

6. Conclusion385

Much of the applied spatial econometrics literature seems to prefer an exogenous approximation386

to the W matrix. Implicitly, it is assumed that the user has relevant knowledge with respect to the way387

individuals in the sample interact. In recent years, new literature advocates for a more data driven388

approach to the W issue. We strongly support this tendency, which should be dominant in the future;389

however, our focus in this paper is on the exogenous approach.390

The problem posed in the paper is very frequent in applied work: the user has a finite collection391

of weighting matrices, they all are coherent with the case of study, and one needs to select one of them.392

Which is the best W? We can address this question using different proposals: the Bayesian posterior393

probability, the J approach with all its variants, by means of simple model selection criteria, such as394

AIC or BIC and several other alternatives not used in this study. We add a fourth one, based on the395

Entropy of the estimated distribution function. This new criterion h(y) is a measure of uncertainty, and396

fits well with the W decision problem. The h(y) statistics depends on the estimated covariance matrix397

of the corresponding model offering a more complete picture of the suitability of the distribution398

function (related to a particular choice of W), to deal with the data at hand.399

The conclusions of our Monte Carlo are very illuminating. First, we can confirm that it is possible400

to identify, with confidence, the true weighting matrix (if it exists); in this sense, the selection criteria401

do a good job. However, the four criteria should not be taken as indifferent, especially in samples of402

small size (n or T). The ordering is clear: Entropy in first place, AIC and Bayesian posterior probability403
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slightly worse, and then MJ in the fourth position. As shown in the paper, the value of the spatial404

parameter has a great impact to guarantee a correct selection, but this aspect is unobservable to the405

researcher. However, the user effectively controls the amount of information involved in the exercise,406

and this is also a key factor. The advice is clear: use as much information as you have because the407

quality of the decision improves with the amount of information. Once again, the way the information408

accrues is not neutral: the length of the time series in the panel is more relevant than the number of409

cross-sectional units in the sample.410

Our final recommendation for applied researchers is to care for the adequacy of the weighting411

matrix and, in case of having various candidates, take a decision using well-defined criteria such as412

the Entropy. The empirical application presented in Section 5 illustrates the procedure.413
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Table 10. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T=1

CASE n=25 CASE n=49 CASE n=100
T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
1 -0.8 1 1 53.3 54.0 35.7 57.7 67.0 68.3 28.3 70.6 80.7 79.8 34.2 81.9
1 -0.5 1 1 45.8 42.7 32.1 48.5 52.3 51.1 29.8 54.9 59.1 57.4 32.3 63.2
1 -0.2 1 1 33.7 33.2 34.9 38.2 36.0 30.9 32.9 34.7 30.8 25.0 30.2 33.0
1 0.2 1 1 24.3 23.1 35.7 25.5 29.5 18.3 37.1 28.1 37.9 18.6 37.6 34.9
1 0.5 1 1 27.8 23.3 41.6 27.6 45.2 33.5 46.1 40.6 63.4 57.1 42.1 60.7
1 0.8 1 1 36.8 31.1 40.7 33.4 62.8 61.7 53.4 55.1 80.5 82.3 55.0 67.3
1 -0.8 1 5 65.9 57.7 43.9 61.9 81.4 75.3 53.1 77.7 90.5 91.0 69.4 92.9
1 -0.5 1 5 55.0 53.5 45.5 57.2 67.4 71.5 55.3 72.6 81.4 83.9 71.1 84.3
1 -0.2 1 5 51.2 48.2 47.1 49.7 57.8 56.5 56.6 54.4 72.7 70.9 72.1 71.0
1 0.2 1 5 45.9 45.1 53.2 43.3 57.6 51.6 63.6 53.8 73.4 65.7 74.2 69.8
1 0.5 1 5 52.7 44.8 57.4 46.4 66.2 61.5 68.6 67.6 83.3 79.0 74.7 79.8
1 0.8 1 5 62.1 51.5 60.1 56.6 81.1 87.6 82.6 78.8 94.9 93.8 77.9 84.4
1 -0.8 5 1 59.8 57.7 42.6 62.2 75.8 74.8 46.4 76.6 84.0 85.7 55.3 88.2
1 -0.5 5 1 46.4 46.1 34.2 50.4 52.7 55.6 33.7 58.7 65.6 63.5 38.5 68.1
1 -0.2 5 1 34.7 31.0 31.9 36.2 28.5 28.6 29.1 33.0 28.6 22.3 26.9 32.5
1 0.2 5 1 29.0 27.4 41.3 30.1 31.9 23.4 44.8 30.9 46.7 26.9 45.8 39.4
1 0.5 5 1 39.6 35.7 49.3 37.5 55.7 48.7 58.1 55.1 74.6 70.3 59.2 69.8
1 0.8 5 1 58.0 49.1 55.2 50.6 76.7 85.7 78.2 76.0 93.3 92.0 73.9 81.3
1 -0.8 5 5 56.8 51.1 36.1 55.1 67.7 69.8 30.1 73.6 82.6 80.2 33.7 82.0
1 -0.5 5 5 48.1 47.1 34.9 51.1 56.6 56.4 39.6 59.0 70.6 70.2 49.5 73.6
1 -0.2 5 5 47.9 46.8 46.4 48.6 53.7 53.0 54.0 53.7 66.0 60.8 64.0 63.6
1 0.2 5 5 49.6 47.1 56.5 48.4 65.2 55.5 67.5 58.9 76.7 74.5 79.5 74.6
1 0.5 5 5 58.1 48.5 62.5 52.1 77.0 67.6 77.4 78.2 92.5 88.4 87.9 88.7
1 0.8 5 5 72.4 67.1 70.0 69.9 90.7 94.6 91.8 90.4 98.9 87.6 92.0 91.7
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Table 11. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T=5

