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1 Abstract: Polymers in highly confined geometries can display complex morphologies including ordered phases.
2 A basic component of a theoretical analysis of their phase behavior in confined geometries is the knowledge
s of the number of possible single-chain conformations compatible with the geometrical restrictions and the
+  established crystalline morphology. While the statistical properties of unrestricted self-avoiding random walks
s (SAWs) both on and off-lattice are very well known, the same is not true for SAWs in confined geometries. The
¢  purpose of this contribution is a) to enumerate the number of SAWs on the simple cubic (SC) and face-centered
7 cubic (FCC) lattices under confinement for moderate SAW lengths, and b) to obtain an approximate expression
s for their behavior as a function of chain length, type of lattice, and degree of confinement. This information
s is an essential requirement for the understanding and prediction of entropy-driven phase transitions of model
10 polymer chains under confinement. In addition, a simple geometric argument is presented that explains, to first
1 order, the dependence of the number of restricted SAWs on the type of SAW origin.

2 Keywords: freely jointed chain; confinement; enumeration; conformational entropy; phase transition;
13 self-avoiding random walk; face-centered cubic; simple cubic; lattice model

12 1. Introduction

15 Self-avoiding random walks (SAWs) have long been used in polymer science as one of the simplest and
s most useful descriptions of polymeric chains. The relative simplicity of SAWs has made them an ideal tool
17 to investigate static and dynamic properties of polymers both analytically and computationally [1-7] . They
e have proved particularly useful in the determination of universal behavior and scaling laws for polymer systems
19 ranging from individual chains to melts. The critical behavior of SAWs is also closely related to that of the Ising
20 model and to percolation [8—18].

21 Besides their extensive application in polymer science, SAWs have been a subject of mathematical interest in
22 their own right [19], [20], mainly because of their close relationship to Brownian motion and stochastic processes
23 in general soft matter physics [21-23]. In spite of the very simple idea underlying SAWs, comparatively few
2« results have been rigorously solved in a mathematical sense [19]. As a consequence, a great deal of computational
»s  work has been carried out to complement analytical approaches. From the numerical point of view, a currently
26 active research area is the efficient computation of the number of distinct conformations for a SAW of a given
27 length on a lattice, which is very closely related to the single-chain classical partition function [24]. Over the last
25 years increasingly sophisticated enumeration algorithms [25-27] have been continually pushing the upper SAW
20 length limit for which numerical results on enumeration can be obtained within reasonable computational time.
30 Detailed knowledge of SAW properties in restricted geometries is an essential ingredient in the study of
a1 confined polymeric systems, which can range from single macromolecules to highly entangled melts in pores,
a2 slits, narrow gaps and nanocavities. Such properties include the number of distinct SAWs for a given length,
s mean squared end-to-end vector, distribution of size etc. Although SAWs in such restricted geometries have also
s been studied [11,12,28-32], they have received far less attention than unrestricted SAWs, one of the reasons
s being the apparent lack of applications in polymer science. The relatively recent [33—45] increased interest in
s confined polymeric systems, accompanied by significant advances in molecular simulations and the availability of
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a7 experimental techniques able to probe the behavior of individual macromolecules in channels, slits, etc [46-50]
s 1S a strong motivation for the investigation of SAWSs in such confined geometries. Recent Monte Carlo (MC)
s simulations [51] of highly confined, dense assemblies of linear, freely jointed chains of strictly tangent hard
w0 spheres of uniform size shows that such athermal polymer systems display an unexpectedly broad range of
a1 morphologies, presumably connected by phase transitions.

a2 In the following, “polymer” will refer to a linear chain of strictly tangent hard spheres, unless explicitly
s stated otherwise. “Monomer” will refer to each of the hard spheres that make up a chain, and “site” will refer
« to each of the points of a lattice. We will also refer interchangeably to the cubic P and F lattices and the
s corresponding simple cubic (SC) and face centered cubic (FCC) crystals obtained by placing a spherical base
4« motif on all lattice points.

47 As stated earlier the present work is motivated by the simulation results of Ref. [51] where linear,
s freely-jointed chains of tangent hard spheres of uniform size are generated and successively equilibrated under
s various conditions of confinement. The latter is realized through the presence of flat, impenetrable parallel walls
so in one or more dimensions. Extreme confinement corresponds to the state where inter-wall distance approaches
st monomer diameter leading eventually to the formation of quasi 1-D (tube-like) and 2-D (plate-like) polymer
s2 templates. Typical computer-generated polymer configurations can be seen in Figs. 1 and 2 in lateral and
ss  cross-sectional views, respectively. They correspond to systems containing a total of 720 monomers and average
s« number of bonds per chain N = 7, 17 and 35 at a packing density ¢ = 0.50. In all cases chains are packed in an
ss approximately 3.11 X 3.11 square tube of dimensions 77.8. All lengths are reported in units of monomer diameter
ss  (equal to the SAW step length). Periodic boundary conditions are applied on the long dimension, hard walls exist
57 in the short ones. More details on the simulation algorithm, the systems studied and the corresponding model
ss parameters can be found in [51].
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Figure 1. Lateral views of computer-generated, linear freely jointed chains of tangent hard spheres of uniform
size confined in tubes of square cross section at ¢ = 0.50. All systems contain a total of 720 monomers. From
top to bottom: chains consist, on average, of N =, 7, 17 and 35 bonds. In all cases chains are packed in an
approximately 3.11 x 3.11 square tube of length 77.8. Periodic boundary conditions are applied on the long
dimension and impenetrable flat walls in the short ones. Ordered regions with crystalline defects can easily be
recognized by visual inspection. A precise analysis shows them to be slightly defective, coexisting FCC crystals
of different orientations. Monomers have been colored according to the chain they belong to. The tube axis
direction in both panels is along a direction of the crystallographic type (100). Image created with the VMD
software [52].

Figure 2. Same as in Fig.1 but for cross-sectional views. From left to right: chains consist, on average, of N =,
7, 17 and 35 bonds.

59 An analysis, based on the Characteristic Crystallographic Element (CCE) norm [53-55], of the geometrical
e environment around the spherical monomers shows the ordered regions in such highly-confined polymer structures
et to very closely correspond to an FCC crystal. One remarkable aspect of such dense polymer systems in the bulk
e (i.e. without spatial confinement) is the existence of highly ordered, crystalline phases [56]. In previous MC
e work [55-62] it was shown that the apparent loss of entropy, caused by the regular organization of monomers in
e the sites of a crystal lattice, is more than compensated for by the increase of available volume for monomers, and
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es hence translational entropy, as evidenced by sharp decreases in asphericity and acilindricity of the Voronoi cells
e associated with each monomeric site. The resulting crystalline structures strongly resemble those appearing in
e Molecular Dynamics (MD) and MC simulations of single (monomeric) spheres, well known since the pioneering
e work of Alder and Wainwright [63—65]. These crystalline polymer structures can be simplistically viewed as
e built from crystals of single hard spheres and overlaying on them all possible linear paths of a given length that
70 connect tangent spheres. Viceversa, configurations of single hard spheres can be obtained trivially from available
71 configurations of polymers by deleting all bonds in chains.

