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Abstract: Several optimization models of irreversible reverse cycle machines have been developed 

based on different optimization criteria in the literature, most of them using linear heat transfer 

laws at the source and sink. This raises the issue how close to actual operation conditions they are, 

since the heat transfer law on the phase-change processes is dependent on ΔT3. This paper 

addresses this issue by proposing a general model for study and optimization of thermal machines 

with two heat reservoirs applied to a Carnot-like refrigerator, with non-linear heat transfer laws 

and internal and external irreversibility. The optimization was performed using First and Second 

Law of Thermodynamics and Lagrange multipliers method. Thus, several constraints were 

imposed to the system, also different objective functions were considered, allowing finding the 

optimum operating conditions, as well as the limited variation ranges of the system parameters. 

Results show that the nature of the heat transfer laws affects the optimum values of system 

parameters for obtaining maximum performances and also their magnitude. Sensitivity studies 

with respect to system several parameters are presented. The results contribute to the 

understanding of the system limits in operation under different constraints and allow choosing the 

most convenient variables in given circumstances. 
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1. Introduction 

The second half of the last century saw the emergence of a new branch of Thermodynamics, 

called Thermodynamics in Finite Time, due to the process duration that was considered by the heat 

transfer rate [1,2]. The corresponding approach emphasized a maximum power regime [3] for an 

endo-reversible, but exo-irreversible engine. The engine efficiency at maximum power regime is less 

than the Carnot cycle one, and it introduced the particular form of the “nice radical”. 

Since then, quite a lot of works analyzing the exo-irreversible engines have been developed 

[4,5]. Generally, they have considered only the external irreversibility of the thermal machine, which 

is due to the heat transfer at finite temperature difference between the sources and the working 

fluid. Also, mainly the linear form of the heat transfer law was used. 

The same approach applied to the study of heat pumps shows no more optimum for the useful 

effect (heat flow delivered at the hot end), because the temperature of the working fluid has no 

upper limit imposed on the hot end [6]. The same happens for the refrigerating machine, where 

there is no lower limit to the cold end (as for thermal engine). 

To the first reported work (to our knowledge) [6], other papers followed [7-9] dealing with heat 

pump or refrigerating machine optimization, but introducing an additional constraint (mostly 

mechanical power or useful effect imposed). The optimization is not reserved only to vapor 

mechanical compression machines, but it has been extended since that time to the trithermal and 
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quadrithermal ones [10–12]. However, one notes that most of the reported studies deal with 

thermostats at sources and sinks and linear heat transfer laws. 

Proposals have been made to extend the analysis by using other forms of the heat transfer law 

[13–15]. 

Further progress has been made by introducing an irreversibility factor (ratio), most often 

constant [16], that accounts for the internal irreversibility of the machine (endo-irreversibility). A 

step further [17] represents the internal irreversibility considered in the model as internal entropy 

production rate, iS . This method is preferred to the one of ratios, as we still see in recent work [18]. 

It provides a more general approach compared to the use of the irreversibility factor [16,19–20]. Also, 

it aims the entropic analysis of machines and processes and is more and more important as an 

instrument getting modeling closer to real operation [21–27]. 

The present work proposes a general model of study and optimization of irreversible 

Carnot-like refrigerating machines and extends the previous studies [28-31]. In terms of 

optimization, it is well known that several objective functions can be chosen: maximum of coefficient 

of performance (COP), minimum of energy consumption, minimum of total entropy production, or 

economic objectives [32]. Environmental concerns have also become predominant [33], and recently 

led to the introduction of a new objective called ECOP (Ecological COP) [34]. Two objective 

functions will be considered here for each of the two studied cases: maximum refrigeration load and 

minimum total entropy production rate when COP is imposed, respectively, maximum COP and 

minimum total entropy production rate, for imposed refrigeration load. 

The mathematical approach includes the most general laws of science, namely the First and 

Second Laws of Thermodynamics. The equations of heat transfer at the hot and cold side of the 

machine are modeled by non-linear functions of the temperature difference between the reservoirs 

and the cycle working fluid. The internal irreversibility is introduced by the method of internal 

entropy production rate, above mentioned. Three variation laws with temperature for the internal 

entropy production are considered in an attempt to approach analytical treatment of actual 

operation. 

The purpose of this work is to study the influence of the non-linearity of the heat transfer law 

on the performance. This will extend the model validity beyond the convective and radiative heat 

transfer laws [13]. The results highlight the existence of optimal operating regimes of the reverse 

cycle machine subjected to dimensional and operating constraints. The sensitivity study with respect 

to the model parameters provides interesting results related to the limitation of the variation range of 

the variables of the model, and different operating regime of the refrigeration machine. 

The new and important results reported here are presently  

2. Materials and Methods  

2.1. Proposed application study 

The model of study and optimization of Carnot-like machines is applied here to an irreversible 

refrigeration machine. Its architecture and the corresponding irreversible cycle consisting of two 

isothermal processes and two adiabatic irreversible ones are illustrated in Figure 1. The 

irreversibility is present in the T-S diagram by the entropy production on the adiabatic processes 

(compression and expansion), which is mainly due to internal losses. On the isothermal processes, it 

is marked by the different heat transfer compared to the corresponding reversible processes (also 

more reduced at the source and larger at the sink). 

