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Abstract

A new type of ordinary differential equation is introduced and discussed,
namely, the time-dependent order ordinary differential equations. These
equations can be solved via fractional calculus and are mapped into Volterra
integral equations of second kind with singular integrable kernel. The solu-
tions of the time-dependent order differential equations smoothly deforms
solutions of the classical integer order ordinary differential equations into
one-another, and can generate or remove singularities. An interesting
symmetry of the solution in relation to the Riemann zeta function and
Harmonic numbers was also proved.

1 Introduction

It is rather the exception than the rule when large space-time scale complex sys-
tems with their self-organization properties and competition-cooperation cycles,
can be modeled with traditional, even nonlinear or stochastic, partial differen-
tial equations. The differential approach in modeling, very successful otherwise
over a range of hundreds of years of science, is tributary to two strict features:
dependence on given initial conditions, and evolution in a constant dimensional
phase space. In the real world however, the range of interaction between neigh-
bor sub-systems, and the amount of memory relevant for different phases of
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evolution, are in continuous change [1, 2]. In any brute force numerical simula-
tion the ranges of interaction and the memory length, or the history dependence,
are controlled by the number of neighbors or time steps considered. In the con-
tinuous limit these numbers determine the maximal orders of space and time
derivatives in the continuous, differential model. The order of differentiation
in a mathematical model determines the geometric structure of the differential
equations, and the global structure of the solutions [3]. Thus it is reasonable to
assume that the changing of the type of behavior of a complex system, [4, 5],
can be related, among other things, to the variation of the order of derivatives
in the mathematical model citeourcontrib. One needs to introduce a new type
of derivative and corresponding differential equation with time dependent order
of differentiation, which can be generically expressed in the form

dα(t)

dtα(t)
Y (t, x) = L[Y ], (1)

where α(t) is real function taking integer values at the ends of the domain of def-
inition of t, Y is a function dependent on time t, and other independent (space)
coordinates x, and L is a differential operator in the x variables. The punctuated
equilibrium in evolution of living systems, [6], or in the evolution of economy
in some countries [7], the wide variability of time scales in transient population
growth rates, [8, 9], memory dependent diffusion [10], networks with higher-
order Markovian processes, [11], self-replicating clusters, [12], are examples of
systems whose dynamics changes in time, and cannot be described by tradi-
tional differential approaches. For such systems one needs new mathematical
approaches by considering time-dependent order of differentiation with respect
to space or time. This variable order changes in time from an integer order to
another integer order, as limiting cases. In present population dynamics mod-
els, for example, authors use piece-wise defined differential equations artificially
predicting transition from exponential behavior to singular hyperbolic behavior
[13–15]. Another typical example where the order of the leading derivative must
change during the evolution of the system is given by the drag force upon an ac-
celerated submerged object. The dynamics changes from inertia-less creep flow
with force proportional to the first order time derivative (velocity), to Rayleigh
drag with force proportional to the second order derivative (acceleration).

In the time-dependent order of differentiation the system can change its dy-
namics during its evolution. This approach has a great advantage over the tra-
ditional modeling approach of using artificial time-dependent coefficients man-
agement. The use of time variable coefficients has implications of existence and
uniqueness of solutions. Moreover, critical behavior of complex systems is inher-
ent to the system, and not controlled by, or uniquely dependent on the change
of constants of material. Moreover, this time-dependent order of differentiation
manifestly changes the dimension of the phase space of the system.

When the order of differentiation changes continuously with time, it takes
non-integer values. The correct formalism to handle such non-integer opera-
tors is provided by fractional calculus and fractional derivatives[16–19]. In this
formalism, introduced since Riemann and Liouville and developed to a great
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extend in the last decades, the order of differentiation is a real constant. In the
following, we rely in our calculations on this concept of fractional derivative.

This recent trend of time-variable order differential equations, [20–22], is a
possible candidate for modeling complex systems with complex unpredictable
behavior. Time-dependent order of differentiation models can provide more re-
alistic models for population growth in variable environments, [9], fractional
derivatives model for the general laws of predator-prey biological population
dynamics, [14], memory dependent diffusion, [10], stochastic processes and mul-
tiplex networks described by higher-order Markovian processes, [11], and bound-
ary area and speed of action in self-replicating clusters [12]. A number of au-
thors reached towards the same target of developing time-dependent or space-
dependent orders of differentiation, but starting from the different direction of
trying to generalize fractional differential equations, and/or to model the dy-
namics of systems with variable constants of material [23–29].

