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Abstract: We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate
its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer
chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We
quantify the performance of our model to determine what the optimal system sizes are for exploring
self-assembly at combinations of state variables. We perform molecular dynamics simulations to
predict the self-assembly of P3HT at ∼ 350 combinations of temperature and solvent quality. Our
structural calculations predict that the highest degrees of order are obtained with good solvents just
below the melting temperature. We find our model produces the most accurate structural predictions
to date, as measured by agreement with grazing incident X-ray scattering experiments.
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1. Introduction

Limiting the negative impact of global climate change requires a shift to sustainable energy
generation. Organic photovoltaics (OPV) are carbon-based solar panels that could meet this need with
one-day energy payback times, if they can be manufactured at scale with sufficient (∼ 15%) power
conversion efficiency (PCE) [1]. The low cost of OPVs derives from the solution processability of their
active ingredients, which can also be used to make light emitting diodes and field effect transistors
[2,3]. Controlling the solution-phase self-assembled morphology—the microstructure that emerges
spontaneously during fabrication—is central to meeting the 15% efficiency target, as morphology
governs performance [4]. The choice of organic electronic compounds, solvents [5], annealing protocols,
[6–8] and processing temperatures [9] all affect the self-assembled microstructure and resultant device
characteristics. However, the impracticality of exhaustively testing which chemistries and processing
protocols are sufficient to manufacture climate-saving devices [10], necessitates computational or
theory-based guidance of promising candidates.

Poly-3(hexylthiophene) (P3HT) is one of the polymers that kick-started research into
solution-phase self-assembly of OPVs [11,12], and is the focus of this work. Often referred to as
the “bench-mark” OPV compound [13], the relative ease of working with P3HT has led to hundreds of
studies linking P3HT’s structure to its performance in OPV devices [14]. This work on P3HT over nearly
two decades highlights the difficulty and opportunity in optimizing self-assembly, and underscores the
potential utility of informing experimentation with theory. How many of these experiments could have
provided additional insight if equilibrium phase diagrams of P3HT were known in 2002? Would more
promising ingredients have been identified earlier if a theoretical maximum PCE for P3HT blends was
known? Answering these questions requires calculating phase diagrams and predicting PCE, which
requires models of P3HT capable of predicting self-assembly.

Predicting P3HT self-assembly in particular, and OPV assemblies in general, is difficult because
of the multiple length-scales that matter: atomic orbitals, molecular packing, alignment of crystallites,
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and thermodynamic phase separation all impact OPV device performance. First principles calculations
have the highest resolution and can provide insight into charge transport relationships in P3HT [15–17],
but their computational demands preclude simulating thousands of atoms—far too small to gain insight
the bulk morphological features that arise from thermodynamic self-assembly. Macroscopic models
are successful in predicting device-scale morphologies with thickness ∼ 100 nm both on-lattice [18–22]
and off-lattice [23–25], but cannot represent important structural features such as crystallite grain
orientations and energetic differences between molecules. Molecular models implemented in molecular
dynamics (MD) or Monte Carlo (MC) simulations fill the gap between first-principle and macroscopic
models, though the system size versus relaxation time trade off significantly hinders investigations
of self-assembly [26–34]. At the largest scales, the structural evolution of 5 million coarsely-modeled
P3HT monomers can be accessed on > 100 nm length-scales [34], but the computational cost of
evaluating each step meant that equilibration was inaccessible over the 400 ns simulation trajectory.
At 11-nm scales, equilibration of coarse-grained P3HT models are achievable over ∼2 µs simulation
trajectories [28], but such coarse models miss the π-stacking details of P3HT rings, which can have
implications for charge transport calculations [35,36]. Long relaxation times can be avoided in MD
simulations through carefully selected initial conditions [32,37–40], but these simulations can only
check if a structure is locally stable, not whether it will robustly self-assemble at a particular state-point.
Determining the optimal “sweet spot” between system size, model resolution, and computational cost
of predicting equilibrium is therefore essential if MD simulations of thousands of candidate materials
and conditions are to be used to inform OPV experimentation [41].

