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Abstract: Polymers in highly confined geometries can display complex morphologies including ordered phases.1

A basic component of a theoretical analysis of their phase behavior in confined geometries is the knowledge2

of the number of possible single-chain conformations compatible with the geometrical restrictions and the3

established crystalline morphology. While the statistical properties of unrestricted self-avoiding random walks4

(SAWs) both on and off-lattice are very well known, the same is not true for SAWs in confined geometries. The5

purpose of this contribution is a) to enumerate the number of SAWs on the simple cubic (SC) and face-centered6

cubic (FCC) lattices under confinement for moderate SAW lengths, and b) to obtain an approximate expression7

for their behavior as a function of chain length, type of lattice, and degree of confinement. This information8

is an essential requirement for the understanding and prediction of entropy-driven phase transitions of model9

polymer chains under confinement. In addition, a simple geometric argument is presented that explains, to first10

order, the dependence of the number of restricted SAWs on the type of SAW origin.11

Keywords: freely jointed chain; confinement; enumeration; conformational entropy; phase transition;12

self-avoiding random walk; face-centered cubic; simple cubic; lattice model13

1. Introduction14

Self-avoiding random walks (SAWs) have long been used in polymer science as one of the simplest and15

most useful descriptions of polymeric chains. The relative simplicity of SAWs has made them an ideal tool16

to investigate static and dynamic properties of polymers both analytically and computationally [1–7] . They17

have proved particularly useful in the determination of universal behavior and scaling laws for polymer systems18

ranging from individual chains to melts. The critical behavior of SAWs is also closely related to that of the Ising19

model and to percolation [8–18].20

Besides their extensive application in polymer science, SAWs have been a subject of mathematical interest in21

their own right [19], [20], mainly because of their close relationship to Brownian motion and stochastic processes22

in general soft matter physics [21–23]. In spite of the very simple idea underlying SAWs, comparatively few23

results have been rigorously solved in a mathematical sense [19]. As a consequence, a great deal of computational24

work has been carried out to complement analytical approaches. From the numerical point of view, a currently25

active research area is the efficient computation of the number of distinct conformations for a SAW of a given26

length on a lattice, which is very closely related to the single-chain classical partition function [24]. Over the last27

years increasingly sophisticated enumeration algorithms [25–27] have been continually pushing the upper SAW28

length limit for which numerical results on enumeration can be obtained within reasonable computational time.29

Detailed knowledge of SAW properties in restricted geometries is an essential ingredient in the study of30

confined polymeric systems, which can range from single macromolecules to highly entangled melts in pores,31

slits, narrow gaps and nanocavities. Such properties include the number of distinct SAWs for a given length,32

mean squared end-to-end vector, distribution of size etc. Although SAWs in such restricted geometries have also33

been studied [11,12,28–32], they have received far less attention than unrestricted SAWs, one of the reasons34

being the apparent lack of applications in polymer science. The relatively recent [33–45] increased interest in35

confined polymeric systems, accompanied by significant advances in molecular simulations and the availability of36
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experimental techniques able to probe the behavior of individual macromolecules in channels, slits, etc [46–50]37

is a strong motivation for the investigation of SAWs in such confined geometries. Recent Monte Carlo (MC)38

simulations [51] of highly confined, dense assemblies of linear, freely jointed chains of strictly tangent hard39

spheres of uniform size shows that such athermal polymer systems display an unexpectedly broad range of40

morphologies, presumably connected by phase transitions.41

In the following, “polymer” will refer to a linear chain of strictly tangent hard spheres, unless explicitly42

stated otherwise. “Monomer” will refer to each of the hard spheres that make up a chain, and “site” will refer43

to each of the points of a lattice. We will also refer interchangeably to the cubic P and F lattices and the44

corresponding simple cubic (SC) and face centered cubic (FCC) crystals obtained by placing a spherical base45

motif on all lattice points.46

As stated earlier the present work is motivated by the simulation results of Ref. [51] where linear,47

freely-jointed chains of tangent hard spheres of uniform size are generated and successively equilibrated under48

various conditions of confinement. The latter is realized through the presence of flat, impenetrable parallel walls49

in one or more dimensions. Extreme confinement corresponds to the state where inter-wall distance approaches50

monomer diameter leading eventually to the formation of quasi 1-D (tube-like) and 2-D (plate-like) polymer51

templates. Typical computer-generated polymer configurations can be seen in Figs. 1 and 2 in lateral and52

cross-sectional views, respectively. They correspond to systems containing a total of 720 monomers and average53

number of bonds per chain N = 7, 17 and 35 at a packing density ϕ = 0.50. In all cases chains are packed in an54

approximately 3.11× 3.11 square tube of dimensions 77.8. All lengths are reported in units of monomer diameter55

(equal to the SAW step length). Periodic boundary conditions are applied on the long dimension, hard walls exist56

in the short ones. More details on the simulation algorithm, the systems studied and the corresponding model57

parameters can be found in [51].58
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Figure 1. Lateral views of computer-generated, linear freely jointed chains of tangent hard spheres of uniform
size confined in tubes of square cross section at ϕ = 0.50. All systems contain a total of 720 monomers. From
top to bottom: chains consist, on average, of N =, 7, 17 and 35 bonds. In all cases chains are packed in an
approximately 3.11 × 3.11 square tube of length 77.8. Periodic boundary conditions are applied on the long
dimension and impenetrable flat walls in the short ones. Ordered regions with crystalline defects can easily be
recognized by visual inspection. A precise analysis shows them to be slightly defective, coexisting FCC crystals
of different orientations. Monomers have been colored according to the chain they belong to. The tube axis
direction in both panels is along a direction of the crystallographic type 〈100〉. Image created with the VMD
software [52].

Figure 2. Same as in Fig.1 but for cross-sectional views. From left to right: chains consist, on average, of N =,
7, 17 and 35 bonds.

An analysis, based on the Characteristic Crystallographic Element (CCE) norm [53–55], of the geometrical59

environment around the spherical monomers shows the ordered regions in such highly-confined polymer structures60

to very closely correspond to an FCC crystal. One remarkable aspect of such dense polymer systems in the bulk61

(i.e. without spatial confinement) is the existence of highly ordered, crystalline phases [56]. In previous MC62

work [55–62] it was shown that the apparent loss of entropy, caused by the regular organization of monomers in63

the sites of a crystal lattice, is more than compensated for by the increase of available volume for monomers, and64
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hence translational entropy, as evidenced by sharp decreases in asphericity and acilindricity of the Voronoi cells65

associated with each monomeric site. The resulting crystalline structures strongly resemble those appearing in66