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 -0.8 1 1 75.4 77.0 30.7 78.3 92.2 92.6 35.2 93.9 98.2 98.2 33 99
5 -0.5 1 1 51.0 46.5 33.6 46.7 65.7 69.7 35.7 72.4 88.5 88.0 34.6 89.7
5 -0.2 1 1 34.4 22.6 34.1 26.9 38.3 30.4 40.1 37.7 51.3 39.7 45.8 48.5
5 0.2 1 1 41.5 33.8 39.6 41.1 53.9 49.5 51.7 55.8 71.3 67.1 63.0 48.5
5 0.5 1 1 68.5 66.9 48.2 64.6 80.7 82.0 64.1 74.9 92.6 93.7 76.7 88.6
5 0.8 1 1 88.3 89.1 52.4 72.9 97.1 96.5 72.2 79.6 99.7 99.5 81.8 91.1

5 -0.8 1 5 90.3 92.6 79.8 91.8 97.9 98.9 93.9 99.3 99.8 99.9 98.3 99.9
5 -0.5 1 5 84.6 85.8 82.2 79.5 96.6 96.7 94.7 97.0 99.7 99.6 99.3 99.8
5 -0.2 1 5 82.3 80.8 85.0 71.8 92.3 95.1 95.1 93.3 99.6 99.6 99.4 99.4
5 0.2 1 5 88.5 85.9 89.7 85.7 96.6 97.3 97.5 95.4 99.8 100 100 99.5
5 0.5 1 5 94.6 92.7 90.5 90.4 98.5 99.6 99.3 96.4 100 100 100 99.6
5 0.8 1 5 98.3 97.4 84.1 83.0 99.9 99.9 99.4 93.5 100 100 100 98.5

5 -0.8 5 1 85.3 89.1 70.3 89.5 96.0 96.4 79.6 98.0 99.4 99.4 91.3 99.8
5 -0.5 5 1 54.3 55.1 44.4 51.7 73.2 76.3 52.0 77.0 92.2 93.8 68.6 94.2
5 -0.2 5 1 27.9 17.6 27.0 24.5 30.0 18.3 28.9 31.8 39.1 25.7 29.3 39.3
5 0.2 5 1 56.4 45.6 53.1 51.3 66.1 66.6 68.8 69.1 83.7 85.5 84.1 82.6
5 0.5 5 1 83.5 83.3 79.2 83.5 93.0 95.8 92.9 89.0 98.3 98.8 97.8 95.8
5 0.8 5 1 97.5 97.8 78.5 81.7 99.7 99.7 98.5 89.5 100 100 100 97.9

5 -0.8 5 5 78.0 79.7 38.7 80.4 93.0 93.8 44.0 94.1 97.7 98.4 52.6 98.5
5 -0.5 5 5 67.2 66.6 61.8 60.8 83.3 87.2 72.4 87.6 96.9 96.7 85.3 97.1
5 -0.2 5 5 78.6 70.3 76.4 65.6 88.0 89.0 90.6 85.3 97.2 98 97.3 97.4
5 0.2 5 5 93.5 88.8 90.9 86.9 98.2 99.3 99.1 97.6 100 100 100 100
5 0.5 5 5 98.5 96.8 96.3 96.1 99.6 100 99.9 98.5 100 100 100 99.7
5 0.8 5 5 99.8 99.8 91.3 92.9 100 99.9 100 98.6 100 100 100 100
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Table 12. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T=10

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
10 -0.8 1 1 89.7 89.9 32.8 92.2 98.2 97.2 34.0 98.6 99.7 99.6 35.3 100
10 -0.5 1 1 62.6 61.8 32.9 61.3 84.5 81.5 37.7 82.9 96.1 95.6 41.2 96.2
10 -0.2 1 1 40.0 29.1 38.5 36.7 53.4 41.0 48.5 47.4 68.0 59.2 60.3 61.2
10 0.2 1 1 49.7 52.9 53.2 54.6 69.6 69.1 64.5 68.9 81.8 84.7 77.1 84.3
10 0.5 1 1 80.7 84.1 61.6 80.0 93.3 92.7 75.1 88.4 98.6 99.0 89.5 94.4
10 0.8 1 1 98.3 98.0 67.0 84.1 99.3 99.7 81.3 91.3 100 100 92.9 97.2

10 -0.8 1 5 98.3 98.8 93.5 98.4 100 99.9 98.1 99.9 100 100 99.9 100
10 -0.5 1 5 93.1 96.2 94.5 93.7 99.6 99.8 99.2 99.9 100 99.9 99.9 100
10 -0.2 1 5 91.5 94.2 95 90.8 99.3 99.4 99.0 99.1 100 100 100 100
10 0.2 1 5 95.6 98.1 98.3 97.7 99.9 99.3 99.4 98.8 100 100 100 100
10 0.5 1 5 99 99.7 99.4 97.8 100 100 100 100 100 100 100 99.9
10 0.8 1 5 100 100 98.5 92.8 100 100 99.9 98.6 100 100 100 99.9