Usually, the internal irreversibility of the machine, introduced in the model as a parameter, is 

represented by the corresponding internal entropy production term, iS . It takes into account the 

internal irreversibility generated on each cycle process, summing the throttling losses, friction ones, 

etc. To this one an external irreversibility is added, being generated by finite temperature heat 

transfer processes between the working fluid and the heat reservoirs.  
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Figure 1. Irreversible Carnot-like refrigeration machine: (a) Scheme; (b) Irreversible cycle in T-S 

diagram.  

As shown in Figure 1, the two heat reservoirs are thermostats, of constant temperatures THS and 

TLS, the first one being actually the environment. The refrigeration machine is considered operating 

in steady state regime. 

2.2. Mathematical model 

The model of study and optimization of reverse cycle machines is developed by using the most 

general laws in Thermodynamics, the First and Second Law, to which generalized forms of heat 

transfer laws applied to the source and sink are added. 

By taking account of the sign convention adopted here, that considers the heat transfer rate 

positive when entering the cycle, and negative for leaving it, and the consumed work transfer rate 

(power request) as negative, the expression of the First Law of Thermodynamics can be written as: 

LH QQW  += , (1) 

with W − mechanical power supplied; HQ − heat transfer rate rejected by the working fluid at the 

source (hot heat exchanger); LQ  − refrigeration load. 

When looking the machine irreversibility, the Second Law of Thermodynamics takes different 

expressions, as applied to two possible systems. Thus, once considering only the internal 

irreversibilities (endo-irreversible machine) by the internal entropy production term, it comes: 

0=++ i
L

L

H

H S
T

Q

T

Q 


, (2) 

with TH − temperature of the working fluid at the machine hot temperature side; TL − temperature of 

the working fluid at the machine low temperature side; iS − entropy production due to internal 

irreversibilities of the machine. 

Then, when the whole system is considered (cycle and the two heat reservoirs), the total 

entropy production term appears in the Second Law expression: 

0=++ T
LS

L

HS

H S
T

Q

T

Q 


, (3) 

with THS − source temperature at the machine hot part; TLS − source temperature at the machine cold 

part; TS − total entropy production (internal and external). 

For the heat transfer rates present in the above equations, two forms of non-linear heat transfer 

laws between the heat reservoirs and working fluid are considered:  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2018                   doi:10.20944/preprints201811.0173.v1

Peer-reviewed version available at Entropy 2018, 20, 953; doi:10.3390/e20120953

http://dx.doi.org/10.20944/preprints201811.0173.v1
http://dx.doi.org/10.3390/e20120953


 

( ) ( ) 11 –= –
– HH nn

HHSgen,HH TTKQ  ;  ( ) Ln
LLSgen,LL TTKQ –= , (4) 

( )HH n
H

n
HSgen,HH TTKQ –=  ;  ( )LL n

L
n
LSgen,LL TTKQ –= , (5) 

where ni is the exponent of the heat transfer law (H – hot sink or high temperature side, L – cold 

source or low temperature side). 

In practical application these non-linear forms correspond to phase-change heat transfer (eq. 

(4), with ni = 3), respectively radiation heat transfer (eq. (5) with ni = 4)). One note that making ni = 1, 

one gets the linear approximation, so called, convective heat transfer law or Newton’s law. 

For the refrigeration machines performance evaluation, according to its definition, the 

coefficient of performance is: 

W

Q
COP L




= . (6) 

By combining the two expressions of the Second Law, given by eq. (2) and (3), the total entropy 

production rate results as: 

)
11

(+)
11

(+=
LSL

L
HSH

HiT TT
Q

TT
QSS ––  . (7) 

The three positive terms contained in the above expression accounts for different type of 

irreversibility, namely (1) the internal one by iS , and (2) the external one due to finite temperature 

heat transfer processes between the heat reservoirs and working fluid. 

Without insight in the internal irreversibility mechanism of machine processes, it is difficult to 

establish a variation law for the internal entropy production. Thus, in order to provide generality to 

the model, the following approaches were considered [35,36]: 

a) constant 

constSi = , (8) 

b) linear variation law with working fluid temperature difference:                  

( )LHi TTconstS –= , (9) 

c) logarithmic variation law with working fluid temperature ratio: 

)
T

T
(lnconstS

L

H
i = . (10) 

2.3. Dimensionless model 

The same concern for developing a general model for the optimization of refrigeration 

machines and easily adapted to different characteristics and constraints of the studied case, led to 

the adoption of the non-dimensional form of the equations. Therefore, the following terms and 

expressions will be further used: 

• Dimensionless temperatures are expressed relative to the reference temperature THS which is 

also the ambient one:  

HS

L
L

HS

H
H

HS

LS
SL T

T

T

T

T

T
=θ           ,=θ                   ,=θ . (11) 

• Dimensionless energy fluxes are expressed relative to the product HSpTcm , where pcm  is the 

heat rate capacity of the working gas corresponding to the end of the compression process ;

