

1 Article

2 ***Fusarium graminearum* Colors and Deoxynivalenol
3 Synthesis at Different Water Activity**4 **Edgar Cambaza** ^{1,2,*}, **Shigenobu Koseki** ¹, **Shuso Kawamura** ¹5 ¹ Laboratory of Food Process Engineering, Graduate School of Agriculture, Hokkaido University, Sapporo,
6 Hokkaido, 060-0808 Japan; koseki@bpe.agr.hokudai.ac.jp (S. K.); shuso@bpe.agr.hokudai.ac.jp (S. K.)7 ² Department of Biological Sciences, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere,
8 nr. 3453 Maputo, Mozambique

9 * Correspondence: edy@bpe.agr.hokudai.ac.jp; Tel.: +81-80-2876-1106

10

11 **Abstract:** Deoxynivalenol (DON) is a well-known mycotoxin, responsible for outbreaks of
12 gastrointestinal disorders in Japan. *Fusarium graminearum*, a parasite of cereal crops, produces this
13 toxin and this is one of the reasons why it is important to understand its metabolism. It is possible
14 to predict the mold's color change and the quantity of DON synthesized throughout its lifecycle.
15 Furthermore, a_w has been found to affect the amount of DON. This study aimed to analyze the
16 potential of *F. graminearum* surface color as a predictor of DON concentration at a_w = 0.94, 0.97 and
17 0.99. Thus, 36 specimens were incubated at 25 °C, 12 at each a_w . After 4, 8, 12 and 16 days, 3
18 specimens from each a_w were collected for color analysis and DON quantification. For color
19 analysis, photos were taken and red, green and blue (RGB) channels were measured on *ImageJ*
20 software. DON was quantified through liquid chromatography (HPLC). Color changes were only
21 observed at a_w = 0.99 because at lower a_w the molds presented high growth of white mycelium. Yet,
22 DON increased in all cases. It was only possible to relate the colors with DON concentration at a_w =
23 0.99, where they presented inverse proportionality.

24 **Keywords:** *Fusarium graminearum*, deoxynivalenol, RGB, water activity.
2526 **1. Introduction**

27 Mycotoxin studies have been gaining prominence since the second half of the 20th century, and
28 deoxynivalenol (DON) is among the most well known among these toxins. It belongs to the class of
29 trichothecenes and causes gastrointestinal disorders including regurgitation [1]. DON was identified
30 as the cause of at least eight outbreaks of intoxication in Japan, including two cases in the Hokkaido
31 prefecture. The toxin is among the natural contaminants described by the country's Ministry of
32 Health, Labor and Welfare as a potential threat for public health [2].

33 Water activity (a_w) is among the environmental factors with impact on the quantity of DON
34 produced by *Fusarium graminearum* (teleomorph: *Gibberella zae*) [3-5]. Though there are still some
35 inconsistencies on how they are related, increased a_w seems to favor higher DON production [6].
36 Furthermore, a_w is frequently used in models to predict mycotoxin concentration *in vitro*, together
37 with temperature and other variables such as concentration of nutrients or fungicides [7]. Thus, it is
38 important to know how a_w affects DON synthesis by *F. graminearum*.

39 The RGB (red, green and blue) components of *F. graminearum* surface color were recently found
40 to exhibit predictable changes over time [8], and this feature is desirable as an alternative to size
41 measurement to estimate the mold's maturity because size is highly dependent limitations such as
42 the borders of a Petri dish and it does not provide much information about the metabolism [8]. Since
43 both DON concentration [4,9] and surface color [8] are predictable for *F. graminearum* over time, it is
44 reasonable to admit the possibility that both can be related at certain degree. Furthermore, surface
45 color and toxin concentration are manifestations of the mold's state of maturity [8,10].

46 This study aims to demonstrate that *F. graminearum* surface color can be used to predict how
 47 much DON the fungus produces taking a_w in consideration. These analyses will substantiate the
 48 idea that color is a viable alternative to size in *in vitro* mold growth studies.