72 As a matter of fact, if chain connectivity is ignored and the monomers are considered as individual spheres,
72 the resulting orderd structures are virtually undistinguishable, except for one main feature, from those appearing
7« in single hard sphere systems [66—68]. The distinguishing feature is the absence of twinned structures in polymer
75 systems [69]. In computer simulations, packings of single hard spheres often form quite perfect tetrahedral
7 clusters which tend to aggregate in pentatwins [70]. The entropic conformational entropy loss associated with
77 twinning in polymeric systems rises the entropic barrier to the extent that individual crystals with single or
72 multiple stacking directions and abundant defects are observed predominantly in simulations.

79 Since difference in entropy is the only hindering or driving force for phase transitions in athermal polymeric
s systems [6,71-73], the entropy calculation in confined geometries is an essential requirement in understanding
sr and predicting their phase behavior. Although all previously described characteristics have been obtained from
& off-lattice simulations, the appearance of highly ordered crystalline phases in 1-D (tube-like) confined polymer
s systems, as the ones shown in Figs. 1 and 2, motivates the calculation of their entropy on crystal lattices under
s equivalent spatial restrictions.

85 Fig.3 is a simplified, generic, two-dimensional representation of the ordered structures observed in MC
s simulations of highly confined polymeric systems [51]. The left panel represents a typical system configuration
&7 (MC-snapshot) confined between parallel walls. The centers of the spherical monomers (circles in solid line)
s are, on average, close to the sites of the perfect crystal (circles in dashed line). Configuration space is sampled
s through changes in the positions of the monomers as the MC progresses (such changes being compatible with
9 chain connectivity, packing density, confinement and crystalline morphology; see for example the corresponding
ot MC algorithms in [51,74]), much as monomer vibrations about the equilibrium position sample configurations in
2 MD simulations. At high densities, monomers remain close to the sites of the crystal lattice (shown in the right
ss  panel), so that on-lattice polymer chains, built by joining the corresponding sites of the perfect crystal, closely
s approximate the original off-lattice system from the conformational point of view. Each of these chains is thus
os effectively a restricted SAW on the crystal lattice.

9% In typical classical MC simulations [75-79], configurations for off-lattice polymer systems are generated
o7 with a probability proportional to their statistical (Boltzmann) weight and correspond to individual points in a
e configuration space spanned by continuously varying degrees of freedom, e.g. Cartesian coordinates of monomer
9 centers in an MD formulation based on Newton’s equations of motion, or Euler, torsion and bond angles in a
1o Lagrangian formulation, etc. Entropy or free energy calculations require then the evaluation of a high-dimensional
101 integral in configuration space [75].

102 On the other hand, configuration space for lattice SAWs (Fig.3, right panel) is discrete and entropy is
w3 evaluated as a sum of Boltzmann probabilities or weights. Since all feasible configurations are equally probable in
14 athermal systems, entropy is proportional to the logarithm of the number of different SAWs. While extensive work
105 on the exact enumeration of SAWs on unrestricted lattices in several dimensions (typically the d-dimensional
s hypercubic lattice Z%) has been carried out, enumeration of SAWs on restricted cubic P and F lattices has not
17 been reported to date. In this contribution we evaluate, by direct enumeration, the number of SAWs on the cubic
1s P and F lattices subject to geometrical restriction and calculate the SAW size as a function of lattice type, number
19 of bonds and level of confinement.
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Figure 3. Schematic representation of ordered polymer structures in a confined geometry. Circles in solid
line represent spherical monomers, polygonal lines represent polymer backbones. Monomers along a chain are
strictly tangent (circles in solid line on left panel), monomers belonging to different chains need not, but can also
be tangent. On both panels, circles in dashed line represent sites of the perfect crystal. On average, polymer
backbones can be considered SAWSs on the sites of the perfect crystal (right panel).

1o 2. Methods

111 In the following, an N-step three dimensional SAW " on a lattice is defined as the ordered sequence of
e sites WV (0),wM(1),...,w"(N), where " (0) is the position vector of the SAW origin, satisfying the condition
s WM (i) # WV (j) fori # j, and such that [wN (i + 1) — ™ (i)| = 1, i € {0, 1,..., N — 1}, where it is assumed that
s the step length of the SAW is taken as the unit of length, and |x| = /X~ x denotes the usual Euclidean norm.
115 According to the previous definition of step length two neighboring sites are 1 length unit apart on both the
1s  cubic P and the F lattices. For the cubic P lattice, the edge length of the conventional cell is therefore also unit,
w7 whereas in the cubic F lattice the edge length of the conventional cell is V2.

The individual components of the position vector of the i-th site of an N-step SAW are denoted by cu;\' (i)

with j = 1,2, 3. The squared end-to-end distance of the SAW |(uN|2 is given by |a)N|2 = (N (N) - M (0)) -
(w"(N) — w"(0)). With the previous definitions of unit length, |w"[> = N? for a fully extended SAW, whereas
the minimum SAW length is min(Jw™|>) = 1. These two values bracket the range over which the distribution
of (wV )2 is defined. If we denote by cy the number of distinct N-step SAWs, the average squared end-to-end
distance is given by:

(W)= o S lf

wN

s where the sum is over the cy SAWs starting at a given lattice point " (0). For unrestricted SAWs, w" (0) can be
1o any one of the countable infinity of lattice points, since the set {w"} of all SAWs starting at all points of a given
120 lattice has the same space group symmetry as the lattice itself. Let us define the following equivalence relation on
121 the set {w"} of all three-dimensional SAWs of a given length N starting at all points of a given lattice: two SAWs
2 WV, N e {wN} are equivalent, and we write WV ~ 'V, if there exists a geometrical transformation T (group
123 element) in the space group Ia3d such that T(w" (i) =~ o' (i)¥ i€ {0,1,...,N — 1}. The set of all distinct
12« cy SAWs is then the set of all equivalent classes {w"}/en. For confined SAWSs the introduction of geometric
125 restrictions will reduce this trivial multiplicity (which is due to the maximal symmetry of the unconfined lattice).
For unrestricted lattices the number ¢ and thus the computational effort for the exact enumeration problem

for SAWs are believed to grow exponentially with power law corrections as N increases, instead of the purely
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exponential growth for simple non-SAWs. More specifically, it is conjectured, and there is strong numerical and

. . 2
nonrigorous evidence, that ¢y and < |a)N | > depend on N as:

ey - AN ey
<|wN |2> ~ DN @)

12s where A, D, u, y and v are (dimension dependent) positive constants.The constant A is known as the amplitude, u
127 as the connective constant, while y (the entropic exponent) and v are critical exponents. For simple non-SAWs
128 y=1landv = % Estimates and bounds for u, v and y for SAWs are available [25,80-86]. Approximate values
129 in three dimensions are u =~ 4.684, y = 1.157 and v = 0.588.