Molecular Dynamics (MD) and MC simulations of single (monomeric) spheres, well known since the pioneering67

work of Alder and Wainwright [63–65]. These crystalline polymer structures can be simplistically viewed as68

built from crystals of single hard spheres and overlaying on them all possible linear paths of a given length that69

connect tangent spheres. Viceversa, configurations of single hard spheres can be obtained trivially from available70

configurations of polymers by deleting all bonds in chains.71

As a matter of fact, if chain connectivity is ignored and the monomers are considered as individual spheres,72

the resulting orderd structures are virtually undistinguishable, except for one main feature, from those appearing73

in single hard sphere systems [66–68]. The distinguishing feature is the absence of twinned structures in polymer74

systems [69]. In computer simulations, packings of single hard spheres often form quite perfect tetrahedral75

clusters which tend to aggregate in pentatwins [70]. The entropic conformational entropy loss associated with76

twinning in polymeric systems rises the entropic barrier to the extent that individual crystals with single or77

multiple stacking directions and abundant defects are observed predominantly in simulations.78

Since difference in entropy is the only hindering or driving force for phase transitions in athermal polymeric79

systems [6,71–73], the entropy calculation in confined geometries is an essential requirement in understanding80

and predicting their phase behavior. Although all previously described characteristics have been obtained from81

off-lattice simulations, the appearance of highly ordered crystalline phases in 1-D (tube-like) confined polymer82

systems, as the ones shown in Figs. 1 and 2, motivates the calculation of their entropy on crystal lattices under83

equivalent spatial restrictions.84

Fig.3 is a simplified, generic, two-dimensional representation of the ordered structures observed in MC85

simulations of highly confined polymeric systems [51]. The left panel represents a typical system configuration86

(MC-snapshot) confined between parallel walls. The centers of the spherical monomers (circles in solid line)87

are, on average, close to the sites of the perfect crystal (circles in dashed line). Configuration space is sampled88

through changes in the positions of the monomers as the MC progresses (such changes being compatible with89

chain connectivity, packing density, confinement and crystalline morphology; see for example the corresponding90

MC algorithms in [51,74]), much as monomer vibrations about the equilibrium position sample configurations in91

MD simulations. At high densities, monomers remain close to the sites of the crystal lattice (shown in the right92

panel), so that on-lattice polymer chains, built by joining the corresponding sites of the perfect crystal, closely93

approximate the original off-lattice system from the conformational point of view. Each of these chains is thus94

effectively a restricted SAW on the crystal lattice.95

In typical classical MC simulations [75–79], configurations for off-lattice polymer systems are generated96

with a probability proportional to their statistical (Boltzmann) weight and correspond to individual points in a97

configuration space spanned by continuously varying degrees of freedom, e.g. Cartesian coordinates of monomer98

centers in an MD formulation based on Newton’s equations of motion, or Euler, torsion and bond angles in a99

Lagrangian formulation, etc. Entropy or free energy calculations require then the evaluation of a high-dimensional100

integral in configuration space [75].101

On the other hand, configuration space for lattice SAWs (Fig.3, right panel) is discrete and entropy is102

evaluated as a sum of Boltzmann probabilities or weights. Since all feasible configurations are equally probable in103

athermal systems, entropy is proportional to the logarithm of the number of different SAWs. While extensive work104

on the exact enumeration of SAWs on unrestricted lattices in several dimensions (typically the d-dimensional105

hypercubic lattice �d) has been carried out, enumeration of SAWs on restricted cubic P and F lattices has not106

been reported to date. In this contribution we evaluate, by direct enumeration, the number of SAWs on the cubic107

P and F lattices subject to geometrical restriction and calculate the SAW size as a function of lattice type, number108

of bonds and level of confinement.109
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Figure 3. Schematic representation of ordered polymer structures in a confined geometry. Circles in solid
line represent spherical monomers, polygonal lines represent polymer backbones. Monomers along a chain are
strictly tangent (circles in solid line on left panel), monomers belonging to different chains need not, but can also
be tangent. On both panels, circles in dashed line represent sites of the perfect crystal. On average, polymer
backbones can be considered SAWs on the sites of the perfect crystal (right panel).

2. Methods110

In the following, an N-step three dimensional SAW ωN on a lattice is defined as the ordered sequence of111

sites ωN(0),ωN(1), . . . ,ωN(N), where ωN(0) is the position vector of the SAW origin, satisfying the condition112

ωN(i) , ωN( j) for i , j, and such that |ωN(i + 1) −ωN(i)| = 1, i ∈ {0, 1, . . . , N − 1}, where it is assumed that113

the step length of the SAW is taken as the unit of length, and |x| = √x · x denotes the usual Euclidean norm.114

According to the previous definition of step length two neighboring sites are 1 length unit apart on both the115

cubic P and the F lattices. For the cubic P lattice, the edge length of the conventional cell is therefore also unit,116

whereas in the cubic F lattice the edge length of the conventional cell is
√

2.117

The individual components of the position vector of the i-th site of an N-step SAW are denoted by ωN
j (i)

with j = 1, 2, 3. The squared end-to-end distance of the SAW
∣∣∣ωN

∣∣∣2 is given by
∣∣∣ωN

∣∣∣2 = (ωN(N) −ωN(0)) ·
(ωN(N) −ωN(0)). With the previous definitions of unit length, |ωN |2 = N2 for a fully extended SAW, whereas
the minimum SAW length is min(|ωN |2) = 1. These two values bracket the range over which the distribution
of (ωN)2 is defined. If we denote by cN the number of distinct N-step SAWs, the average squared end-to-end
distance is given by: 〈∣∣∣ωN

∣∣∣2〉 = 1
cN

∑
ωN

∣∣∣ωN
∣∣∣2

where the sum is over the cN SAWs starting at a given lattice point ωN(0). For unrestricted SAWs, ωN(0) can be118

any one of the countable infinity of lattice points, since the set {ωN} of all SAWs starting at all points of a given119

lattice has the same space group symmetry as the lattice itself. Let us define the following equivalence relation on120

the set {ωN} of all three-dimensional SAWs of a given length N starting at all points of a given lattice: two SAWs121

ωN , ω′N ∈ {ωN} are equivalent, and we write ωN ≈ ω′N , if there exists a geometrical transformation T (group122

element) in the space group Ia3̄d such that T (ωN(i)) ≈ ω′(i)N i ∈ {0, 1, . . . , N − 1}. The set of all distinct123

cN SAWs is then the set of all equivalent classes {ωN}/cN . For confined SAWs the introduction of geometric124

restrictions will reduce this trivial multiplicity (which is due to the maximal symmetry of the unconfined lattice).125

For unrestricted lattices the number cN and thus the computational effort for the exact enumeration problem
for SAWs are believed to grow exponentially with power law corrections as N increases, instead of the purely
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exponential growth for simple non-SAWs. More specifically, it is conjectured, and there is strong numerical and

nonrigorous evidence, that cN and
〈∣∣∣ωN

∣∣∣2〉 depend on N as:

cN v AµN Nγ−1 (1)〈∣∣∣ωN
∣∣∣2〉 v DN2ν (2)

where A, D, µ, γ and ν are (dimension dependent) positive constants.The constant A is known as the amplitude, µ126

as the connective constant, while γ (the entropic exponent) and ν are critical exponents. For simple non-SAWs127