49 **2. Materials and Methods**

50 *2.1. Mold Isolate*

51 This study used an *F. graminearum* isolate from the Catalogue of the Japan Collection of
 52 Microorganisms (JCM). It is registered as the teleomorph *Giberella zeae* (Schwabe) Petch, isolated by
 53 Sugiura [11] from rice stubble in Hirosaki, Aomori Prefecture, Japan. It is a known producer of
 54 deoxynivalenol, 15-acetyldeoxinivalenol and zearalenone [12].

55 *2.2. Experimental Procedure*

56 Thirty-six specimens of *F. graminearum* were grown at 25 °C on yeast extract agar (YEA) at three
 57 water activity (a_w) settings experimentally prepared using glycerol: 0.94, 0.97 and 0.99. From the 4th
 58 incubation day, 3 replicates per temperature were taken for DON quantification. Before the
 59 extraction, the fungi were photographed in a black bucket, vertically from 30 cm above. The camera
 60 model was *Nikon D3200* with a lens *DX SWM VR*. The only source of light was a round LED attached
 61 to the bucket's lid. The photos were then processed on the *ImageJ* software (*FIJI* edition), developed
 62 by the National Institutes of Health [13] using the method described by Cambaza *et al.* [8] (Figure 1).
 63 *ImageJ* allowed the determination of average intensities of the RGB components from the photos.
 64 The analysis considered only the fungal surface, excluding any background including the plate
 65 borders or agar. At the end, the variables to analyze were incubation time (in days), a_w and the RGB
 66 parameters, converted from the 8-bit notation (0 – 255) to the arithmetic index (0.0 – 1.0).

67

68 Figure 1. Process of *F. graminearum* color analysis using *ImageJ*: (a) sample photo of the mold;
 69 (b) *ImageJ* panel used to remove the background by filtering colors; (c) color measurement panel;
 70 (d) color measurement table.

71 *2.3. Statistical analysis*

72 The statistical analysis was performed on JASP 0.9, Jamovi 0.9 and Microsoft Excel. All the
 73 hypotheses tests were carried out with $\alpha = 0.05$. The distribution of intensities of red green and blue
 74 was compared through analysis of covariance (ANCOVA) to find if their differences were
 75 significant. Then, the relationships between the colors were analyzed through a scatter plot matrix.
 76 Subsequently, the focus oriented towards each color. For each, a Kruskal-Wallis test determined if

77 the distribution of color intensity between the samples grown at distinct a_w presented significant
 78 differences. The final step analyzed the impact of a_w on the pigmentation and DON concentration.

79 **3. Results**

80 All the specimens grew throughout the 16 days and measurements were successfully carried
 81 out. The ones grown at distinct a_w presented notable visual differences in color and texture (Figure
 82 2), particularly the molds grown at $a_w = 0.99$ in relation to the others. However, all specimens were
 83 mostly similar up to the 4th day, developed into a white mycelium with a diameter of approximately
 84 3 cm with a yellow spot at the center, resembling a fried egg. The central spot was less visible in the
 85 specimens grown at $a_w = 0.94$ and it was increasingly noticeable as the water activity increased.

86 Figure 2. Surface color of *F. graminearum* grown at different a_w for 16 days.

87 The specimens grown at a_w of 0.94 and 0.97 showed high rate of mycelial growth up to day 8,
 88 covering the entire plate with its radially dispersed hairy whitish surface, and seemed to remain
 89 unchanged until the end of the experiment. In some cases, the mycelial growth was immense,
 90 touching the Petri dish's lid. However, the molds incubated at a_w of 0.99 did not produce as much
 91 mycelial growth and exhibited more clearly visible concentric areas with distinct colors, each with
 92 notable changes from one measurement to the following. Its central spot changed to reddish, brown
 93 and finally pale, seemingly because of some white mycelial growth on top. Its borders developed a
 94 wine red tone and the surface became increasingly yellow. These observations suggest that *F.*
 95 *graminearum* surface color is highly sensitive to a_w , and a_w reduction promotes mycelial growth,
 96 possibly as a stress factor.

