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Abstract: Several optimization models of irreversible reverse cycle machines have been developed
based on different optimization criteria in the literature, most of them using linear heat transfer
laws at the source and sink. This raises the issue how close to actual operation conditions they are,
since the heat transfer law on the phase-change processes is dependent on AT This paper
addresses this issue by proposing a general model for study and optimization of thermal machines
with two heat reservoirs applied to a Carnot-like refrigerator, with non-linear heat transfer laws
and internal and external irreversibility. The optimization was performed using First and Second
Law of Thermodynamics and Lagrange multipliers method. Thus, several constraints were
imposed to the system, also different objective functions were considered, allowing finding the
optimum operating conditions, as well as the limited variation ranges of the system parameters.
Results show that the nature of the heat transfer laws affects the optimum values of system
parameters for obtaining maximum performances and also their magnitude. Sensitivity studies
with respect to system several parameters are presented. The results contribute to the
understanding of the system limits in operation under different constraints and allow choosing the
most convenient variables in given circumstances.
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1. Introduction

The second half of the last century saw the emergence of a new branch of Thermodynamics,
called Thermodynamics in Finite Time, due to the process duration that was considered by the heat
transfer rate [1,2]. The corresponding approach emphasized a maximum power regime [3] for an
endo-reversible, but exo-irreversible engine. The engine efficiency at maximum power regime is less
than the Carnot cycle one, and it introduced the particular form of the “nice radical”.

Since then, quite a lot of works analyzing the exo-irreversible engines have been developed
[4,5]. Generally, they have considered only the external irreversibility of the thermal machine, which
is due to the heat transfer at finite temperature difference between the sources and the working

fluid. Also, mainly the linear form of the heat transfer law was used.

The same approach applied to the study of heat pumps shows no more optimum for the useful
effect (heat flow delivered at the hot end), because the temperature of the working fluid has no
upper limit imposed on the hot end [6]. The same happens for the refrigerating machine, where
there is no lower limit to the cold end (as for thermal engine).

To the first reported work (to our knowledge) [6], other papers followed [7-9] dealing with heat
pump or refrigerating machine optimization, but introducing an additional constraint (mostly
mechanical power or useful effect imposed). The optimization is not reserved only to vapor
mechanical compression machines, but it has been extended since that time to the trithermal and
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quadrithermal ones [10-12]. However, one notes that most of the reported studies deal with
thermostats at sources and sinks and linear heat transfer laws.

Proposals have been made to extend the analysis by using other forms of the heat transfer law
[13-15].

Further progress has been made by introducing an irreversibility factor (ratio), most often
constant [16], that accounts for the internal irreversibility of the machine (endo-irreversibility). A
step further [17] represents the internal irreversibility considered in the model as internal entropy
production rate, S, . This method is preferred to the one of ratios, as we still see in recent work [18].
It provides a more general approach compared to the use of the irreversibility factor [16,19-20]. Also,
it aims the entropic analysis of machines and processes and is more and more important as an
instrument getting modeling closer to real operation [21-27].

The present work proposes a general model of study and optimization of irreversible
Carnot-like refrigerating machines and extends the previous studies [28-31]. In terms of
optimization, it is well known that several objective functions can be chosen: maximum of coefficient
of performance (COP), minimum of energy consumption, minimum of total entropy production, or
economic objectives [32]. Environmental concerns have also become predominant [33], and recently
led to the introduction of a new objective called ECOP (Ecological COP) [34]. Two objective
functions will be considered here for each of the two studied cases: maximum refrigeration load and
minimum total entropy production rate when COP is imposed, respectively, maximum COP and
minimum total entropy production rate, for imposed refrigeration load.

The mathematical approach includes the most general laws of science, namely the First and
Second Laws of Thermodynamics. The equations of heat transfer at the hot and cold side of the
machine are modeled by non-linear functions of the temperature difference between the reservoirs
and the cycle working fluid. The internal irreversibility is introduced by the method of internal
entropy production rate, above mentioned. Three variation laws with temperature for the internal
entropy production are considered in an attempt to approach analytical treatment of actual
operation.

The purpose of this work is to study the influence of the non-linearity of the heat transfer law
on the performance. This will extend the model validity beyond the convective and radiative heat
transfer laws [13]. The results highlight the existence of optimal operating regimes of the reverse
cycle machine subjected to dimensional and operating constraints. The sensitivity study with respect
to the model parameters provides interesting results related to the limitation of the variation range of
the variables of the model, and different operating regime of the refrigeration machine.