γ = 1 and ν = 1
2 . Estimates and bounds for µ, ν and γ for SAWs are available [25,80–86]. Approximate values128

in three dimensions are µ ≈ 4.684, γ ≈ 1.157 and ν = 0.588.129

The value of cN has been the object of increasingly refined and extensive calculations. Milestone calculations130

for the 3-D cubic P lattice are: Orr’s N ≤ 6 [24], Fisher and Sykes N ≤ 9 [17,87,88], Guttmann N ≤ 21131

[80,85,88–91], MacDonald et al. N ≤ 26 [81,85], Clisby et al. N ≤ 30 [84], Schram et al N ≤ 36 [25–27], this132

latter value being the current record, obtained by the length doubling method. The later group has also determined133

the current highest values of cN on the BCC (body-centered cubic) (N = 28) and FCC (N = 24) unrestricted134

lattices. The continual growth of the range of known values of cN has made it possible to obtain more accurate135

numerical estimates of the various parameters appearing in Eqs.1 and 2. Extrapolation by means of differential136

approximants and direct fitting to asymptotic expansions yields values for γ and ν in good agreement with those137

obtained by MC renormalization group, conformal bootstrap and field theory.138

In this contribution we present results for the cubic P (SC) and cubic F (FCC) lattices restricted to a pore139

or "tube" of square cross section. While the complete set {ω} of SAWs on the unrestricted lattice possesses the140

maximal crystallographic symmetry of space group Ia3̄d, the introduction of geometrical restrictions reduces the141

symmetry on the one hand and, on the other, introduces additional freedom in the definition of the problem. For142

polymers confined in a pore or tube, the natural correspondence would be to a SAW whose growth is limited in143

the plane transversal to the tube direction. The new degrees of freedom, which are not meaningful for unrestricted144

SAWs, are the orientation of the tube axis, the size of its cross-section and the origin of the SAW: the orientation145

of the tube axis will be defined by direction indices according to crystallographic practice: [i jk]. The cross146

section will be assumed to be a square of side L, measured in units of SAW step length. Finally, cN will be147

calculated for each distinct origins located on the tube cross section at x = 0.148

The value of cN will of course depend on the choice of the origin and on the double countable infinity of
degrees of freedom: direction [i jk] and tube cross section L. In the MC simulations of confined polymers that
motivate this work, hard-sphere chains confined to tubes of square cross-section are observed to preferentially
form quite perfect FCC crystalline domains with their [100] aligned along the tube axis. For both the SC and
FCC lattices we will thus consider the geometrically restricted lattice ��(L) to consist of all the lattice points of
coordinates x contained in the square-section “tube” defined by:

��(L) = {x | x1 ∈ � , |x2|, |x3| < L} (3)

where the unit of length is the SAW step length. In Eq. 3 the tube has been assumed to be oriented parallel to one149

of the three standard cubic crystallographic axes, or, equivalently, to belong to the direction type 〈100〉. The x1150

(or x) axis [92] has been chosen without loss of generality due to the equivalence of all three axes in the cubic151

system. The sides of the tube are contained in planes of the crystallographic form {100}.152

Unlike in the references cited above, and again motivated by the MC simulations of hard-sphere model153

polymers confined to tubes, the range of SAW lengths investigated in this work has been kept modest. The154

reason is double: the rich morphological behavior of confined polymers is already clearly observable in MC155

simulations of comparatively short chains (N ≈ 5 − 15). This can be understood by observing the structural156

similarity of the ordered chain morphologies presented in the panels of Figs.1 and 2 and which correspond to157

systems characterized by different chain lengths (from N = 7 to 35). Furthermore, once cN in this range is158

known, it can be used as the basis of reliable approximations for the prediction of entropy-driven phase transitions159
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for much longer chains as well. For these two reasons, we have employed the direct enumeration procedure to160

determine cN .161

The introduction of the tube restriction reduces the symmetry of the full cubic lattice to that of tetragonal162

space group I41/acd. As a consequence, lattice sites in the tube cross section are not all identical any more, but163

split into subsets of SAW origins Oi, all sites in a subset being crystallographically equivalent. We will refer164

to the cardinality |Oi| of these subsets as their multiplicity and will label each of the distinct origins by a type165

which effectively corresponds to the number subindex, i, of each subset. For example, there are three possible166

origins for SAWs on an SC lattice restricted by a tube of size 3× 3, with multiplicities (type 1) |O1| = 4, (type 2)167

|O2| = 8, (type 3) |O3| = 4 (Fig.4), and six possible origins for SAWs on an FCC lattice restricted by a tube of168

size 3
√

2 × 3
√

2, with multiplicities |O1| = 4, |O2| = 8, |O3| = 4, |O4| = 4, |O5| = 4 and |O6| = 1 (Fig.5).169

1(4){1/4}
1(4){1/4}

2(4){2/4} 3(1){4/4}

1(4){9/36}

2(8){15/36} 3(4){25/36}

Figure 4. Numbering scheme for all possible origins of SAWs restricted to a tube of square cross section on
the cubic P (SC) lattice, for three tube cross section sizes. In all panels, black circles represent lattice points,
squares are the tube cross sections: 1 × 1, 2 × 2 and 3 × 3 from left to right. The view is along the tube axis
in direction [100]. Numbers on the left correspond to the label of each distinct origin (type). Numbers in
parentheses correspond to the cardinality (multiplicity) of each subset. Subindices in braces correspond to area
ratios (overlaps), ri.

Figs.4 and 5 schematically show the definition of tube size and the numbering/labeling scheme for the170

SC and FCC restricted lattices, respectively. Thus, an n × n tube has a cross section of the same size as n × n171

conventional cubic unit cells arranged in a square array, and its side measures L = n units of length (SAW step)172

for the SC lattice, and L = n
√

2 for the FCC lattice. In these figures, a number placed at selected lattice points is173

their label, corresponding to the notation types in Tables A1 through A9. Each different type corresponds to a174

different origin for the SAW. The number in parenthesis corresponds to the multiplicity of that type (number of175

crystallographically equivalent restricted lattice points) while the subindex in braces refers to the overlap, to be176

defined and discussed in Section 4.177

As the size of the tube cross section grows, the number of distinct origins (i.e. of different types) increases.178

The value of cN reported below is given separately for all possible distinct (crystallographically non-equivalent)179

origins: the values of cN in Tables A1 through A9 correspond to the number of SAWs starting from only one of all180

equivalent lattice sites of a given type. The value of the multiplicity is a useful piece of information for situations181

in which the I41/acd symmetry of the tube is possibly further reduced by other geometrical considerations. For182

example, a flat, comb-like array of equidistant, identical parallel tubes joined at one end by a common channel183

loses (among others) all fourfold rotation and screw axes of symmetry, which lowers its space group symmetry to184

orthorhombic Imma. For the estimation of the entropy of polymers confined to such a nanostructure, origins185

belonging to the same subset for the isolated tube are, at least in principle, no longer equivalent.186
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1(2)
{1/4}

