

1 Article

2 **Effects of heat treatment on morphology, texture and**
3 **mechanical properties of a MnSiAl multiphase steel**
4 **with TRIP behavior**5 **A. Salinas¹, A. Artigas¹, J. Perez-Ipiña², F. M. Castro-Cerda¹, N. F. Garza-Montes-de-Oca³,**6 **R. Colás³, R. Petrov⁴ and A. E. Monsalve*¹.**7 ¹ Departamento de Ingeniería Metalúrgica, Universidad de Santiago de Chile, Av. Ecuador 3735
8 (9170124), Santiago, Estación Central, Chile.9 ² Grupo Mecánica de Fractura, UNComa-CONICET, Neuquén 8300, Argentina..10 ³ Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, México.11 ⁴ Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent.

12 University, Technologiepark 903, 9052 Gent, Belgium.

13 * Correspondence: alberto.monsalve@usach.cl.

14

15 **Abstract:** The effect that the microstructure exerts on the TRIP phenomenon and on the mechanical
16 properties in a multiphase steel was studied. Samples of an initially cold-rolled ferrite-pearlite steel
17 underwent different intercritical annealing treatments at 750°C until an equal fractions of
18 austenite/ferrite was reached; the intercritical treatment was followed by isothermal bainitic
19 treatments before cooling the samples to room temperature. Samples in the first treatment were
20 heated directly to the intercritical temperature, whereas other samples were heated to either 900
21 or 1100°C to obtain a fully homogenized, single phase austenitic microstructure prior to the
22 conducting the intercritical treatment. The high temperature homogenization of austenite resulted
23 in the decrease in its stability, so a considerable austenite fraction transformed into martensite by
24 cooling to room temperature after the bainitic heat treatment. Most of the retained austenite
25 transformed during the tensile tests, and as a consequence, the previously homogenized steels
26 showed the highest UTS. In turn, the steel with a ferritic-pearlitic initial microstructure, exhibited
27 higher ductility than the other steels and texture components that favor forming processes.28 **Keywords:** TRIP-assisted steel, microstructure, mechanical properties.

29

30 **1. Introduction**31 TRIP (Transformation Induced Plasticity) assisted steels belong to the Advanced High Strength
32 Steels family, which combine high ductility and strength. The TRIP effect consists in transformation
33 of metastable austenite into martensite during deformation [1]. The energy absorption capacity of
34 TRIP-assisted steels make them attractive for the automotive industry. TRIP-assisted steels have a
35 complex multiphase microstructure consisting mainly of ferrite, bainite and retained austenite.
36 martensite and carbides can be present in some cases [2,3]. Improvements in mechanical properties
37 of TRIP-assisted steels are related to relationships between chemical composition and microstructure
38 (grain size, phase morphology and others) and stability of the retained austenite [4]. The stabilization
39 of austenite at room temperature is enhanced by carbon enrichment during heat treatment [5].40 There are several studies that show the effect that morphological aspects have on retained
41 austenite and its stability against transformation [3,6-8]. Van Dijk et al. [3] noticed that the austenite
42 volume fraction, its carbon concentration and the grain size of the retained austenite play a crucial

43 role in the TRIP properties as they significantly affect the mechanical stability of the retained
44 austenite. They found that the stability of retained austenite decreases when the carbon content
45 decreases. Other studies [6-8] reported that the increase of the grain size of the retained austenite
46 decreases the austenite stability and, consequently, increases the TRIP effect. Wang et al. [7] relate the
47 chemical austenite stabilization with the extra interfacial (austenite/martensite) energy required for
48 fine austenite grains. It means, increasing austenite grain size, increasing MS temperature. Sugimoto
49 et al. [9] studied the effects of silicon and manganese contents on volume fraction and stability of
50 retained austenite in carbon-manganese-silicon TRIP-assisted dual-phase steels, finding that the
51 volume fraction of retained austenite increased with the increase of silicon and manganese contents.
52 Pereloma et al. [10] suggested that Al decreases the carbon activity coefficient in ferrite, increases the
53 solubility of C in ferrite, at the same time inhibits the precipitation of Fe carbides leading to higher
54 enrichment in carbon of retained austenite. However, Al increases Ms temperature, making the
55 retained austenite less stable. They also considered that 1.5% Mn content assures hardenability in
56 TRIP-assisted steels.

57 According to De Cooman [11], some alloying elements have an important influence on the TRIP-
58 effect. Si and Al inhibit cementite formation increasing the carbon content of retained austenite
59 because of the extremely low solubility of Si and Al in cementite. Si significantly increases the C
60 activity coefficient in both ferrite and austenite and reduces the solubility of C in ferrite. Instead,
61 coinciding with Pereloma et al. [10]. On the other hand, soluble Mn stabilizes austenite, decreases the
62 activity coefficient of C in ferrite and austenite, increasing the C solubility in ferrite and it is soluble
63 in cementite.

