Article

Seasonality of discrepancies between admission and discharge diagnosis for Medicare patients

Aashara Shrestha, *Dimitrios Zikos* and *Leonidas Fegaras*

1 University of Texas, Arlington; aashara.shrestha@mavs.uta.edu
2 Central Michigan University; zikos1d@cmich.edu
3 University of Texas, Arlington; fegaras@cse.uta.edu

Correspondence: aashara.shrestha@mavs.uta.edu; Tel.: +1-682-410-5541

Abstract: Admission and discharge diagnoses of in-hospital patients are often in discord. Incorrect admission diagnoses are related to increased cost of care and patient safety. Additionally, due to the seasonality of many conditions, this discord may vary across the year. In this paper, we used medical claims data to develop a methodological framework that examines these differences, for Medicare beneficiaries. We provide examples for pneumonia, a condition with seasonal implications, and aneurysm, where early detection can be life-saving. Following a Bayesian approach, our work quantifies and visualizes with time series plots the degree that any clinical condition is correctly diagnosed upon admission. We examined differences in weekly intervals, during a calendar year. The mean length of stay and hospital charges were furthermore compared between matching and non-matching (admission, discharge) pairs, and 95% confidence intervals of the difference of means were estimated. We applied Statistical Process Control methods and then visualized differences, for the hospital charges and the length of stay, per week, with time series plots. Our methodology and the visualizations underline the importance of a rigorous and non-delayed diagnostic process upon admission since there are significant implications in terms of hospital outcomes and cost of care.

Keywords: Health Informatics; Clinical Decision Making; Seasonal Variations; Admission Diagnosis; Health Outcomes; Visualization

1. Introduction

Today hospitals generate large amounts of data which are kept into large data warehouses. This has enabled data scientists to mine useful information for clinical decision making. Data-driven systems utilize a number of clinical attributes including laboratory, radiology tests, patient history and more. There are many implementations of clinical decision support systems that predict the patient diagnosis, identify high risk patients, and provide treatment insights. Many of these examples rely on data analytics and large secondary datasets [1, 2]. Examples include the identification of clinical events [3], the evaluation of medical device effectiveness [4] and the understanding of patterns in rare conditions [5]. A number of research examples utilized claims data from the Centers for Medicare and Medicaid Services (CMS) [6]. CMS describe their data to be intended for “important research that will lay the foundation for better quality and lower costs in the healthcare system”.

Newly admitted patients at the hospital are assigned with an admission diagnosis (Dᵢ) upon hospitalization. This admission Dᵢ code on the medical claim indicates the initial Dᵢ that the beneficiary was given, at the time of admission. The principal exit Dᵢ is the condition that occasioned the need for hospitalization and is determined after the patient has been thoroughly examined and completed any medical tests. There is published evidence that the admission and discharge Dᵢ’s are often in discord. Researchers have studied theses discrepancies and their effect on outcomes of care [7]. Since long ago, researchers have started to study these discrepancies and the characteristics of patients with high rates of admission-discharge Dᵢ discrepancies. Leske found that discrepancies...
existed in 26.8% of all hospital admissions, most frequent in medical, pediatric and neurological patients [8]. In another research that examined the coding accuracy of hospital discharge data in cardiac care units, it was found that the sensitivity the examined diagnoses was 60.7% [9]. It is reasonable to hypothesize that discrepancies between admission and discharge Ds can lead to unwanted medical examinations, incorrect treatments, or delays in delivering care. There are also patient safety implications, such as negative hospital outcomes of care, inefficiencies to the process of care delivery and increased cost of care. The latter, subsequently, is often transferred to patients and their payers in the form of increased hospital charges. Finally, existing approaches for the quantification of discrepancies [admission, discharge Ds] focus on measuring the overall effect on outcomes or finding patient profiles where these discrepancies appear in high frequency [7-9]. Since it is likely for hospitalized patients to be assigned with the incorrect admission D code, the thorough and non-sporadic use of diagnostic protocols and differential diagnosis tools are important for improved diagnosis accuracy [10, 11].