1(4){1/4}

2(1){4/4}

1(2){9/36}

2(4){15/36}

3(2){25/36}

4(1){16/16}

1(4){4/16}

2(4){8/16}

3(4){9/16}

1(2){25/100}

3(4){45/100}

4(2){49/100}

2(4){35/100}

6(2){81/100}

5(4){63/100} 6(1){36/36}

1(4){9/36}

2(8){15/36}

3(4){16/36}

4(4){24/36}

5(4){25/36}

Figure 5. Numbering scheme for all possible origins of SAWs restricted to a tube of square cross section on the
cubic F (FCC) lattice, for six tube cross section sizes. In all panels, black circles represent lattice points, squares
are the tube cross sections: 0.5

√
2 × 0.5

√
2, 1
√

2 × 1
√

2, 1.5
√

2 × 1.5
√

2, 2
√

2 × 2
√

2, 2.5
√

2 × 2.5
√

2, and
3
√

2 × 3
√

2 from left to right, and top to bottom. The view is along the tube axis in direction [100]. Numbers on
the left correspond to the label of each distinct origin (type). Numbers in parentheses correspond to the cardinality
(multiplicity) of each subset. Subindices in braces correspond to area ratios (overlaps), ri.

For the calculation of cN for SAWs of the moderate lengths considered in this work, simple enumeration was187

more than adequate: cN was obtained by exhaustively testing all possible SAWs of length N for self-intersections188

or for violation of the geometrical restrictions, and discarding those that fail to fulfill self-avoidance or geometrical189

constraint. Computations were carried out on Intel i7-8700K CPUs with 16 Gb of memory. For benchmark190

purposes in the case of unconstrained SAWs the computational (CPU) time required for the full enumeration of a191

N = 17-SAW in the SC lattice and of a N = 13-SAW in the FCC lattice reaches approximately 108 and 928 h,192

respectively.193

It must be emphasized that the goal of this work is not to achieve high-accuracy values [27,82,83,86,93,94]194

in the calculation of the critical exponents or the leading or sub-leading correction-to-scaling exponents, but to195

obtain correlations for cN for chains of moderate length to be used in the understanding of the entropic mechanisms196

of phase transitions observed in the off-lattice (continium) simulations of confined and densely-packed polymers.197

3. Results198

The values of cN for SAWs on lattices restricted to a tube of cross section L × L oriented along the 〈100〉199

direction are presented in Tables A1 through A3 for the SC lattice, together with their average squared end-to-end200

distance. The corresponding results for the FCC lattice can be found in Tables A4 through A9. SAW origin types201

correspond to the labeling schemes of Figs.4 and 5. The coefficients of best fit of the scaling laws in Eqs. (1) and202

(2) to the data of Tables A1 through A9 are shown in Tables 1 and 2. As expected, the values of all coefficients203

are specific for each lattice type, tube size and type of origin. Within a given tube size, restricted SAWs starting204

at more confined lattice sites (lower type) have systematically lower values of cN than those further removed205

from the boundaries. Thus, for SAWs of N = 17 restricted to a 3 × 3 tube in the SC lattice, cN = 9 239 393 494206

for the more confined, in the corner of the tube, type 1 (of multiplicity 4), cN = 12 003 817 994 for the less207

confined type 2 (on the side wall with multiplicity 8) and cN = 14 972 474 238 for the least confined type 3 (with208
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multiplicity 4). For comparison, using the same number of steps the number of different SAW configurations is209

(N = 17) cN = 473 730 252 102 for the unrestricted SC lattice.210

Table 1. Calculated coefficients in scaling laws (Eqs. (1) and (2)) for SC lattice restricted to a tube oriented along
[100]. Universal exponents for unrestricted SAWs are marked with an asterisk *.

Tube size Type A µ γ D ν

1 × 1 1 1.634 2.410 1.417 0.151 1.039

2 × 2 1 1.171 3.354 1.202 0.399 0.750
2 1.519 3.262 1.289 0.315 0.794
3 1.926 3.133 1.430 0.259 0.834

3 × 3 1 0.993 3.975 0.923 1.610 0.477
2 1.303 3.806 1.133 1.052 0.543
3 1.661 3.606 1.393 0.656 0.620

unrestricted SC lattice: 1.269 4.719 1.102* 1.046 0.603*

Table 2. Calculated coefficients in scaling laws (1) and (2) for FCC lattice restricted to a tube oriented along
[100]. Universal exponents for unrestricted SAWs are marked with an asterisk *.

Tube size Type A µ γ D ν

0.5
√

2 × 0.5
√

2 1 1.876 2.674 1.564 0.187 1.047

1
√

2 × 1
√

2 1 1.063 4.696 1.745 0.203 0.899
2 2.430 4.928 1.296 0.171 0.952

1.5
√

2 × 1.5
√

2 1 0.747 6.615 1.352 0.710 0.597
2 1.213 6.540 1.331 0.477 0.671
3 1.917 6.267 1.410 0.314 0.756

2
√

2 × 2
√

2 1 0.622 7.987 1.030 1.914 0.404
2 1.062 7.512 1.282 1.163 0.480
3 1.586 7.532 1.207 0.910 0.520
4 1.764 6.843 1.634 0.521 0.624

2.5
√

2 × 2.5
√

2 1 0.568 8.790 0.844 2.420 0.384
2 0.911 8.740 0.873 1.916 0.408
3 0.957 8.347 1.128 1.687 0.421
4 1.413 8.477 1.004 1.421 0.444
5 1.494 8.023 1.279 1.182 0.467
6 1.577 7.606 1.544 0.910 0.505

3
√

2 × 3
√

2 1 0.544 9.200 0.749 2.515 0.403
2 0.906 8.827 1.028 1.849 0.425
3 1.335 8.995 0.889 1.578 0.448
4 1.396 8.575 1.200 1.318 0.460
5 1.460 8.224 1.415 1.262 0.454
6 1.456 8.172 1.505 1.062 0.474

unrestricted cubic F lattice: 1.190 10.06 1.135* 0.934 0.598*

Based on the results presented in Tables A1 through A9 Fig.6 shows the log-log plot of the number of211

distinct SAWs, cN , versus the number of SAW steps, N, for all SC (left panel) and selected FCC (right panel)212

lattices for different SAW origins (types) and sizes of the confining tube. Also shown for comparison purposes213

are the corresponding results for the unrestricted cases. It can be clearly seen that for a given tube size the closer214
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to the tube surface the lower the total number of distinct SAWS; for origin types residing in the corner of the tube215

the larger the tube size the larger the SAW population. Compared to the unrestricted case, type 1 (corner) of the216

smallest tube shows always the largest difference while the type of highest value (farthest from the corner) of the217

largest tube shows the closest similarity, independently of lattice type.218
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Figure 6. Log-log plot of the number of distinct SAW configurations, cN , versus the number of SAW steps, N,
for the SC (left panel) and the FCC (right panel) lattices. Tube cross-sections correspond to 1 × 1, 2 × 2 and 3 × 3
for SC and to 0.5

√
2 × 0.5

√
2, 1
√

2 × 1
√

2, 1.5
√

2 × 1.5
√

2 and 3
√

2 × 3
√

2 for FCC. For a given lattice and
confining tube results are shown for every possible distinct SAW origin (type). Also shown for comparison are
the corresponding curves for the unrestricted lattices (solid black lines).