In our previous studies, [20–22], and in the present paper we underline the
benefits of introduction of time-dependent order of differentiation from the fun-
damental physical necessity of explaining complex systems. This field of research
(also known under the name VODE or DODE as in variable/dynamical order
differential equations) is still in its stage of infancy, and a lot of caution should be
considered in all hypotheses and conclusions. In the present paper we analyze a
simple model in order to understand better the properties of the time-dependent
order differential equation, its solutions and their symmetries. Namely, we in-
vestigate a one-dimensional linear differential equations, with respect to time,
whose order of differentiation changes in time with one unit.

The paper is organized as follows: following the Introduction we present in
section 2 we introduce the time-dependent order differential equation and its
properties and briefly elaborate on the existence and uniqueness of the solutions.
In the third section we analyze Frobenius types of series solution for this new
equation, and also obtain interesting symmetries.

2 Time-dependent ordinary differential equation

In this section we introduce a time-dependent one-dimensional differential equa-
tion for the function x(t) : (0, 1)→ R in the form

dα(t)x

dtα(t)
= Dα(t)x = f(t, x), (2)

where Dα is the standard notation for fractional derivatives (to be defined be-
low), the real function α(t) describes the time dependent order of differentiation,
and f is the source term. As we mentioned above, we represent the variable
order through the formalism of fractional derivatives [16–19, 30–37].

The fractional generalization of differential calculus can be defined in several
types of fractional derivatives. For exemple we can enumerate the fractional
derivatives in the sense of Riemann-Liouville, Caputo, Grünwald, Jumarie, or
Weyl [31, 38]. These derivatives are non-local, and are able to model multiple
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scales systems, fractal differentiability, or nowhere differentiable functions [38].
The fractional derivatives and fractional integrals have applications in visco-
elasticity, feedback amplifiers, electrical circuits, electro-analytical chemistry,
fractional multipoles, neuron modeling and related areas in physics, chemistry,
and biological sciences [18, 32].

In the following, we use the Riemann-Liouville form of fractional derivative
in order to introduce the time-dependent derivative

t0D
α(t)
t x(t) =

dm

dtm

(
1

Γ(m− α(t))

t∫
t0

x(s)

(t− s)α(t)−m+1
ds

)
, (3)

where the order α(t) : R+ → [m− 1,m), and x(t) : (0, 1)→ R are functions of
class Cm, and m is a positive integer. In the following, we choose t0 = 0, without
any loss of generality [33, 34], so we can skip the subscripts from the expression of
the fractional derivative. This derivative operator obeys the Leibnitz rule, chain
rule and can be used in Taylor series [16, 17]. The fractional derivative converges
uniformly towards the integer value at its bounds limα(t)−>(m−1)+ D

α(t)x(t) =

x(m−1), and limα(t)−>m− Dα(t)x(t) = x(m) [22].
We consider two initial value problems for a time-dependent ordinary differ-

ential equation. In the first case, we chose α(t) ∈ [0, 1], that is m = 1 in Eq.
(3), and the differential equations has the form

Dα(t)(x− x0) = f(t, x(t)), x(0) = x0, (4)

where t ∈ (0, 1), x0 ∈ R, the order of differentiation function is a continuous
function α : (0, 1) → [0, 1], and the source term is a continuous function f :
R+ ×R→ R.

In the second case we chose α(t) ∈ [1, 2], that is m = 2 in Eq. (3), and we
have the form

Dα(t)(y − y0 − y1t) = g(t, y(t)), y(0) = y0, y′(0) = y1, (5)

where t ∈ (0, 1), y0, y1 ∈ R, the order of differentiation function is a continuous
function α : (0, 1) → [1, 2], and the source term is a continuous function g :
R+ ×R→ R.

The way initial data problem is formulated, even in the time-independent
fractional differential equations case, is still in debate, and its physical meaning
is not yet fully understood [16, 36]. Therefore, the incorporation of classical
derivatives of the initial data in Eq. (4) was suggested by many authors, [10,
34, 36], as they are commonly used in initial value problems with integer-order
equations.