 - at the sink or machine cold part (positive): 
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( ) Ln
LLSgen,L

HSp

L
L CTQ

Tcm

Q
q~ θθ== –




, (11) 

  - at the source or machine hot part (always negative)  

( ) ( ) 1θ1== –
1–– HH nn

Hgen,H
HSp

H
H CTQ

Tcm

Q
q~




, (12) 

  - power supply: 

COP

q~

Tcm

W
w~ L

HSp

==



. (13) 

• Non-linear thermal conductances are expressed relative to the product 
)n(

HSp
HTcm

1- : 

  - total one: 

( ) ( )

p

n
HST

gen,T cm

TUA
CTQ

H



1

=
–

, (14) 

  - of the two heat exchangers: 

( ) ( )

p

n
HSL

gen,L cm

TUA
CTQ

H



1

=
–

, (15) 

( ) ( )

p

n
HSH

gen,H cm

TUA
CTQ

H



1

=
–

. (16) 

• Internal and total entropy production terms use the same heat rate capacity, pcm , as reference: 

p

i
i cm

S
s~




=     ,    

p

T
T cm

S
s~




= . (17)-(18) 

• The dimensionless constraint relative to a fixed total heat exchanger conductance will have as 

equivalent: 

gen,Lgen,Hgen,T CTQCTQCTQ += , (19) 

which will be considered as optimization constraint finite parameter, while CTQH,gen and CTQL,gen are 

system optimization variables. 

According to the adopted sign convention and the refrigeration machine scheme, the 

temperatures hierarchy is TF < TLS < THS < TH, that imposes the following constraints: 

θL < θLS < θHS < θH ,  θHS = 1, 

0<Hq~  ,  0>Lq~  ,  0<w~  ,  0>is
~ . 

(20) 

These constraints will always be valid for any refrigerator being studied, regardless of the 

presence of any other restrictions imposed by the user or the machine design. 

2.4. Optimization method and studied cases 

The dimensionless variables that will be used in the optimization procedure are L and CTQL,gen, 

H and CTQH,gen, while the considered parameters are: LS, CTQT, is~ , and the imposed performance 

characteristics. 
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The optimization is achieved for two cases where different performances are imposed. For a 

refrigeration machine, the most important performances are the COP and the refrigeration load. 

The first studied case corresponds to an imposed value of the COP, together with an imposed 

internal entropy production rate. The objective functions could be: maximum refrigeration load, 

minimum total dissipation (minimum total entropy production), or minimum power consumption. 

Among them, results will be reported here when maximum refrigerating load is sought, 

respectively, minimum total entropy production rate. 

The second optimization is done for an imposed refrigerating load, together with an imposed internal 

entropy production rate. Thus, other objective functions will be sought, such as maximum COP, 

minimum total dissipation, or minimum power consumption. Again, only the first two objective 

functions previously cited will be considered in this analysis, for the sake of comprehensible 

presentation but the method is similarly applied. 

The optimization procedure uses the Lagrange Multipliers Method that will lead to a system of 

equations for each objective function, and its solution will provide optimal values of the control 

variables of the system, L, CTQL,gen, H, CTQH,gen, leading to the corresponding system performances 

achieved in the considered constraint operation. Thus, the Lagrangian function corresponding to the 

present study is expressed as: 

2211 λ+λ+= CCFOL , (21) 

where: FO is one of the considered objective functions stated above; 1 and 2 are the corresponding 

Lagrange multipliers; C1 and C2 are the problem constraints represented by the First Law of 

Thermodynamics including the imposed performance characteristic constraint and Second Law of 

Thermodynamics applied to the cycle including the internal entropy production restriction. 

The optimal values of the model variables are obtained by solving the following system of 

equations: 

) 0=
→1 var_nvar

L

∂

∂
,  0=

λ1∂

∂L
  ,  0=

λ2∂

∂L
. (22) 

2.4.1. Imposed coefficient of performance 

The First Law of Thermodynamics combined with eq. (13) and eqs. (11)–(12) that takes into 

account the expressions of generalized heat transfer laws provides: 

( ) ( ) ( ) 0=
+1

θθ+1θ1 1

COP

COP
–CTQCTQ LHH n

LLSgen,L
nn

Hgen,H
–

–– . (23) 

By generalizing the above expression, the first constraint equation (C1) of the model results as: 

0=ξ
+1

+
COP

COP
CTQfCTQ gen,Lgen,H , (24) 

where the following notations of the new functions were used: 

( ) ( )

( ) L

HH

n
LLS

nn
Hf

θθ=ξ

1θ1= 1

–

––
–

, (25) 

One notes that f is a function of θH only, while ξ is a function of θL only.  

The Second Law of Thermodynamics combined with eqs. (11)–(12) and applied to the cycle 

gives: 

( ) ( ) ( )
0=+

θ

θθ
+

θ

1θ1 1

i
L

n
LLSgen,L

H

nn
Hgen,H

s~
CTQCTQ LHH –––

–

, (26) 

and considering the two function introduced by eq. (25), the second constraint (C2) of the system 

results as: 
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0=+
θ

ξ
+

θ
gCTQ

f
CTQ

L
gen,L

H
gen,H . (27) 

One notes that g is a function of both θH and de θL according to the three variation laws adopted 

for the entropy production rate dependence on temperature, eq. (8)–(10). 

