Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A-to-I RNA Editing Affects lncRNAs Expression after Heat Shock

Version 1 : Received: 6 November 2018 / Approved: 7 November 2018 / Online: 7 November 2018 (15:17:33 CET)

A peer-reviewed article of this Preprint also exists.

Haas, R.; Ganem, N.S.; Keshet, A.; Orlov, A.; Fishman, A.; Lamm, A.T. A-to-I RNA Editing Affects lncRNAs Expression after Heat Shock. Genes 2018, 9, 627. Haas, R.; Ganem, N.S.; Keshet, A.; Orlov, A.; Fishman, A.; Lamm, A.T. A-to-I RNA Editing Affects lncRNAs Expression after Heat Shock. Genes 2018, 9, 627.

Abstract

Adenosine to inosine (A-to-I) RNA editing is a highly conserved regulatory process carried out by adenosine-deaminases (ADARs) on dsRNAs. Although a considerable fraction of the transcriptome is edited, the function of most editing sites is unknown. Previous studies indicate changes in A-to-I RNA editing frequencies following exposure to several stress types. However, the overall effect of stress on the expression of ADAR targets is not fully understood. Here, we performed high-throughput RNA sequencing of wild-type and ADAR mutant C. elegans worms after heat-shock to analyze the effect of heat-shock stress on the expression pattern of genes. We found that ADAR regulation following heat-shock does not directly involve heat-shock related genes. Our analysis also revealed that lncRNAs and pseudogenes, which have a tendency for secondary RNA structures, are enriched among upregulated genes following heat-shock in ADAR mutant worms. The same group of genes is downregulated in ADAR mutant worms under permissive conditions, which is likely, considering that A-to-I editing protects endogenous dsRNA from RNA-interference (RNAi). Therefore, temperature increases may destabilize dsRNA structures and protect them from RNAi degradation, despite the lack of ADAR function. These findings shed new light on the dynamics of gene expression under heat-shock in relation to ADAR function.

Keywords

stress response; ADAR; C. elegans; transcriptomics

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.