97 Table 1 confirms the impact of a_w on the mold's color, especially the green and blue components
 98 ($p_{\text{ANCOVA}} < 0.05$). Red color did not seem to be significantly affected by a_w , even after Tukey's *post hoc*
 99 comparisons. Green and blue showed exactly the same profile of significance considering the
 100 different a_w , though green showed highest levels of discrepancies in all cases. The overall
 101 differences, measured through ANCOVA were significant. Regarding the *post hoc* comparisons, the
 102 significant differences occurred between the specimens incubated at a_w of 0.99 and the others. These
 103 observations are consistent with the visual analysis in which a_w reduction drastically affects *F.*
 104 *graminearum* color pattern.

105

Table 1. Color intensity differences between the specimens grown under different water activity.

RGB channel	p _{ANCOVA}	a_w	Post hoc color comparison					
			Mean Difference	SE	df	t	pTukey	
R	0.169	0.94	0.97	0.02	0.03	8	0.63	0.809
		0.97	0.99	0.06	0.03	8	2.06	0.159
		0.97	0.99	0.04	0.03	8	1.44	0.369
G	0.007	0.94	0.97	0.02	0.01	6	2.22	0.145
		0.97	0.99	0.07	0.01	6	8.06	<.001
		0.97	0.99	0.05	0.01	6	5.84	0.003
B	0.02	0.94	0.97	0.03	0.04	8	0.69	0.778
		0.97	0.99	0.13	0.04	8	3.43	0.022
		0.97	0.99	0.1	0.04	8	2.74	0.059

R = red; G = green; B = blue; ANCOVA = analysis of covariance; SE = standard error;

df = degrees of freedom; t – student's t statistics.

106
107Despite of the differences between the colors at distinct a_w , all three RGB components seemed highly correlated (Figure 3), with Pearson's correlation r above 0.9.108
109
110Figure 3. Pearson's correlations between the RGB components. The diagonal charts show the intensity of the colors. CI = confidence interval; r = Pearson's coefficient.111
112

The data suggest direct relationships between them, and all colors showed considerably high density of their lighter shades. Red and green were the most strongly correlated, followed by blue

113 and green. Thus, even though the red component seemed to be consistently the same through at
 114 different a_w , unlike the others, its slight variations presented a similar profile to the ones exhibited by
 115 the green and blue channels.

116 Figure 4 shows the variations in RGB components and DON concentration over time
 117 considering the different a_w settings. The colors seemed to exhibit very similar patterns of variation
 118 over time.

119

120

121 Figure 4. Variation of RGB components and DON concentration over time under different a_w . Note: R
 122 = red; G = green; B = blue; $a_w = 0.94$ (Δ); $a_w = 0.97$ (O); $a_w = 0.99$ ().

123 The specimens grown at $a_w = 0.99$ decreased in color intensity (all RGB channels) while the
 124 others apparently remained constant and considerably high. This is consistent with the photos,
 125 where the lowest a_w incubation setting resulted in predominantly whitish surface during virtually
 126 the entire experiment. At $a_w = 0.99$, the best simple algebraic representations were $y = 0.0005x^2 -$
 127 $0.0222x + 0.6416$ for red, $y = 0.0002x^3 - 0.0044x^2 + 0.023x + 0.4992$ for green and $y = 0.0002x^3 - 0.0068x^2 +$
 128 $0.0588x + 0.2831$ for blue, all with $R^2 = 1$, assuming x as time in days and y as the RGB component
 129 within the scale 0 to 1. DON concentration seemed to increase in general for all a_w settings, though
 130 there are incidental cases of reduction.