1. Refrigeration load as Objective Function 

The first objective function considered in the optimization procedure is the refrigeration load: 

( ) ξ=θθ== gen,L
n

LLSgen,LL CTQ–CTQq~FO L . (28) 

 The Lagrangian is expressed in this case as: 

( ) ( )[ ]

( )[ ] 0=+θξ+θλ+

++1ξ+λ+ξ

2

1

g/CTQ/fCTQCTQ

COP/COPCTQfCTQCTQCTQ

Lgen,LHgen,Lgen,T

gen,Lgen,Lgen,Tgen,L

–

–

. (29) 

The derivatives indicated in (22) are calculated for the considered variables (CTQL,gen, θH, θL) and 

the two multipliers (λ1, λ2), as follows: 

( )[ ] ( ) 0=θξ+θλ++1ξ+λ+ξ0= 21 LH
gen,L

//f–COP/COPf:
CTQ

L
–

∂

∂
, (30) 

( ) ( )[ ] 0=+
θ

θ
λ+λ0=

θ 221 H
H

gen,Lgen,Tgen,Lgen,T
H

'g
f'f

CTQCTQ'fCTQCTQ:
L

H

–
––

∂

∂
, (31) 

where f’ and g’H  are the derivatives of function f and g respectively, with respect to θH; 

( ) 0=+
θ

ξξθ
λ+ξ

+1
λ+ξ0=

θ 221 L
L

L
gen,Lgen,Lgen,L

L

'g
'

CTQ'
COP

COP
CTQ'CTQ:

L –

∂

∂
, (32) 

where ξ’ and g’L  are the derivatives of function ξ and g respectively, with respect to θL; 

( ) 0=ξ
+1

+0=
λ1 COP

COP
CTQfCTQCTQ:

L
gen,Lgen,Lgen,T –

∂

∂
, (33) 

( ) 0=+
θ

ξ
+

θ
0=

λ2

gCTQ
f

CTQCTQ:
L

L
gen,L

H
gen,Lgen,T –

∂

∂
. (34) 

By combining eqs. (30)-(32) and after terms rearrangement one equation results that associated 

with eqs. (33), (34) and (19) leads to a system that is solved by Newton-Raphson method with respect 

to CTQL,gen, θH and θL, since CTQH,gen is expressed by the last equation of the system. 

=

0=+
θ

ξ
+

θ

0=ξ
+1

+

ξ

ξ

ξθ

ξ
=

θ 2

2

2

2

gen,Lgen,Tgen,H

L
gen,L

H
gen,H

gen,Lgen,H

gen,L

L

Lgen,H

H

H

CTQCTQCTQ

gCTQ
f

CTQ

CTQ
COP

COP
fCTQ

'CTQ

'g

''fCTQ

'fg

'f

f

–

––

. (35) 

Note that the system has to be solved for each of the three non-dimension functions g 

corresponding to the internal entropy production rate, eqs. (8)–(10). 

2. Total entropy production rate as Objective Function 
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One considers here a second objective function, the total entropy production rate, expressed as: 

LS
gen,Lgen,H

LS

L
HT CTQfCTQ–

q~
q~–s~FO

θ

ξ
=

θ
== –– . (36) 

 The Lagrangian becomes in this case: 

( )
( ) ( )[ ]
( )[ ] 0=+θξ+θλ+

++1ξ+λ+

+
θ

ξ

2

1

g/CTQ/fCTQCTQ

COP/COPCTQfCTQCTQ

CTQfCTQCTQ

Lgen,LHgen,Lgen,T

gen,Lgen,Lgen,T

LS
gen,Lgen,Lgen,T

–

–

–––

. (37) 

The derivatives corresponding to the three variables (CTQL,gen, θH, θL) and the two multipliers 

(λ1, λ2) are: 

( ) ( ) 0=
θ

ξ
+

θ
λ+ξ

+1
+λ+

θ

ξ
0= 21

LHLSgen,L

f
–

COP

COP
ff:

CTQ

L
––

∂

∂
, (38) 

( ) ( ) ( )[ ] 0=+
θ

θ
λ+1λ0=

θ 221 H
H

H
gen,Lgen,Tgen,Lgen,T

H

'g
f'f

CTQCTQ'fCTQCTQ:
L –

–––
∂

∂
, (39) 

[ ] 0=+
θ

ξξθ
λ+ξ

+1
λ+

θ

ξ
0=

θ 221 L
L

L
gen,Lgen,L

SL

gen,L

L

'g
'

CTQ'
COP

COP
CTQ

'CTQ
:

L –

∂

∂
, (40) 

where f’, g’H, ξ’ and g’L have the same meaning as in eq. (31) and (32); 

( ) 0=ξ
+1

+0=
λ1 COP

COP
CTQfCTQCTQ:

L
gen,Lgen,Lgen,T –

∂

∂
, (41) 