The seasonal aspect of diagnosis discrepancies is reasonable to be examined, considering how seasonality plays a role in the prevalence of some diseases, such as respiratory ones. Research rarely addresses the seasonal aspect of diagnosing diseases. During the year, a given symptom may lead to a diagnosis with variable probability. It is, for instance, more frequent for cough to be associated with seasonal flu during winter rather than during the summer months.

In this paper, which is an extension of our research work [12] the admission-discharge Ds discrepancies are examined in a temporal manner in weekly intervals. We present a methodological framework to calculate and visualize the strength of the “admission D → discharge D” relationship, for each of the 52 weeks of a calendar year. We also introduce two measures: Length of Stay (LOS) and Claims Payment Amount to measure and visualize with time series plots how the diagnosis discrepancies are associated with increased hospital charges and prolonged hospital stay. In order to demonstrate our methodology, we provide exemplified time-series plots for two conditions: Pneumonia, a respiratory condition with seasonal implications, and aneurysm, a life-threatening condition that is crucial to be detected in a non-delayed manner. For the purpose of this study we transformed ICD-9 codes to Clinical Classification Software (CCS) codes developed by the Agency for Healthcare Research and Quality (AHRQ) [13].

The paper begins by introducing to the reader important terminologies and then discusses our replicable methodological framework that can be applied to firstly measure discrepancies in a temporal manner and to secondly compare and visualize (with time series plots) differences to outcomes of care between correct and incorrect admission D’s. Finally, the paper uses our framework for pneumonia and aneurysm and visualizes the degree that the diagnosis discrepancies lead to increased hospital charges and prolonged hospital stay. This research aims to raise awareness of the importance of evidence based and robust diagnosis triage process upon admission, and the uninterrupted and thorough application of up-to-date diagnosis protocols during the clinical encounter. This is, in turn, anticipated to improve patient safety aspects and to reduce the cost of care.

2. Terminologies

International Classification of Diseases (ICD): The nomenclature system for diseases standardized by World Health Organization (WHO) for reporting diseases, injuries, disorders and other medical conditions. Both the admission and principal exit Ds attributes in our dataset were coded using the 9th ICD revision [14].

Clinical Classification of Software Codes (CCS): CCS classifies each ICD-9 code into broader disease categories. Since there are more than 14,000 different ICD-9 codes, CCS groups ICD Codes into a smaller number of exclusive disease categories. The CCS to ICD-9 mapping is available from the Healthcare Cost and Utilization Project (HCUP) [15]. The cardinality of the relationship between the ICD and CCS is N-1. For example: ‘481’ is the ICD 9 Code for ‘Pneumonia due to Streptococcus pneumoniae’ while ‘483’ is ICD 9 Code for ‘Pneumonia due to other specified organism’. Both would be grouped under the same CCS code (CCS=122).
Admission Diagnosis (AD): This is an ICD code on the medical claim that indicates the initial Dx that the beneficiary was assigned with, at the time of hospital admission. The admission diagnosis can be considered as the initial diagnostic evaluation of the patient.

Principal Exit Diagnosis (PED): This is an ICD code on the medical claim that is determined after the patient has been thoroughly examined and has completed any laboratory and radiology tests. The Principal Exit Diagnosis indicates what occasioned the need for hospitalization. In this work this is our ground truth variable.

3. Materials and Methods

3.1. Data and attributes

The research uses the SynPUF dataset. This is publicly available from the Centers for Medicare and Medicaid Services (CMS), in order to facilitate research efforts. SynPUF is a synthetic medical claims dataset that simulates real hospital admissions data. The SynPUF data include the same patterns and trends that can be found in non-synthetic datasets. CMS makes available 20 different subsets of SynPUF data. We used the Inpatient Claims SynPUF files, since our focus are the inpatient admissions, so as to study the nature of discrepancies between admission D\textsubscript{x} and the Principal Exit D\textsubscript{x}. The most recent SynPUF data made available by CMS consist of 3 years of simulated data for patients admitted between 2008 and 2010. Each sample consisted of approximately 65,000 records and as we merged 10 sample datasets, the final number of records was approximately 650,000 records. The attributes that we used for this study are shown in Table 1 [16].