131 It is hard to explain why there are reductions because the toxin is expected to accumulate over
 132 time but it might have been due to some errors. An analysis of covariance (ANCOVA) shows no
 133 significant differences between DON concentrations ($p = 0.347$) of samples incubated at different a_w .
 134 Since the colors change their pattern of variation when the molds are subjected to distinct a_w but it
 135 does not happen to DON, the high superficial mycelial growth in the specimens at lower a_w , the
 136 fungus seems to keep the ability to produce the toxin even when there is higher mycelial growth. It
 137 is possible that the layer of whitish hyphae is masking an inferior highly pigmented layer in the

138 specimens grown at lower a_w . The bottom-line is perhaps the fact that lowering a_w caused the white
 139 mycelium to remain abundant throughout the experiment while DON kept accumulating.

140 Only the RGB channels at $a_w = 0.99$ could be used as independent variables to plot with DON
 141 concentration (Figure 5) because colors did not change significantly at lower a_w .

142

143 Figure 5. Relationship between color variation and DON concentration at $a_w = 0.99$.

144 All colors decreased in value, oscillating once. The major differences between the colors seemed
 145 to be the wideness and position of their dominium (range of abscissae). Considering x as RGB
 146 channel and y as DON concentration, as one observed from the origin of x towards 1, blue presented
 147 the lowest values but also the widest range, followed by green with intermediate values and range,
 148 and red. The considerably narrower range of the red component may explain why it did not present
 149 significant differences across a_w .

150 4. Discussion

151 In summary, a_w had a major impact on *F. graminearum* surface color. Up to day 4, all the
 152 specimens were mostly similar in appearance, with a yellowish center surrounded by a whitish
 153 mycelium, resembling a fried egg. However, a reduction in a_w seemed to promote *F. graminearum*
 154 mycelial growth, masking its conidial pigmentation. As consequence, the specimens grown at $a_w =$
 155 0.97 and 0.94 remained whitish throughout the entire experimental period, with RGB channels
 156 presenting no significant variations, unlike the molds grown at $a_w = 0.99$. In any case, the RGB
 157 components appeared highly correlated, with Pearson's coefficient $r > 0.9$ when the colors were
 158 considered two at a time. Yet, only green and blue components exhibited significant variations, even
 159 though all colors had the same pattern of variation. The significant differences in green and blue
 160 were only between the samples incubated at $a_w = 0.99$ and the others, and this supports the previous
 161 observations from the photos. The highest a_w was marked by a reduction of RGB components, all fit
 162 to polynomial functions. The lowest a_w settings presented notably constant trends. Still, DON
 163 concentration increased in all a_w settings, independently of the surface color. Thus, only the highest
 164 a_w was considered to build graphs relating DON concentration with color variation. They seemed
 165 inversely proportional if colors represented as the abscissae and DON concentration the ordinate. As
 166 one moved from the origin of abscissae, the blue, green and red ranges appeared (overlapping), each
 167 narrower than the previous but all with the same shape.

168 Water activity is among several factors affecting the pigmentation of *F. graminearum* [8,14-16].
 169 The way it affects can be very complex because the mold's surface color results from the
 170 combination of several different pigments, some with quite different chemical properties [15,17-20].
 171 For instance, a_w partially affects its chromatic attributes of the polyketide aurofusarin, perhaps the
 172 most influential pigment, notable for its yellow and red coloration [21]. Yet, the color differences
 173 appeared more associated with the increased growth of white mycelium on top of the mold,
 174 covering the entire dish, rather than caused by changes in nature or quantity of pigments. The
 175 simple fact that lower a_w stimulated higher mycelial growth might look counterintuitive and also
 176 contradicts previous observations [4,22], but it makes some sense that the shortage of water leads the
 177 fungus to expand its hyphae in search for new sources [23]. The initial similarity between the

178 specimens grown at distinct a_w perhaps occurred because the molds were very small and the
179 shortage of water was not yet impacting the mycelia. As they grew, the ones grown at lower pH
180 experienced early exhaustion of water and seemed to react by expanding hyphae to all directions
181 including upwards. Furthermore, during day 4 they were still at exponential growth [8], with minor
182 differentiation.