It was proved, [20, 21], that the initial value problem in Eqs. (4,5) are re-
ducible to Volterra integral equations of second kind with singular integrable
kernel. In the case of Eq. (4) we have k(t, τ) = (t − τ)α(t)−1, as long as
α(t) ∈ (0, 1)

x(t) = x0 +
1

Γ(α(t))

t∫
0

f(τ, x(τ))dτ

(t− τ)1−α(t)
. (6)
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In a similar way, Eq. (5) can be mapped into a similar Volterra integral equation
of second kind with singular integrable kernel

y(t) = y0 + ty1 +
1

Γ(α(t)− 1)

∫ t

t0

∫ τ
t0
g(s, y(s))ds

(t− τ)2−α(t)
dτ. (7)

Any solution of Eqs. (6,7) is a solution of the initial value problem Eqs. (4,5),
respectively. The solutions for Eqs. (6,7) smoothly approach the classical solu-
tions of the corresponding classical differential equations of integer order in the
limiting integer values of α = 0, 1, 2. For the cases when the solutions are smooth
and regular all over their domain of definition, the conditions of existence and
uniqueness of smooth solutions of Eqs. (6,7) are covered in [20, 22].

In Fig. 1 we present an example of smooth solution for Eq. (5) with α ∈ (1, 2),
for a nonhomogeneous term of the form g(t, y) = −y and y0 = 1, y1 = −1. The
solution was obtained numerically for the integral version, Eq. (7), of Eq. (5).
In the limiting cases of integer order of differentiation it is easy to verify that
the limiting solutions are

y(t) =

{
e−t for α = 1,

cos t for α = 2,

One can notice in Fig. 1 how the solution smoothly maps from negative ex-
ponential to periodic trigonometric function, with the change of the order of
differentiation in the differential equation. More interesting situations occur in
the case when the solutions have singularities. In this case we cannot apply
the existence and uniqueness from [20, 22], and a different approach will be
developed in the followings. We present such a transition from a smooth to a
singular solution in Fig. 2. This is again an example of solution for Eq. (5)
with α ∈ (1, 2), but for a nonhomogeneous term of the form g(t, y) = −t−3/2.
The solution was obtained numerically for the integral version, Eq. (7), of Eq.
(5). In the limiting cases of integer order of differentiation it is easy to verify
that the limiting solutions are

y(t) =

{
2√
t

+ C0, for α = 1,

4
√
t+ C0 + C1t, for α = 2.

One can notice that the numerical solution of the time-dependent order differen-
tial equation smoothly connects these two limiting cases, and makes a smooth
transition from a solution with singularity at t = 0 for α = 1 to a smooth
solution on t ∈ (0, 1) for α = 2.

3 Initial value problem and non-local symme-
tries

In order to analyze the well-posedness of the initial value problem for time-
variable order differential equations of type Eqs. (4,5) or equivalently the inte-
gral non-local forms Eqs. (4,5), we will expand the hypothetical solution x(t)
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Figure 1: Plot of the solution for the time-dependent order initial problem for
the differential equation Dα(t)y = −y for α ∈ (1, 2), t ∈ (0, 1). The solution
smoothly deforms from exponential decay to trigonometric function, with the
increase of α.

Figure 2: Plot of the solution for the time-dependent order differential equation
Dα(t)y = −t−3/2 for α ∈ (1, 2), t ∈ (0, 1). The solution smoothly deforms from
a singular hyperbolic dependence to a smooth power low with the increase of
α. The initial value problem cannot be applied here in the traditional sense,
because of the singularity at t = 0.
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or y(t), respectively, in Frobenius formal series. We consider the transition
α : 0→ 1 for x(t) for Eq. (6) and we make the hypothesis that the solution has
the form

x(t) = x0 + tr
∞∑
k=0

ckx
k, (8)

for arbitrary scalar r. We plug the series Eq. (8) in Eq.(6) and we obtain

x(t) = x0 +
x0t

α(t)

α(t)Γ(α(t))

+
tr+α(t)

Γ(r + α(t))

∞∑
k=1

tk(k + r)ckΓ(k + r)
k∏
j=0

(r + j + α(t))

(9)

In order to evaluate this result we chose a linear form for the time-dependent
order, i.e. α(t) = t and calculate the first orders in Eq. (9)

x(t) = x0 + tr[tc1 + t2(c2 + c1 ln t− c1ψ(2 + r))] + trO3, (10)

where ψ is the digamma function. By comparison with Eq. (8) it is obvious that
even in the simplest linear case for the time-dependence of the order of differen-
tiation, the solution x(t) is not holomorphic and has logarithmic singularity at
x = 0, therefore one needs to use the second type of Frobenius solutions contain-
ing the logarithm x(t) = Cxa(t) lnx+ xb(t), where xa,b are holomorphic power
series to be determined. It results that all solution of the time-dependent order
of differentiation equations have irregular singularities at x = 0. By introducing
the term c∞ ln t in Eq. (8)

x(t)→ c∞ ln t+ tr
∞∑
k=0

ckt
k (11)

we generate in the series expansion of the right hand side of Eq. (6) an extra
term. That is an extra term added to the terms shown in Eq. (9), in the form

tα(t)(ln t−Hα(t))