Validating predictions of OPV structures against experiments further complicates the challenge
of building good simulations because the two most common characterization techniques—surface
analysis and reciprocal space spectroscopy—each provide an incomplete picture of structure [42,43].
Surface techniques such as atomic force microscopy detect crystalline and amorphous regions at the
surface of the film but do not reveal structural characteristics important for charge generation and
transport within the film [44]. Reciprocal space techniques such as grazing incident X-ray scattering
(GIXS) probe the bulk material, revealing averaged periodic features but lack the precision to resolve
a unique solution of molecular positions. Additionally, analysis is complicated by residual solvents
and amorphous regions [42]. In concert, surface and scattering experiments provide references against
which simulations can be checked, but doing so requires the modeling of volumes large enough for
features that repeat on 10 Å to 30 Å scales, reinforcing the need for simulations that are big enough
and fast enough.

The aims of this work are to (1) describe an optimized model of P3HT that is efficient and meets
structural prediction needs, (2) resolve ambiguity around what “big enough” and “fast enough” means
for P3HT, and (3) discuss transferable recommendations for simulating other OPV materials. This work
is organized as follows: We present our P3HT model in section 2 and characterization techniques in
section 3. We explain the important performance metrics and discuss current and future requirements
for predicting OPV self-assembly in subsection 4.1. We employ small-scale simulations to evaluate
P3HT self-assembly over ∼ 350 state-points in subsection 4.2 and evaluate the impact of simulated
solvent evaporation in subsection 3.1. We evaluate structural predictions with large-scale simulations
in subsection 4.4, and finally validate against experimental measurements in subsection 4.5

2. Model

We represent P3HT molecules with a “united-atom” model [45] wherein hydrogen atoms are
treated implicitly through the interactions between three types of simulation elements (“beads”):
aromatic carbon (CA), aliphatic carbon (CT), and sulfur (S) (Figure 1). This level of coarse-graining is
convenient for modeling OPV materials, as the reduction of simulation elements from 25 atoms to 11
united-atom sites per monomer reduces computational cost [45–47], while simplifying back-mapping
of atomic coordinates for charge transport calculations[35]. United-atom models have been used to
successfully predict structures for a variety of systems including: polymers [48,49], proteins [46], and
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Figure 1. P3HT is modeled in this work with a united-atom representation. Sulfur beads (S) are yellow,
aromatic carbon beads (CA) are dark blue, and aliphatic carbons beads (CT) are in cyan. Red bonds
indicate thiophene rings modeled as rigid bodies, whereas the light blue indicates harmonic bonds.

small molecules [50,51]. The base units of mass M = 32 amu, energy E = 0.32 kcal/mol, and length
L = 3.905 Å, used to describe interactions within the simulation, are adapted from the OPLS-UA
force-field [52]. The pairwise non-bonded interaction potentials derived from these base units are
presented in Table 1 in which ε is the depth of the Lennard-Jones potential, σLJ is the van der Waals
radius, and m is the mass of the bead.

Table 1. Optimized OPLS-UA interaction parameters for CA, CT, and S simulation elements used in
this work. ε is the depth of the Lennard-Jones well, σLJ is the van der Waals radius, and m is the mass.

Bead Type σLJ (Å) ε (kcal/mol) m (amu)

CA 3.436 0.11 13.0
CT 3.905 0.17 15.0
S 3.436 0.32 32.0

The pairwise bonded constraints (bond lengths, triplet angles, and quadruplet dihedrals) are
taken from a modified atomistic force-field based on OPLS-AA, as parameterized by Bhatta et al.
[37] Since this force-field is atomistic, we adapt it to account for implicit hydrogens and the reduced
number of element types in our model (see SI-Section 1 for full details). We also model aromatic
thiophene rings as rigid: the bonds, angles, and dihedrals are fixed, maintaining the relative positions
of the elements of the rigid bodies throughout the simulation [53]. Abstracting away these degrees
of freedom reduces the number of calculations required for each timestep while maintaining good
agreement with experiment for both the chemical and structural properties of a variety of molecule
types [49,50,54–56]. We further optimize this model by adjusting interaction parameters to better
predict P3HT structure, and lower computational cost with implicit solvent and electrostatics.