64 In a previous work on a multiphase low alloy TRIP steel, Guzmán [12] proposed that an
65 optimum combination of microstructure and properties can be obtained with an intercritical
66 treatment of 10 minutes at 750 °C (just above A_1), reaching an α/γ proportion near of 1/1. Matsumara
67 et al. [13] showed that heating just above A_1 ensures a large content of retained austenite with good
68 stability that provides for the best combination of strength and ductility.

69 Based on the facts that: a) the TRIP effect is significant for large austenite grain size [6-8]; b) the
70 global mechanical response of a multiphase TRIP assisted steel is also influenced by the interaction
71 with the other microstructural constituents; c) heat treatment has a strong influence on
72 microstructural features, which has an effect on austenite stability (chemical and mechanical) and the
73 features of others constituents; d) consequently an optimum heat treatment must exist that,
74 considering both effects, maximizes mechanical properties. According to these considerations, three
75 TRIP-assisted steels with the same chemical composition were processed in different ways, but fixing
76 a near 1/1 proportion of austenite and ferrite during intercritical annealing. The effect of heat
77 treatment on grain size, texture and microstructure were studied, investigating the influence of these
78 variables on the final microstructure and mechanical properties.

79 2. Materials and Methods

80 A steel ingot was cast at the Metallurgical Engineering Department, University of Santiago, Chile
81 (USACH), with a composition corresponding to a TRIP-assisted steel. The material was melted in a
82 Power-Trank induction furnace and then sand cast in a 100x100x500 mm mold. The chemical
83 composition obtained was 0.20%C, 1.88%Mn, 0.88%Si and 0.13%Al (in weight %). The ingot was
84 homogenized and forged at 1,250°C up to 20 mm thickness. The ingot was next hot rolled at 1,100°C
85 until reducing the thickness up to 4 mm, and then, the material was cold-rolled down to 1.50 mm,
86 annealed and then cold rolled until obtaining a 0.87 mm thickness (42% cold working). Then, the strip
87 was cut in three pieces that were heat treated to obtain three multiphase TRIP steels with the same
88 chemical composition but different microstructures.

89 Three different processing paths were used to obtain the 1/1 (ferrite/austenite) microstructure
90 that will be able to sustain the TRIP effect after austempering. The intercritical temperature was
91 obtained from a previous work [12]. These paths were obtained by (i) either heating the samples to
92 two temperatures within the fully austenitic range, followed by intercritical annealing treatment
93 (IAT) to form equal fraction of ferrite and austenite, or (ii) were heated-up directly from room

94 temperature to the intercritical range to transform the microstructure, (cf. Fig. 1). Both paths were
 95 followed by an isothermal bainitic treatment (IBT) known also as “austempering” in a salt bath and
 96 subsequent water quenching. Fig. 1 also shows the expected microstructures at each stage. The initial
 97 microstructure, after the cold-rolling stage, is a cold worked ferrite-pearlite. A fully homogenized
 98 austenite is the microstructure prior to IAT in the austenization path. Then, two different
 99 microstructures after the IAT are obtained, as shown in Fig.1, they were denominated (F/P) and (HA)
 100 respectively. Two different homogenizing temperatures were used: 900°C (HA900) and 1100°C
 101 (HA1100). Table 1 shows the temperatures and times employed in these heat treatments.

102

103

104
105

Figure 1. Schematic representation of heat treatments to obtain multiphase TRIP-assisted steels.

106
107

Table1. Parameters of the performed heat treatments and austenite grain size after austenitization.

Id. Steel	Aust. *		IAT **		IBT ***		PAGS ****
	[°C]	[min]	[°C]	[min]	[°C]	[min]	[μm]
F/P	--	--	750	10	390	7	--
HA900	900	10	750	90	390	7	10.3 ± 0.8
HA1100	1,100	10	750	135	390	7	18.9 ± 3.5

* Austenization

** Intercritical Annealing Treatment

*** Isothermal Bainitic Treatment

**** Prior Austenite Grain Size (developed during the HA treatment)

108

2.2. Microstructural characterization

109
110
111
112
113
114

A metallographic microscope LEICA was used to characterize the microstructures. The samples were polished and then chemically etched with a solution of 3% HNO_3 in ethanol (Nital, 3%) and LePera etchant (a 4% solution of picric acid in ethanol and a 1% solution of sodium metabisulfite in water, mixed in equal parts just before etching). Ferrite volume fraction was estimated from metallographic images by using the image analysis software ImageJ. Ferrite grain size was measured directly from metallographic images using the mean linear interception technique.