183 The fact that all RGB components were highly correlated supports the idea that a small set of
184 pigments with similar colors is producing them. Otherwise, one should expect each RGB component
185 to exhibit its own pattern of variation if there were a wide variety of pigments with different colors,
186 especially if the pigments were chemically diverse. The literature identifies aurofusarin [24], as
187 already mentioned, and the carotenoid neurosporaxanthin [25,26] as the major pigments influencing
188 the surface color of *F. graminearum*. They are both yellow, though slightly different. The former is
189 frequently described as “golden yellow”, though its hue varies to orange and wine red as it changes
190 to derivatives [15,17,24,27], and neurosporaxanthin was described as “orange-yellowish” [28], just
191 like most carotenoids. There are also the polyketide rubrofusarin [15] and the carotenoid torulene
192 [19], both red but not as abundant as the previously mentioned. There are more pigments but they
193 have minor influence on the overall color [28] or only during differentiation [29,30]. As bottom-line,
194 the only pigments actually influencing the color have similar or close-related hue ranging from
195 golden yellow to wine red. It is worth mentioning that the polyketides (aurofusarin and
196 rubrofusarin) are highly bioactive and possibly essential part of the competitive saprophytic ability
197 (CSA) of *F. graminearum* [27,31], the carotenoids are not likely and the latter tend to respond mostly
198 to light rather than nutrients [18], certainly except in extreme cases of shortage of some nutrient
199 essential for synthesis of such pigments. Thus, the polyketides, especially aurofusarin, appeared to
200 be key pigments contributing *F. graminearum* surface color variation in the current experiment.

201 A previous experiment had already shown that all RGB components exhibit similar pattern of
202 variation, consistent with 3rd degree functions [8]. It is not clear why the red component did not
203 show significant variation ($\alpha = 0.05$) while the other colors did, but it might be related to the nature
204 of the most abundant pigments [10]. Perhaps red pigments such as rubrofusarin and torulene,
205 especially the latter, do not change their colors throughout the mold’s lifecycle, contributing to this
206 “resistance” to change. However, both pigments probably suffer a considerable reduction because
207 the former is an intermediate of aurofusarin synthesis [32] and the latter is a precursor of
208 neurosporaxanthin [33]. Yet, both pigments have been found in *F. graminearum* matrix, even when
209 the others are present [15,33], from which one can imply the existence of chemical equilibrium
210 between them. In this case, it is still possible that rubrofusarin and torulene contribute to the
211 endurance of the red component.

212 RGB values were expected to decrease throughout the experiment, especially for blue, followed
213 by green and finally red. According to a previous experiment [8], this RGB reduction corresponds to
214 the darkening process as the fungus grows towards the stationary growth phase. It surely does not
215 apply in the cases in which the fungi were covered with white mycelia because it did not allow the
216 pigments to be visible. In the cases where the color changed, the variation of RGB components was
217 possible of representation through polynomial curves, and this was also observed in the
218 aforementioned experiment.

219 All samples showed overall increased DON concentration over time, not mattering if there was
220 high mycelial growth or not on the surface. There is some counterintuitive reduction for the samples
221 grown at $a_w = 0.94$ and 0.97 between days 4 and 8, but it was likely due to fluctuations in the results.
222 Indeed, the ANCOVA test ($p = 0.347$) suggested that the differences between the DON
223 concentrations at different a_w were not significant. This result contrasts with some found in the
224 literature showing significant differences between DON concentrations at distinct a_w [3-5]. Though it
225 is difficult to know why these results were counterintuitive, it might have been due to chemical,
226 genetic (distinct strains) or nutritional differences [6]. All other experiments were performed with
227 irradiated wheat, while the current was carried out with YEA. The latter is highly nutritive [34] and
228 this perhaps attenuated the stress caused by a_w differences. Furthermore, Sorensen and Sondergaard
229 [35] demonstrated that even different yeast extracts influence DON concentration. Anyway, the

230 studies on wheat showed similar trends disregarding a_w , and it is intuitive that DON tends to
231 accumulate over time because mycotoxins are very stable and the fungi do not metabolize them
232 [23,36].