( ) 0=+
θ

ξ
+

θ
0=

λ2

gCTQ
f

CTQCTQ:
L

L
gen,L

H
gen,Lgen,T –

∂

∂
. (42) 

Similar to the previous case, the corresponding equation system results as: 

=

0=+
θ

ξ
+

θ

0=ξ
+1

+

ξ

ξ

ξθ

ξ
=

θ 2

2

2

2

gen,Lgen,Tgen,H

L
gen,L

H
gen,H

gen,Lgen,H

gen,L

L

Lgen,H

H

H

CTQCTQCTQ

gCTQ
f

CTQ

CTQ
COP

COP
fCTQ

'CTQ

'g

''fCTQ

'fg

'f

f

–

––

. (43) 

The comparison of the systems from eq. (35) and (43) shows that they are identical, meaning 

that no matter the objective function is considered, the same system of equations results. Thus, the 

optima of the two objective functions (maxima and minima, respectively) correspond to the same 

values of the model variables resulting from the solution of the equation system. The interpretation 

of this result lies on the fact that the total entropy production given by eq. (3) and written in 

non-dimensional form becomes: 

LS

L
HT

q~
q~–s~

θ
= – . (44) 

By considering eq. (1) in non-dimensional form and eq. (13), eq. (44) is re-written as: 

)–
COP

(q~–s~

LS
LT θ

1
+1

1
= . (45) 
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As COP and θSL are imposed for the system operation, the optimum for q̃L will lead to optimum 

for s̃T in the same time. More specific, maximum of q̃L will lead to minimum of s̃T, since the minimum 

of entropy production is directly correlated to minimum of consumed power, which at its turn is 

linked by eq. (13) to maximum of q̃L for imposed COP. 

2.4.2. Imposed refrigeration load 

The same optimization method is applied in this case, but the terms in equations are expressed 

function on the imposed non-dimensional refrigeration load, q̃L, instead of COP. Thus, the first 

constraint equation (C1) of the model, given by eq. (24) in the previous case, becomes: 

0=ξgen,LL CTQ–q~ , (46) 

while the second constraint equation (C2) remains the same as in the previous case of imposed COP, 

given by eq. (27). 

The objective function FO in eq. (21) is either the COP, or the non-dimensional entropy 

production s̃T. The Lagrangian is computed and a similar system of equations as eq. (35) or (44) is 

obtained and solved with respect to the same variables CTQL,gen, θH, θL: 
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3. Results 

The optimization method described above leads to a system of non-linear equations that is 

numerically solved in Matlab by applying Newton-Raphson method. The system parameters set to 

constant values in the numerical simulation are: total coefficient of heat transfer CTQT,gen = 2, 

non-dimensional low source temperature θLS = 0.87 (corresponding to a temperature of the cold 

source of -5°C in case of an ambient temperature of 35°C) and the internal entropy production s̃i for 

which different cases have been simulated, as given by eq. (8)-(10), where the “const” term was set to 

a constant value of 0.005. Since the obtained results are similar for the three variation profiles, for the 

sake of comprehensibility, only the results for constant internal entropy production will be further 

presented. The other constant values considered correspond to the imposed constraints, such as 

coefficient of performance COP or non-dimensional refrigeration load q̃L. 

The system is solved with respect to the unknown solutions CTQL,gen, θL and θH. The obtained 

physical solutions allow computing the system performances in terms of q̃L or COP and the other 

non-dimensional energy rates q̃H, w ̃. Also, the total entropy production s̃T is computed. 

The results are presented for the two considered cases, namely imposed COP and imposed 

refrigeration load, respectively.  

3.1. Imposed coefficient of performance 

For the numerical simulation, it’s value has been set to COP = 1.5 and for the internal entropy 

production s̃i = 0.005 was considered. After solving the system of equations, two physical solutions 

θL and θH are obtained. These two solutions correspond to two different operating regimes, namely 

one of maximum refrigerating load, denoted by subscript 1, and the other leading to minimum total 

entropy production, denoted by subscript 2 in the figures. As it was analytically proved, the extrema 

in both regimes correspond to the same optimum values of system parameters. Results are further 

presented for the case of linear and non-linear heat transfer laws. 
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3.1.1. Linear heat transfer laws 

In Figure 2a non-dimensional energy rates and total entropy production are presented for the 

two operating regimes function on the control variable θL. The upper part of the plots corresponds to 

the maximum refrigerating load regime, while the lower one corresponds to the minimum total 

dissipation regime. One might notice that the most convenient operating parameters are those 

located in the left part of the maximum values, since here the consumed power and total dissipation 

are lower for lower cold source temperatures. The non-dimensional refrigerating load is plotted 

versus θL generating loop curves as shown in Figure 2b. One chosen value for the refrigerant 

temperature θL might indicate the operation at two refrigerating loads, on the upper part and the 

lower one respectively.  

Figure 2. Imposed COP and s̃i constant: (a) Non-dimensional energy rates and total entropy 

production for the two operating regimes; (b) Non-dimensional refrigerating load for the two 

operating regimes. 