10 -0.8 5 1 95.5 97.1 82.9 97.1 99.2 99.5 92.6 99.8 100 100 98.3 100
10 -0.5 5 1 67.5 68.9 53.5 66.5 89.9 87.5 66.0 86.4 97.9 97.8 81.7 98
10 -0.2 5 1 33.4 21.0 28.0 29.7 40.8 25.4 31.0 38.0 57.9 41.4 28.3 53.7
10 0.2 5 1 66.5 70.7 69.8 71.3 83.5 85.2 83.4 83.3 94.4 93.9 92.0 91.0
10 0.5 5 1 93.8 95.7 91.9 90.8 99.6 98.8 97.8 95.8 100 100 99.7 99.0
10 0.8 5 1 99.7 100 96.7 90.6 100 100 99.8 98.0 100 100 100 99.5

10 -0.8 5 5 89.0 88.9 42.3 90.4 97.8 98.3 55.5 98.5 99.7 99.7 65.6 99.9
10 -0.5 5 5 79.3 80.0 74.4 74.2 95.3 96.1 87.2 95.4 99.8 99.8 97.0 99.8
10 -0.2 5 5 86.1 89.5 92.3 84 97.6 98.1 97.7 97.1 99.9 99.9 99.8 100
10 0.2 5 5 97.9 99.2 99.1 98.5 100 99.8 99.8 99.8 100 100 100 100
10 0.5 5 5 99.0 100 100 98.9 100 100 100 100 100 100 100 100
10 0.8 5 5 100 100 99.5 97.6 100 100 100 99.9 100 100 100 100
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Table 13. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=1

CASE n=25 CASE n=49 CASE n=100
T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
1 -0.8 1 1 56.6 52.3 23.1 58.1 64.6 67.0 24.3 70.5 81.2 80.5 28.2 82.8
1 -0.5 1 1 45.8 42.3 22.4 48.9 46.0 51.1 24.0 56.7 60.7 60.0 31.2 65.3
1 -0.2 1 1 36.9 31.8 23.8 38.4 30.4 31.9 26.9 37.0 33.6 26.6 31.0 34.9
1 0.2 1 1 28.3 20.7 24.4 26.5 28.3 17.0 33.1 26.4 36.0 17.9 35.9 34.1
1 0.5 1 1 29.1 21.0 30.2 26.1 43.9 30.6 42.2 37.8 61.5 55.8 37.1 58.8
1 0.8 1 1 31.9 26.3 35.9 28.0 61.5 56.2 46.9 48.9 77.1 79.4 44.0 67.7

1 -0.8 1 5 63.6 54.7 40.0 64.7 75.6 77.5 63.4 81.8 92.2 91.8 75.1 92.7
1 -0.5 1 5 58.7 48.8 43.0 58.6 66.5 73.5 64.7 77.6 84.2 85.2 77.6 86.2
1 -0.2 1 5 51.5 42.7 42.2 51.8 49.8 59.9 62.3 61.8 76.3 74.5 76.1 76.2
1 0.2 1 5 44.3 39.1 46.1 45.2 49.4 55.4 64.3 58.5 72.8 67.2 74.4 72.9
1 0.5 1 5 44.6 38.9 44.7 40.3 58.0 59.7 61.2 61.2 80.8 78.6 71.6 79.5
1 0.8 1 5 44.6 37.6 43.8 36.8 72.3 71.4 63.8 68.4 89.8 91.6 66.1 83.7

1 -0.8 5 1 57.9 40.7 22.6 56.2 63.7 62.8 23.6 70.2 80.9 91.8 75.1 92.7
1 -0.5 5 1 47.6 31.1 23.4 49.5 46.6 41.8 26.5 55.8 63.5 85.2 77.6 86.2
1 -0.2 5 1 39.4 19.4 21.5 38.1 29.4 22.9 26.7 35.5 32.4 74.5 76.1 76.2
1 0.2 5 1 30.0 13.5 27.7 27.5 28.7 15.3 32.3 27.3 36.2 67.2 74.4 72.9
1 0.5 5 1 30.2 14.9 28.5 24.2 46.8 30.9 41.8 36.3 60.3 78.6 71.6 79.5
1 0.8 5 1 30.6 25 36.3 26.6 67.2 59.5 51.9 48.8 76.6 91.6 66.1 83.7

1 -0.8 5 5 64.2 42.0 46.0 66.2 72.8 75.0 62.1 83.9 91.0 88.9 72.4 90.6
1 -0.5 5 5 57.8 36.0 44.9 60.0 61.2 64.9 62.7 73.3 84.1 83.2 74.7 86.9
1 -0.2 5 5 50.0 34.5 46.7 53.1 53.4 56.5 64.3 66.1 77.1 72.8 74.6 75.4
1 0.2 5 5 46.0 34.8 46.3 44.0 48.1 52.8 62.9 58.7 71.9 67.2 73.4 71.1
1 0.5 5 5 41.9 35.5 42.8 39.3 57.3 57.8 59.3 59.1 80.9 78.5 70.2 81.1
1 0.8 5 5 41.7 44.2 47.5 40.3 70.2 70.8 64.2 64.7 90.3 87.6 67.7 81.1
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Table 14. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=5

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 -0.8 1 1 78.3 78.5 36.6 81.0 92.9 93.3 44.3 94.9 98.5 98.5 53.9 99.2
5 -0.5 1 1 52.2 50.2 39.7 50.6 72.4 73.5 47.5 74.5 90.5 90.9 56.6 92.8
5 -0.2 1 1 34.3 26.7 35.8 30.6 44.9 38.8 46.0 43.9 58.1 52.2 56.8 57.8
5 0.2 1 1 34.6 31.7 37.1 37.9 49.5 42.3 45.3 52.6 67.9 58.8 52.4 64.0
5 0.5 1 1 55.0 60.2 37.3 62.7 77.1 77.3 41.5 72.2 88.7 92.7 50.9 86.5
5 0.8 1 1 84.0 86.5 35.8 71.6 93.2 94.3 45.6 78.8 99.1 98.9 48.5 90.6