233 DON concentration seems to have similar relationship with all RGB components at $a_w = 0.94$
234 and it will facilitate use colors as an alternative to size in DON analysis at this a_w . This subsidizes the
235 previous study demonstrating that *F. graminearum* color variation is predictable throughout its life
236 cycle [8]. There is also evidence that biosynthesis of the pigment aurofusarin is related to DON
237 production as histone H3 lysine 4 methylation (H3K4me) is crucial in the transcription of genes for
238 synthesis of both compounds [10]. Yet, the relationship between the pigment and DON still requires
239 further biochemical and genetic investigation. In any case, as far as it showed, *F. graminearum* surface
240 color can be used in microbiological studies to predict DON concentration at $a_w = 0.99$ but it does not
241 seem practical for lower a_w .

242 5. Conclusion

243 The current experiment suggested that all RGB channels obtained from photos of *F.*
244 *graminearum* are correlated and can be used to predict DON concentration produced by the fungus at
245 $a_w = 0.99$. However, the colors were not effective predictors at $a_w = 0.97$ and 0.94 because these
246 conditions appeared to stimulate the production of white mycelia, barely changing in color. Thus,
247 the results indicate that *F. graminearum* surface color can only be used as predictor of DON
248 concentration at a_w as high as 0.99.

249 **Funding:** The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) funded this
250 research.

251 **Conflicts of Interest:** The author declares no conflict of interest.

252 References

- 253 1. Weidenbörner, M. *Encyclopedia of food mycotoxins*. 1 ed.; Springer-Verlag Berlin Heidelberg: 2001; p XII,
254 294.
- 255 2. Takenaka, H.; Kawamura, S.; Sumino, A.; Yano, Y. In *New combination use of gravity separator and optical*
256 *sorter for decontamination deoxynivalenol of wheat*, 5th International Technical Symposium on Food
257 Processing, Monitoring Technology in Bioprocesses and Food Quality Management : Aug 31st - Sept
258 2nd, 2009, Potsdam, Germany, 2009; Sun, D.-W., Ed. ATB, Leibniz-Inst. für Agrartechnik: Potsdam,
259 Germany, pp 978-973.
- 260 3. Velluti, A.; Sanchis, V.; Ramos, A.J.; Turon, C.; Marín, S. Impact of essential oils on growth rate,
261 zearalenone and deoxynivalenol production by *fusarium graminearum* under different temperature
262 and water activity conditions in maize grain. *Journal of Applied Microbiology* **2004**, *96*, 716-724.
- 263 4. Ramirez, M.L.; Chulze, S.; Magan, N. Temperature and water activity effects on growth and temporal
264 deoxynivalenol production by two argentinean strains of *fusarium graminearum* on irradiated wheat
265 grain. *International journal of food microbiology* **2006**, *106*, 291-296.
- 266 5. Hope, R.; Aldred, D.; Magan, N. Comparison of environmental profiles for growth and deoxynivalenol
267 production by *fusarium culmorum* and *f. Graminearum* on wheat grain. *Letters in Applied Microbiology*
268 **2005**, *40*, 295-300.
- 269 6. Cambaza, E.M.; Koseki, S.; Kawamura, S. Meta-analytic review on the impact of temperature and
270 water activity in deoxynivalenol synthesis by *fusarium graminearum*. *Food Research* **2018**, *2*, 443-446.
- 271 7. Garcia, D.; Ramos, A.J.; Sanchis, V.; Marin, S. Predicting mycotoxins in foods: A review. *Food*
272 *microbiology* **2009**, *26*, 757-769.