130 The value of ¢ has been the object of increasingly refined and extensive calculations. Milestone calculations
11 for the 3-D cubic P lattice are: Orr’s N < 6 [24], Fisher and Sykes N < 9 [17,87,88], Guttmann N < 21
132 [80,85,88-91], MacDonald et al. N < 26 [81,85], Clisby et al. N < 30 [84], Schram et al N < 36 [25-27], this
133 latter value being the current record, obtained by the length doubling method. The later group has also determined
13 the current highest values of ¢y on the BCC (body-centered cubic) (N = 28) and FCC (N = 24) unrestricted
135 lattices. The continual growth of the range of known values of ¢y has made it possible to obtain more accurate
13 numerical estimates of the various parameters appearing in Eqgs.1 and 2. Extrapolation by means of differential
17 approximants and direct fitting to asymptotic expansions yields values for y and v in good agreement with those
1s  obtained by MC renormalization group, conformal bootstrap and field theory.

139 In this contribution we present results for the cubic P (SC) and cubic F (FCC) lattices restricted to a pore
10 or "tube" of square cross section. While the complete set {w} of SAWSs on the unrestricted lattice possesses the
1 maximal crystallographic symmetry of space group Ia3d, the introduction of geometrical restrictions reduces the
142 symmetry on the one hand and, on the other, introduces additional freedom in the definition of the problem. For
13 polymers confined in a pore or tube, the natural correspondence would be to a SAW whose growth is limited in
s the plane transversal to the tube direction. The new degrees of freedom, which are not meaningful for unrestricted
s SAWSs, are the orientation of the tube axis, the size of its cross-section and the origin of the SAW: the orientation
s of the tube axis will be defined by direction indices according to crystallographic practice: [ijk]. The cross
17 section will be assumed to be a square of side L, measured in units of SAW step length. Finally, cy will be
1s  calculated for each distinct origins located on the tube cross section at x = 0.

The value of cy will of course depend on the choice of the origin and on the double countable infinity of
degrees of freedom: direction [ijk] and tube cross section L. In the MC simulations of confined polymers that
motivate this work, hard-sphere chains confined to tubes of square cross-section are observed to preferentially
form quite perfect FCC crystalline domains with their [100] aligned along the tube axis. For both the SC and
FCC lattices we will thus consider the geometrically restricted lattice RIL(L) to consist of all the lattice points of
coordinates x contained in the square-section “tube” defined by:

RL(L) = {x|x1 € Z,|x2|,|x3| < L} 3)

19 Where the unit of length is the SAW step length. In Eq. 3 the tube has been assumed to be oriented parallel to one
150 of the three standard cubic crystallographic axes, or, equivalently, to belong to the direction type (100). The x;
151 (or x) axis [92] has been chosen without loss of generality due to the equivalence of all three axes in the cubic
12 system. The sides of the tube are contained in planes of the crystallographic form {100}.

153 Unlike in the references cited above, and again motivated by the MC simulations of hard-sphere model
15« polymers confined to tubes, the range of SAW lengths investigated in this work has been kept modest. The
155 reason is double: the rich morphological behavior of confined polymers is already clearly observable in MC
s simulations of comparatively short chains (N ~ 5 — 15). This can be understood by observing the structural
157 similarity of the ordered chain morphologies presented in the panels of Figs.1 and 2 and which correspond to
18 systems characterized by different chain lengths (from N = 7 to 35). Furthermore, once cy in this range is
159 known, it can be used as the basis of reliable approximations for the prediction of entropy-driven phase transitions
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10 for much longer chains as well. For these two reasons, we have employed the direct enumeration procedure to
w1 determine cy.

162 The introduction of the tube restriction reduces the symmetry of the full cubic lattice to that of tetragonal
s space group I41 /acd. As a consequence, lattice sites in the tube cross section are not all identical any more, but
14 split into subsets of SAW origins O;, all sites in a subset being crystallographically equivalent. We will refer
s to the cardinality |O;| of these subsets as their multiplicity and will label each of the distinct origins by a type
s which effectively corresponds to the number subindex, i, of each subset. For example, there are three possible
167 origins for SAWSs on an SC lattice restricted by a tube of size 3 x 3, with multiplicities (type 1) |O(| = 4, (type 2)
w8 |02 = 8, (type 3) |03] = 4 (Fig.4), and six possible origins for SAWs on an FCC lattice restricted by a tube of
o size 3 V2 x 3 V2, with multiplicities |O(| = 4, |02| = 8, |03] = 4, |04] = 4, 05| = 4 and |Og| = 1 (Fig.5).

[ ] [ | ® ® ® 9
1(4)(1/4} 1(4){9/36}
[ ] [ | o [ ) [ o
2(8){15/36} 3(4){25/36}
[ ] [ ] [ ] [ ] | [ [ ] [ o
[ [ [ o L ] L L e 4 4 ]

Figure 4. Numbering scheme for all possible origins of SAWs restricted to a tube of square cross section on
the cubic P (SC) lattice, for three tube cross section sizes. In all panels, black circles represent lattice points,
squares are the tube cross sections: 1 X 1,2 x 2 and 3 X 3 from left to right. The view is along the tube axis
in direction [100]. Numbers on the left correspond to the label of each distinct origin (rype). Numbers in
parentheses correspond to the cardinality (multiplicity) of each subset. Subindices in braces correspond to area
ratios (overlaps), ;.

170 Figs.4 and 5 schematically show the definition of tube size and the numbering/labeling scheme for the
171 SC and FCC restricted lattices, respectively. Thus, an n X n tube has a cross section of the same size as n X n
172 conventional cubic unit cells arranged in a square array, and its side measures L = n units of length (SAW step)
w7 for the SC lattice, and L = n V2 for the FCC lattice. In these figures, a number placed at selected lattice points is
17 their label, corresponding to the notation fypes in Tables A1 through A9. Each different type corresponds to a
175 different origin for the SAW. The number in parenthesis corresponds to the multiplicity of that zype (number of
76 crystallographically equivalent restricted lattice points) while the subindex in braces refers to the overlap, to be
177 defined and discussed in Section 4.