115
116
117

Prior austenite grain size, shown in Table 1, was measured by metallographic images after etching with a solution that contains: H_2O 25 ml, picric acid 0.3 g, hydrochloric acid 0.3 ml and as wetting agent sodium tridecylbenzene sulfonate 2.5 ml.

118 SEM analysis using a TESCAN Vega 3 scanning electron microscope with tungsten filament was
 119 performed at 15 kV in backscattered electron (BSE) mode.

120 To measure the austenite volume fraction before and after plastic deformation, X-ray
 121 measurements were carried out in a PANALYTICAL EMPYREAN diffractometer with a Co tube on
 122 samples prior and post-tensile testing. X-ray diffraction patterns were obtained in the 20°-55° 20
 123 range with a step ($\Delta\theta$) of 0.0065° respectively. ASTM E975 method was followed to determine the
 124 austenite volume fraction in the samples. The lattice parameter was estimated using {220} FCC peaks
 125 on prior tensile test samples, and the carbon content in the retained austenite was estimated using
 126 the relationship proposed by Roberts [14].

127 Electron backscattered diffraction (EBSD) analyses were carried out on a plane perpendicular to
 128 the transverse direction of samples by means of the EDAX-TSL® system. A FEI XL30 ESEM
 129 microscope with a LaB6 filament was used. The specimens were analyzed on a plane tilted 70° with
 130 respect to the incidence beam at 20 kV acceleration voltage. A step size of 170 nm was used for texture
 131 analyses, whereas for microstructure characterization 60 nm step size in hexagonal scan grid was
 132 employed. EBSD data were post processed by OIM (Orientation Imaging Microscopy) Analysis™
 133 software. The post-processing procedure included the elimination of points with low confidence
 134 index (lower than 0.1). Grains were considered with a minimum of six pixels, while grain boundaries
 135 were defined when a rotation between pixels was greater than 15°. Austenite identification by EBSD
 136 was done directly by indexation of FCC structures. Texture orientation distribution functions were
 137 calculated and represented in Bunge notation using harmonic series expansion method and imposing
 138 orthorhombic sample symmetry, series rank L=16 and a Gaussian half width of 5°.

139 Several authors [15,16] have suggested a EBSD based method to identify martensite regions in
 140 the EBSD scans due to their high dislocation density (10^8 cm⁻² for undeformed ferrite, 10^{12} cm⁻² for
 141 martensite) [16]. Martensite has a high density of defects and therefore, it must have a low average
 142 Image Quality (IQ) pattern [16]. An example of martensite identification criteria is explained in Fig.
 143 2a, which shows Grain Average Image Quality (GAIQ) distributions on BCC structures for HA900
 144 steel. It is possible to see two kinds of distribution with either high or low values of GAIQ. Martensite
 145 was assigned as units with low GAIQ values.

146 A second cleaning data procedure for austenite and martensite indexed data was carried out
 147 based on grain size distribution curves. An example of this is explained in Fig. 2b, which shows the
 148 retained austenite grain size distribution for HA900 steel. This picture exhibits two austenite grain
 149 size distributions. Austenite with very low grain size (lower than the threshold line) was not
 150 considered for analysis. A similar procedure was done for austenite and martensite units for each
 151 steel.

152
 153 **Figure 2.** (a) Grain Average Image Quality Distribution (GAIQ) for HA900 steel. Light
 154 grey, low GAIQ distribution (martensite indexed). (b) Retained austenite grain size
 155 distribution for HA900. Grain sizes to the left from the bold threshold were not
 156 considerate for analysis.

157 It is possible to calculate the austenite volume fraction after austempering treatment by
158 summation of the retained austenite and martensite volume fractions. Finally, the ratio between
159 martensite and austenite after IB treatment indicates the fraction of austenite transformed into
160 martensite due to cooling. Therefore, it can be considered as a chemical stability index of austenite
161 prior to cooling from austempering treatment.

162 Tensile tests were performed according to ASTM E8M in a servohydraulic Tinius&Olsen
163 universal testing machine under displacement control at 2 mm/min. Three flat specimens 0.87 mm x
164 12.5 mm were tested for each case. A Linear Variable Differential Transformer with 50 mm gage
165 length was used to measure displacement. Based on tensile test data, true stress vs. true strain curves
166 were obtained for the homogeneous range.

167 Strain hardening exponent n was obtained from $\sigma=K\varepsilon^n$ Hollomon relationship. The fitting was
168 done based on true strain vs true stress curves.