α(t)
, (12)

where Hα(t) is the fractional harmonic number given by

Hα(t) = α(t)

∞∑
j=0

(−1)jα(t)jζ(j + 2),

where ζ is the Riemann zeta function. This term has an interesting harmonic
symmetry and connection with other special functions. In the following, we
present another interesting symmetry of the solutions of Eqs. (6,7) with respect
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to the variation of the order of differentiation. We prove the following result. For
m positive integer and for any continuous functions α(t) : (0, 1) → (m− 1,m),
and g(t) : (0, 1)→ R, there are always two distinct values α1 6= α2 in (m−1,m)
such that the equality

1

Γ(α1)

∫ t

0

g(τ)(t− τ)α1dτ =
1

Γ(α2)

∫ t

0

g(τ)(t− τ)α2dτ, (13)

where g(t) = f(t, x(t)), is fulfilled for some t ∈ (0, 1). To prove this relation we
re-write Eq. (13) in the form

1

Γ(α2)

∫ t

0

f(τ, x(τ))

(t− τ)1−α2

(
Γ(α2)

Γ(α1)(t− τ)α2−α1
− 1

)
dτ = 0.

Without any loss of generality we assume α2 > α1. The bottom limit τ → 0+

of the integrand of the above integral is

f(0, x0)

t1−α2

(
Γ(α2)

Γ(α1)tα2−α1
− 1

)
,

and can be always tuned to be an arbitrary large negative number. Indeed, by
restricting t ∈ (0, 1) we have tα2−α1 ∈ (0, 1), and for any given α2 we can find
α1 such that Γ(α2) < Γ(α1)tα2−α1 since Γ is local monotonic, and we can chose
α1,2 in the region where Γ is strictly decreasing. At the same time we have

lim
τ→t

f(τ, x(τ))

(t− τ)1−α2

(
Γ(α2)

Γ(α1)(t− τ)α2−α1
− 1

)
= +∞.

We obtained that the integrand oscillates between an arbitrary large negative
value and plus infinity, while is guaranteed for the integral to be convergent by
the theorem of existence of the solution [20]. It results we can always find a
value for α1 such that this integral is zero, and the affirmation in Eq. (13) is
proved.

4 Conclusions

In this paper we introduce and discuss properties of time-dependent order ordi-
nary differential equations. We show that such new types of differential equa-
tions can be represented in terms of generalizations of fractional derivatives
with time-dependent order of differentiation. This approach allows us to map
the time-dependent ordinary differential equation to a Volterra integral equation
of second kind with singular integrable kernel, which is known to have unique
solution for appropriately chosen initial conditions and smoothness of the pa-
rameters and solution. We demonstrate that the general solution of this time-
dependent order differential equations can smoothly deform the corresponding
limiting solutions of the classical integer order ordinary differential equations,
one into another, and can even generate singularities from regular solutions, and
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conversely. We present an interesting symmetry of the solution, and its relation
to the Riemann zeta function and Harmonic numbers.

Data Availability
The analytic and numerical calculations and plots data used to support the

findings of this study are available from the corresponding author upon request.

Disclosure
This paper is original, and it was not presented or published as preprint

previously anywhere.

Conflicts of Interest
The author declares that there are no conflicts of interest.

References

[1] E. R. Hunt, R. J. Baddeley, A. Worley, A. B. Sendova-Franks, and N. R.
Franks Roy. Soc. Open Sci., 3 (2016) 150534.

[2] G. Deco and E. T. Rolls, J. Neurophysiology 94, 1 (2005) 295–313.

[3] X. Chen, L. P. Hansen, and M. Carrasco, J. Econometrics, 155 (2010)
155-169.

[4] E. Bullmore and O. Sporns, Nat. Rev. Neuroscience, 10 (2009) 186–198.

[5] M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. Lett., 89 (2002)
068102.

[6] S. Valverde, and R. V. Sole, J. Royal Soc. Interface, 12 (2015) 0249.