The unit of time, t, can be calculated from the base units:

t =

√
ML2

E
= 1.8× 10−12 s. (1)

We use a timestep of 0.001t, so each simulation timestep corresponds to 1.8 fs. The “base case” model
considered here handles solvent and long-range electrostatics implicitly, and each oligomer comprises
15 monomers. Comprehensive evaluation of the optimized model assumptions, including explicit
consideration of electrostatic interactions and short oligomer chains are included in SI-Sections 2 and 3.

3. Methods

In this work we conduct molecular dynamic (MD) simulations using the GPU-accelerated
HOOMD-blue simulation package [57,58], performed on NVIDIA K80 and P100 GPUs. The code used
to produce this data is open-source and freely available at ref. [59]. The complete dataset from this
investigation is available at ref. [60]. Simulations are conducted in the canonical ensemble (NVT), in
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which the total number of particles, volume, and temperature are kept constant. The Nosé-Hoover
thermostat, in which the system is coupled to a heat bath, is applied to maintain the temperature [61].
Particle positions and velocities are updated with the two-step velocity-Verlet integration of Newton’s
equations of motion with a timestep of 1.8 fs [62].

Each simulation is initialized from a unique random configuration within a cubic volume
with periodic boundary conditions. We accomplish this by first placing molecules created with
the mBuild software package [63] at random positions in a large simulation volume, where molecules
are sufficiently separated so that they can be placed without overlapping their neighbors. A short MD
simulation (1.8 ns) is performed at high temperature (T∼ 1300 K) to randomize the molecule positions
and orientations. The system volume is then reduced during another short simulation (1.8 ns and
1300 K) until the target density is reached. This process of “initializing”, “mixing”, and “shrinking”
has been previously used to initialize independent snapshots at arbitrary densities [28,49,50,64].
Unless otherwise specified, every simulation presented herein is instantaneously quenched from high
temperature to the target temperature for the duration of its NVT simulation. We consider target
temperatures from T = 80 to 1300 in steps of 80 K. These temperatures span the glass transition
(300 K) and melting (490 K) temperatures expected for P3HT [37]. Of course, real P3HT degrades at
the higher temperatures in this range. Our simulations at these high-T conditions are performed to
provide unique independent snapshots from which to initialize independent simulations, and to check
if high-temperature structural transitions might exist if P3HT did not degrade.

We consider a range of relevant film densities, ρ = 0.56, 0.72, 0.89, 1.05, 1.11 g/cm3, with the
largest ρ = 1.11 g/cm3 corresponding to the experimental thin-film density for P3HT [65]. For the
lowest densities, as much as 40% of the simulation volume is occupied by the implicit solvent, whereas
the volume occupied by the implicit solvent is negligible for the highest densities. We employ an
extremely simplified model of solvent quality: The we define the parameter εs to represent how
poor the solvent is for P3HT, and scale all of the pairwise interaction potentials by this amount
(εij → εs × εij). We explore εs values from 0.2 to 1.2 in this work. Low values of εs ≤ 0.7 correspond
to solvents in which P3HT is highly soluble (e.g. chloroform, chlorobenzene or 1,2-dichlorobenzene),
whereas larger values εs > 0.7 describe solvents where P3HT is less soluble (e.g. acetone) [8]. While
this simplified model cannot capture complex or entropic solvent phenomena, it provides a significant
computational advantage [66–68]. Further, adjusting εs while holding T constant enables exploration
of how equilibrium structure depends on molecular attractions at fixed kinetic energy. In this work,
we perform simulations at the combinations of T, ρ, and εs described above to understand how these
parameters in concert influence thermodynamic phase behavior.

3.1. Solvent Evaporation

Each simulation performed herein utilizes one of two simulation protocols to sample microstates
at the target state-point. Protocol (1) ignores solvent evaporation: disordered initial configurations
at the target density ρ and solvent quality εs are instantaneously quenched from T = 1300 to the
target temperature, after which equilibration progress is monitored [50]. Protocol (2) is an extremely
simplified, qualitative model of solvent evaporation that helps to sample configurations at experimental
densities (ρ = 1.11 g/cm3): First, a system is equilibrated at ρ = 0.72 g/cm3 and the target temperature
and εs using Protocol (1), followed by a linear compression to ρ = 1.11 g/cm3 over 280 ns. After the
shrinking step of Protocol (2), equilibration progress is monitored as in Protocol (1).