We should note here that Eq. 1, quantifying the dependence of cN on N is manifestly valid for the whole219

range of studied systems, independently of lattice type, tube confinement and SAW origin. However, the same is220

not true for Eq. 2 which relates SAW size, as quantified by the average square end-to-end distance, with number221

of SAW steps. For the unrestricted lattice Eq. 2 remains accurate in the whole N-range. In sharp contrast, for the222

confined lattices, especially for SAW origins near the confining tube, anomalous behavior is clearly observed for223

small-N SAWs. This is particularly evident in the results shown in Fig.7 showing log-log plots of
〈∣∣∣ωN

∣∣∣2〉 versus224

N for SC (filled symbols) and FCC (open symbols) unrestricted (black color) and confined (red or green color)225

lattices. For the latter we differentiate between SAW origins corresponding to the most (SC: type 1 in 1 × 1 tube;226

FCC: type 1 in 0.5
√

2 × 0.5
√

2) and least (SC: type 3 in 3 × 3 tube; FCC: type 6 in 3
√

2 × 3
√

2) confined cases.227

The combination of spatial restrictions along with the anisotropy in cell size leads to this anomalous scaling for228

early-N SAWs. Thus, all D and ν coefficients reported in Tables 1 and 2, correspond to fittings applied on data229

covering the late-N SAW regime.230
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Figure 7. Log-log plot of the average squared end-to-end distance,
〈∣∣∣ωN

∣∣∣2〉, versus the number of SAW steps, N,
for the SC (filled symbols) and the FCC (open symbols) lattices. Black color corresponds to unrestricted lattices,
while red and green to confined ones. Solid blue line corresponds to best linear fit on the whole range of SAW
data for unrestricted SC lattice. Dashed blue line corresponds to best linear fit on the late-N SAW range for the
most confined SC case (type 1 in 1 × 1 tube).

In addition to cN and
〈∣∣∣ωN

∣∣∣2〉, the discrete probability distribution functions of
∣∣∣ωN

∣∣∣2 were also collected.231

In Figs.8 and 9 the effects of tube size (left panel), for a fixed SAW origin, and of origin type (right panel), for232

a fixed tube cross section, on the distribution for SAWs of length N = 16 are presented for the SC and FCC233

lattices, respectively. As expected, higher confinement (i.e. smaller tube cross section) leads to more stretched234

SAWs and a distribution shifted to higher values of
∣∣∣ω16

∣∣∣2 (remarkably higher histogram values above
∣∣∣ω16

∣∣∣2 at235

and above 50). This shift is particularly evident in the cumulative distributions (left panels of Figs.10 and 11).236

The strong confinement induced by the small tube 1 × 1 definitely leads to significantly more stretched SAWs.237
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Figure 8. Probability distribution function for
∣∣∣ω16

∣∣∣2 for SAWs of fixed length N = 16 on restricted SC lattices.
Left panel shows the effect of tube cross section for a fixed SAW origin (type 1); right panel depicts the effect of
SAW origin (type) for a fixed tube cross section (2 × 2).
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Figure 9. Probability distribution function for
∣∣∣ω12

∣∣∣2 for SAWs of fixed length N = 12 on restricted FCC lattices.
Left panel shows the effect of tube cross section for a fixed SAW origin (type 1); right panel depicts the effect of
SAW origin (type) for a fixed tube cross section (2

√
2 × 2

√
2).

On the other hand, the SAW origin type has little influence on the spread of the distribution, but it does238

increase or reduce the probability of certain SAW extensions (see for example the higher red bars in the right239

panel of Fig.8). It is also remarkable that for a given N and tube cross section, the most confined SAWs (type 1240

in this case) show non-vanishing probabilities for values of
∣∣∣ω16

∣∣∣2 for which the probability for types 2 and 3 is241

zero (isolated black bars in the plot of Fig.8 at
∣∣∣ω16

∣∣∣2 = 12, 24, 44, 73). Identical conclusions can be drawn for242

the effect of origin type and tube length for SAWS on FCC lattices according to the probability distributions243

presented in Fig.9. As can be seen in the right panels of Figs.10 and 11, there is virtually no difference in the244

cumulative distributions for the different types of SAW origins.245
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Figure 10. Cumulative probabilities for the distribution functions of
∣∣∣ω16

∣∣∣2 for SAWs of fixed length N = 16 on
restricted SC lattices of Fig.8.
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Figure 11. Cumulative probabilities for the distribution functions of
∣∣∣ω12

∣∣∣2 for SAWs of fixed length N = 12 on
restricted FCC lattices of Fig.9.

The effect of chain length on the cumulative distribution of
∣∣∣ωN

∣∣∣2 is shown in Figs.12 and 13 for the SC and246

FCC lattices, respectively. With respect to SC, according to the data in Fig.12 the four curves corresponding247

to N = 11, 13, 15, 17 (left panel) are noticeably different, as they should be for different values of N. However,248

they come much closer together when scaled by 1/N (right panel of the same figure). In other words, the249

characteristic ratio of the SAWs is fairly constant in this range of N, with a median value of approx. 1.25. Very250

similar conclusion can be drawn for the FCC case (Fig.13), where the characteristic ratio shows little variation251

with the number of SAW steps.252
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Figure 12. Cumulative probability distribution function for
∣∣∣ωN

∣∣∣2 for SAWs of different length in a 2 × 2 tube
and for SAW origin of type 1 (left panel) on restricted SC lattices. The right panel shows the same distributions,
scaled by 1/N, which for a step length of 1 is numerically equivalent to the characteristic ratio of the SAW [95].
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Figure 13. Cumulative probability distribution function for
∣∣∣ωN

∣∣∣2 for SAWs of different length in a 2
√

2 × 2
√

2
tube and for SAW origin of type 1 (left panel) on restricted FCC lattices. The right panel shows the same
distributions, scaled by 1/N, which for a step length of 1 is numerically equivalent to the characteristic ratio of
the SAW [95].