178 As the size of the tube cross section grows, the number of distinct origins (i.e. of different types) increases.
179 The value of cy reported below is given separately for all possible distinct (crystallographically non-equivalent)
180 origins: the values of cy in Tables A1 through A9 correspond to the number of SAWs starting from only one of all
11 equivalent lattice sites of a given type. The value of the multiplicity is a useful piece of information for situations
12 in which the 14| /acd symmetry of the tube is possibly further reduced by other geometrical considerations. For
13 example, a flat, comb-like array of equidistant, identical parallel tubes joined at one end by a common channel
18« loses (among others) all fourfold rotation and screw axes of symmetry, which lowers its space group symmetry to
15 orthorhombic Imma. For the estimation of the entropy of polymers confined to such a nanostructure, origins
1s  belonging to the same subset for the isolated tube are, at least in principle, no longer equivalent.
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Figure 5. Numbering scheme for all possible origins of SAWs restricted to a tube of square cross section on the
cubic F (FCC) lattice, for six tube cross section sizes. In all panels, black circles represent lattice points, squares
are the tube cross sections: 0.5V2x0.5V2, 1 V2x 1V2, 1.5V2x 1.5V2, 2V2x 22, 25V2x2.5V2, and
3 V2 x 3 V2 from left to right, and top to bottom. The view is along the tube axis in direction [100]. Numbers on
the left correspond to the label of each distinct origin (fype). Numbers in parentheses correspond to the cardinality
(multiplicity) of each subset. Subindices in braces correspond to area ratios (overlaps), r;.

187 For the calculation of ¢y for SAWSs of the moderate lengths considered in this work, simple enumeration was
18 more than adequate: cy was obtained by exhaustively testing all possible SAWs of length N for self-intersections
8o or for violation of the geometrical restrictions, and discarding those that fail to fulfill self-avoidance or geometrical
10 constraint. Computations were carried out on Intel i7-8700K CPUs with 16 Gb of memory. For benchmark
191 purposes in the case of unconstrained SAWs the computational (CPU) time required for the full enumeration of a
12 N = 17-SAW in the SC lattice and of a N = 13-SAW in the FCC lattice reaches approximately 108 and 928 h,
193 respectively.

194 It must be emphasized that the goal of this work is not to achieve high-accuracy values [27,82,83,86,93,94]
155 in the calculation of the critical exponents or the leading or sub-leading correction-to-scaling exponents, but to
16 obtain correlations for ¢ for chains of moderate length to be used in the understanding of the entropic mechanisms
17 of phase transitions observed in the off-lattice (continium) simulations of confined and densely-packed polymers.

198 3. Results

190 The values of cy for SAWs on lattices restricted to a tube of cross section L X L oriented along the (100)
200 direction are presented in Tables A1 through A3 for the SC lattice, together with their average squared end-to-end
201 distance. The corresponding results for the FCC lattice can be found in Tables A4 through A9. SAW origin types
202 correspond to the labeling schemes of Figs.4 and 5. The coefficients of best fit of the scaling laws in Egs. (1) and
203 (2) to the data of Tables Al through A9 are shown in Tables 1 and 2. As expected, the values of all coefficients
204 are specific for each lattice type, tube size and type of origin. Within a given tube size, restricted SAWSs starting
20s at more confined lattice sites (lower fype) have systematically lower values of ¢y than those further removed
206 from the boundaries. Thus, for SAWs of N = 17 restricted to a 3 X 3 tube in the SC lattice, cy = 9 239 393 494
27 for the more confined, in the corner of the tube, type 1 (of multiplicity 4), cy = 12 003 817 994 for the less
20 confined type 2 (on the side wall with multiplicity 8) and cy = 14 972 474 238 for the least confined type 3 (with
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200 multiplicity 4). For comparison, using the same number of steps the number of different SAW configurations is

20 (N = 17) cy = 473 730 252 102 for the unrestricted SC lattice.

Table 1. Calculated coefficients in scaling laws (Eqs. (1) and (2)) for SC lattice restricted to a tube oriented along
[100]. Universal exponents for unrestricted SAWs are marked with an asterisk *.

Tube size Type A u y D %
Ix1 1 1.634 2410 1417 0.151 1.039
2x2 1 1.171 3354 1.202 0.399 0.750

1.519 3262 1289 0315 0.794
3 1926 3.133 1430 0.259 0.834

3x3 1 0993 3975 0923 1.610 0477
2 1.303 3.806 1.133  1.052  0.543
3 1.661 3.606 1393 0.656 0.620

unrestricted SC lattice: 1269 4719 1.102* 1.046 0.603*

Table 2. Calculated coefficients in scaling laws (1) and (2) for FCC lattice restricted to a tube oriented along
[100]. Universal exponents for unrestricted SAWs are marked with an asterisk *.

Tube size Type A u y D v

0.5v2x0.5v2 1 1876 2674 1564 0.187 1.047
1V2x 142 1 1.063  4.696 1.745  0.203 0.899

2 2430 4.928 1.296 0.171 0.952

1.5V2x1.5V2 1 0.747 6.615 1.352 0.710 0.597
2 1.213  6.540 1.331 0477 0.671

3 1917 6.267 1.410 0314 0.756

2V2x242 1 0.622 7.987 1.030 1914 0.404

2 1.062 7.512 1.282 1.163 0.480

3 1.586 7.532 1.207 0910 0.520

4 1.764 6.843 1.634 0.521 0.624

25V2%x252 1 0.568 8.790 0.844 2.420 0.384
2 0911 8740 0.873 1.916  0.408

3 0.957 8.347 1.128 1.687 0.421

4 1.413 8.477 1.004 1.421 0.444

5 1.494 8.023 1.279 1.182  0.467

6 1.577 7.606 1.544 0910 0.505

3V2x32 1 0544 9200 0749 2515 0403
2 0.906 8.827 1.028 1.849 0.425

3 1.335 8995 0.889 1.578  0.448

4 1.396 8.575 1.200 1.318  0.460

5 1.460 8.224 1.415 1.262 0.454

6 1.456 8.172 1.505 1.062  0.474
unrestricted cubic F lattice: 1.190 10.06 1.135* 0934 0.598%*

211 Based on the results presented in Tables Al through A9 Fig.6 shows the log-log plot of the number of

2 distinct SAWS, cy, versus the number of SAW steps, N, for all SC (left panel) and selected FCC (right panel)
213 lattices for different SAW origins (types) and sizes of the confining tube. Also shown for comparison purposes
212 are the corresponding results for the unrestricted cases. It can be clearly seen that for a given tube size the closer

2
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to the tube surface the lower the total number of distinct SAWS; for origin types residing in the corner of the tube
the larger the tube size the larger the SAW population. Compared to the unrestricted case, type 1 (corner) of the
smallest tube shows always the largest difference while the type of highest value (farthest from the corner) of the
largest tube shows the closest similarity, independently of lattice type.

do0i:10.20944/preprints201811.0112.v1
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Figure 6. Log-log plot of the number of distinct SAW configurations, cy, versus the number of SAW steps, N,
for the SC (left panel) and the FCC (right panel) lattices. Tube cross-sections correspond to 1 X 1,2 x 2 and 3 x 3
for SC and to 0.5V2 x 0.5 \/E, 1V2x1 \/E, 1.5V2 x 1.5 V2 and 3 V2 x 3 V2 for FCC. For a given lattice and
confining tube results are shown for every possible distinct SAW origin (type). Also shown for comparison are
the corresponding curves for the unrestricted lattices (solid black lines).