5 -0.8 1 5 96.3 98 94.4 97.9 99.2 99.8 98.8 99.7 99.9 100 99.8 100
5 -0.5 1 5 90.6 94.6 93.9 93.0 98.6 99.0 98.6 98.9 99.8 99.9 100 99.9
5 -0.2 1 5 85.2 89.9 92.9 88.7 96.7 98.5 98.4 98.2 99.8 100 100 100
5 0.2 1 5 78.9 87.1 90 89.0 95.9 96.8 96.8 96.4 99.4 99.7 99.7 99.5
5 0.5 1 5 81.8 87.8 84.2 87.5 97.6 97.1 93.2 96.9 99.9 99.9 99.2 99.7
5 0.8 1 5 90.5 93.3 75.9 86.5 99.1 99.4 88.0 95.0 100 100 96.1 98.6

5 -0.8 5 1 77.9 81.0 32.1 81.9 93.0 91.5 45.7 93.8 97.7 98.1 54.7 98.6
5 -0.5 5 1 52.2 51.9 36.5 49.6 71.6 70.9 47.2 73.6 89.8 92.9 57.7 93.5
5 -0.2 5 1 35.5 26.9 36 32.2 44.0 35.0 45.3 42.0 59.3 51.8 59.4 57.7
5 0.2 5 1 35.2 30.2 37.0 37.7 50.7 41.3 44.6 49.2 65.2 62.1 56.1 68.1
5 0.5 5 1 55.7 57.2 37.2 56.6 76.8 77.8 45.4 73.4 88.1 91.1 49.3 85.9
5 0.8 5 1 86.5 86.3 37.6 71.1 94.2 95.4 43.3 77.8 98.8 98.6 46.8 90.7

5 -0.8 5 5 95.2 98.0 94.3 98.1 99.3 99.5 98.6 99.6 100 100 100 100
5 -0.5 5 5 92.1 94.8 94.0 93.0 98.9 99.3 98.3 98.9 100 99.9 99.9 100
5 -0.2 5 5 87.8 87.7 90.7 86.5 97.4 98.4 98.1 98.2 99.7 99.8 99.5 99.8
5 0.2 5 5 80.3 85.5 88.7 88.0 97.3 96.3 96.4 95.5 99.5 99.9 99.7 99.8
5 0.5 5 5 80.8 87.9 84 87.2 95.7 97.2 93 96.4 99.8 99.7 98.9 99.4
5 0.8 5 5 91.2 93.1 75.5 87.0 99.7 99.4 86.5 95.4 100 100 95.1 99
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Table 15. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=10

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
10 -0.8 1 1 89.6 92.7 47.4 94.2 98.4 97.8 56.7 98.9 100 99.9 70.8 100
10 -0.5 1 1 68.0 68.8 48.2 68.6 88.2 85.7 58.3 86.7 97.0 97.7 71.1 97.6
10 -0.2 1 1 49.4 36.9 43.8 41.5 65.3 54.2 56.6 56.3 75.9 74.1 71.7 73.3
10 0.2 1 1 46.9 45.3 45.6 49.8 67.1 60.8 54.2 63.7 78.0 80.9 69.3 80.8
10 0.5 1 1 76.8 76.3 45.6 73.3 91.4 89.8 49.6 85.3 97.3 96.8 62.1 93.0
10 0.8 1 1 95.5 97.2 43.1 83.0 99.4 99.7 43.6 90.5 99.9 100 51.9 97.1

10 -0.8 1 5 99.5 99.7 99.0 99.9 100 100 99.8 100 100 100 100 100
10 -0.5 1 5 99.4 99.6 99.1 99.3 100 99.9 99.9 99.9 100 100 100 100
10 -0.2 1 5 98.1 98.3 98.2 98.0 99.8 99.7 99.6 99.7 100 100 100 100
10 0.2 1 5 95.9 98.0 97.9 98.1 99.8 99.1 99.0 98.8 100 100 100 100
10 0.5 1 5 95.5 98.1 96.1 97.2 99.5 99.7 98.8 99.6 100 100 100 100
10 0.8 1 5 99.4 99.4 88.9 97.0 100 100 95.1 99.2 100 100 99.8 100

10 -0.8 5 1 87.4 90.5 46.0 92.4 97.8 97.9 57 98.3 99.7 99.8 70.6 99.8
10 -0.5 5 1 71.9 63.9 45.4 64.8 88.5 86.5 59.3 87.2 96.8 96.8 70.7 96.8
10 -0.2 5 1 49.3 36.9 47.9 40.8 64.6 55.6 57.7 56.9 78 74.6 71.3 74.7
10 0.2 5 1 50.8 46.1 46.0 52 62.7 59.4 54.0 64.6 79.8 78.4 66.1 76.8
10 0.5 5 1 74.6 76.4 43.3 73.2 91.7 90.7 49.3 83.9 97.1 97.2 64.2 93.7
10 0.8 5 1 96.8 97.7 40.5 80.8 98.6 99.5 43.5 89.0 100 99.8 51.5 95.9