3.2. Morphology Characterization

To characterize the molecular packings obtained in our simulations we use two structural metrics:
an order parameter and simulated grazing incident X-ray scattering (GIXS) using the Diffractometer
simulation software [35,69]. GIXS patterns are used to identify and quantify periodic morphological
features and are used to validate predicted structures directly against experiments. We obtain a set of
patterns by simulating diffraction on each cubic morphology from 60 unique orientations uniformly
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distributed on a sphere. We identify orientations with clearly resolved peaks and align crystallographic
directions along the same axes before averaging these orientations into a final diffraction pattern.
Treating the diffraction patterns in this way improves signal-to-noise ratio of periodic features, allowing
detection of periodic length-scales more precisely.

The order parameter ψ is used to describe the proportion of thiophene rings in “large” clusters.
The clustering algorithm is described in full in our previous work [50]. Briefly, two thiophene rings
are considered “clustered” if their centers-of-mass are within 6.6 Å of each other and if the planes
of the thiophene rings are oriented within 20◦ degrees of each other. The value of 6.6 Å is informed
by the radial distribution function of the thiophene centroids in ordered P3HT, and the 20◦ cut-off is
taken due to rotations under this having small effect on the transfer integral between two rings [16]. A
cluster must contain at least six thiophene rings to be considered “large” and contribute towards ψ, a
cut-off that is selected to distinguish morphologies with fewer large clusters from those with many
small clusters.

4. Results and Discussion

Here we benchmark P3HT simulations using our optimized model to provide context for the
system sizes that are practically accessible, perform experiments with simulated solvent evaporation
as potential way to avoid long relaxation times, and evaluate the system sizes needed to validate
predictions against experiments.

4.1. Computational Performance and Scaling

The time it takes to predict self-assembly of a material with MD primarily depends upon the size
of the simulated volume, which affects two key metrics:

1. Relaxation time: The number of timesteps that must be evaluated before the system reaches
equilibrium. Larger volumes generally mean larger relaxation times because more molecules
must rearrange before the system has converged to the equilibrium distribution of microstates.

2. Computational performance: The number of timesteps that can be evaluated per each second
that elapses on a clock on the wall, here measured as Timesteps Per Second (TPS). TPS scales
between O(N−1) and O(N−2).

We measure relaxation time and TPS in order to quantify the practicality of performing equilibrium
simulations as a function of system size. We perform instantaneous quenches to T = 600 K at ρ = 0.72
g/cm3 and εs = 0.8 for our base case model with N ranging from N = 16, 500 to N = 600, 000.

Figure 2a shows TPS decreases monotonically with N, closely matching the O(N−1) reference
slope (orange). For the smallest systems (N = 16, 500), this corresponds to being able to perform
400 ns per day, and, for the largest systems (N = 600, 000), 17 ns per day. In Figure 2b we show a
characteristic time evolution of the Lennard-Jones pair potential energy, which we use as one proxy
for structure. At equilibrium, measurements of potential energy are observed to fluctuate about a
stable, time-invariant average (Region 3 in Figure 2b). Before equilibrium is reached, we observe a
fast initial change in structure (Region 1), followed by a slower relaxation time (Region 2). We detail
the automatic detection of these regions and present the curves for multiple systems in SI-Section 4.
Here we observe Region 1 is insensitive to N, occurring within the first 0.5 µs of simulation time. The
relaxation time (Region 2), however, strongly depends on N. We measure relaxation times of ∼ 0.2 µs
for the ∼ 16,000 beads, ∼ 0.4 µs for ∼ 29,000 beads, and ∼ 1.0 µs for 40,000 beads. For system sizes
larger than N = 40, 000 we do not observe equilibration of the base case model 15mers at T = 600 K,
ρ = 0.72 g/cm3, εs = 0.8. Empirically these observations suggest relaxation time scales O(N2), though
the longer relaxation times for larger N tested here precludes detailed evaluation.