We should note here that Eq. 1, quantifying the dependence of ¢y on N is manifestly valid for the whole
range of studied systems, independently of lattice type, tube confinement and SAW origin. However, the same is
not true for Eq. 2 which relates SAW size, as quantified by the average square end-to-end distance, with number
of SAW steps. For the unrestricted lattice Eq. 2 remains accurate in the whole N-range. In sharp contrast, for the
confined lattices, especially for SAW origins near the confining tube, anomalous behavior is clearly observed for
N|2

small-N SAWs. This is particularly evident in the results shown in Fig.7 showing log-log plots of <|a) > versus

N for SC (filled symbols) and FCC (open symbols) unrestricted (black color) and confined (red or green color)
lattices. For the latter we differentiate between SAW origins corresponding to the most (SC: type 1 in 1 X 1 tube;
FCC: type 1 in 0.5 V2 x 0.5 V2) and least (SC: type 3 in 3 x 3 tube; FCC: type 6 in 3 V2 x 3 V2) confined cases.
The combination of spatial restrictions along with the anisotropy in cell size leads to this anomalous scaling for
early-N SAWs. Thus, all D and v coefficients reported in Tables 1 and 2, correspond to fittings applied on data
covering the late-N SAW regime.
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Figure 7. Log-log plot of the average squared end-to-end distance, <|wN |2>, versus the number of SAW steps, N,
for the SC (filled symbols) and the FCC (open symbols) lattices. Black color corresponds to unrestricted lattices,
while red and green to confined ones. Solid blue line corresponds to best linear fit on the whole range of SAW
data for unrestricted SC lattice. Dashed blue line corresponds to best linear fit on the late-N SAW range for the
most confined SC case (type 1 in 1 X 1 tube).

In addition to cy and <|wN |2>, the discrete probability distribution functions of |wN |2 were also collected.
In Figs.8 and 9 the effects of tube size (left panel), for a fixed SAW origin, and of origin type (right panel), for
a fixed tube cross section, on the distribution for SAWs of length N = 16 are presented for the SC and FCC
lattices, respectively. As expected, higher confinement (i.e. smaller tube cross section) leads to more stretched
SAWSs and a distribution shifted to higher values of |(u16|2 (remarkably higher histogram values above |(u16|2 at
and above 50). This shift is particularly evident in the cumulative distributions (left panels of Figs.10 and 11).

The strong confinement induced by the small tube 1 X 1 definitely leads to significantly more stretched SAWs.

0.18 T T T T T T 0.16 T T T T T
0.16 pum— i} b 0.14 1 —typel 1
22 ] —type2
—33 0.12 4 ——type3 B
o ] o 0104 .
2 1 )
i T 0.08- i
[a) 4 [a)
['% [N
0.06 .
] 0.04 J
] 0.02 ’| ﬂ H .
|. m 0.00 ! T .
125 150 175 0 25 50 75 100 125 150

1612
Cal

Figure 8. Probability distribution function for |a)16|2 for SAWs of fixed length N = 16 on restricted SC lattices.
Left panel shows the effect of tube cross section for a fixed SAW origin (type 1); right panel depicts the effect of
SAW origin (type) for a fixed tube cross section (2 X 2).
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Figure 9. Probability distribution function for |(u]2|2 for SAWs of fixed length N = 12 on restricted FCC lattices.
Left panel shows the effect of tube cross section for a fixed SAW origin (type 1); right panel depicts the effect of
SAW origin (type) for a fixed tube cross section (2 V2 x22).

On the other hand, the SAW origin type has little influence on the spread of the distribution, but it does
increase or reduce the probability of certain SAW extensions (see for example the higher red bars in the right
panel of Fig.8). It is also remarkable that for a given N and tube cross section, the most confined SAWs (type 1
in this case) show non-vanishing probabilities for values of |w16|2 for which the probability for types 2 and 3 is
zero (isolated black bars in the plot of Fig.8 at |(u16|2 = 12,24, 44,73). Identical conclusions can be drawn for
the effect of origin type and tube length for SAWS on FCC lattices according to the probability distributions
presented in Fig.9. As can be seen in the right panels of Figs.10 and 11, there is virtually no difference in the

cumulative distributions for the different types of SAW origins.

1.0 . . r 1.0 r r T
0.8 . 0.8 .
— Ix1 —typel

&= 0.6 —2x2 {1 & 06 —type2 |

2 ——3x3 2 ——type3

w TR

[a)] [a)

O 044 {1 © o04- 4
0.2 . 0.2 .
0.0 r r r r r r 0.0 r r r r r

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150
|a)16|2 |m1e|2

Figure 10. Cumulative probabilities for the distribution functions of |a)16|2 for SAWs of fixed length N = 16 on
restricted SC lattices of Fig.8.
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Figure 11. Cumulative probabilities for the distribution functions of |a)12|2 for SAWs of fixed length N = 12 on
restricted FCC lattices of Fig.9.

246 The effect of chain length on the cumulative distribution of 'u)N |2 is shown in Figs.12 and 13 for the SC and
27 FCC lattices, respectively. With respect to SC, according to the data in Fig.12 the four curves corresponding
2s to N = 11,13, 15, 17 (left panel) are noticeably different, as they should be for different values of N. However,
29 they come much closer together when scaled by 1/N (right panel of the same figure). In other words, the
20 characteristic ratio of the SAWs is fairly constant in this range of N, with a median value of approx. 1.25. Very
251 similar conclusion can be drawn for the FCC case (Fig.13), where the characteristic ratio shows little variation
252 with the number of SAW steps.

CDF|a"]?
CDF(lo"[)

0 25 50 75 100 125 150 9 10

| 1IN
Figure 12. Cumulative probability distribution function for |a)N |2 for SAWs of different length in a 2 X 2 tube

and for SAW origin of type 1 (left panel) on restricted SC lattices. The right panel shows the same distributions,
scaled by 1/N, which for a step length of 1 is numerically equivalent to the characteristic ratio of the SAW [95].
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Figure 13. Cumulative probability distribution function for |¢uN |2 for SAWs of different length in a 2 V2x2V2
tube and for SAW origin of type 1 (left panel) on restricted FCC lattices. The right panel shows the same
distributions, scaled by 1/ N, which for a step length of 1 is numerically equivalent to the characteristic ratio of
the SAW [95].