Table 1. Attributes used in this study

<table>
<thead>
<tr>
<th>SynPUF Attribute</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admitting ICD-9 Diagnosis Code</td>
<td>Initial Dx code on the institutional claim indicating the beneficiary’s initial diagnosis at the time of admission, before any further patient investigation took place</td>
<td>Referred to as AD (Admission Diagnosis)</td>
</tr>
<tr>
<td>ICD-9 Diagnosis Code 1</td>
<td>The beneficiary’s principal exit diagnosis. It typically represents the health problem that caused the need for hospitalization. This attribute is our ground truth</td>
<td>Referred to as PED (Principal Exit Diagnosis)</td>
</tr>
<tr>
<td>Claims Admission Date</td>
<td>The date the beneficiary was admitted to the hospital or skilled nursing facility</td>
<td>To calculate the length of stay (LOS= Discharge - Admission date)</td>
</tr>
<tr>
<td>Beneficiary Discharge Date</td>
<td>The date when the patient was discharged from hospital</td>
<td></td>
</tr>
<tr>
<td>Claim Payment Amount</td>
<td>The amount of payment made from the Medicare trust fund for the services covered by the claim record.</td>
<td>The amount (USD) associated with the Diagnostic Related Groups</td>
</tr>
</tbody>
</table>

3.2. Methodological Framework

We started by appending the 10 SynPUF data samples; then we extracted the attributes of interest (Table 1) and finally joined the resulting dataset with CCS codes to group various diseases into one single bucket. By joining with the CCS code-set, 3,888 different admission D\textsubscript{x} codes were grouped under 245 unique CCS categories whereas 4,723 different Principal Exit D\textsubscript{x} codes were grouped under 251 unique CCS categories. We then replaced the admission date information with the calendar week, and hence the data were categorized under 52 different week categories.

Prior to investigating the [AD, PED] discrepancies, we were interested to learn about the frequency of each CCS code during the calendar year, in a temporal manner, per week. The result of formula (a) is the percent of Principal Exit Diagnosis of Pneumonia over the total number of admissions, during week \(w\).

\[P(w) = \frac{P(PED=Pneumonia) \times 100}{P(PED)} \] \hspace{1cm} (a)
where

\(w \) is a calendar year week
\(\text{PED} = \text{Principal Exit Diagnosis} \)
\(P(\text{PED}) \) is probability for any PED for week \(w \) (total admissions for week \(w \))

The next step involves the calculation for every PED of (i) the number of cases where AD matches the PED and (ii) the number of cases where AD and PED are in mismatch (AD=other, PED=Dx of interest). These calculations were made for the entire year, as well as per week separately. With this information, it now becomes possible to calculate the precision and recall of the admission diagnosis for any PED of interest and prepare confusion matrices accordingly. Obviously, in our approach, the test variable is the AD, and the ground truth variable is the PED.

Formula (b), below, is the probability for pneumonia to be correctly diagnosed, upon admission. Formula (c), on the other hand, is the probability for pneumonia to be incorrectly mislabeled as any other condition, during the admission phase. These probabilities are complementary and inform us “What physicians initially thought while trying to diagnose a -later known- patient diagnosis”.

\[
\{ P(AD = \text{Pneumonia} | \text{PED} = \text{Pneumonia}) \} \quad (b)
\]
\[
\{ P(AD = \text{Other Diagnosis} | \text{PED} = \text{Pneumonia}) \} \quad (c)
\]

To compare the matching vs mismatching \(\{AD, \text{PED}\} \) pairs in terms of the length of stay (LOS) and the hospital charges, we calculated the mean and 95\% C.I of the LOS and hospital charges for the matching and the mismatching cases separately. The comparison was made in a temporal manner, for the 52 calendar weeks. Then we subtracted the two means, in order to find the difference of means (formula d) and the 95\% C.I of the difference of means.