Once a system has come to equilibrium, we measure decorrelation times, explained in detail in
previous works [49,50]. The 100 15mer simulation requires ∼ 80 ns for each independent measurement
to be generated, the 175 15mer simulation requires ∼ 50 ns per measurement, and the 250 15mer
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Figure 2. GPU-accelerated simulations of P3HT presented here achieve ideal performance scaling,
but practical equilibration of a volume is limited by relaxation times. (a) Computational performance
measure by time-steps Per Second (TPS, blue data) scales O(N−1) (dashed orange line for simulations
performed at T = 600 K at ρ = 0.72 g/cm3 and εs = 0. (b) The time evolution of non-bonded potential
energy shows a fast initial structural rearrangement (blue), a slower relaxation to equilibrium (cyan),
followed by sampling of equilibrium microstates (green). The divergence of relaxation time (cyan) with
system size N and density ρ puts practical limitations on the systems that can be equilibrated, despite
high TPS values. (c) Computational performance measured by TPS has roughly doubled with each
new hardware release for the last four generations of Nvidia hardware (K20m, K80, P100, and V100
cards, respectively). Error bars indicate one standard deviation over 5 independent simulations per
cluster across multiple clusters.

simulation requires ∼ 300 ns per measurement. Therefore, simulations of around one µs are needed to
sample the equilibrium distribution of microstates after the relaxations of Regions 1 and 2.

To put these performance numbers in context with advances in computational hardware, we
benchmark P3HT systems with N = 165, 000 on 4 different Nvidia GPUs and 6 different high
performance computing (HPC) systems. Figure 2c shows a factor-of-two improvement in TPS roughly
every two years. The TPS scaling and relaxation scaling as a function of N, and evolution of TPS over
GPU release year data presented so far allows us to answer “How many years must we wait before
we can equilibrate a system with twice the spatial dimensions of the largest practical dimensions
today?” Doubling the size of the simulation volume along each axis results in 8 times the volume and
therefore 8 times more N (given the same density), so we would expect the TPS to drop by a factor
of ∼8 with TPS∝ O(N−1). However, as relaxation time scales as roughly O(N2), we would require
64 times as many simulation time steps to equilibrate before sampling. This means that doubling the
linear dimensions of a system require 512 times the TPS to equilibrate it in the same amount of time.
Extrapolating current hardware trends, a new GPU 18 years from now would meet this performance
need. Of course, performance scaling will vary significantly, depending on model details (e.g. chain
length), T, ρ, and εs, so the precise numbers reported here will have limited transferability to other
chemistries and conditions.

Even so, we draw two takeaways from these data: The first dispels the idea that significantly
larger volumes can be equilibrated with incremental advances in hardware. Rather, doubling the
dimensions of a system requires decades of hardware improvement, all other factors being equal.
Consequently, the second takeaway is that techniques that mitigate relaxation times will be essential in
predicting OPV morphologies relevant to device scales. Such techniques include modeling at multiple
scales, modeling the minimal necessary physics at each scale, efficiently sampling parameter space,
and advanced sampling techniques[70–72].

4.2. Identifying optimal assembly conditions

Despite the divergent behavior of simulation time as a function of N observed in the previous
section, it is computationally tenable to efficiently sample the state space of P3HT self-assembly using
a base case system of 100 15mers, using our OPLS-UA model. We therefore perform an ensemble of
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Figure 3. The degree of ordering, ψ for Protocol (1) shows the most robust assembly occurs at lower
densities, with more temperature-solvent combinations resulting in high ψ. (a) ρ = 0.56 g/cm3,
(b) ρ = 0.72 g/cm3,(c) ρ = 0.89 g/cm3,(d) ρ = 1.05 g/cm3. Red regions denote order, whereas blue
denotes disorder. Each black “x” indicates a measurement from an MD trajectory, and ψ values between
measurements are linearly interpolated.