10 -0.8 5 5 99.9 99.8 99.0 99.8 100 100 100 100 100 100 100 100
10 -0.5 5 5 99.3 100 99.7 99.5 100 100 99.9 100 100 100 100 100
10 -0.2 5 5 98.1 98.5 98.6 98.5 99.9 99.8 99.9 99.7 100 100 100 100
10 0.2 5 5 95.7 96.2 96.2 96.2 99.8 99.9 99.7 99.5 99.9 100 100 100
10 0.5 5 5 95.9 97.4 94.1 96.9 99.8 99.5 99.1 99.2 100 100 99.9 100
10 0.8 5 5 99.7 99.0 87.1 95.2 100 100 95.7 98.9 100 100 99.6 100
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Table 16. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=1

CASE n=25 CASE n=49 CASE n=100
T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
1 -0.8 1 1 49.6 47.5 29.6 50.2 64.5 62.4 30.1 66.4 78.8 79.5 26.5 80.3
1 -0.5 1 1 33.3 32.8 25.9 36.3 42.3 40.6 25.2 45.2 54.4 54.2 25.4 59.6
1 -0.2 1 1 24.5 20.6 28.3 26.7 24.2 19.8 29.4 25.6 26.8 17.5 29.0 28.0
1 0.2 1 1 23.7 16.2 32.5 25.2 29.1 11.8 34.9 28.1 36.6 15.5 31.4 35.4
1 0.5 1 1 26.1 19.8 35.9 26.9 47.0 37.2 41.5 45.2 62.6 60.3 39.5 59.8
1 0.8 1 1 37.6 35.1 47.0 36.6 62.2 63.2 45.6 57.1 76.7 78.5 41.0 64.0

1 -0.8 1 5 33.3 34.7 22.3 31.0 42.7 40.4 24.0 42.9 55.0 54.0 9.6 55.9
1 -0.5 1 5 22.7 18.4 23.3 19.9 31.0 26.3 25.7 31.1 34.3 27.7 20.1 33.9
1 -0.2 1 5 20.2 10.1 27.2 17.0 21.3 9.4 28.5 19.7 18.7 7.5 27.4 17.7
1 0.2 1 5 27.6 9.5 31.3 27.0 32.7 10.9 34.5 31.2 35.2 11.4 30.1 32.8
1 0.5 1 5 34.9 22.8 37.7 34.9 50.0 36.0 31.6 49.9 57.2 48.4 21.4 55.6
1 0.8 1 5 42.3 39.3 38.3 41.6 69.3 69.8 30.3 69.5 77.9 80.0 14.8 70.7

1 -0.8 5 1 49.6 47.5 29.6 50.2 64.5 62.4 30.1 66.4 78.8 79.5 26.5 80.3
1 -0.5 5 1 33.3 32.8 25.9 36.3 42.3 40.6 25.2 45.2 54.4 54.2 25.4 59.6
1 -0.2 5 1 24.5 20.6 28.3 26.7 24.2 19.8 29.4 25.6 26.8 17.5 29.0 28.0
1 0.2 5 1 23.7 16.2 32.5 25.2 29.1 11.8 34.9 28.1 36.6 15.5 31.4 35.4
1 0.5 5 1 26.1 19.8 35.9 26.9 47.0 37.2 41.5 45.2 62.6 60.3 39.5 59.8
1 0.8 5 1 37.6 35.1 47.0 36.6 62.2 63.2 45.6 57.1 76.7 78.5 41.0 64

1 -0.8 5 5 33.3 34.7 22.3 31.0 42.7 40.4 24.0 42.9 55.0 54.0 9.6 55.9
1 -0.5 5 5 22.7 18.4 23.3 19.9 31.0 26.3 25.7 31.1 34.3 27.7 20.1 33.9
1 -0.2 5 5 20.2 10.1 27.2 17.0 21.3 9.4 28.5 19.7 18.7 7.5 27.4 17.7
1 0.2 5 5 27.6 9.5 31.3 27.0 32.7 10.9 34.5 31.2 35.2 11.4 30.1 32.8
1 0.5 5 5 34.9 22.8 37.7 34.9 50.0 36.0 31.6 49.9 57.2 48.4 21.4 55.6
1 0.8 5 5 42.3 39.3 38.3 41.6 69.3 69.8 30.3 69.5 77.9 80.0 14.8 70.7

P
rep

rin
ts (w

w
w

.p
rep

rin
ts.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
sted

: 8 N
o

vem
b

er 2018                   d
o

i:10.20944/p
rep

rin
ts201811.0188.v1

http://dx.doi.org/10.20944/preprints201811.0188.v1


26
of30

Table 17. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=5

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 -0.8 1 1 78.5 82.3 29.8 81.1 90.8 91.9 25.7 92.7 98.2 98.3 17.7 98.2
5 -0.5 1 1 52.3 48.4 28.6 49.8 64.9 64.3 28.0 65.9 86.0 86.6 24.1 87.9
5 -0.2 1 1 28.3 13.8 27.3 25.5 34.6 17.5 28.5 31.3 44.2 24.8 27.5 42.1
5 0.2 1 1 36.0 22.0 28.4 35.4 49.1 26.6 30.2 42.1 56.8 44.3 29.4 57.5
5 0.5 1 1 60.0 60.7 32.2 58.8 76.1 77.9 34.4 73.1 87.3 89.0 29.8 82.7
5 0.8 1 1 86.6 87.8 38.9 72.7 95.7 96.5 42.2 81.8 99.3 99.0 39.8 90.5