\[
\text{Diff} = x_{\text{mismatch}} - x_{\text{match}} \quad (d)
\]

where

\[
x_{\text{mismatch}} = \frac{1}{n_{\text{mismatch}}} \sum_{k=1}^{n} x_{k}
\]

\[
x_{\text{match}} = \frac{1}{n_{\text{match}}} \sum_{k=1}^{n} x_{k}
\]

The aforementioned differences were calculated per week, thus generating a temporal dataset of 52 data points per Principal Exit Diagnosis. The final step involves the application of Statistical Process Control (SPC) methods in order to smoothen the temporal data packets and reduce the effect of random spikes on the visualized time series plots. The SPC method that we used is the Exponential Weighted Moving Average (EWMA) algorithm (formula e). While other control charts treat rational subgroups of samples individually, the EWMA chart tracks the exponentially-weighted moving average of all prior sample means. EWMA weights samples in geometrically decreasing order so that the most recent samples are weighted most highly while the most distant samples contribute very little. After experimenting with different depth of memory values during our smoothing effort, we decided to use a smoothing factor \(\lambda = 0.3 \), and therefore the EWMA transformations and time series plots are generated accordingly.

\[
\text{EWMA}_t = \lambda Y_t + (1 - \lambda)\text{EWMA}_{t-1} \text{for } t = 1, 2, \ldots, n \quad (e)
\]

where

\(\text{EWMA}_0 \) is the mean of historical data (target)
\(Y_t \) is the observation at time \(t \)
n is the number of observations to be monitored including EWMA_0

$0 < \lambda \leq 1$ is a constant that determines the depth of memory of the EWMA.

The difference of the means (e.g., mean LOS for non-matching [AD, PED] minus mean LOS for matching [AD, PED]), per week, were finally used to generate time series plots. These plots visualize the raw differences and well as the EWMA-smoothened differences. Figure 1 illustrates and summarizes our replicable methodological framework.

Figure 1. Overview of the methodological framework

4. Results

4.1. Seasonal variations of disease frequency

We selected two example diagnoses in order to illustrate our methodology: Pneumonia, a respiratory disease with seasonal implications, and aneurysm, a life-threatening condition. The results section presents examples for these two conditions. By using our replicable framework similar output can be generated for any diagnosis of interest. Below, in Fig. 2, pneumonia is visualized to demonstrate the seasonal aspect of this disease. We provide time series plots of the raw frequency ratio (%) (blue line) and then we smoothened the time series plot (red line), using EWMA with a depth of memory λ between 0.2 and 0.3.

Figure 2. Proportion of Patients with Pneumonia over total admissions
Examining the EWMA line plot (Fig. 2), the ratio of pneumonia gradually increases during winter until mid-February (week 7) and then gradually decreases when approaching the summer months. The decrease is especially steady during weeks 7 through 14 (mid-February- early April), with a peak low of 3.68% in week 27 (early July). In a similar manner, the frequency of any diagnosis of interest can be visualized to examine disease specific temporal patterns.

4.2. Mismatch between Admission and Principal Exit Diagnosis

We estimated the percent of mismatch between AD and PED. In order to examine the seasonal aspect of this mismatch, we herein grouped data into four calendar seasons and calculated confusion matrices for each season. Our ground truth is the PED, and we are interested in learning the accuracy of the admitting diagnosis. The average percent of matching [AD, PED] pairs, for all 249 CCS D. codes was only 21.67%. The 25th quartile of this distribution was 4.54%, the median = 12.5%, and the 75th quartile was found to be 34.96%. Table 1 shows the percent where AD matched the PED, for the 20 most frequent PEDs.

Table 2. Correct diagnosis % (admission = discharge Dx), for the 20 most frequent CCS Principal Exit Diagnoses.