MD simulations over a range of 350 unique state-points (depicted by a black “x” in Figure 3) each
defined by T, ρ, and εs, to determine which combinations are correlated with self-assembly. Doing so
generates the rough phase diagram of P3HT structure as a function of T, ρ, and εs. Each simulation
employs cubic volumes with edge length ≈ 7 nm. These volumes relax to equilibrium within ∼ 180
ns, after which the ordering measured by ψ is constant. Decorrelated equilibrium microstates are
drawn from trajectories after this initial relaxation, with 180 ns more permitting ∼ 8 microstates per
state-point. The colorbars in Figure 3 quantify the degree of ordering measured by the order parameter
ψ. In each case, more ordered systems appear red, whereas systems with less ordering and fewer
ordered clusters appear in blue. The order parameter values depicted between simulated state-points
are linearly interpolated.

In Figure 3 we observe two major trends in P3HT ordering: (1) increasing the density limits the
ordering and (2) there exists a narrow band of T-εs combinations that produce a high degree of order,
independent of density. The first trend arises from systems becoming kinetically arrested: Chains
have little room to rearrange at high densities after being instantaneously quenched below the melting
temperature. The second trend arises from the relationships between T, kinetic energy, and the scaling
of the Lennard-Jones well-depths through εs. When the ratio T

εs
is sufficiently high, simulation elements

have sufficient kinetic energy to routinely break out of the short-range pairwise potential energy wells
of their neighbors. Conversely, in systems with deep potential wells, beads are more likely to get stuck
in local potential energy minima, resulting in longer relaxation times. As expected, we observe that
P3HT orders most robustly when it has both sufficient free volume and kinetic energy to rearrange,
providing the temperature is below the melting temperature. These requirements are consistent with
experimental annealing practices used to increase order, where energy is added (thermal annealing)
or interaction strengths are decreased while increasing free space for polymers to rearrange (solvent
annealing).

In Figure 3, we also observe that P3HT is able to robustly self-assemble over a range of a couple
of hundred Kelvin. This self-assembly occurs just below the melting temperature, given a particular
solvent quality. In systems with sufficient free space to order, the model predicts melting temperatures
in the range of ∼ 400 to 600 K (depending on the solvent strength), which corresponds well to the
experimentally observed melting temperature at 490 K. The experimental melting temperature of
P3HT in the absence of a solvent is reproduced when εs = 0.5, indicating that the optimized OPLS
force-field used here over predicts P3HT’s melting temperature and that varying εs can be thought of
as either varying solvent quality, or correcting for systematic attraction offsets in the force-field.

4.3. Modeling Solvent Evaporation Facilitates Equilibration

We observe that P3HT simulations at ρ ≥ 1.05 g/cm3 show a low degree of order, ψ (Figure 3),
when instantaneously quenched from T = 1300 K to the target simulation temperature. However,
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Figure 4. Morphologies sampled with Protocol (2) are observed to have higher ordering, ψ than
Protocol (1) at the same state-points (compare Figure 3d), which suggests that simulating solvent
evaporation helps to avoid long relaxation times.

highly ordered P3HT has been observed in experiments at and near this density. We explain this
discrepancy with kinetic arrest over simulation timescales: Closely-packed P3HT volumes with
negligible solvent have long rearrangement times. To avoid such trapping and to more faithfully
model solvent evaporation, we perform “shrinking” simulations with a simple model of solvent
evaporation (Protocol (2)) from ρ = 0.72 g/cm3 to ρ = 1.11 g/cm3 over 36 ns, and compare the
resultant systems to the base case in the previous section. The initial density ρ = 0.72 g/cm3 is chosen
because it is the highest density at which highly-ordered morphologies are robustly assembled. When
solvent evaporation is modeled in this way we generally observe negligible change in ψ (Figure 4) as
the system transitions from ρ = 0.72 g/cm3 to ρ = 1.11 g/cm3. At high temperatures, 600 ≤ T < 900K,
we observe increased ordering as a result of solvent evaporation (Figure 4), which is consistent with
previous work showing that increased density at constant temperature can lead to a higher degree of
order [50]. In aggregate, these results indicate that our OPLS-UA model is efficient enough to identify
the temperature-solvent-density combinations that result in molecular self-assembly.