4. Discussion253

An inspection of the tables shows that cN is, as expected, lower for the restricted lattices than for the254

unrestricted ones, the more so, the smaller the restricting tube. The black, solid line in both panels of Fig.6255

represents in log-log scale the growth of cN with SAW length N for the unrestricted case, while all other lines256

correspond to the value of cN for SAWs restricted on confining tubes of specific sizes for all possible different257

origins, both on the cubic P (left panel) and F (right panel) lattices.258

The faster growth of cN for unrestricted SAWs is also reflected in the larger values of the connective constant259

µ, which is the dominant term in Eq. 1 for large values of N: µS C = 4.719 for the unrestricted SC lattice, against260

µS C
r = 3.798 (multiplicity-based, weighted average over all three types of origin) for the restricted 3 × 3 SC261

lattice, while the corresponding value drops to just µS C = 2.410 for the 1 × 1 tube, a decrease of approximately262

50% with respect to the bulk case. For the FCC lattice the analogous numbers are: µFCC = 10.06 (unrestricted),263

µFCC
r = 8.751 (weighted average over all six types of origin for the restricted 3

√
2 × 3

√
2 FCC lattice) and264

µFCC = 2.674 for the most confined 0.5
√

2 × 0.5
√

2 FCC case, the latter being around 75% less than the value265

of the unrestricted FCC SAW. This behavior is in agreement with the geometrical meaning of connectivity:266

restricted SAWs that start close to one of the boundaries have, on average, fewer neighbors than those that start267

close to the confining tube.268

In addition, the average (weighted by the multiplicity of the type of starting lattice point) connectivity269

constants in Tables 1 and 2 reflect this trend very clearly: as tube size increases, the values of the average270

connectivity constant increase and approach the unrestricted values. For FCC lattices of sizes 0.5
√

2 × 0.5
√

2,271

1
√

2 × 1
√

2, 1.5
√

2 × 1.5
√

2, 2
√

2 × 2
√

2, 2.5
√

2 × 2.5
√

2 and 3
√

2 × 3
√

2 the multiplicity-weighted average272

values of µ are 2.674 (73.4%), 4.742 (52.9%), 6.491 (35.5%), 7.613 (24.3%), 8.344 (17.2%) and 8.751 (13.1%),273

where numbers in parentheses denote percentage reduction with respect to the connectivity constant of the bulk274

FCC lattice.275

Furthermore, for a given size of the tube the values of cN for different origins tend to converge as N grows.
This is most clearly observed in the left panel of Fig.6: the curves for the three origin types are already quite
close for the moderate value N = 17 for all restricted SC lattices. The same true for the SAWs of length N = 12
on confined FCC lattices as seen in the right panel of Fig.6. For a given lattice type (FCC or SC) and a given
spatial restriction (tube cross section), the value of cN must approach a common limit as N → ∞, independently
of the particular type of SAW origin: sufficiently long SAWs lose the “memory” of their starting point so that:

lim
N→∞

log ci
N

log c j
N

= 1 i ∈ Oi, j ∈ O j i , j
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must hold, where Ok is one of the sets of equivalent SAW origins for a restricted lattice, and ci
N is the number of276

restricted SAWs of length N starting at an origin of type i ∈ Oi. The rate at which ci
N approaches this common277

N → ∞ limit is of course dependent on the lattice. As can be seen in Fig.6, SAWs on the restricted FCC lattice278

tend to this limit more slowly than SAWs on the SC one.279
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Figure 14. Ratio
log ci

N

log c1
N

as a function of SAW steps, N, for different SAW origins i = 2, . . . , |Ok | on (left): 2 × 2

(solid lines) and 3 × 3 (dashed lines) SC and (right): 1
√

2 × 1
√

2 (solid line), 2
√

2 × 2
√

2 (dashed lines) and
3
√

2 × 3
√

2 (dotted lines) FCC lattices.

In Fig.14 the ratio
ci

N

c1
N

for different SAW origins (i.e. the ratio of the curves represented in Fig.6 divided by280

the curve for cN of SAW origin of type 1, taken arbitrarily as reference) is seen to indeed approach unity as N281

increases for both SC (left panel) and FCC (right panel) lattices. Systematically, the ratio tends faster to unity282

for SAW origins that lie close in space and for smaller tube cross sections. For example, for a SAW of length283

N = 13 on the 3
√

2× 3
√

2 FCC lattice for type of origin i = 2, 4 and 6 the corresponding ratios are 1.026, 1.048284

and 1.051. In parallel, for a SAW of N = 17 steps on a SC lattice with origin type 2 the ratio increases from285

1.007 for a 2 × 2 tube to 1.011 for a 3 × 3 one.286

The dependence of cN on SAW origin (type) for given N and tube size can be explained, at least
approximately, by a simple geometric argument. Since a higher degree of confinement leads to a greater
reduction in cN , it seems natural to attempt a scaling of ci

N by means of the following area ratio or overlap:

ri =
Ai ∩ Atube

Atube ≤ 1

where Ai ∩ Atube is the area common to a tube cross section (a square in the present work) centered at the SAW
origin of type i (square in dotted line in Fig.15), and the tube cross section. The overlap ri is the ratio of this area
(small square in Fig.15) to the entire tube cross section. More highly confined SAW origins (i.e. a corner, like
type 1 in the 3 × 3 restricted SC lattice) have lower values of ri, while those close to the center of the tube have
higher ri. Taking the SC lattice restricted by a 3 × 3 tube (rightmost panel in Fig.4) as an illustrative example, the
values of the overlap for the three distinct types of origin are:

r1 =
1
4

r2 =
5

12
r3 =

25
36
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Figure 15. The overlap ri is defined as the area (small square) common to a tube cross section centered at the
origin of type i (dashed line) and the tube cross section (solid line), divided by the complete tube cross section.

The overlap values for all SAW origin types in the SC and FCC lattices used in the present work are reported287

in braces in the schemes of Figs. 4 and 5. In fact, going back to the sketches the labeling of the distinct types of288

SAW origins is in fact based on the overlap value of a given site: the lower the overlap value the lower the origin289

index. According to the definition, overlap values for the SC and FCC lattices, confined in tube with direction290

type 〈100〉, are bounded between 0.25 (assigned always to origin type 1) and 1. As can be seen in the reported291

area ratios of Figs. 4 and 5 for a given tube size no two distinct origin types have the same overlap value. With292

respect to the confined 3
√

2 × 3
√

2 FCC lattice origin types 1, 2, 3, 4, 5 and 6 are characterized by area ratios293

(overlaps) of 9/36, 15/36, 16/36, 24/36, 25/36 and 36/36, respectively.294

Based on the above it is tempting to study the behavior of the curves
ci

N

ri
(log-log plots in Fig.16) versus N,295

where now the number of distinct SAW configurations for a given origin type is divided by the corresponding296

overlap of that type. The comparison of the left panel of Fig.6 with Fig.16 strongly suggests that this simple297

geometric argument does indeed successfully explain to first order the dependence of cN on the type of SAW298

origin. Curves corresponding to different tube cross-sections and origin types seem to be brought closer together299

when they are scaled by the proper overlap values.300
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Figure 16. Log-log plot of the number of distinct SAW configurations scaled by the inverse overlap, ci
N /ri, as a

function of SAW steps, N, on confined SC (left panel) and FCC lattices (right panel) for various origin types and
tube cross-sections. Also shown for comparison are the corresponding results for the unrestricted SAW (solid
black line).
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The following abbreviations are used in this manuscript:310

311

FCC Face Centered Cubic
MC Monte Carlo
MD Molecular Dynamics
SAW Self-Avoiding Walk
SC Simple Cubic
CCE Characteristic Crystallographic Element (norm)
BCC Body Centered Cubic

312

Appendix A313

Table A1. SC lattice, tube cross section 1.0 × 1.0. The second column of the first table is the value of cN for
SAWs on the unrestricted SC lattice, included for comparison purposes.