<table>
<thead>
<tr>
<th>Discharge Dx</th>
<th>N</th>
<th>P(AD = PED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>32367</td>
<td>47.13</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>29619</td>
<td>52.20</td>
</tr>
<tr>
<td>Osteoarthrosis</td>
<td>23870</td>
<td>72.26</td>
</tr>
<tr>
<td>Dysrhythmia</td>
<td>23007</td>
<td>56.52</td>
</tr>
<tr>
<td>COPD</td>
<td>20680</td>
<td>45.18</td>
</tr>
<tr>
<td>Coronary atheromatosis</td>
<td>19064</td>
<td>27.04</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>17324</td>
<td>82.87</td>
</tr>
<tr>
<td>Medical Device Compl.</td>
<td>16526</td>
<td>25.09</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>16386</td>
<td>45.45</td>
</tr>
<tr>
<td>Acute Myocard. Infraction</td>
<td>16214</td>
<td>23.84</td>
</tr>
<tr>
<td>Acute Cardiovasc.</td>
<td>14419</td>
<td>48.36</td>
</tr>
<tr>
<td>Fluid/electrolytes Dx</td>
<td>12784</td>
<td>45.43</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>12458</td>
<td>43.30</td>
</tr>
<tr>
<td>Hip fracture</td>
<td>12316</td>
<td>44.85</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>12051</td>
<td>36.32</td>
</tr>
<tr>
<td>Back problem</td>
<td>11207</td>
<td>74.82</td>
</tr>
<tr>
<td>Chest pain</td>
<td>11170</td>
<td>81.34</td>
</tr>
<tr>
<td>Skin infection</td>
<td>10220</td>
<td>68.80</td>
</tr>
<tr>
<td>Gastrointestinal hemorr.</td>
<td>9750</td>
<td>71.74</td>
</tr>
<tr>
<td>Mood disorders</td>
<td>9613</td>
<td>40.27</td>
</tr>
</tbody>
</table>

We conducted correlation analysis using Pearson coefficient, to examine the relationship between the disease frequency and the correctness (AD=PED) ratio and found a statistically significant, moderate to strong positive correlation (R = .454, p<0.001) between these two variables: The more frequent a diagnosis is, the higher the probability that it is correctly classified on admission. Table 4 shows the recall, precision and F-Score for pneumonia. The precision and recall were both consistent across the four seasons (Recall = 51%, Precision = 59%), with very minor differences. According to results, during admission, half of pneumonia cases are misclassified by physicians as other conditions (recall = 51%). The precision was found to be higher, at 59%; out of 10 admission diagnoses of pneumonia, 6 were truly pneumonia, according to the PED.

Table 3. Confusion Matrices for the Admission → Discharge discrepancies of Pneumonia

<table>
<thead>
<tr>
<th>Spring</th>
<th>Principal Exit Dx</th>
<th>Fall</th>
<th>Principal Exit Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Dx</td>
<td>Pneumonia</td>
<td>Other</td>
<td>Admission Dx</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>4317</td>
<td>2912</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>Other Dx</td>
<td>3989</td>
<td>173046</td>
<td>Other Dx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
<th>Principal Exit Dx</th>
<th>Winter</th>
<th>Principal Exit Dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Dx</td>
<td>Pneumonia</td>
<td>Other</td>
<td>Admission Dx</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3930</td>
<td>2715</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>Other Dx</td>
<td>3771</td>
<td>163843</td>
<td>Other Dx</td>
</tr>
</tbody>
</table>

Table 4. Recall, Precision and F-Score of the admission diagnosis for Pneumonia

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Summer</th>
<th>Fall</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall [TP/(TP+FN)]</td>
<td>0.5197</td>
<td>0.5103</td>
<td>0.5181</td>
<td>0.5183</td>
</tr>
<tr>
<td>Precision [TP/(TP+FP)]</td>
<td>0.5972</td>
<td>0.5914</td>
<td>0.5906</td>
<td>0.5960</td>
</tr>
<tr>
<td>F-Score [2TP/(2TP+FP+FN)]</td>
<td>0.5558</td>
<td>0.5479</td>
<td>0.5520</td>
<td>0.5544</td>
</tr>
</tbody>
</table>
Table 5 shows the recall, precision and F-Score for aneurysm. The precision and recall were similar across the four seasons (Recall = 39.7% in summer vs 42.7% in winter, Precision = 44.6% in summer vs 46.7% in winter). According to results, 6 out of 10 aneurysm cases are misclassified by physicians as other conditions, on admission. The precision was found to be slightly higher: Out of 10 admission diagnoses of Aneurysm, 4 to 5 were truly aneurysm.