The new and important results reported here are presently

2. Materials and Methods

2.1. Proposed application study

The model of study and optimization of Carnot-like machines is applied here to an irreversible
refrigeration machine. Its architecture and the corresponding irreversible cycle consisting of two
isothermal processes and two adiabatic irreversible ones are illustrated in Figure 1. The
irreversibility is present in the T-S diagram by the entropy production on the adiabatic processes
(compression and expansion), which is mainly due to internal losses. On the isothermal processes, it
is marked by the different heat transfer compared to the corresponding reversible processes (also
more reduced at the source and larger at the sink).

Usually, the internal irreversibility of the machine, introduced in the model as a parameter, is
represented by the corresponding internal entropy production term, S;. It takes into account the

internal irreversibility generated on each cycle process, summing the throttling losses, friction ones,
etc. To this one an external irreversibility is added, being generated by finite temperature heat
transfer processes between the working fluid and the heat reservoirs.
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(a) (b)

Figure 1. Irreversible Carnot-like refrigeration machine: (a) Scheme; (b) Irreversible cycle in T-S
diagram.

As shown in Figure 1, the two heat reservoirs are thermostats, of constant temperatures Trs and
T1s, the first one being actually the environment. The refrigeration machine is considered operating
in steady state regime.

2.2. Mathematical model

The model of study and optimization of reverse cycle machines is developed by using the most
general laws in Thermodynamics, the First and Second Law, to which generalized forms of heat
transfer laws applied to the source and sink are added.

By taking account of the sign convention adopted here, that considers the heat transfer rate
positive when entering the cycle, and negative for leaving it, and the consumed work transfer rate
(power request) as negative, the expression of the First Law of Thermodynamics can be written as:

W=0y+Qp, )
with W — mechanical power supplied; Q— heat transfer rate rejected by the working fluid at the

source (hot heat exchanger); Q, - refrigeration load.

When looking the machine irreversibility, the Second Law of Thermodynamics takes different
expressions, as applied to two possible systems. Thus, once considering only the internal
irreversibilities (endo-irreversible machine) by the internal entropy production term, it comes:

Q_H+&+S.i:01 (2)
TH TL

with T — temperature of the working fluid at the machine hot temperature side; T. — temperature of
the working fluid at the machine low temperature side; S;— entropy production due to internal

irreversibilities of the machine.
Then, when the whole system is considered (cycle and the two heat reservoirs), the total
entropy production term appears in the Second Law expression:

6u, 00

+5.=0, (3)
THS LS T

with Ths — source temperature at the machine hot part; Tis — source temperature at the machine cold
part; S; — total entropy production (internal and external).

For the heat transfer rates present in the above equations, two forms of non-linear heat transfer
laws between the heat reservoirs and working fluid are considered:
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QH = KH,gen (THS - TH)nH (_ 1)nH71 ; QL = KL,gen (TLS - TL )nL s (4)

QH =Ky, gen (TIZEI _TIZH) ; QL =Ky, gen (Tfﬁ -1 ), )

where ni is the exponent of the heat transfer law (H — hot sink or high temperature side, L — cold
source or low temperature side).

In practical application these non-linear forms correspond to phase-change heat transfer (eq.
(4), with ni = 3), respectively radiation heat transfer (eq. (5) with ni = 4)). One note that making ni=1,
one gets the linear approximation, so called, convective heat transfer law or Newton’s law.

For the refrigeration machines performance evaluation, according to its definition, the
coefficient of performance is:

COP = & . (6)
i

By combining the two expressions of the Second Law, given by eq. (2) and (3), the total entropy

production rate results as:

I
TH TH S

1 1

QT

STzsi+QH( ) (7)

The three positive terms contained in the above expression accounts for different type of
irreversibility, namely (1) the internal one by S;, and (2) the external one due to finite temperature

heat transfer processes between the heat reservoirs and working fluid.

Without insight in the internal irreversibility mechanism of machine processes, it is difficult to
establish a variation law for the internal entropy production. Thus, in order to provide generality to
the model, the following approaches were considered [35,36]:

a) constant

Si = const , (8)
b) linear variation law with working fluid temperature difference:
5; =CO7’5t(TH*TL)/ )

c) logarithmic variation law with working fluid temperature ratio:

. T
S; = const (lnT—H). (10)
L

2.3. Dimensionless model

The same concern for developing a general model for the optimization of refrigeration
machines and easily adapted to different characteristics and constraints of the studied case, led to
the adoption of the non-dimensional form of the equations. Therefore, the following terms and
expressions will be further used:
¢ Dimensionless temperatures are expressed relative to the reference temperature Ths which is

also the ambient one:

Tis Ty

T
7 eH:_ 7 eL__L
THS

e = - .
o Tys

= Tos (11)

*  Dimensionless energy fluxes are expressed relative to the product ric,T};g, where mc, is the

heat rate capacity of the working gas corresponding to the end of the compression process;
- at the sink or machine cold part (positive):
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L Qo .
= e Ty =T Bus=0 )" (1)