5 -0.8 1 5 52.7 55.2 24.7 51.8 66.9 68.2 18.8 67.1 91.2 92.7 2.5 93.2
5 -0.5 1 5 37.1 29.4 27.2 32.4 44.6 33.6 25.8 39.3 62.6 55.4 10.9 59.8
5 -0.2 1 5 27.9 11.6 26.5 24.6 31.2 12.4 31.7 29.4 30.3 10.6 27.1 28.2
5 0.2 1 5 33.9 18.9 29.9 33.9 40.0 22.3 31.1 39.2 50.5 30.0 26.4 49.9
5 0.5 1 5 60.1 57.8 27.7 61.5 66.9 64.2 17.4 66.7 87.5 87.1 5.1 86.2
5 0.8 1 5 84.8 82.6 21.1 89.8 94.6 93.9 6.3 95.5 100 100 0.2 99.7

5 -0.8 5 1 78.5 82.3 29.8 81.1 90.8 91.9 25.7 92.7 98.2 98.3 17.7 98.2
5 -0.5 5 1 52.3 48.4 28.6 49.8 64.9 64.3 28.0 65.9 86.0 86.6 24.1 87.9
5 -0.2 5 1 28.3 13.8 27.3 25.5 34.6 17.5 28.5 31.3 44.2 24.8 27.5 42.1
5 0.2 5 1 36.0 22.0 28.4 35.4 49.1 26.6 30.2 42.1 56.8 44.3 29.4 57.5
5 0.5 5 1 60.0 60.7 32.2 58.8 76.1 77.9 34.4 73.1 87.3 89.0 29.8 82.7
5 0.8 5 1 86.6 87.8 38.9 72.7 95.7 96.5 42.2 81.8 99.3 99.0 39.8 90.5

5 -0.8 5 5 52.7 55.2 24.7 51.8 66.9 68.2 18.8 67.1 91.2 92.7 2.5 93.2
5 -0.5 5 5 37.1 29.4 27.2 32.4 44.6 33.6 25.8 39.3 62.6 55.4 10.9 59.8
5 -0.2 5 5 27.9 11.6 26.5 24.6 31.2 12.4 31.7 29.4 30.3 10.6 27.1 28.2
5 0.2 5 5 33.9 18.9 29.9 33.9 40.0 22.3 31.1 39.2 50.5 30.0 26.4 49.9
5 0.5 5 5 60.1 57.8 27.7 61.5 66.9 64.2 17.4 66.7 87.5 87.1 5.1 86.2
5 0.8 5 5 84.8 82.6 21.1 89.8 94.6 93.9 6.3 95.5 100 100 0.2 99.7
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Table 18. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=10

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
10 -0.8 1 1 89.3 89.1 29.7 90.1 97.9 97.7 24.0 98.3 99.7 99.7 15.0 99.7
10 -0.5 1 1 64.7 58.3 27.0 58.2 80.9 78.1 23.6 79.8 95.5 95.6 20.3 95.8
10 -0.2 1 1 37.1 21.8 30.0 34.7 45.9 27.3 25.2 42.1 60.2 45.7 26.8 57.7
10 0.2 1 1 40.3 30.8 28.7 40.7 53.6 43.1 30.3 52.8 69.7 64.5 29.9 68.6
10 0.5 1 1 76.7 75.9 34.8 73.5 90.0 90.4 29.3 84.8 97.0 97.2 26.1 92.2
10 0.8 1 1 96.1 96.0 36.5 84.6 99.7 99.8 31.5 88.6 100 100 25.1 96.2

10 -0.8 1 5 49.0 49.2 27.6 45.5 79.0 78.5 9.7 78.8 97.4 97.8 0.4 98.2
10 -0.5 1 5 41.5 29.9 30.1 33.8 55.2 43.4 24.1 47.9 75.0 71.5 7.0 72.7
10 -0.2 1 5 31.8 16.9 30.7 30.2 36.7 20.7 30.3 34.8 46.5 27.3 24.7 44.1
10 0.2 1 5 38.6 28.3 30.4 38.8 45.9 34.7 27.7 46.2 58.7 46.6 18.4 59.6
10 0.5 1 5 66.1 60.5 22.2 69.6 82.7 79.9 7.2 86.3 96.8 96.7 1.4 97.3
10 0.8 1 5 86.7 83.9 9.6 94.8 99.2 99.1 1.2 100 100 100 0.0 100

10 -0.8 5 1 89.3 89.1 29.7 90.1 97.9 97.7 24.0 98.3 99.7 99.7 15.0 99.7
10 -0.5 5 1 64.7 58.3 27.0 58.2 80.9 78.1 23.6 79.8 95.5 95.6 20.3 95.8
10 -0.2 5 1 37.1 21.8 30.0 34.7 45.9 27.3 25.2 42.1 60.2 45.7 26.8 57.7
10 0.2 5 1 40.3 30.8 28.7 40.7 53.6 43.1 30.3 52.8 69.7 64.5 29.9 68.6
10 0.5 5 1 76.7 75.9 34.8 73.5 90.0 90.4 29.3 84.8 97.0 97.2 26.1 92.2
10 0.8 5 1 96.1 96.0 36.5 84.6 99.7 99.8 31.5 88.6 100 100 25.1 96.2