Table 5. Confusion Matrices for the Admission → Discharge discrepancies of Aneurysm

Season	Principal Exit Dx		Summer	Principal Exit Dx		Winter	Principal Exit Dx					
---------	-------------------			Aneurysm	325	274	Aneurysm	229	266	Aneurysm	229	266
	Aneurysm	396	Other Dx	447	415	Other Dx	347	356	Other Dx	183096	173230	156992

Table 6. Recall, Precision and F-Score of the admission diagnosis for Aneurysm

<table>
<thead>
<tr>
<th>Season</th>
<th>Recall [TP/(TP+FN)]</th>
<th>Summer</th>
<th>0.4210</th>
<th>0.3977</th>
<th>0.3976</th>
<th>0.4277</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision [TP/(TP+FP)]</td>
<td>0.4508</td>
<td>0.4463</td>
<td>0.4544</td>
<td>0.4667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F-Score [2TP/(2TP+FP+FN)]</td>
<td>0.4354</td>
<td>0.4206</td>
<td>0.4241</td>
<td>0.4463</td>
<td></td>
</tr>
</tbody>
</table>

4.3. Seasonal Comparison of LOS between correct-incorrect diagnoses

4.3.1 Example 1: Pneumonia

For each week, two mean LOS values were calculated: The mean LOS when pneumonia was correctly diagnosed on admission (AD = PED = Pneumonia) and the mean LOS when pneumonia was misclassified as a different condition, of admission (AD = Other Dx, PED = Pneumonia). The difference of these two means and the 95% C.I of the difference of means was then estimated and visualized with time series plots (Fig. 3). For all 52 weeks, the LOS difference is positive and varies between 0.5 and 1.5 days. The 95% C.I of the difference of means also remains consistently positive across the entire calendar year. This is a significant difference from the health systems management perspective.

![Figure 3. LOS difference of means & 95% C.I between correct & incorrect Dx of Pneumonia on admission](image)

4.3.2 Example 2: Aneurysm

In a similar manner, for each week, two mean LOS values were calculated: The mean LOS when aneurysm was correctly diagnosed on admission (AD = PED = Aneurysm) and the mean LOS when aneurysm was misclassified as a different condition of admission (AD = Other Dx, PED = Aneurysm). The difference of these two means and the 95% C.I of the difference of means was then estimated and visualized with time series plots (Fig. 4). For the majority of the 52 weeks, the LOS difference is
positive and varies between 0 and 6 days. The 95% C.I of the difference of means also remains consistently positive during the majority of the weeks. From the time series plot below, the difference of the LOS means appears to be gradually higher during early summer and lower during spring.

These interesting fluctuations need to be further examined, so as to gain an understanding how seasonality may have an effect on prolonged hospital stays, when health systems fail to detect conditions in a timely manner upon admission.

4.4. Seasonal Comparison of Charges between correct-incorrect Dx’s

4.4.1 Example 1: Pneumonia

For each week, we calculated the mean hospital charges when pneumonia was correctly diagnosed on admission (AD = PED = Pneumonia) and the mean hospital charges when pneumonia was misclassified as a different condition of admission (AD = Other Dx, PED = Pneumonia). The difference of these two means and the 95% C.I of the difference of means was then estimated and visualized with time series plots (Fig. 5). For all 52 weeks, the hospital charges difference is positive and varies between $1,000 and $4,000. The 95% C.I of the difference of means also remains consistently positive across the entire calendar year.