Also, one desired value of the refrigerating load could be associated to a refrigerating 

temperature closer to the reference one (ambient) as seen in the right-hand-side of the plot, or 

contrary to a lower temperature value in the left-hand-side. The choice of the operating regime 

depends on the system settings and the other variables that are behind (θH, CTQL,gen, etc). 

Figure 3 presents a T-s like diagram. The possible range values are emphasized for the 

refrigerant temperatures at the hot and cold reservoirs. Also one might notice that the second 

solution of the system of equations (θL2, θH2) corresponds to the lower dissipation rates, but also to 

the lower energy rates. Thus, the second solution might not be of interest from the operation regime 

point of view.  

 
(a) 

 
(b) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2018                   doi:10.20944/preprints201811.0173.v1

Peer-reviewed version available at Entropy 2018, 20, 953; doi:10.3390/e20120953

http://dx.doi.org/10.20944/preprints201811.0173.v1
http://dx.doi.org/10.3390/e20120953


 

 

Figure 3. The two solutions of the non-dimensional refrigerant temperatures function on s̃T for the 

case with imposed COP and s̃i constant. 

 
(a) 

 
(b) 

Figure 4. Imposed COP and s̃i constant - sensitivity study with respect to COP (a) Non-dimensional 

refrigeration load for the two regimes; (b) Non-dimensional total entropy production for the two regimes. 

A sensitivity study with respect to COP was performed. It revealed the possible range for 

system variables and the associated performances. For the maximum refrigeration load regime, as 

higher COP values constraint the operation, as lower the refrigerating loads are and the range for 

refrigerant temperature becomes narrower, as emphasized by red upper curves in Figure 4a. For the 

minimum total dissipation regime (blue down curves in Figure 4a), the higher COP is imposed, the 

higher refrigerating load is. This particular behavior of the system is explained by the refrigerant 

temperature variation and heat exchanger inventory distribution in terms of CTQL,gen and CTQH,gen 

associated to this solution of the equations system. Also one might notice that when the system 

operates at an imposed COP value, there is a certain refrigerant temperature θL leading to a 

maximum value of the refrigerating load. The corresponding total entropy production is presented 

in Figure 4b. 
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Figure 5. Imposed COP and s̃i constant - sensitivity study with respect to s̃i. Non-dimensional 

refrigeration load for the two regimes. 

The effect of internal entropy rate s̃i on system variables and performances was studied, too. Its 

value is closely related to the built machine. Figure 5 reveals that higher s̃i values are accompanied 

by a narrower range for system variables and obviously lower performances. It is interesting to 

notice that when operating at higher values of the refrigerant temperature θL, the effect of s̃i is more 

reduced as emphasized by the curves tangent region in the right-hand-side of the plot. Contrary, its 

effect is very important in the region of lower refrigerant temperatures – left-hand-side of the curves. 

 

 

Figure 6. Maximum refrigeration load for a given set of COP and s̃i constant values. 

Figure 6 presents the maximum values for the refrigeration load that could be achieved for a 

given set of COP and s̃i values. It also emphasizes the effect of s̃i on the possible operating range of 

the system under these constraints. Lower s̃i values let the system operates on a wider range of COP 

values. Increasing s̃i values limits the system performances in terms of achievable COP and, 

diminishes the maximum refrigeration load attainable limit (the upper curves) for a given COP 

value. 

3.1.2. Non-linear heat transfer laws 
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In Figure 7 one might analyze the effect of different nature of heat transfer laws at the source 

and sink on the non-dimensional refrigerating load (Figure 7a) and total entropy production (Figure 

7b). Symmetric and non-symmetric combinations of exponents nH and nL have been chosen. The 

value of 3 corresponds to a phase change process. The nature of the considered heat transfer laws 

affects the optimum values of system parameters for obtaining maximum system performances and 

also the magnitude of system performances. As revealed by Figure 7a, a phase change process at the 

cold source (nL = 3) involves lower refrigerating loads and shifts the maximum achievable one 

towards lower temperature values; the peak of the curves is shifted towards left with respect to the 

linear case (nH = nL = 1). By constraining the operation at a COP value of 0.4 leads to a maximum 

achievable non-dimensional refrigerating load of about 0.28 in the case of linear heat transfer laws, 

and 0.06 respectively for the case of phase change processes at both reservoirs. The justification relies 

on the temperature difference between the two heat sources and the refrigerant that also depends on 

the heat transfer law, becoming lower for the phase change processes. 

We also notice that the nature of the heat transfer law influences the range for possible values of 

the system variables, especially in the case of phase-change processes. 

 

 
(a) 

 
(b) 

Figure 7. Imposed COP and s̃i constant - sensitivity study with respect to heat transfer laws nature at 

both reservoirs (a) Non-dimensional refrigerating load; (b) Non-dimensional total entropy 

production. 