Type 1 multiplicity |O1| = 4

N cN unrestricted cN

〈∣∣∣ωN
∣∣∣2〉

1 6 4 1.000
2 30 12 2.333
3 150 36 3.444
4 726 98 4.816
5 3 534 274 6.051
6 16 926 702 7.977
7 81 390 1 854 9.846
8 387 966 4 614 12.56
9 1 853 886 11 778 15.20

10 8 809 878 28 914 18.73
11 41 934 150 72 394 22.19
12 198 842 742 176 310 26.59
13 943 974 510 435 346 30.98
14 4 468 911 678 1 055 730 36.29
15 21 175 146 054 2 584 026 41.66
16 100 121 875 974 6 249 358 47.94
17 473 730 252 102 15 208 438 54.34
18 2 237 723 684 094 36 724 294 61.60
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Table A2. SC lattice, tube cross section 2.0 × 2.0.

Type 1 multiplicity |O1| = 4 Type 2 multiplicity |O2| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 4 1.000 1 5 1.000
2 14 2.571 2 19 2.316
3 54 3.963 3 72 3.556
4 200 5.420 4 258 4.853
5 744 6.634 5 926 5.916
6 2 626 7.925 6 3 176 7.146
7 9 186 9.051 7 11 000 8.276
8 31 122 10.37 8 36 988 9.670
9 105 766 11.63 9 125 302 11.01

10 351798 13.18 10 414 518 12.68
11 1 175 726 14.71 11 1 381 390 14.31
12 3 859 350 16.59 12 4 515 022 16.31
13 12 729 142 18.46 13 14 853 462 18.30
14 41 355 642 20.71 14 48 105 654 20.67
15 134 970 238 22.96 15 156 694 796 23.03
16 435 124 318 25.60 16 504 010 840 25.80
17 1 408 619 206 28.25 17 1 629 120 330 28.56

Type 3 multiplicity |O3| = 1

N cN

〈∣∣∣ωN
∣∣∣2〉

1 6 1.000
2 26 2.154
3 98 3.122
4 330 4.170
5 1 130 5.120
6 3 746 6.388
7 12 802 7.581
8 42 498 9.120
9 143 610 10.58

10 472 242 12.42
11 1 570 714 14.19
12 5 110 426 16.36
13 16 779 354 18.46
14 54 148 874 21.00
15 176 058 234 23.49
16 564 679 330 26.43
17 1 822 489 530 29.34
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Table A3. SC lattice, tube cross section 3.0 × 3.0.

Type 1 multiplicity |O1| = 4 Type 2 multiplicity |O2| = 8

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 4 1.000 1 5 1.000
2 14 2.571 2 20 2.400
3 56 4.143 3 82 3.780
4 224 5.911 4 328 5.311
5 926 7.505 5 1 336 6.683
6 3 738 9.179 6 5 273 8.107
7 15 056 10.64 7 20 813 9.331
8 59 092 12.09 8 80 282 10.61
9 230 254 13.36 9 309 654 11.76

10 881 850 14.65 10 1 175 480 13.02
11 3 367 124 15.84 11 4 466 712 14.20
12 12 712 194 17.13 12 16 770 216 15.54
13 47 952 018 18.38 13 63 066 644 16.85
14 179 317 400 19.77 14 234 827 439 18.33
15 670 507 498 21.17 15 875 986 779 19.80
16 2 488 658 374 22.73 16 3 239 657 890 21.47
17 9 239 393 494 24.31 17 12 003 817 994 23.13

Type 3 multiplicity |O3| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉

1 6 1.000
2 28 2.286
3 122 3.492
4 488 4.721
5 1 926 5.760
6 7 328 6.885
7 28 132 7.896
8 106 004 9.068
9 403 470 10.17

10 1 512 774 11.46
11 5 715 168 12.70
12 21 299 430 14.15
13 79 832 758 15.55
14 295 630 770 17.18
15 1 099 932 734 18.77
16 4 049 793 742 20.60
17 14 972 474 238 22.38

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2018                   doi:10.20944/preprints201811.0112.v1

http://dx.doi.org/10.20944/preprints201811.0112.v1


20 of 28

Table A4. FCC lattice, tube cross section 0.5
√

2 × 0.5
√

2. The second column of the first table is the value of cN

for SAWs on the unrestricted FCC lattice, included for comparison purposes.

Type 1 multiplicity |O1| = 2

N cN unrestricted cN

〈∣∣∣ωN
∣∣∣2〉

1 12 5 1.000
2 132 20 1.600
3 1 404 68 2.471
4 14 700 208 3.904
5 152 532 624 5.776
6 1 573 716 1 840 8.157
7 16 172 148 5 360 11.07
8 165 697 044 15 488 14.56
9 1 693 773 924 44 608 18.61

10 17 281 929 564 128 192 23.22
11 176 064 704 412 368 064 28.39
12 1 791 455 071 068 1 056 000 34.13
13 18 208 650 297 396 3 028 992 40.43

Table A5. FCC lattice, tube cross section 1.0
√

2 × 1.0
√

2.

Type 1 multiplicity |O1| = 4 Type 2 multiplicity |O2| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 5 1.000 1 12 1.000
2 39 2.256 2 72 1.556
3 248 3.113 3 392 2.265
4 1 460 3.907 4 2 176 3.199
5 8 132 4.756 5 11 680 4.286
6 43 860 5.816 6 61 136 5.633
7 230 476 7.106 7 314 416 7.226
8 1 190 588 8.657 8 1 600 960 9.073
9 6 072 572 10.47 9 8 070 448 11.20

10 30 677 292 12.57 10 40 350 672 13.63
11 153 744 188 14.97 11 200 495 840 16.38
12 765 753 696 17.68 12 992 030 176 19.45
13 3 796 189 560 20.70 13 4 893 578 576 22.85
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Table A6. FCC lattice, tube cross section 1.5
√

2 × 1.5
√

2.

Type 1 multiplicity |O1| = 2 Type 2 multiplicity |O2| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 62 2.097
3 317 3.738 3 487 3.234
4 2 456 4.927 4 3 643 4.223
5 18 028 5.920 5 26 106 5.096
6 127 242 6.813 6 181 783 5.960
7 876 392 7.705 7 1 240 790 6.878
8 5 934 196 8.661 8 8 342 670 7.894
9 39 648 964 9.725 9 55 415 928 9.034

10 261 993 600 10.92 10 364 364 782 10.32
11 1 715 097 328 12.27 11 2 375 202 602 11.76
12 11 139 357 984 13.79 12 15 371 509 668 13.36
13 71 869 479 512 15.47 13 98 873 697 150 15.14

Type 3 multiplicity |O3| = 2

N cN

〈∣∣∣ωN
∣∣∣2〉

1 12 1.000
2 101 1.941
3 736 2.707
4 5 152 3.468
5 35 522 4.299
6 241 888 5.216
7 1 627 468 6.236
8 10 825 480 7.377
9 71 271 844 8.656

10 465 099 616 10.08
11 3 012 465 424 11.67
12 19 389 036 972 13.43
13 124 130 404 052 15.36
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Table A7. FCC lattice, tube cross section 2.0
√

2 × 2.0
√

2.