10 -0.8 5 5 49.0 49.2 27.6 45.5 79.0 78.5 9.7 78.8 97.4 97.8 0.4 98.2
10 -0.5 5 5 41.5 29.9 30.1 33.8 55.2 43.4 24.1 47.9 75.0 71.5 7.0 72.7
10 -0.2 5 5 31.8 16.9 30.7 30.2 36.7 20.7 30.3 34.8 46.5 27.3 24.7 44.1
10 0.2 5 5 38.6 28.3 30.4 38.8 45.9 34.7 27.7 46.2 58.7 46.6 18.4 59.6
10 0.5 5 5 66.1 60.5 22.2 69.6 82.7 79.9 7.2 86.3 96.8 96.7 1.4 97.3
10 0.8 5 5 86.7 83.9 9.6 94.8 99.2 99.1 1.2 100 100 100 0.0 100
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Table 19. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T=1

CASE n=25 CASE n=49 CASE n=100
T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
1 -0.8 1 1 53.5 53.5 36.1 59.8 65.3 67.0 28.2 70.4 81.7 80.6 34.2 82.5
1 -0.5 1 1 46.4 44.5 32.8 49.5 49.6 51.7 29.1 56.3 61.0 59.8 34.3 63.6
1 -0.2 1 1 34.9 33.7 35.1 38.2 30.8 32.4 34.0 35.8 33.1 26.1 32.7 34.3
1 0.2 1 1 23.9 21.9 34.0 25.0 25.1 16.7 37.1 26.3 35.7 16.7 34.8 33.3
1 0.5 1 1 25.7 22.3 39.8 25.3 42.0 29.1 41.1 36.2 59.6 55.3 42.0 56.9
1 0.8 1 1 29.3 26.8 37.5 28.3 56.2 55.3 48.1 48.7 77.7 79.4 52.3 65.7

1 -0.8 1 5 66.0 60.2 44.0 64.8 73.8 72.9 47.9 74.1 90.0 91.2 59.9 93.1
1 -0.5 1 5 53.8 53.8 49.2 57.0 64.0 68.2 54.0 68.1 78.9 80.7 70.3 82.0
1 -0.2 1 5 51.2 48.4 48.1 48.1 57.4 55.7 58.1 53.5 71.6 69.1 72.9 69.4
1 0.2 1 5 45.0 43.8 50.2 43.1 50.7 51.3 62.6 53.3 70.6 64.6 72.9 66.8
1 0.5 1 5 44.2 39.3 51.0 37.8 54.2 54.4 57.8 52.3 74.4 73.7 64.2 71.0
1 0.8 1 5 41.0 35.9 44.5 35.2 63.6 62.5 49.5 53.6 81.0 83.5 43.8 70.3

1 -0.8 5 1 54.0 52.2 35.8 57.7 66.4 67.7 31.4 71.5 81.6 83.4 33.1 85.4
1 -0.5 5 1 45.1 44.9 32.7 50.5 46.4 50.4 30.8 55.6 61.8 63.4 33.3 66.4
1 -0.2 5 1 35.6 33.3 35.3 37.2 31.8 30.1 31.0 34.2 31.6 25.8 31.6 34.5
1 0.2 5 1 23.7 22.4 38.5 26.0 25.8 16.6 38.2 26.3 35.8 15.1 35.7 30.9
1 0.5 5 1 24.7 21.1 36.7 22.7 43.9 29.1 44.6 35.5 59.3 56.4 41.5 60.4
1 0.8 5 1 29.9 26.6 40.6 27.4 59.4 58.1 48.9 49.2 77.4 81.1 49.8 69.4

1 -0.8 5 5 67.5 64.1 45.5 67.8 73.3 74.9 47.7 76.7 89.2 87.9 58.3 90.4
1 -0.5 5 5 53.7 55.9 46.8 59.0 64.6 66.9 54.0 64.5 79.4 81.5 69.0 83.3
1 -0.2 5 5 51.4 51.2 49.1 51.6 54.8 57.5 58.5 57.1 73.2 69.8 70.2 69.6
1 0.2 5 5 44.5 44.1 52.2 45.4 52.0 52.2 61.8 53.7 69.7 65.8 72.3 68.0
1 0.5 5 5 42.3 36.2 50.4 37.2 54.6 52.6 60.2 52.8 73.9 73.9 65.4 72.7
1 0.8 5 5 40.1 40.0 48.7 37.3 64.4 59.5 51.4 50.7 80.7 80.2 43.2 69.1
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Table 20. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T=5

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 -0.8 1 1 76.1 76.6 36.1 77.8 90.8 94.2 41.7 94.9 98.6 98.7 48.3 99.3
5 -0.5 1 1 54.4 49.0 38.9 48.1 71.4 71.9 42.9 74.3 90.4 90.3 50.0 92.3
5 -0.2 1 1 38.1 25.0 36.7 28.9 41.4 35.3 46.0 42.3 55.5 48.6 53.8 53.4
5 0.2 1 1 36.9 30.0 36.5 36.7 50.9 41.3 43.8 51.2 67.7 58.7 51.2 63.7
5 0.5 1 1 61.9 59.7 36.6 60.9 79.0 76.8 43.3 69.7 88.2 91.8 48.5 85.9
5 0.8 1 1 85.7 86.7 43.8 69.7 94.3 94.4 47.2 77.7 98.9 98.9 48.9 88.7

5 -0.8 1 5 93.3 84.4 66.0 77.1 99.0 99.6 93.6 99.5 99.8 100 99.3 100
5 -0.5 1 5 87.8 78.3 75.7 67.2 96.4 98.1 96.8 97.4 99.9 100 99.7 99.9
5 -0.2 1 5 85.2 78.4 83.2 70.2 96.6 95.8 96.8 93.7 100 99.8 99.8 99.5
5 0.2 1 5 82.6 86.3 88.7 83.0 94.8 95.0 95.8 92.6 98.8 99.2 99.3 98.3
5 0.5 1 5 80.6 84.4 78.1 77.4 88.7 93.6 88.6 84.4 97.5 97.9 95.2 93.4
5 0.8 1 5 83.6 87.5 43.4 66.4 91.6 94.2 49.6 75.0 99.2 99.6 32.2 88.5