- at the source or machine hot part (always negative)

~ QH ny—1
=———=CT 1-0, )" (1",
qH e, Tigs QH,gen( H)n -1 (12)
- power supply:
W -
i)=—,| | (13)
nc,Tys  COP
e  Non-linear thermal conductances are expressed relative to the product MCPTH(S'I” v
- total one:
@A), T
CT =
QT,gen I’th (14)
- of the two heat exchangers:
(uA), s
CT =",
QL,gen " Cp (15)

@A), i

CTQ = 1
H, gen Cp ( 6)
* Internal and total entropy production terms use the same heat rate capacity, ric,, as reference:
5= RS 17)-(18
S, =— , St = — . _
e, T mic, (17)-(18)

e The dimensionless constraint relative to a fixed total heat exchanger conductance will have as
equivalent:

CTQT,gen = CTQH,gen + CTQL,gen ’ (19)

which will be considered as optimization constraint finite parameter, while CTQH,er and CTQLen are
system optimization variables.

According to the adopted sign convention and the refrigeration machine scheme, the
temperatures hierarchy is Tr< Tis < Tus < Th, that imposes the following constraints:
OL<OLs<Ous<Ou, Ous=1,
(20)
gy <0 , g.>0, w<0, 5>0.

These constraints will always be valid for any refrigerator being studied, regardless of the

presence of any other restrictions imposed by the user or the machine design.

2.4. Optimization method and studied cases

The dimensionless variables that will be used in the optimization procedure are ¢ and CTQLgen,
61 and CTQrgen, while the considered parameters are: éis, CTQr, §;, and the imposed performance

characteristics.
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The optimization is achieved for two cases where different performances are imposed. For a
refrigeration machine, the most important performances are the COP and the refrigeration load.

The first studied case corresponds to an imposed value of the COP, together with an imposed
internal entropy production rate. The objective functions could be: maximum refrigeration load,
minimum total dissipation (minimum total entropy production), or minimum power consumption.

Among them, results will be reported here when maximum refrigerating load is sought,
respectively, minimum total entropy production rate.

The second optimization is done for an imposed refrigerating load, together with an imposed internal
entropy production rate. Thus, other objective functions will be sought, such as maximum COP,
minimum total dissipation, or minimum power consumption. Again, only the first two objective
functions previously cited will be considered in this analysis, for the sake of comprehensible
presentation but the method is similarly applied.

The optimization procedure uses the Lagrange Multipliers Method that will lead to a system of
equations for each objective function, and its solution will provide optimal values of the control
variables of the system, €, CTQrgen, 61, CTQHgen, leading to the corresponding system performances
achieved in the considered constraint operation. Thus, the Lagrangian function corresponding to the
present study is expressed as:

L:FO+/\1C1 +/\2C2, (21)

where: FO is one of the considered objective functions stated above; A1 and A2 are the corresponding
Lagrange multipliers; C: and C: are the problem constraints represented by the First Law of
Thermodynamics including the imposed performance characteristic constraint and Second Law of
Thermodynamics applied to the cycle including the internal entropy production restriction.

The optimal values of the model variables are obtained by solving the following system of
equations:

oL )

dL dL
dvar )14>1177)ﬂ7’ - 4 x -

0 —=0.
e (22)

2.4.1. Imposed coefficient of performance

The First Law of Thermodynamics combined with eq. (13) and eqgs. (11)-(12) that takes into
account the expressions of generalized heat transfer laws provides:

1+COP

CTQx, gen (L0 ) 1yt + CTQr gen (eLS ~0, )" coP

0. (23)

By generalizing the above expression, the first constraint equation (C1) of the model results as:

1+COP

CTQH,genf+ CTQL,gen W

£=0, (24)

where the following notations of the new functions were used:

f={-0, ) ot
£=(0,5-0,)"
One notes that fis a function of 01 only, while £ is a function of 6: only.

The Second Law of Thermodynamics combined with egs. (11)—(12) and applied to the cycle
gives:

, (25)

CTQx, gen (-0, (1 . CTQL gen (050, )" +3 -0, (26)

and considering the two function introduced by eq. (25), the second constraint (C2) of the system
results as:
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S
CTQH,gen é-'-CTQL,gen a-'- 8= 0. (27)

One notes that g is a function of both 61 and de 01 according to the three variation laws adopted
for the entropy production rate dependence on temperature, eq. (8)—(10).
1. Refrigeration load as Objective Function

The first objective function considered in the optimization procedure is the refrigeration load:
FO=gq, = CTQ, en (eLS -6 yL =CTQy, gen £. (28)
The Lagrangian is expressed in this case as:

CTQp g+ A1 [CTQy gy ~CTQy ) £+CTQy g, £+ COP)/ COP|+
(29)
+ Az[(CTQT,gm —CTQL,gen )f/GH + CTQL,gen E./GL + g]= 0

The derivatives indicated in (22) are calculated for the considered variables (CTQLgen, OH, O1) and
the two multipliers (A1, A2), as follows:

oL

—3CTQL,gm =0: E+/\1[*f+5(1+COP)/COP]+)\2(—f/eH +£/0,)=0, (30)

oL 0, f_
a0 1O -cra g Jreaalerar o -e1a ) P g] <0, e

where f and ¢’ are the derivatives of function f and g respectively, with respect to Ox;

08¢

oL 1+COP
- S—+gL) =0, ()
L

E_O: CTQp g €+ A1 CTQLgon —2 50— €+ A2 (CTQ,

where £’ and gt are the derivatives of function £ and g respectively, with respect to 0t;

oL 1+COP
—a/\l =0: (CTQT,gen - CTQL,gEn )f + CTQL&E" CcOP £=0, (33)
oL £
O 0: (CTQT,M =CTQp gen )GL +CTQp, gen o +g=0. (34)
2 H L

By combining egs. (30)-(32) and after terms rearrangement one equation results that associated
with egs. (33), (34) and (19) leads to a system that is solved by Newton-Raphson method with respect
to CTQLgen, On and Or, since CTQmgen is expressed by the last equation of the system.

£ few & &g
e%if, CTQH,genfl 9%6' CTQL,geng

1+COP

CTQH,genf+ C—PCTQL,gen& =0

O

(35)
&
CTQH,gen ei-'_ CTQL,gen e_+ 8= 0
H L

CTQH,gen = CTQT,gen - CTQL,gen

Note that the system has to be solved for each of the three non-dimension functions g
corresponding to the internal entropy production rate, egs. (8)—(10).

2. Total entropy production rate as Objective Function
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One considers here a second objective function, the total entropy production rate, expressed as:

-~ 4 £
FO =57 =~fj ~ 5/~ = ~CTQut g f ~ CTQu g 5~ (36)
LS LS

The Lagrangian becomes in this case:

&
- (CTQT,gen =CTQL gen )f —CTQL gen 0. +

LS
A[CTQr g~ CTQ g )£ +CTQ, g, 1+ COP)/COP (37)
+ /\2 CTQT,gE‘rl — CTQL,gen f/eH + CTQL,gL’n é/eL + g]: 0

The derivatives corresponding to the three variables (CTQLgen, On, 1) and the two multipliers
(A1, A2) are:

%fTLLW=O: feimml (feioste) +a, - é+e—i )-0, (39)
a‘z)_il 0 (CTQr g~ CTQL o )y 1)+ A5 [CTQr g - CTQL )OHGJ; Ligal -0, @9
;;LL o CT%Z,LMS ACTQ, o % £+A, [CTQnge,, %{% ¢,] =0, (40)

where f, g’4, &’ and ¢t have the same meaning as in eq. (31) and (32);
:TLI =0: (CTQT,gm =CTQy, gen )f +CTQy gon ! Eg(;l’ £=0, (41)
aé/\_Lz =0: (CTQT,gen —CTQy, gen )é +CTQy gon % +g=0. 42)

Similar to the previous case, the corresponding equation system results as:

2o fdw & &
6%{](' CTQH,genf’ B%EJ’ CTQL,gené’

1+COP
TS *gop (1m0 )
3
CTQ g ei +CTQy gy 5+ 8 =0
H L

CTQH,gﬁn = CTQT,gen - CTQL,an

The comparison of the systems from eq. (35) and (43) shows that they are identical, meaning
that no matter the objective function is considered, the same system of equations results. Thus, the
optima of the two objective functions (maxima and minima, respectively) correspond to the same
values of the model variables resulting from the solution of the equation system. The interpretation
of this result lies on the fact that the total entropy production given by eq. (3) and written in
non-dimensional form becomes:

5 =Gy - g—; - (44)

By considering eq. (1) in non-dimensional form and eq. (13), eq. (44) is re-written as:

1 1
———1+—). (45)

Sr=-0Ceop ™17

d0i:10.20944/preprints201811.0173.v1
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As COP and 61 are imposed for the system operation, the optimum for g will lead to optimum
for stin the same time. More specific, maximum of ql will lead to minimum of st, since the minimum
of entropy production is directly correlated to minimum of consumed power, which at its turn is
linked by eq. (13) to maximum of 4. for imposed COP.