A sensitivity study with respect to COP values associated to different combinations of heat 

transfer laws emphasize the results obtained in Figure 8. One might notice that the different 

considered combinations of exponents nH and nL lead to different possible ranges for COP as a 

constraint. Maintaining the same settings for the machine as previously (CTQT,gen = 2, θLS = 0.87,      

s̃i = 0.005), one observes that: 

• in the case of linear heat transfer laws at both reservoirs, the COP values could be imposed up 

to a maximum value of 2.2 (Figure 4);  

• when a phase change process in considered at the cold source (Figure 8a-b), the maximum 

possible COP is about 0.9; 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. COP and s̃i constant constraints - sensitivity study with respect to heat transfer laws nature 

at both reservoirs for different combinations (nH, nL). 

• if the phase change process in considered at the hot sink (Figure 8c-d), the maximum possible 

COP is about 1.1; 
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• while in the case of phase change process at both reservoirs (Figure 8e-f), the COP is limited to 

0.5. In fact, this is the reason for which a value of 0.4 was considered for COP in the simulations 

presented in Figure 7. 

 

 
(a) 

 
(b) 

 
(c)  (d) 

Figure 9. Imposed COP and s̃i constant – non-dimensional refrigerating load for different 

combinations of heat transfer laws at both reservoirs (nH, nL). 

Figure 9 presents the combined effect of heat transfer laws and s̃i constraint values on the 

non-dimensional refrigerating load and possible range values of refrigerant cold temperature. The 

first observation regards the s̃i constraint values. Linear heat transfer laws allow the system to 

operate at higher internal irreversibilities (Figure 9a) when needed, while a phase change process 

occurring at a heat source limits the operation to lower internal irreversibilities (Figure 9b-c). The 

most restrictive case is the one at which phase change processes occur at both reservoirs (Figure 9d), 

for which the maximum acceptable constraint in terms of s̃i is about 0.015 under the other given 

settings (CTQT,gen, θLS). The second observation refers to the range of achievable θL values. The limit 

case of endoreversible operation (s̃i=0) is obviously the most generous in all cases, while the most 

restrictive one is the case of phase change processes occurring at both reservoirs. For a given value of 

s̃i=0.04 for example, the linear case allows θL to be obtained from 0.4 to 0.9 (Figure 9a). When phase 

change occurs at the cold source (Figure 9b), θL is limited to the range 0.42-0.58, while if the phase 
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change occurs at the hot sink (Figure 9c), the range is 0.55-0.81. The four combinations of heat 

transfer laws (Figure 9d) do not allow at all the system operation in this case. 

The above results contribute to the understanding of the system limits in operation under 

different constraints and allow the engineer to choose the most convenient variables in certain 

circumstances. 

3.2. Imposed refrigeration load  

Similar to the previous case, a numerical simulation was carried out when imposing the 

refrigeration load instead of COP. The considered imposed values for the non-dimensional 

parameters are q̃L = 0.1 and s̃i = 0.005. The other parameters have the same values, namely θLS = 0.87 

and CTQT,gen = 2. 

This time the system of equations reveals only one physical solution θL and θH. This solution 

corresponds to maximum COP operating regime and in the same time to minimum total entropy 

production one, as proved before (the extrema in both regimes correspond to the same optimum 

values of system parameters). Results are further presented for the case of linear and non-linear heat 

transfer laws. 

3.2.1. Linear heat transfer laws 

For the case of linear heat transfer laws, the results are plotted in Figure 10. One might notice a 

large range for the refrigerant cold non-dimensional temperature θL and the existence of an optimum 

value corresponding to minimum non-dimensional power consumption w ̃ and minimum total 

entropy production s̃T (Figure 10a). This optimum value leads also to maximum COP as revealed by 

Figure 10b. Numerically, this point tends to equal distribution of CTQ between sources, namely 

CTQL,gen = CTQH,gen. The results are similar to the previous case where the imposed value of COP leads 

to an optimum value of θL corresponding to maximum q̃L. 

In Figure 11 the non-dimensional temperatures θL and θH are plotted versus dimensionless total 

entropy production s̃T. Obviously, the cycle operating between minimum difference in refrigerant 

temperatures is accompanied by the minimum total dissipation (left extrema in Figure 11). As this 

difference increases, the total dissipation increases. 

 

 
(a) 

 
(b) 

Figure 10. Imposed q ̃L and s̃i constant (a) Non-dimensional energy rates and total entropy 

production; (b) COP variation with respect to θL. 
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Figure 11. Non-dimensional refrigerant temperatures at hot and cold reservoirs for the case of 

imposed q ̃L and s̃i constant. 

A sensitivity study with respect to the refrigerating load emphasizes the variation range for 

dimensionless cold refrigerant temperature θL limiting the values of COP (Figure 12a). The behavior 

is similar to the one presented for the previous case in Figure 4a limiting the values of q̃L when 

imposing COP. For each imposed q̃L value, an optimum θL value exists for which the system COP is 

maximum. Higher values of constraint refrigeration load q̃L diminishe the COP values and shift the 

maximum COP towards lower cold refrigerant temperature values θL. For the chosen set of system 

parameters, a dimensionless refrigeration load of 0.3 is the maximum attainable in the range of 

0.35-0.62 for θL values. The internal entropy production effects are emphasized in Figure 12b. The 

most important effect is noticed on limiting the COP values, rather than limiting θL. 