»3 4. Discussion

254 An inspection of the tables shows that cy is, as expected, lower for the restricted lattices than for the
255 unrestricted ones, the more so, the smaller the restricting tube. The black, solid line in both panels of Fig.6
256 represents in log-log scale the growth of ¢y with SAW length N for the unrestricted case, while all other lines
257 correspond to the value of cy for SAWs restricted on confining tubes of specific sizes for all possible different
258 origins, both on the cubic P (left panel) and F (right panel) lattices.
259 The faster growth of ¢y for unrestricted SAWS is also reflected in the larger values of the connective constant
20, which is the dominant term in Eq. 1 for large values of N: u5€ = 4.719 for the unrestricted SC lattice, against
1 > C = 3.798 (multiplicity-based, weighted average over all three types of origin) for the restricted 3 x 3 SC
22 lattice, while the corresponding value drops to just 43¢ = 2.410 for the 1 x 1 tube, a decrease of approximately
2 50% with respect to the bulk case. For the FCC lattice the analogous numbers are: 4 €€ = 10.06 (unrestricted),
s uFCC = 8751 (weighted average over all six types of origin for the restricted 3 V2 x 32 FCC lattice) and
x5 pFCC = 2.674 for the most confined 0.5 V2 x 0.5 V2 FCC case, the latter being around 75% less than the value
266 Of the unrestricted FCC SAW. This behavior is in agreement with the geometrical meaning of connectivity:
27 restricted SAWSs that start close to one of the boundaries have, on average, fewer neighbors than those that start
28 close to the confining tube.
269 In addition, the average (weighted by the multiplicity of the type of starting lattice point) connectivity
270 constants in Tables 1 and 2 reflect this trend very clearly: as tube size increases, the values of the average
on  connectivity constant increase and approach the unrestricted values. For FCC lattices of sizes 0.5 V2 x 0.5 V2,
a2 1V2x1V2, 1.5V2x 1.5V2,2V2x2V2,2.5V2x2.5V2 and 3 V2 x 3 V2 the multiplicity-weighted average
273 values of y are 2.674 (73.4%), 4.742 (52.9%), 6.491 (35.5%), 7.613 (24.3%), 8.344 (17.2%) and 8.751 (13.1%),
272 where numbers in parentheses denote percentage reduction with respect to the connectivity constant of the bulk
25 FCC lattice.
Furthermore, for a given size of the tube the values of ¢ for different origins tend to converge as N grows.
This is most clearly observed in the left panel of Fig.6: the curves for the three origin types are already quite
close for the moderate value N = 17 for all restricted SC lattices. The same true for the SAWs of length N = 12
on confined FCC lattices as seen in the right panel of Fig.6. For a given lattice type (FCC or SC) and a given
spatial restriction (tube cross section), the value of ¢y must approach a common limit as N — oo, independently
of the particular type of SAW origin: sufficiently long SAWSs lose the “memory” of their starting point so that:

log ¢
lim —2N i€0;, jeO; i#]
N=wJogcy,
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276 must hold, where Oy is one of the sets of equivalent SAW origins for a restricted lattice, and cfv is the number of
277 restricted SAWSs of length N starting at an origin of type i € O;. The rate at which ¢}, approaches this common
278 N — oo limit is of course dependent on the lattice. As can be seen in Fig.6, SAWs on the restricted FCC lattice
279 tend to this limit more slowly than SAWs on the SC one.

1.30 16 T T T T T T
=2, =20 205, = = 2(2°% 229, - - - 3% 39
=23, = = 2209 2(2°9), - - - - (2% 3(2°9)
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Figure 14. Ratio £ ]lv

logcy,
(solid lines) and 3 x 3 (dashed lines) SC and (right): 1 V2 x 1 V2 (solid line), 2 V2 x 2 V2 (dashed lines) and

3 V2 x 3 V2 (dotted lines) FCC lattices.

as a function of SAW steps, N, for different SAW origins i = 2,...,|O| on (left): 2 x2

cl
280 In Fig.14 the ratio —IN for different SAW origins (i.e. the ratio of the curves represented in Fig.6 divided by
c

21 the curve for cy of SAW jy)rigin of type 1, taken arbitrarily as reference) is seen to indeed approach unity as N
252 increases for both SC (left panel) and FCC (right panel) lattices. Systematically, the ratio tends faster to unity
2a for SAW origins that lie close in space and for smaller tube cross sections. For example, for a SAW of length
2 N = 13 on the 3 V2 x 3 V2 FCC lattice for type of origin i = 2, 4 and 6 the corresponding ratios are 1.026, 1.048
255 and 1.051. In parallel, for a SAW of N = 17 steps on a SC lattice with origin type 2 the ratio increases from
256 1.007 for a2 x 2 tube to 1.011 for a 3 X 3 one.
The dependence of cy on SAW origin (type) for given N and tube size can be explained, at least
approximately, by a simple geometric argument. Since a higher degree of confinement leads to a greater
reduction in cy, it seems natural to attempt a scaling of cﬁv by means of the following area ratio or overlap:

_ Ai ﬂAtube -
i = Atube

where A; N A™b¢ is the area common to a tube cross section (a square in the present work) centered at the SAW
origin of type i (square in dotted line in Fig.15), and the tube cross section. The overlap r; is the ratio of this area
(small square in Fig.15) to the entire tube cross section. More highly confined SAW origins (i.e. a corner, like
type 1 in the 3 x 3 restricted SC lattice) have lower values of 7/, while those close to the center of the tube have
higher 7. Taking the SC lattice restricted by a 3 x 3 tube (rightmost panel in Fig.4) as an illustrative example, the
values of the overlap for the three distinct types of origin are:

1 5 25

rl:Z rn = — }’3:%
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Ai

Ai ﬂ Atube

Atube

Figure 15. The overlap r; is defined as the area (small square) common to a tube cross section centered at the
origin of type i (dashed line) and the tube cross section (solid line), divided by the complete tube cross section.

287 The overlap values for all SAW origin types in the SC and FCC lattices used in the present work are reported
258 1n braces in the schemes of Figs. 4 and 5. In fact, going back to the sketches the labeling of the distinct types of
220 SAW origins is in fact based on the overlap value of a given site: the lower the overlap value the lower the origin
200 index. According to the definition, overlap values for the SC and FCC lattices, confined in tube with direction
201 type (100), are bounded between 0.25 (assigned always to origin type 1) and 1. As can be seen in the reported
202 area ratios of Figs. 4 and 5 for a given tube size no two distinct origin types have the same overlap value. With
2 respect to the confined 3 V2 x 3 V2 FCC lattice origin types 1, 2, 3, 4, 5 and 6 are characterized by area ratios
20a  (overlaps) of 9/36, 15/36, 16/36, 24 /36, 25/36 and 36/36, respectively.

i
205 Based on the above it is tempting to study the behavior of the curves C— (log-log plots in Fig.16) versus N,
206 where now the number of distinct SAW configurations for a given origin type is divided by the corresponding
207 overlap of that type. The comparison of the left panel of Fig.6 with Fig.16 strongly suggests that this simple
20s  geometric argument does indeed successfully explain to first order the dependence of ¢y on the type of SAW
200 origin. Curves corresponding to different tube cross-sections and origin types seem to be brought closer together
a0 when they are scaled by the proper overlap values.
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Figure 16. Log-log plot of the number of distinct SAW configurations scaled by the inverse overlap, cﬁv /v, asa
function of SAW steps, N, on confined SC (left panel) and FCC lattices (right panel) for various origin types and
tube cross-sections. Also shown for comparison are the corresponding results for the unrestricted SAW (solid
black line).
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a0 Abbreviations

sio  The following abbreviations are used in this manuscript:
311

FCC  Face Centered Cubic
MC Monte Carlo
MD Molecular Dynamics
sz SAW  Self-Avoiding Walk
SC Simple Cubic
CCE  Characteristic Crystallographic Element (norm)
BCC  Body Centered Cubic

sz Appendix A

Table Al. SC lattice, tube cross section 1.0 x 1.0. The second column of the first table is the value of ¢y for
SAWSs on the unrestricted SC lattice, included for comparison purposes.