The results presented in Figure 3 are generated with Protocol (1): Low-solvent (high P3HT density)
systems display less order because of longer rearrangement times. The results presented in Figure 4
are generated with Protocol (2): Equilibrating and then shrinking the simulation volume while holding
temperature constant results in structures that are as ordered as those at ρ = 0.72 g/cm3, but at the
experimental density of ρ = 1.11 g/cm3, and with GIXS in quantitative agreement with experiments
(Figure 6). We therefore recommend using Protocol (2) for simulating solvent evaporation where
appropriate, because otherwise long rearrangement times at high densities can be avoided.

4.4. Large volumes are needed for experimental validation

Here, we combine the results of the previous two sections and perform solvent evaporation
simulations of large volumes at specific state-points to evaluate which advantages in structural insight,
if any, are afforded with larger volumes. We compare the base case “small” systems of 100 15mers
(N = 16, 500, L = 7 nm) against “large” 1000 15mer (N = 165, 000, L = 15 nm) systems. The large
simulations are initialized at T = 600 K, ρ = 0.72 g/cm3, and εs = 0.8 using Protocol (1). During
the evolution of the large systems, we record atom positions at three different degrees of order:
when the system is disordered, when some crystallites have formed but disordered regions still exist
(semi-ordered), and when it has ordered. These times are chosen based on the degree of structural
evolution discussed in 4.1. Each of these snapshots is used to initialize independent simulations using
Protocol (2) to reach ρ = 1.11 g/cm3 over a 180 ns simulation trajectory. We compare these three
large morphologies at experimental densities, “disordered”:ψ ∼ 0.4, “semi-ordered”:ψ ∼ 0.6, and
“ordered”:ψ ∼ 0.8), to the smaller base cases. Note, we present our analysis for only the ordered system
here in the main text and in SI-Section 5 we present the analysis for the semiordered and disordered
systems.
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a b c d

Figure 5. While small systems (a) are sufficient for identifying key structural features of ordered P3HT,
large volumes (b) are needed to resolve structural periodicities (c-small, d-large) and therefore enable
experimental validation.

The large and small ordered systems shown in Figure 5a and b, in which only “large” clusters,
identified using the cluster analysis discussed in section 3.2, are shown (small clusters < 6 monomers,
and side chains are omitted). The large ordered system contains a few large crystallites, colored
blue, red, and yellow. This contrasts with the small morphology, which primarily consists of a
single large crystallite (shown in blue in Figure 5a), with the next largest having significantly fewer
members (shown in red). These results indicate that smaller systems will tend to have fewer ordered
crystallites, which limits the opportunity to observe periodic organization of these structures. Despite
this difference, GIXS patterns show that the same periodic distances are present in both system sizes
(Figure 5 c vs. d), albeit with significantly increased noise in the case of the smaller system. As
such, small morphologies can be used to identify state-points of structural interest, however, large
simulations are better at characterizing crystal structure and quantifying morphological order.

4.5. Experimental Validation of Optimized P3HT Model

To validate our model, we perform simulations of 1,000 15mers with Protocol (2) and compare
simulated GIXS patterns against experimental P3HT patterns (T = 600 K, εs = 0.8). Predicted and
experimental GIXS patterns are presented in Figure 6a (averaged over 18 simulation orientations) and
Figure 6b (Reprinted with permission from [73]. Copyright 2012 American Chemical Society). Both
experimental and predicted structures are characterized by bright reflections extending vertically along
the out-of-plane axis with reciprocal spacing of 0.38± 0.02 Å−1 (corresponding to real-space separation
of 16.5 Å) and the narrow peak perpendicular to the [100] direction at 1.68 ± 0.02 Å−1 (corresponding
to a real-space separation of 3.74 Å). To connect these scattering features to morphological features,
we present the ordered morphology in Figure 7a, which shows lamellae of π-stacked thiophene rings
(shown with dark blue CA and yellow S), and aliphatic tails (cyan CT). It is the periodic π-stacking
at ∼ 3.7 Å and perpendicular alkyl-stacking at 16.5 Å responsible for the ∼ 1.7 and 0.4 Å−1 features
that are observed in the GIXS patterns. The agreement between experimental and predicted structures
demonstrates the present OPLS-UA model is capable of efficiently and quantitatively predicting
ordered P3HT structures within three weeks of simulation on a single GPU. Also similar to the
structures seen experimentally, the lamellae in the ordered system do not represent a single, perfect
crystal, but rather multiple crystallites with various grain orientations. The thiophene rings in these
grains are depicted by red, blue, and yellow in Figure 7b.