 

 
(a) 

 
(b) 

Figure 12. COP variation for the case with imposed q̃L and s̃i constant (a) Sensitivity with respect to 

dimensionless refrigerating load; (b) Sensitivity with respect to dimensionless internal entropy 

production. 
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(a) 

 
(b) 

Figure 13. q̃L influence: (a) Dimensionless energy rates and COP variation – sensitivity with respect to 

q ̃L; (b) Dimensionless consumed power versus maximum achievable COP. 

Figure 13 presents the variation of maximum COP values and the corresponding minimum 

energy rates and total entropy dissipation with dimensionless refrigerating load. A maximum value 

among the COP maxima is obtained for q̃L = 0.04 in the given conditions. These types of plots could 

be used to set the system operating regimes for maximum performances under some imposed 

constraint. Figure 13b emphasizes the variation of dimensionless consumed mechanical power with 

maximum COP, at logarithmic scale, for increasing q̃L values. This plot puts into evidence that the 

chosen operating regime is a trade-off between COP and refrigerating load q̃L, for high value of q̃L. 

The lower part of the curve corresponds to low values of q̃L and w ̃, and the value of maximum COP 

appears as a transition point. 

3.2.2. Non-linear heat transfer laws 

The effect of different combinations of heat transfer laws on the system COP is emphasized in 

Figure 14. The most favorable combination from COP point of view is the case of linear heat transfer 

laws at both sides, while the most constrainable is the one considering phase change processes at 

both sides. These two combinations constraint the COP values and also the range for allowable θL 

values. 

 
Figure 14. COP variation for the case of imposed q ̃L and s̃i constant - sensitivity study with respect to 

heat transfer laws nature at the source and sink. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

(e) 

 
 

(f) 

Figure 15. COP variation for the case of imposed q ̃L and s̃i constant, for different combinations of heat 

transfer laws - sensitivity study with respect to q ̃L and s̃i. 

Figure 15 presents a sensitivity study with respect to q̃L and s̃i values associated to different 

combinations of heat transfer laws. This study is similar to the one presented in Figure 8 when 

imposing COP instead of q̃L. One might notice that the different considered combinations of 
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exponents nH and nL lead to different possible ranges for q̃L as a constraint and for θL as control 

variable. Maintaining the same settings for the machine in all cases (CTQT,gen = 2, θLS = 0.87, s̃i = 0.005), 

one observes that: 

• in the case of linear heat transfer laws at both reservoirs, the q̃L values could be imposed up to a 

maximum value of about 0.3 (Figure 12a); the limits in θL are quite large and the θL values are 

naturally decreasing as q̃L decreases; 

• when a phase change process in considered at the cold source (Figure 15a-b), the maximum 

possible q̃L is about 0.15, half of the above-mentioned value; also the limits for θL values are 

much reduced; 

• if the phase change process in considered at the hot sink (Figure 15c-d), the maximum possible 

q̃L is about 0.6, so twice with respect to the linear case; the limits for θL values are comparable to 

those obtained for the linear case; 

• while in the case of phase change process at both reservoirs (Figure 15e-f), the q̃L is limited to 

0.35, and thus the effects of the two phase change processes are cancelling each other when 

comparing to the linear laws; θL values are more reduced in this case. 

One might deduce from these results that when a system is supposed to undergo a deep cooling 

process, the nature of the heat transfer law is very important. In this regard, Figure 16 reveals the 

effect of chosen heat transfer law for such applications, when the required dimensionless 

refrigerating load is more important, here q̃L = 0.3. 

 

 

Figure 16. COP variation for the case of imposed q ̃L and sĩ constant - sensitivity study with respect to 

heat transfer laws nature at the reservoirs. 

One might notice that for this application, the best alternative is to choose a linear heat transfer 

law at the sink and a phase change process at the hot source (nH = 3, nL = 1). This combination leads to 

maximum COP for a required cold temperature and also it allows the system operation over a wider 

range of θL values. From Figure 15c one may also notice that this combination ensures the system 

operation at heavier refrigerating loads. 

4. Conclusions-perspectives 

A general model for the study and optimization of irreversible refrigeration Carnot-like 

machines was presented. The study started with machines optimization under different constraints 

and ended with important aspects related to the intrinsic phenomena affecting the systems 

operation.  
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The results confirm that the First and Second Law of Thermodynamics are very useful tools in 

optimization problems under constraints. 

The system limits in operation under different constraints were emphasized from the point of 

view of possible values for system control variables (such as θL), for imposed constraint (COP or q̃L) 

and achievable performances (q̃L or COP, s̃T, other dimensionless energy rates). Moreover, the results 

are useful in deciding the most convenient values and heat transfer laws in particular circumstances 

and for specific applications.  

The above results contribute to the understanding of the system limits in operation under 

different constraints and allow the engineer to choose the most convenient variables in given 

circumstances.  

Optimal variables are found for the best performances that the system could achieve under 

specified constraints. Also the limits of the system operation are determined. 

Further development of the model for other constraint (imposed w̃) is made. Also, a 

comparison of the direct and reverse machine models and results are under consideration. It seems 

very promising and gives a new perspective on their optimization by an unified approach. 
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