Type 1 multiplicity |O;]| = 4

N cn unrestricted CcN <|wN |2>
1 6 4 1.000
2 30 12 2.333
3 150 36 3.444
4 726 98 4.816
5 3534 274 6.051
6 16 926 702 7.977
7 81390 1854 9.846
8 387 966 4614 12.56
9 1 853 886 11778 15.20

10 8 809 878 28914 18.73

11 41934 150 72 394 22.19

12 198 842 742 176 310 26.59

13 943 974 510 435 346 30.98

14 4468 911 678 1055730 36.29

15 21 175 146 054 2584026 41.66

16 100 121 875 974 6249 358 47.94

17 473 730252 102 15 208 438 54.34

18 2237723 684 094 36 724 294 61.60
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Table A2. SC lattice, tube cross section 2.0 x 2.0.

Type 1 multiplicity |O] = 4 Type2 multiplicity |0, = 4

N CcN <|a)N|2> N CcN <|wN|2>

1 4 1.000 1 5 1.000

2 14 2.571 2 19 2316

3 54 3.963 3 72 3.556
4 200  5.420 4 258 4.853

5 744 6.634 5 926 5.916

6 2626  7.925 6 3176 7.146

7 9186 9.051 7 11000 8.276

8 31122 10.37 8 36988  9.670
9 105766 11.63 9 125302 11.01
10 351798 13.18 10 414518 12.68
11 1175726 14.71 11 1381390 14.31
12 3859350 16.59 12 4515022 16.31
13 12729 142 18.46 13 14853462 18.30
14 41355642 20.71 14 48 105654  20.67
15 134970238 22.96 15 156 694 796  23.03
16 435124 318  25.60 16 504 010840  25.80
17 1408619206 28.25 17 1629120330 28.56

Type 3  multiplicity |03 = 1

N CN <|wN|2>
1 6 1.000
2 26 2.154
3 98 3.122
4 330 4.170
5 1130 5.120
6 3746 6.388
7 12802 7.581
8 42498 9.120
9 143610 10.58

10 472242 12.42

11 1570714 14.19

12 5110426 16.36

13 16779354 18.46
14 54148 874  21.00
15 176 058 234 23.49
16 564 679330 26.43
17 1822489530 29.34
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Table A3. SC lattice, tube cross section 3.0 x 3.0.

Type 1  multiplicity |O¢]| = 4 Type 2  multiplicity |Os] = 8
N cN <|wN|2> N cN <|wN|2>
1 4 1.000 1 5  1.000
2 14 2.571 2 20 2.400
3 56 4.143 3 82 3.780
4 224 5911 4 328  5.311
5 926  7.505 5 1336 6.683
6 3738 9.179 6 5273  8.107
7 15056 10.64 7 20813 9.331
8 59092 12.09 8 80282 10.61
9 230254 13.36 9 309654 11.76
10 881850 14.65 10 1175480 13.02
11 3367124 15.84 11 4466712 14.20
12 12712194 17.13 12 16770216 15.54
13 47952018 18.38 13 63 066 644  16.85
14 179317400 19.77 14 234827439 18.33
15 670507 498  21.17 15 875986779 19.80
16 2488658374 22.73 16 3239657890 2147
17 9239393494 2431 17 12003817994 23.13
Type 3  multiplicity |O3]| = 4
N CN <|wN|2>
1 6 1.000
2 28  2.286
3 122 3.492
4 488 4.721
5 1926 5.760
6 7328 6.885
7 28 132 7.896
8 106 004  9.068
9 403470 10.17
10 1512774 11.46
11 5715168 12.70
12 21299430 14.15
13 79 832758 15.55

14 295630770 17.18
15 1099932734 18.77
16 4049793742 20.60
17 14972474238 22.38
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Table A4. FCC lattice, tube cross section 0.5 V2 x 0.5 V2. The second column of the first table is the value of cN
for SAWs on the unrestricted FCC lattice, included for comparison purposes.

Type 1  multiplicity |O1]| = 2

N cy unrestricted CN <|a)N |2>
1 12 5 1.000
2 132 20 1.600
3 1404 68 2471
4 14 700 208 3.904
5 152 532 624 5.776
6 1573716 1840 8.157
7 16 172 148 5360 11.07
8 165 697 044 15488 14.56
9 1693773924 44 608 18.61

10 17 281 929 564 128 192 23.22

11 176 064 704 412 368 064 28.39

12 1791 455071 068 1 056 000 34.13

13 18208 650 297 396 3028992 40.43

Table A5. FCC lattice, tube cross section 1.0 V2 x 1.0 V2.

Type 1 multiplicity |O1] = 4 Type2 multiplicity |0, = 4

N CN <|wN|2> N CN <|wN|Z>

1 5 1.000 1 12 1.000

2 39 2.256 2 72 1.556

3 248  3.113 3 392 2.265

4 1460 3.907 4 2176  3.199

5 8132 4756 5 11680 4.286
6 43860 5.816 6 61136 5.633
7 230476  7.106 7 314416  7.226

8 1190588  8.657 8 1600960 9.073

9 6072572 1047 9 8070448 11.20
10 30677292  12.57 10 40350672 13.63
11 153744 188 14.97 11 200495840 16.38
12 765753696  17.68 12 992030176  19.45
13 3796189560 20.70 13 4893578576 22.85
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Table A6. FCC lattice, tube cross section 1.5 V2 x1.5v2.

Type 1 multiplicity |O1] =2 Type2 multiplicity |Oy| = 4

N cN <|a)N|2> N CcN <|wN|2>

1 5 1.000 1 8 1.000

2 39 2.256 2 62  2.097

3 317 3.738 3 487 3.234
4 2456 4.927 4 3643 4223

5 18028 5.920 5 26106  5.096

6 127242 6.813 6 181783  5.960

7 876392  7.705 7 1240790 6.878

8 5934196 8.661 8 8342670 7.894

9 39648964  9.725 9 55415928 9.034
10 261993600 10.92 10 364364 782 10.32
11 1715097328 1227 11 2375202602 11.76
12 11139357984 13.79 12 15371509668 13.36
13 71869479512 15.47 13 98873697150 15.14

Type 3  multiplicity |O3] = 2

N CN <|wN|2>
1 12 1.000
2 101 1.941
3 736  2.707
4 5152 3.468
5 35522  4.299
6 241 888 5.216
7 1627468 6.236
8 10825480 7.377
9 71271 844  8.656

10 465099 616  10.08

11 3012465424 11.67

12 19389036972 13.43
13 124130404052 15.36
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Table A7. FCC lattice, tube cross section 2.0 V2 x2.0V2.