Within each layer, the thiophene rings primarily stack co-facially in either an “aligned” (Figure 7c)
or “anti-aligned” (Figure 7d) conformation, in which the sulfur atoms of adjacent rings are on the
same side or opposite sides of the stack respectively. We calculate the radial distribution function
(RDF, Figure 7e) between monomer centers to characterize short-range packing. A monomer center
is defined by the geometric average position of the sulfur and two furthest carbons in the thiophene
rings (see Figure 7e inset), and the spacing between two centers is used to distinguish aligned and
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Figure 6. Our model produces (a) simulated GIXS patterns that closely match (b) experiment with
π-stacking features along the (010) plane at 1.68 ± 0.02 Å−1 and alkyl-stacking features along the (100)
plane with a spacing of 0.38 ± 0.02 Å−1. (Experimental GIXS pattern (b) Reprinted with permission
from Ref. [73]. Copyright 2012 American Chemical Society).
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Figure 7. (a) A representative ordered molecular morphology of P3HT 15mers (CA-dark blue, S-yellow,
CT-cyan) depicting π- and alkyl-stacked lamellae (state-point: implicit charges, T ∼ 600 K, εs = 0.8,
ρ = 1.11 g/cm3). (b) The locations of the three largest crystallites in the system (colored blue, red, and
yellow in order of descending size). Small crystallites and side chains are omitted for clarity. Within
each crystallite, thiophene rings stack in (c) an aligned or (d) anti-aligned conformation, which are
observed in (e) the RDF of the thiophene centroid (e-inset) as the green (3.9 Å) and magenta (5.3 Å)
dots respectively. The RDF minimum at 6.6 Å(yellow dot) is used as a clustering criterion describing
the maximum separation of two rings in the same cluster.

anti-aligned π-stacking. The first peak in the RDF describes π-stacking of the thiophene heads and is
split into two features at 3.9 and 5.3 Å corresponding to the aligned and anti-aligned cases, respectively.
As evidenced by the RDF peak magnitudes, we observe a slight preference for aligned thiophene
stacking vs. anti-aligned stacking. Generally, more ordered morphologies of P3HT are expected to
provide faster charge transport characteristics. As such, these results show that sufficient amounts of
good solvent, which is then evaporated off just below the P3HT melting temperature, are expected to
produce ordered morphologies with beneficial electronic device properties.

5. Conclusions

In this work we demonstrate a united-atom model optimized to implicitly model solvent and
charges can predict the morphology of P3HT in quantitative agreement with experiments. En route to
this, we identify guidelines for performing simulations at multiple scales to speed predictions of OPV
morphologies:

1. Benchmark performance to identify the system size N that is practical for equilibrating hundreds
of systems.

2. Generate coarse phase diagrams with these inexpensive simulations to identify rough phase
boundaries and interesting structures.
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3. Use simulated solvent evaporation to generate morphologies at experimental densities, with
sufficiently large volumes.

4. Validate predictions against experimental GIXS patterns, when available.

These guidelines can be applied to any OPV active layer material, and will help to ensure that the
most information about model validity and OPV morphology are gained per unit of simulation time.
Combining these guidelines with automatic identification methodologies and more detailed to more
efficiently search parameter space [71,74] will further improve information per CPU cycle. Extending
the current investigation and applying these methods to a broader range of OPV candidate materials
with potential for mitigating climate change will be the focus of future work.

Supplementary Materials: The following are available online: Section 1 explaining the bonded interactions used
in the P3HT model, Section 2 discussing the determination and effects of explicit charges in the model, Section 3
exploring the effects of longer chains (degree polymerization 50) on structure, and Section 4 linking the system’s
energy to structural evolution.
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