4.4.2 Example 2: Aneurysm

Similarly, for aneurysm, for each week, two mean hospital charges values were calculated: The mean hospital charges when aneurysm was correctly diagnosed on admission (AD = PED = Aneurysm) and the mean LOS when aneurysm was misclassified as a different condition of admission (AD = Other Dx, PED = Aneurysm). The difference of these two means and the 95% C.I of the difference of means was then estimated and visualized with time series plots (Fig. 6). In the case of aneurysm, the mean difference was mainly positive, although not consistently. The lower count of aneurysm cases per week, results to wider 95% C.I ranges.
Figure 6. Hospital Charges difference of means & 95% C.I between correct & incorrect Dx of Aneurysm

5. Discussion

This research presented a methodological framework to quantify and visualize, using time series plots, the admission and discharge diagnosis discrepancies for Medicare patients. This approach examines the uncertainty of diagnostic decisions during the admission phase: Due to the seasonality of a number of conditions (such as respiratory ones) we hypothesized that clinical decision makers face challenges in recognizing those conditions during different calendar year periods. Additionally, our approach examines the temporal relationship between outcomes of care and the correct identification of a Dx on admission. By examining these differences, we can shed light on temporal patterns of these discrepancies and their burden on the cost and quality of care. We presented examples for two important health systems parameters: Hospital charges and length of stay.

Our results show that only the 21.67% of cases is identified correctly on admission, while there is a moderate to strong correlation between the frequency of the final diagnosis and the aforementioned ratio: Clinical decision makers do not correctly recognize uncommon and rare conditions early on admission. This finding needs to be further investigated to examine whether this is an inherent problem with rare diseases (difficulty to differentially diagnose them) or whether it holds implications regarding the degree of preparedness of the health systems to detect rare and uncommon conditions. Our methodology is anticipated to be useful for health systems to understand these discrepancies for any condition of interest, and for any outcome of interest, contingent to data availability. In addition time series plots provide insights about seasonal trends and patterns that may need to be examined, case by case in a more focused manner. As our examples indicate, discrepancies have an effect on cost of care and the LOS, while they often show interesting patterns over the course of the year and have variable effect on clinical outcomes.

The presented methodological framework and our examples, not only add to existing knowledge that there are discrepancies between admission and discharge Dxs, they also provide insights on seasonal aspects of these discrepancies as far as outcomes and cost of care are concerned. Physicians at hospitals at typically the ones who assign admission diagnoses. Themselves, as well as hospital administrators and hospital quality committees should be aware that the correct Dx identification on admission holds significant cost and quality implications. The authors believe that admission diagnosis verification systems should be included to the functionality of future implementations of clinical decision support systems. Those systems can integrate discrepancy-specific differential diagnosis information [17]. For instance, physicians who select an admission Dx code that often leads to a different Principal Exit Dx would be presented with differential diagnosis resources that would pinpoint to aspects of care that may be further examined.

Hospitals may also prioritize conducting cost-benefit analyses to consider investing on more thorough initial patient assessment systems and process flows. Investment considerations may include the recruitment of specialty physicians for teleconsultation during the initial patient assessment [18, 19], and the purchase of new diagnostic equipment to improve the diagnostic accuracy. Continuing professional development and medical education and training should be factored in, during these efforts. Finally, the authors believe that the integration of differential diagnosis protocols and verification systems to existing Electronic Health Records and the utilization of healthcare analytics [20], that model a multitude of patient attributes to provide assistive diagnosis, would contribute to an improved initial diagnosis accuracy.
Supplementary Materials: The following are available online at

Sample Data used for the analysis:
https://drive.google.com/open?id=1N5eZD4YmWTD3x7Ms00Rqdx1WB6rt92F
Codebook for the data used:
https://drive.google.com/open?id=1rKSeaZoRywsy7GALxDWmhgzwfSLK10
ICD to CCS Conversion table:
https://drive.google.com/open?id=1XZtzcbJwZTGdZhlcSCXlXwOwrtQSrJPk

Author Contributions: D.Z co-supervised the project completion and wrote significant portion of the paper and completed data preparation. A.S prepared the code for the data analysis and contributed to paper edits. L.F supervised the project completion.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