22 of 28

Type 1 multiplicity |O] = 4 Type 2 multiplicity |Os| = 4

N cN <|a)N|2> N cN <|¢uN|2>

1 5 1.000 1 8 1.000

2 39 2.256 2 72 2222

3 317 3.738 3 602  3.326

4 2707 5.402 4 5018 4.556

5 22778  6.887 5 41050 5.692

6 186798  8.169 6 328378 6.703

7 1493410 9.278 7 2577480 7.640

8 11705520 10.28 8 19944 688  8.557

9 90414004 11.23 9 152636704 9.491
10 690 737504 12.19 10 1157776248 10.47
11 5231407492 13.18 11 8716517832 11.52
12 39334158792 14.23 12 65200437688 12.65
13 293889553284 15.37 13 484934433160 13.88

Type3 multiplicity |O3]| = 4 Type 4 multiplicity |O4] =1

N cN <|a)N|2> N cN <|wN|2>

1 12 1.000 1 12 1.000

2 101 1.941 2 132 2.182
3 847 3.116 3 1152 2958

4 6946 4.152 4 9144 3.636

5 55498 5.088 5 70400 4.353

6 435926 5985 6 536376 5.144

7 3379684 6.879 7 4071072 6.012

8 25926400 7.797 8 30796 856  6.961

9 197 133924  8.763 9 231952920 7.991
10 1487560076  9.795 10 1738210872  9.107
11 11 150268 460 10.91 11 12958 623176  10.31
12 83085654372 12.11 12 96129954888 11.61
13 615859395980 13.41 13 709838117576 13.02
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Table A8. FCC lattice, tube cross section 2.5 V2 x2.542.

23 of 28

Type 1 multiplicity |O1] =2 Type 2 multiplicity |Os| = 4
N cN <|wN|2> N cN <|¢uN|2>
1 5 1.000 1 8 1.000
2 39 2.256 2 62 2.097
3 317 3.738 3 522 3.421
4 2707 5.402 4 4508 4.922
5 23701  7.209 5 39468 6.465
6 208 144  8.941 6 344215 7922
7 1810302 10.50 7 2966304 9.241
8 15526912  11.89 8 25216726 1043
9 131356780 13.18 9 211725485 11.52
10 1098 163378 14.24 10 1759351811 1254
11 9092485480 15.28 11 14497 192414 13.54
12 74701 087430 16.29 12 118646 116 612 14.52
13 609 855297956 17.29 13 965 528 829 603  15.53
Type3 multiplicity |O3]| = 4 Type4 multiplicity |O4] =2
N cN <|wN|2> N cN <|wN|2>
1 8 1.000 1 12 1.000
2 72 2222 2 101 1.941
3 637 3.474 3 847 3.116
4 5557 4.763 4 7365 4.472
5 48366 6.108 5 63980 5.751
6 418016 7.410 6 549602 6915
7 3570910 8.604 7 4663884 7.987
8 30133676  9.693 8 39130524 8.997
9 251551004 10.71 9 325115970 9971
10 2081126958 11.69 10 2679470380 10.93
11 17091369920 12.66 11 21936104286 11.90
12 139509 610 898  13.64 12 178 579 440256  12.90
13 1132860537091 14.66 13 1446780259612 13.94
Type 5 multiplicity |Os| = 4 Type 6  multiplicity |Og| = 2
N cN <|wN|2> N CN (in|2>
1 12 1.000 1 12 1.000
2 116 2.069 2 132 2.182
3 1044 3.176 3 1277  3.249
4 9138 4.292 4 11348 4.143
5 78471 5355 5 96462 4.951
6 664 057 6.347 6 802244 5.743
7 5558369 7.293 7 6601488 6.553
8 46 127 001  8.218 8 54022204 7.400
9 380120277 9.144 9 440478 598  8.292
10 3113966985 10.09 10 3580119048 9.236
11 25377886728 11.06 11 29 005 342540 10.24
12 205 863 958205  12.08 12 234222195762 11.29
13 1662935723189 13.14 13 1885131153122 1241
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Table A9. FCC lattice, tube cross section 3.0 V2 x3.0V2.

24 of 28

Type 1 multiplicity |O] = 4 Type 2  multiplicity |Os] = 8
N cN <|wN|2> N cN <|¢uN|2>
1 5 1.000 1 8 1.000
2 39 2.256 2 72 2222
3 317 3.738 3 637 3.474
4 2707 5.402 4 5683 4.881
5 23701  7.209 5 50802 6.330
6 211575 9.140 6 455104 7.820
7 1903598 11.06 7 4070009 9.286
8 17110652 12.87 8 36207759  10.67
9 152 867 156  14.52 9 319799348 11.95
10 1354729516 16.02 10 2803337706 13.14
11 11906 603 784  17.38 11 24402025435 14.26
12 103 849402452 18.63 12 211104 465801  15.32
13 899 747 181304  19.79 13 1816626021973 16.35
Type3 multiplicity |O3]| = 4 Type4 multiplicity |O4] = 4
N cN <|wN|2> N cN <|wN|2>
1 12 1.000 1 12 1.000
2 101 1.941 2 116 2.069
3 847 3.116 3 1100 3.313
4 7365 4.472 4 10076  4.478
5 65563 5.968 5 90 588  5.648
6 587910 7.447 6 806 164  6.802
7 5257852 8.837 7 7114248 7.907
8 46707 884  10.13 8 62314664 8.960
9 411696 828 11.33 9 542275908 9.972
10 3601355396 12.46 10 4692529524 10.96
11 31287972228 13.53 11 40409930416 11.93
12 270207 494 804  14.57 12 346 527771 156 12.90
13 2321640993718 15.59 13 2960543277900 13.89
Type 5 multiplicity |Os| = 4 Type 6  multiplicity |Og| = 1
N cN <|wN|2> N CN (in|2>
1 12 1.000 1 12 1.000
2 132 2.182 2 132 2.182
3 1277 3.249 3 1404 3.496
4 11839 4.380 4 13680 4.530
5 107062  5.466 5 125376  5.383
6 950202 6.476 6 1109776  6.157
7 8326206 7.429 7 9637976 6915
8 72328430 8.352 8 82849936  7.690
9 624 508 830  9.265 9 708 279 448 8.499
10 5368075614 10.18 10 6035931488 9.350
11 45975770236 11.12 11 51329173080 10.25
12 392534289 628 12.07 12 435731432064 11.19
13 3341824209214 13.06 13 3692543313752 12.19
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