- 273 8. Cambaza, E.; Koseki, S.; Kawamura, S. The use of colors as an alternative to size in fusarium
274 graminearum growth studies. *Foods* **2018**, *7*.
- 275 9. Martins, M.L.; Martins, H.M. Influence of water activity, temperature and incubation time on the
276 simultaneous production of deoxynivalenol and zearalenone in corn (*zea mays*) by fusarium
277 graminearum. *Food Chem* **2002**, *79*, 315-318.
- 278 10. Cambaza, E. Comprehensive description of fusarium graminearum pigments and related compounds.
279 *Foods* **2018**, *7*, 165.
- 280 11. Sugiura, Y. Gibberella zeae (schwabe) petch. In *JCM Catalogue*, Japan Collection of Microorganisms,
281 Ed. Microbe Division (JCM): Tsukuba, 1996.
- 282 12. Sugiura, Y.; Watanabe, Y.; Tanaka, T.; Yamamoto, S.; Ueno, Y. Occurrence of gibberella zeae strains
283 that produce both nivalenol and deoxynivalenol. *Applied and environmental microbiology* **1990**, *56*,
284 3047-3051.
- 285 13. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to imagej: 25 years of image analysis. *Nat
286 Methods* **2012**, *9*, 671-675.
- 287 14. Baker, P.M.; Roberts, J.C. Studies in mycological chemistry. Part xxi. The structure of aurofusarin, a
288 metabolite of some fusarium species. *Journal of the Chemical Society C: Organic* **1966**, 2234-2237.
- 289 15. Ashley, J.N.; Hobbs, B.C.; Raistrick, H. Studies in the biochemistry of micro-organisms: The crystalline
290 colouring matters of fusarium culmorum (wg smith) sacc. And related forms. *Biochemical Journal* **1937**,
291 31, 385.
- 292 16. Kim, H.; Son, H.; Lee, Y.W. Effects of light on secondary metabolism and fungal development of
293 fusarium graminearum. *J Appl Microbiol* **2014**, *116*, 380-389.
- 294 17. Shibata, S.; Morishita, E.; Takeda, T.; Sakata, K. The structure of aurofusarin. *Tetrahedron Letters* **1966**, *7*,
295 4855-4860.
- 296 18. Avalos, J.; Pardo-Medina, J.; Parra-Rivero, O.; Ruger-Herreros, M.; Rodríguez-Ortiz, R.;
297 Hornero-Méndez, D.; Limón, M.C. Carotenoid biosynthesis in fusarium. *J Fungi (Basel)* **2017**, *3*.
- 298 19. Jin, J.-M.; Lee, J.; Lee, Y.-W. Characterization of carotenoid biosynthetic genes in the ascomycete
299 gibberella zeae. *Fems Microbiol Lett* **2009**, *302*, 197-202.
- 300 20. Leeper, F.J.; Staunton, J. The biosynthesis of rubrofusarin, a polyketide naphthopyrone from fusarium
301 culmorum: 13 C nmr assignments and incorporation of 13 C-and 2 H-labelled acetates. *Journal of the
302 Chemical Society, Perkin Transactions 1* **1984**, 2919-2925.
- 303 21. Garcia-Cela, E.; Kiaitsi, E.; Medina, A.; Sulyok, M.; Krska, R.; Magan, N. Interacting environmental
304 stress factors affects targeted metabolomic profiles in stored natural wheat and that inoculated with f.
305 Graminearum. *Toxins* **2018**, *10*.
- 306 22. Ramirez, M.L.; Chulze, S.; Magan, N. Impact of environmental factors and fungicides on growth and
307 deoxinivalenol production by fusarium graminearum isolates from argentinian wheat. *Crop Protection*
308 **2004**, *23*, 117-125.
- 309 23. Deacon, J.W. *Fungal biology*. 4th ed.; Blackwell Pub.: Malden, MA, 2006; p 371 p.
- 310 24. Frandsen, R.J.N.; Nielsen, N.J.; Maolanon, N.; Sørensen, J.C.; Olsson, S.; Nielsen, J.; Giese, H. The
311 biosynthetic pathway for aurofusarin in fusarium graminearum reveals a close link between the
312 naphthoquinones and naphthopyrones. *Molecular Microbiology* **2006**, *61*, 1069-1080.
- 313 25. Avalos, J.; Estrada, A.F. Regulation by light in fusarium. *Fungal Genet Biol* **2010**, *47*, 930-938.
- 314 26. Martín, J.-F.; García-Estrada, C.; Zeilinger, S. *Biosynthesis and molecular genetics of fungal secondary
315 metabolites*. Springer: 2014.