2.4.2. Imposed refrigeration load

The same optimization method is applied in this case, but the terms in equations are expressed
function on the imposed non-dimensional refrigeration load, qNL, instead of COP. Thus, the first
constraint equation (C1) of the model, given by eq. (24) in the previous case, becomes:

ﬁL - CTQL,gen E =0, (46)

while the second constraint equation (C2) remains the same as in the previous case of imposed COP,
given by eq. (27).

The objective function FO in eq. (21) is either the COP, or the non-dimensional entropy
production st. The Lagrangian is computed and a similar system of equations as eq. (35) or (44) is
obtained and solved with respect to the same variables CTQLgen, OH, OL:

f2o fdw & &
Ohf CTQugnf O CTQp g
ﬁL _CTQL,gen £=0

(47)

3
CTQu, g ei+ CTQ, g5~ +8=0
H L

CTQH,gen = CTQT,gen - CTQL,gm

3. Results

The optimization method described above leads to a system of non-linear equations that is
numerically solved in Matlab by applying Newton-Raphson method. The system parameters set to
constant values in the numerical simulation are: total coefficient of heat transfer CTQrgen = 2,
non-dimensional low source temperature Ors = 0.87 (corresponding to a temperature of the cold
source of -5°C in case of an ambient temperature of 35°C) and the internal entropy production s; for
which different cases have been simulated, as given by eq. (8)-(10), where the “const” term was set to
a constant value of 0.005. Since the obtained results are similar for the three variation profiles, for the
sake of comprehensibility, only the results for constant internal entropy production will be further
presented. The other constant values considered correspond to the imposed constraints, such as
coefficient of performance COP or non-dimensional refrigeration load qL.

The system is solved with respect to the unknown solutions CTQLgen, O and On. The obtained
physical solutions allow computing the system performances in terms of g or COP and the other
non-dimensional energy rates gy, w. Also, the total entropy production st is computed.

The results are presented for the two considered cases, namely imposed COP and imposed
refrigeration load, respectively.

3.1. Imposed coefficient of performance

For the numerical simulation, it's value has been set to COP = 1.5 and for the internal entropy
production si = 0.005 was considered. After solving the system of equations, two physical solutions
O and On are obtained. These two solutions correspond to two different operating regimes, namely
one of maximum refrigerating load, denoted by subscript 1, and the other leading to minimum total
entropy production, denoted by subscript 2 in the figures. As it was analytically proved, the extrema
in both regimes correspond to the same optimum values of system parameters. Results are further
presented for the case of linear and non-linear heat transfer laws.
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3.1.1. Linear heat transfer laws

In Figure 2a non-dimensional energy rates and total entropy production are presented for the
two operating regimes function on the control variable 6:. The upper part of the plots corresponds to
the maximum refrigerating load regime, while the lower one corresponds to the minimum total
dissipation regime. One might notice that the most convenient operating parameters are those
located in the left part of the maximum values, since here the consumed power and total dissipation
are lower for lower cold source temperatures. The non-dimensional refrigerating load is plotted
versus 0L generating loop curves as shown in Figure 2b. One chosen value for the refrigerant
temperature 0. might indicate the operation at two refrigerating loads, on the upper part and the
lower one respectively.

0.25 —— . T_ 0.14 . . . —
0Ls—0.87 nH—1, nL—1 q 0L5—0.87
0.2 _CTQT,gen=2‘“--..... ) === ISWI 0.12 CTQT,gen=2_
) * - = COP=1.5
s,=0.005 ]

nH=1; nL=1_

---——’

0.7 0.75 0.8 0.85 0.9
0, I
(b)

Figure 2. Imposed COP and si constant: (a) Non-dimensional energy rates and total entropy

production for the two operating regimes; (b) Non-dimensional refrigerating load for the two
operating regimes.

Also, one desired value of the refrigerating load could be associated to a refrigerating
temperature closer to the reference one (ambient) as seen in the right-hand-side of the plot, or
contrary to a lower temperature value in the left-hand-side. The choice of the operating regime
depends on the system settings and the other variables that are behind (01, CTQLgen, etc).

Figure 3 presents a T-s like diagram. The possible range values are emphasized for the
refrigerant temperatures at the hot and cold reservoirs. Also one might notice that the second
solution of the system of equations (6r2, fr2) corresponds to the lower dissipation rates, but also to
the lower energy rates. Thus, the second solution might not be of interest from the operation regime
point of view.
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14 T T -
0L8-0.87
cTQ =2
€H1 T,gen
1.2}
1y
| H2 COP=1.5
o - s.=0.005
< 1
nH—1, nL—1
(i 0L1
0.8
\0L2
S—
0.6 ' ' '
0 0.02 0.04 0.06 0.08

s; [

Figure 3. The two solutions of the non-dimensional refrigerant temperatures function on st for the
case with imposed COP and s; constant.