[7] B. Rey, D.A. Epp, and F.R. Baumgartner, Ann. Meet. Midwest Political
Sci. Assoc., 1 (2015) 1–25.

[8] H. Caswell, Ecol. Mod., 88 (1996) 73–82.

[9] D. N. Koons, D. T. Iles, M. Schaub, H. Caswell, Ecology Lett. 19 (2016)
1023-1031.

[10] M. Caputo, Geophysics J. Roy. Astro. Soc. 13, 5 (1967) 529-539.

[11] R. Lambiotte, V. Salnikov, M. Rosvall, J. Complex Networks 3 (2015) 177–
188.

[12] Z. Zeravcic, M. P. Brenner, PNAS 111 (2014) 1748–1753.

[13] B. M. Dolgonosov, Techn. Forecasting Soc. Change 103 (2016) 127-141.

[14] S. Kumar, A. Kumar, and Z. M. Odibat, Math. Methods Appl. Sci., 40, 11
(2017) 4134-4148.

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2018                   doi:10.20944/preprints201811.0151.v1

Peer-reviewed version available at Symmetry 2018, 10, 771; doi:10.3390/sym10120771

http://dx.doi.org/10.20944/preprints201811.0151.v1
http://dx.doi.org/10.3390/sym10120771


[15] F. L. Ribeiro and K. N. Ribeiro, Physica A 434 (2015) 201–210.

[16] R. Herrmann, Fractional Calculus, 1st ed. (World Scientific, Singapore,
2014).

[17] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional
Calculus, 1st ed. (Springer-Verlag, Dordrecht, 2007).

[18] R. Hilfer, Application of Fractional Calculus in Physics, 1st ed. (World
Scientific, Singapore, 2000).

[19] I. Podlubny, Fractional Differential Equations, 1st ed. (Academic Press,
San Diego, 1991).

[20] A. Ludu, Technical and Natural Sciences-AMiTaNS 15 1684 (2015) 1-10.

[21] A. Ludu and H. Khanal, El. J. Diff. Eqs., Conference 24 (2017) 47-61 .

[22] A. Zacharias, H. Khanal, and A. Ludu, Comm. Appl. Analysis (2008), 1-23.

[23] S. G. Samko, B. Ross, Int. Trans. Spec. Funct. 1, 4 (1993) 277300.

[24] C. F. Coimbra, Ann. Phys., 12, 11-12 (2003) 692703.

[25] X. Li, H. Li, B. Wu, Appl. Math. Lett., 68 (2017) 8086.

[26] C. F. Lorenzo, T. T. Hartley, Nonlin. Dyn., 29, 1-4 (2002) 5798.

[27] S. Sahoo, S. S. Ray, S. Das, and R. K. Bera, Int. J. Modern Phys. C, 27,
7 (2016) 1650074.

[28] Y. -T. Jia, M. -Q. Xu, and Y. -Z. Lin, Appl. Math. Lett., 64 (2017) 125130.

[29] S. Samko, Nonlinear Dyn., 71, (2013) 653662.

[30] V. Lakshmikantham, Nonlinear Analysis: Theory, Methods and Appl. 69
(10) (2008) 3337–3343.

[31] K. B. Oldham and J. Spanier, The Fractional Calculus, 1st edn. (Dover
Publ., New York, 2006).

[32] F. Mainardi, Appl. Math. Lett. 9 (1996) 23–28.

[33] A. A. Kilbas and J. J. Trujillo, Appl. An., 81 2 (2002) 435–493.

[34] K. Diethelm, and N. J. Ford, J. Math. An. Appl., 265 2 (2002) 229–248.

[35] Z. F. A. El-Raheem, Appl. Math. Comp., 137 (2003) 371–374.

[36] D. Baleanu and O. G. Mustafa (2010) Computers and Mathematics with
Applications 59(5), 1835–1841, doi:10.1016/j.camwa.2009.08.028.

[37] V. Lakshmikantham and A.S. Vatsala (2008) Science Direct 69, 2677–2682,
doi:10.1016/j.na.2007.08.042.

[38] A. Babakhani, and V. Daftardar-Gejji, J. Math. An. Appl. 270, 1 (2002)
66-79.

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2018                   doi:10.20944/preprints201811.0151.v1

Peer-reviewed version available at Symmetry 2018, 10, 771; doi:10.3390/sym10120771

http://dx.doi.org/10.20944/preprints201811.0151.v1
http://dx.doi.org/10.3390/sym10120771