5 -0.8 5 1 75.1 78.3 36.4 79.0 91.7 91.7 42.5 94.2 98.1 98.1 47.9 98.9
5 -0.5 5 1 55.1 49.7 37.4 48.9 68.4 71.8 43.1 73.7 89.5 92.6 53.2 93.6
5 -0.2 5 1 38.1 25.4 36.6 29.4 39.7 32.8 45.3 39.8 55.1 47.8 57.7 53.9
5 0.2 5 1 38.6 29.7 37.6 36.7 49.5 40.7 44.0 49.5 65.5 62.5 54.6 66.3
5 0.5 5 1 58.8 57.9 39.9 56.7 75.4 77.7 43.6 71.0 87.4 90.2 51.9 85.0
5 0.8 5 1 83.5 87.1 42.5 69.2 94.1 95.0 48.9 76.6 98.8 98.5 49.4 90.5

5 -0.8 5 5 93.0 86.5 65.6 80.4 99.0 99.5 95.0 99.8 100 100 99.3 100
5 -0.5 5 5 88.6 79.3 75.2 68.1 97.4 98.0 95.8 96.9 99.8 100 99.7 100
5 -0.2 5 5 87.9 76.5 81.5 69.0 95.6 95.6 96.6 93.8 99.6 99.8 99.7 99.9
5 0.2 5 5 82.9 84.9 86.7 81.6 95.6 94.6 94.7 92.4 98.8 99.6 99.4 98.8
5 0.5 5 5 80.9 86.2 79.6 77.0 89.4 92.7 88.5 83.3 98.4 98.3 94.9 93.7
5 0.8 5 5 84.9 89.0 43.7 67.9 92.5 94.7 47.4 75.2 99.2 98.7 35.1 88.9
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Table 21. (continues) Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T=10

Other parameters CASE n=25 CASE n=49 CASE n=100

T r b1 q1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
10 -0.8 1 1 89.1 91.2 42.1 92.6 97.7 97.9 50.5 99.1 100 99.9 61.1 100
10 -0.5 1 1 64.3 64.0 44.7 63.7 86.2 85.1 52.8 85.9 96.9 97.9 67.8 98.3
10 -0.2 1 1 43.6 33.6 45.5 39.1 62.2 49.9 54.8 53.7 73.3 69.2 69.8 69.6
10 0.2 1 1 45.6 45.9 45.8 48.2 68.6 62.2 55.3 63.9 76.7 79.6 67.4 79.4
10 0.5 1 1 75.9 76.8 44.2 73.0 90.4 89.6 48.4 84.1 96.7 96.5 60.8 91.6
10 0.8 1 1 97.7 97.3 47.0 81.9 99.1 99.6 48.3 89.8 99.9 100 47.6 96.1

10 -0.8 1 5 96.5 95.4 82.8 92.7 100 100 98.6 100 100 100 100 100
10 -0.5 1 5 91.5 94.4 93.0 88.4 100 100 99.9 99.9 100 100 100 100
10 -0.2 1 5 93.4 94.2 95.1 90.1 99.9 99.7 99.7 99.6 100 100 100 100
10 0.2 1 5 93.0 97.3 97.1 95.2 99.8 98.2 98.5 97.9 100 100 99.9 99.8
10 0.5 1 5 90.4 94.7 86.5 85.6 98.5 98.4 95.0 95.2 99.8 99.9 98.9 99.2
10 0.8 1 5 94.9 97.0 38.7 73.8 98.6 99.6 39.0 90.0 99.8 100 13.2 95.8

10 -0.8 5 1 89.9 89.4 42.2 90.5 98.0 97.7 48.4 98.2 99.7 99.6 62.7 99.8
10 -0.5 5 1 63.5 61.4 43.6 61.0 85.7 84.2 53.0 85.5 97.0 97.1 67.4 97.8
10 -0.2 5 1 42.6 35.2 45.8 39.7 59.9 51.4 55.7 54.3 76.2 71.2 69.7 71.6
10 0.2 5 1 48.1 46.2 45.1 51.2 65.9 59.9 54.5 63.7 79.7 78.2 65.3 75.3
10 0.5 5 1 75.4 75.7 43.1 71.4 88.1 89.8 51.2 82.7 96.3 96.8 56.8 91.7
10 0.8 5 1 96.9 97.5 42.2 81.1 99.0 99.7 47.7 89.0 100 99.8 47.9 95.1

10 -0.8 5 5 95.8 95.1 83.7 90.4 100 100 98.8 100 100 100 100 100
10 -0.5 5 5 93.7 94.5 91.6 85.7 100 100 99.7 99.9 100 100 100 100
10 -0.2 5 5 92.6 94.4 96.8 90.6 99.9 99.7 99.5 99.1 100 100 100 100
10 0.2 5 5 92.6 95.7 96.4 93.2 99.4 99.5 99.1 98.3 99.7 100 100 99.9
10 0.5 5 5 93.0 94.1 85.2 87.5 97.2 98.0 95.6 94.6 99.7 99.9 97.9 97.8
10 0.8 5 5 95.5 95.5 37.2 74.3 98.3 99.0 38.7 89.5 100 100 12.1 94.8
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