041 _.  _ - 0.7 1
nH—1, nL—1 0L3—0.87 nH=1; nL=1
COP=0.1 CTQr gen™2 0.6
0.3
o 0.5
N
= T 047
0.2 <
U)'_ 03¢+
0.2}
0.1
011
0 0
0 0.2 049 [106 0.8 1 0 0.2

Figure 4. Imposed COP and si constant - sensitivity study with respect to COP (a) Non-dimensional
refrigeration load for the two regimes; (b) Non-dimensional total entropy production for the two regimes.

A sensitivity study with respect to COP was performed. It revealed the possible range for
system variables and the associated performances. For the maximum refrigeration load regime, as
higher COP values constraint the operation, as lower the refrigerating loads are and the range for
refrigerant temperature becomes narrower, as emphasized by red upper curves in Figure 4a. For the
minimum total dissipation regime (blue down curves in Figure 4a), the higher COP is imposed, the
higher refrigerating load is. This particular behavior of the system is explained by the refrigerant
temperature variation and heat exchanger inventory distribution in terms of CTQrgen and CTQH,gen
associated to this solution of the equations system. Also one might notice that when the system
operates at an imposed COP value, there is a certain refrigerant temperature . leading to a
maximum value of the refrigerating load. The corresponding total entropy production is presented
in Figure 4b.


http://dx.doi.org/10.20944/preprints201811.0173.v1
http://dx.doi.org/10.3390/e20120953

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2018

d0i:10.20944/preprints201811.0173.v1

O L 1 1 1
06 065 0.7 0.7@L [p8 085 09

Figure 5. Imposed COP and siconstant - sensitivity study with respect to si. Non-dimensional
refrigeration load for the two regimes.

The effect of internal entropy rate si on system variables and performances was studied, too. Its
value is closely related to the built machine. Figure 5 reveals that higher s values are accompanied
by a narrower range for system variables and obviously lower performances. It is interesting to
notice that when operating at higher values of the refrigerant temperature 61, the effect of si is more
reduced as emphasized by the curves tangent region in the right-hand-side of the plot. Contrary, its
effect is very important in the region of lower refrigerant temperatures — left-hand-side of the curves.
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Figure 6. Maximum refrigeration load for a given set of COP and siconstant values.

Figure 6 presents the maximum values for the refrigeration load that could be achieved for a
given set of COP and si values. It also emphasizes the effect of si on the possible operating range of
the system under these constraints. Lower s values let the system operates on a wider range of COP
values. Increasing si values limits the system performances in terms of achievable COP and,

diminishes the maximum refrigeration load attainable limit (the upper curves) for a given COP
value.

3.1.2. Non-linear heat transfer laws
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In Figure 7 one might analyze the effect of different nature of heat transfer laws at the source
and sink on the non-dimensional refrigerating load (Figure 7a) and total entropy production (Figure
7b). Symmetric and non-symmetric combinations of exponents nr and 7. have been chosen. The
value of 3 corresponds to a phase change process. The nature of the considered heat transfer laws
affects the optimum values of system parameters for obtaining maximum system performances and
also the magnitude of system performances. As revealed by Figure 7a, a phase change process at the
cold source (nL = 3) involves lower refrigerating loads and shifts the maximum achievable one
towards lower temperature values; the peak of the curves is shifted towards left with respect to the
linear case (nu = n = 1). By constraining the operation at a COP value of 0.4 leads to a maximum
achievable non-dimensional refrigerating load of about 0.28 in the case of linear heat transfer laws,
and 0.06 respectively for the case of phase change processes at both reservoirs. The justification relies
on the temperature difference between the two heat sources and the refrigerant that also depends on
the heat transfer law, becoming lower for the phase change processes.

We also notice that the nature of the heat transfer law influences the range for possible values of
the system variables, especially in the case of phase-change processes.
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Figure 7. Imposed COP and si constant - sensitivity study with respect to heat transfer laws nature at
both reservoirs (a) Non-dimensional refrigerating load; (b) Non-dimensional total entropy
production.

A sensitivity study with respect to COP values associated to different combinations of heat
transfer laws emphasize the results obtained in Figure 8. One might notice that the different
considered combinations of exponents nx and nr lead to different possible ranges for COP as a
constraint. Maintaining the same settings for the machine as previously (CTQrgen = 2, 0Ls = 0.87,
si=0.005), one observes that:

e in the case of linear heat transfer laws at both reservoirs, the COP values could be imposed up

to a maximum value of 2.2 (Figure 4);

e when a phase change process in considered at the cold source (Figure 8a-b), the maximum

possible COP is about 0.9;
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Figure 8. COP and si constant constraints - sensitivity study with respect to heat transfer laws nature
at both reservoirs for different combinations (n, nt).

e  if the phase change process in considered at the hot sink (Figure 8c-d), the maximum possible
COP is about 1.1;
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e  while in the case of phase change process at both reservoirs (Figure 8e-f), the COP is limited to
0.5. In fact, this is the reason for which a value of 0.4 was considered for COP in the simulations
presented in Figure 7.
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Figure 9. Imposed COP and si constant — non-dimensional refrigerating load for different
combinations of heat transfer laws at both reservoirs (n#, nt).