- 316 27. Medentsev, A.G.; Kotik, A.N.; Trufanova, V.A.; Akimenko, V.K. [identification of aurofusarin in
317 fusarium graminearum isolates, causing a syndrome of worsening of egg quality in chickens].
318 *Prikladnaia biokhimiia i mikrobiologii* **1993**, *29*, 542-546.
- 319 28. Diaz-Sanchez, V.; Estrada, A.F.; Trautmann, D.; Al-Babili, S.; Avalos, J. The gene card encodes the
320 aldehyde dehydrogenase responsible for neurosporaxanthin biosynthesis in fusarium fujikuroi. *FEBS J*
321 **2011**, *278*, 3164-3176.
- 322 29. Studt, L.; Wiemann, P.; Kleigrewe, K.; Humpf, H.-U.; Tudzynski, B. Biosynthesis of fusarubins
323 accounts for pigmentation of fusarium fujikuroi perithecia. *Applied and environmental microbiology* **2012**,
324 *78*, 4468-4480.
- 325 30. Frandsen, R.J.N.; Rasmussen, S.A.; Knudsen, P.B.; Uhlig, S.; Petersen, D.; Lysøe, E.; Gotfredsen, C.H.;
326 Giese, H.; Larsen, T.O. Black perithecial pigmentation in fusarium species is due to the accumulation
327 of 5-deoxybostrycoidin-based melanin. *Scientific Reports* **2016**, *6*, 26206.
- 328 31. Jarolim, K.; Wolters, K.; Woelflingseder, L.; Pahlke, G.; Beisl, J.; Puntscher, H.; Braun, D.; Sulyok, M.;
329 Warth, B.; Marko, D. The secondary fusarium metabolite aurofusarin induces oxidative stress,
330 cytotoxicity and genotoxicity in human colon cells. *Toxicol Lett* **2018**, *284*, 170-183.
- 331 32. Frandsen, R.J.; Schutt, C.; Lund, B.W.; Staerk, D.; Nielsen, J.; Olsson, S.; Giese, H. Two novel classes of
332 enzymes are required for the biosynthesis of aurofusarin in fusarium graminearum. *J Biol Chem* **2011**,
333 *286*, 10419-10428.
- 334 33. Prado-Cabrero, A.; Scherzinger, D.; Avalos, J.; Al-Babili, S. Retinal biosynthesis in fungi:
335 Characterization of the carotenoid oxygenase carx from fusarium fujikuroi. *Eukaryot Cell* **2007**, *6*,
336 650-657.
- 337 34. Sigma-Aldrich. 01497 yeast extract agar. In *Product Information*, LLC., S.-A.C., Ed. Sigma-Aldrich, Inc.:
338 St. Louis, MO, 2013.
- 339 35. Sorensen, J.L.; Sondergaard, T.E. The effects of different yeast extracts on secondary metabolite
340 production in fusarium. *International journal of food microbiology* **2014**, *170*, 55-60.
- 341 36. Bennett, J.W.; Klich, M. Mycotoxins. *Clinical microbiology reviews* **2003**, *16*, 497-516.
- 342