Type 1 multiplicity |O1| = 4 Type 2 multiplicity |O2| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 72 2.222
3 317 3.738 3 602 3.326
4 2 707 5.402 4 5 018 4.556
5 22 778 6.887 5 41 050 5.692
6 186 798 8.169 6 328 378 6.703
7 1 493 410 9.278 7 2 577 480 7.640
8 11 705 520 10.28 8 19 944 688 8.557
9 90 414 004 11.23 9 152 636 704 9.491

10 690 737 504 12.19 10 1 157 776 248 10.47
11 5 231 407 492 13.18 11 8 716 517 832 11.52
12 39 334 158 792 14.23 12 65 200 437 688 12.65
13 293 889 553 284 15.37 13 484 934 433 160 13.88

Type 3 multiplicity |O3| = 4 Type 4 multiplicity |O4| = 1

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 12 1.000 1 12 1.000
2 101 1.941 2 132 2.182
3 847 3.116 3 1 152 2.958
4 6 946 4.152 4 9 144 3.636
5 55 498 5.088 5 70 400 4.353
6 435 926 5.985 6 536 376 5.144
7 3 379 684 6.879 7 4 071 072 6.012
8 25 926 400 7.797 8 30 796 856 6.961
9 197 133 924 8.763 9 231 952 920 7.991

10 1 487 560 076 9.795 10 1 738 210 872 9.107
11 11 150 268 460 10.91 11 12 958 623 176 10.31
12 83 085 654 372 12.11 12 96 129 954 888 11.61
13 615 859 395 980 13.41 13 709 838 117 576 13.02
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Table A8. FCC lattice, tube cross section 2.5
√

2 × 2.5
√

2.

Type 1 multiplicity |O1| = 2 Type 2 multiplicity |O2| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 62 2.097
3 317 3.738 3 522 3.421
4 2 707 5.402 4 4 508 4.922
5 23 701 7.209 5 39 468 6.465
6 208 144 8.941 6 344 215 7.922
7 1 810 302 10.50 7 2 966 304 9.241
8 15 526 912 11.89 8 25 216 726 10.43
9 131 356 780 13.18 9 211 725 485 11.52

10 1 098 163 378 14.24 10 1 759 351 811 12.54
11 9 092 485 480 15.28 11 14 497 192 414 13.54
12 74 701 087 430 16.29 12 118 646 116 612 14.52
13 609 855 297 956 17.29 13 965 528 829 603 15.53

Type 3 multiplicity |O3| = 4 Type 4 multiplicity |O4| = 2

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 8 1.000 1 12 1.000
2 72 2.222 2 101 1.941
3 637 3.474 3 847 3.116
4 5 557 4.763 4 7 365 4.472
5 48 366 6.108 5 63 980 5.751
6 418 016 7.410 6 549 602 6.915
7 3 570 910 8.604 7 4 663 884 7.987
8 30 133 676 9.693 8 39 130 524 8.997
9 251 551 004 10.71 9 325 115 970 9.971

10 2 081 126 958 11.69 10 2 679 470 380 10.93
11 17 091 369 920 12.66 11 21 936 104 286 11.90
12 139 509 610 898 13.64 12 178 579 440 256 12.90
13 1 132 860 537 091 14.66 13 1 446 780 259 612 13.94

Type 5 multiplicity |O5| = 4 Type 6 multiplicity |O6| = 2

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 12 1.000 1 12 1.000
2 116 2.069 2 132 2.182
3 1 044 3.176 3 1 277 3.249
4 9 138 4.292 4 11 348 4.143
5 78 471 5.355 5 96 462 4.951
6 664 057 6.347 6 802 244 5.743
7 5 558 369 7.293 7 6 601 488 6.553
8 46 127 001 8.218 8 54 022 204 7.400
9 380 120 277 9.144 9 440 478 598 8.292

10 3 113 966 985 10.09 10 3 580 119 048 9.236
11 25 377 886 728 11.06 11 29 005 342 540 10.24
12 205 863 958 205 12.08 12 234 222 195 762 11.29
13 1 662 935 723 189 13.14 13 1 885 131 153 122 12.41
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Table A9. FCC lattice, tube cross section 3.0
√

2 × 3.0
√

2.

Type 1 multiplicity |O1| = 4 Type 2 multiplicity |O2| = 8

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 5 1.000 1 8 1.000
2 39 2.256 2 72 2.222
3 317 3.738 3 637 3.474
4 2 707 5.402 4 5 683 4.881
5 23 701 7.209 5 50 802 6.330
6 211 575 9.140 6 455 104 7.820
7 1 903 598 11.06 7 4 070 009 9.286
8 17 110 652 12.87 8 36 207 759 10.67
9 152 867 156 14.52 9 319 799 348 11.95

10 1 354 729 516 16.02 10 2 803 337 706 13.14
11 11 906 603 784 17.38 11 24 402 025 435 14.26
12 103 849 402 452 18.63 12 211 104 465 801 15.32
13 899 747 181 304 19.79 13 1 816 626 021 973 16.35

Type 3 multiplicity |O3| = 4 Type 4 multiplicity |O4| = 4

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 12 1.000 1 12 1.000
2 101 1.941 2 116 2.069
3 847 3.116 3 1 100 3.313
4 7 365 4.472 4 10 076 4.478
5 65 563 5.968 5 90 588 5.648
6 587 910 7.447 6 806 164 6.802
7 5 257 852 8.837 7 7 114 248 7.907
8 46 707 884 10.13 8 62 314 664 8.960
9 411 696 828 11.33 9 542 275 908 9.972

10 3 601 355 396 12.46 10 4 692 529 524 10.96
11 31 287 972 228 13.53 11 40 409 930 416 11.93
12 270 207 494 804 14.57 12 346 527 771 156 12.90
13 2 321 640 993 718 15.59 13 2 960 543 277 900 13.89

Type 5 multiplicity |O5| = 4 Type 6 multiplicity |O6| = 1

N cN

〈∣∣∣ωN
∣∣∣2〉 N cN

〈∣∣∣ωN
∣∣∣2〉

1 12 1.000 1 12 1.000
2 132 2.182 2 132 2.182
3 1 277 3.249 3 1 404 3.496
4 11 839 4.380 4 13 680 4.530
5 107 062 5.466 5 125 376 5.383
6 950 202 6.476 6 1 109 776 6.157
7 8 326 206 7.429 7 9 637 976 6.915
8 72 328 430 8.352 8 82 849 936 7.690
9 624 508 830 9.265 9 708 279 448 8.499

10 5 368 075 614 10.18 10 6 035 931 488 9.350
11 45 975 770 236 11.12 11 51 329 173 080 10.25
12 392 534 289 628 12.07 12 435 731 432 064 11.19
13 3 341 824 209 214 13.06 13 3 692 543 313 752 12.19
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