Figure 9 presents the combined effect of heat transfer laws and si constraint values on the
non-dimensional refrigerating load and possible range values of refrigerant cold temperature. The
first observation regards the si constraint values. Linear heat transfer laws allow the system to
operate at higher internal irreversibilities (Figure 9a) when needed, while a phase change process
occurring at a heat source limits the operation to lower internal irreversibilities (Figure 9b-c). The
most restrictive case is the one at which phase change processes occur at both reservoirs (Figure 9d),
for which the maximum acceptable constraint in terms of si is about 0.015 under the other given
settings (CTQrgen, 6is). The second observation refers to the range of achievable 6. values. The limit
case of endoreversible operation (s=0) is obviously the most generous in all cases, while the most
restrictive one is the case of phase change processes occurring at both reservoirs. For a given value of
s=0.04 for example, the linear case allows 6 to be obtained from 0.4 to 0.9 (Figure 9a). When phase
change occurs at the cold source (Figure 9b), 6L is limited to the range 0.42-0.58, while if the phase
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change occurs at the hot sink (Figure 9c), the range is 0.55-0.81. The four combinations of heat
transfer laws (Figure 9d) do not allow at all the system operation in this case.

The above results contribute to the understanding of the system limits in operation under
different constraints and allow the engineer to choose the most convenient variables in certain
circumstances.

3.2. Imposed refrigeration load

Similar to the previous case, a numerical simulation was carried out when imposing the
refrigeration load instead of COP. The considered imposed values for the non-dimensional
parameters are g. = 0.1 and si = 0.005. The other parameters have the same values, namely 6is = 0.87
and CTQrgen = 2.

This time the system of equations reveals only one physical solution 6. and 6u. This solution
corresponds to maximum COP operating regime and in the same time to minimum total entropy
production one, as proved before (the extrema in both regimes correspond to the same optimum
values of system parameters). Results are further presented for the case of linear and non-linear heat
transfer laws.

3.2.1. Linear heat transfer laws

For the case of linear heat transfer laws, the results are plotted in Figure 10. One might notice a
large range for the refrigerant cold non-dimensional temperature 6. and the existence of an optimum
value corresponding to minimum non-dimensional power consumption w and minimum total
entropy production st (Figure 10a). This optimum value leads also to maximum COP as revealed by
Figure 10b. Numerically, this point tends to equal distribution of CTQ between sources, namely
CTQrgen= CTQHgen. The results are similar to the previous case where the imposed value of COP leads
to an optimum value of 6. corresponding to maximum 4.

In Figure 11 the non-dimensional temperatures 6. and 6x are plotted versus dimensionless total
entropy production st. Obviously, the cycle operating between minimum difference in refrigerant
temperatures is accompanied by the minimum total dissipation (left extrema in Figure 11). As this
difference increases, the total dissipation increases.

1 2
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0 0 : ‘ : :
0 1 0 0.2 0.4 0, [-10.6 0.8 1

(b)

Figure 10. Imposed q. and si constant (a) Non-dimensional energy rates and total entropy
production; (b) COP variation with respect to OL.
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Figure 11. Non-dimensional refrigerant temperatures at hot and cold reservoirs for the case of
imposed g1 and si constant.

A sensitivity study with respect to the refrigerating load emphasizes the variation range for
dimensionless cold refrigerant temperature 6. limiting the values of COP (Figure 12a). The behavior
is similar to the one presented for the previous case in Figure 4a limiting the values of q. when
imposing COP. For each imposed g: value, an optimum 6: value exists for which the system COP is
maximum. Higher values of constraint refrigeration load g1 diminishe the COP values and shift the
maximum COP towards lower cold refrigerant temperature values 6:. For the chosen set of system
parameters, a dimensionless refrigeration load of 0.3 is the maximum attainable in the range of
0.35-0.62 for 6. values. The internal entropy production effects are emphasized in Figure 12b. The
most important effect is noticed on limiting the COP values, rather than limiting 6:.
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Figure 12. COP variation for the case with imposed gz and §i constant (a) Sensitivity with respect to
dimensionless refrigerating load; (b) Sensitivity with respect to dimensionless internal entropy
production.
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Figure 13. g1 influence: (a) Dimensionless energy rates and COP variation — sensitivity with respect to
q; (b) Dimensionless consumed power versus maximum achievable COP.

Figure 13 presents the variation of maximum COP values and the corresponding minimum
energy rates and total entropy dissipation with dimensionless refrigerating load. A maximum value
among the COP maxima is obtained for g. = 0.04 in the given conditions. These types of plots could
be used to set the system operating regimes for maximum performances under some imposed
constraint. Figure 13b emphasizes the variation of dimensionless consumed mechanical power with
maximum COP, at logarithmic scale, for increasing qi values. This plot puts into evidence that the
chosen operating regime is a trade-off between COP and refrigerating load gz, for high value of 4i.
The lower part of the curve corresponds to low values of g and w, and the value of maximum COP
appears as a transition point.

3.2.2. Non-linear heat transfer laws

The effect of different combinations of heat transfer laws on the system COP is emphasized in
Figure 14. The most favorable combination from COP point of view is the case of linear heat transfer
laws at both sides, while the most constrainable is the one considering phase change processes at
both sides. These two combinations constraint the COP values and also the range for allowable 6.
values.

COP []

o
o

0 0.2 0.4y [1 0.6 0.8 1
L

Figure 14. COP variation for the case of imposed 4: and s constant - sensitivity study with respect to
heat transfer laws nature at the source and sink.
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Figure 15. COP variation for the case of imposed g1 and s constant, for different combinations of heat

transfer laws - sensitivity study with respect to g and s.

Figure 15 presents a sensitivity study with respect to q. and si values associated to different
combinations of heat transfer laws. This study is similar to the one presented in Figure 8 when
imposing COP instead of gi.. One might notice that the different considered combinations of
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exponents nn and 11 lead to different possible ranges for g as a constraint and for 6: as control

variable. Maintaining the same settings for the machine in all cases (CTQrgen = 2, 615 = 0.87, si= 0.005),

one observes that:

e in the case of linear heat transfer laws at both reservoirs, the g. values could be imposed up to a
maximum value of about 0.3 (Figure 12a); the limits in 6. are quite large and the 6. values are
naturally decreasing as q. decreases;

e  when a phase change process in considered at the cold source (Figure 15a-b), the maximum
possible qNL is about 0.15, half of the above-mentioned value; also the limits for 6r values are
much reduced;

e if the phase change process in considered at the hot sink (Figure 15c-d), the maximum possible
qr is about 0.6, so twice with respect to the linear case; the limits for 01 values are comparable to
those obtained for the linear case;

e while in the case of phase change process at both reservoirs (Figure 15e-f), the 4 is limited to
0.35, and thus the effects of the two phase change processes are cancelling each other when
comparing to the linear laws; 6. values are more reduced in this case.

One might deduce from these results that when a system is supposed to undergo a deep cooling
process, the nature of the heat transfer law is very important. In this regard, Figure 16 reveals the
effect of chosen heat transfer law for such applications, when the required dimensionless
refrigerating load is more important, here g = 0.3.
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Figure 16. COP variation for the case of imposed 41 and §i constant - sensitivity study with respect to
heat transfer laws nature at the reservoirs.

One might notice that for this application, the best alternative is to choose a linear heat transfer
law at the sink and a phase change process at the hot source (n# =3, n.=1). This combination leads to
maximum COP for a required cold temperature and also it allows the system operation over a wider
range of 0r values. From Figure 15c one may also notice that this combination ensures the system
operation at heavier refrigerating loads.

4. Conclusions-perspectives

A general model for the study and optimization of irreversible refrigeration Carnot-like
machines was presented. The study started with machines optimization under different constraints
and ended with important aspects related to the intrinsic phenomena affecting the systems

operation.


http://dx.doi.org/10.20944/preprints201811.0173.v1
http://dx.doi.org/10.3390/e20120953

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2018 d0i:10.20944/preprints201811.0173.v1

The results confirm that the First and Second Law of Thermodynamics are very useful tools in
optimization problems under constraints.

The system limits in operation under different constraints were emphasized from the point of
view of possible values for system control variables (such as 0), for imposed constraint (COP or 4L)
and achievable performances (4i or COP, s1, other dimensionless energy rates). Moreover, the results
are useful in deciding the most convenient values and heat transfer laws in particular circumstances
and for specific applications.

The above results contribute to the understanding of the system limits in operation under
different constraints and allow the engineer to choose the most convenient variables in given
circumstances.

Optimal variables are found for the best performances that the system could achieve under
specified constraints. Also the limits of the system operation are determined.

Further development of the model for other constraint (imposed w) is made. Also, a
comparison of the direct and reverse machine models and results are under consideration. It seems

very promising and gives a new perspective on their optimization by an unified approach.
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