169 3. Experimental results

170 3.1. Heat treatment study

171 It was possible to achieve a 1/1 austenite/ferrite proportion in the different steels by varying the
172 time at the intercritical annealing, as the desired proportion was achieved after 10 minutes for F/P
173 steel; instead, for steels HA900 and HA1100 these times were of 90 and 135 minutes respectively.
174 According to Roberts and Mehl [17], the austenite nucleation in ferritic-pearlitic steels is carried out
175 mainly in the ferrite-cementite interphase. Areas with high surface energy, as grain boundaries and
176 interphases, are favorable sites for nucleation, but a concentration gradient is also necessary. At
177 interphases the gradients are larger, and the process is faster. This explains the different times needed
178 in the three steels during intercritical annealing: austenite nucleation was faster in the F/P steel than
179 the ferrite nucleation in the HA steels, due to the presence of interphase surfaces and higher carbon
180 concentration gradients in the F/P steel. The ferrite formation for HA900 steel was slightly faster than
181 in HA1100 steel because homogenized austenite in HA900 was finer than in HA1100 (Table 1),
182 showing more grain boundaries and then, more nucleation sites.

183 3.2 Microstructural characterization

184 3.2.1 Charactetization by Optical Microscopy, SEM and X-RAY.

185 Fig. 3 shows the microstructures of the material before and after heat treatment. The
186 microstructure before heat treatment is 42% cold rolled ferrite and pearlite. (Fig. 3a), while the
187 microstructure after heat treatments of F/P, HA900 and HA1100 are shown in Fig 3b, 3c and 3d
188 respectively. LePera etching reveals ferrite in light brown, bainite in dark brown and
189 austenite/martensite phases appear as small white units. Another relevant aspect is the noticeable
190 different morphology between the three microstructures. While the HA900 (Fig. 3c) shows the finest
191 structure, the HA1100 (Fig. 3d) exhibits the coarsest. The ferritic grain diameters and ferrite volume
192 fraction obtained by light optical microscopy are shown in Table 2. Fig. 4 shows SEM micrographs
193 where the different microstructures can be observed: austenite and/or martensite (A/M), ferrite (F)
194 and bainite (B) that appear near or inside prior austenite blocks. This figure confirms that HA1100
195 steel has the coarsest microstructure, while F/P shows the finest prior-austenite grain size.

196

197
198
199

200

Figure 3. Microstructures: (a) Ferrite and pearlite cold worked, Nital; (b) F/P, LePera; c) HA900, LePera; d) HA1100, LePera. b), c) and d) show three multiphasic TRIP steel low alloy microstructures with noticeably differences in morphologies.

Table 2. Ferrite volume fraction and grain size average.

Steel Id	F/P	HA900	HA1100
Ferrite grain size [μm]	9 ± 4	8 ± 3	11 ± 2
$V_{\text{ferrite}} [\%]$	44	45	46

201
202
203
204
205
206
207
208

Table 3 summarizes the retained austenite volume fraction obtained from the X-ray analysis and also the estimated carbon content in austenite. Columns 4 and 5 display absolute and relative amounts of transformed retained austenite. Absolute amount is the austenite volume fraction transformed on the whole material and relative amount represents the fraction of transformed austenite referred to initial retained austenite amount. The retained austenite volume fraction was determined by two different ways: X-ray and EBSD (see Tables 3 and 4 respectively), where it is possible to appreciate a good accuracy between both methods. HA1100 steel exhibits the lowest amount of retained austenite.

Figure 4. SEM micrographs of representative samples of each steel. (a) F/P, (b) HA900, (c) HA1100. A/M: Austenite/Martensite, F: Ferrite, B: Bainite.

209

210

211

Table 3 Retained austenite volume fraction obtained by X-ray.

Steel Id	% Aust.	% Aust.	Transf.	Transf.	%C
	BTT*	ATT**	Aust.	Aust. %	Ret. Aust.
F/P	5.7	2.2	3.5	62	1.11
HA900	5.0	0.5	4.4	89	0.97
HA1100	3.7	0.4	3.4	90	1.07

* Before Tensile Test

** After Tensile Test

212

3.2.2 Retained austenite and martensite characterization by EBSD.

213

214

215

216

217

218

Table 4 shows selected morphological characteristics (grain size, aspect ratio, retained austenite and martensite fraction) for each steel. Austenite grain size and aspect ratio are listed in Table 4 and Fig 5 shows IQ + phase map for each steel. As there are no important differences in aspect ratios, this parameter cannot be related to the variations in retained austenite stability. The F/P steel showed the smallest retained austenite grain size, while HA steels exhibited larger grain sizes but with similar values despite of the different prior austenite grain sizes.

219

Table 4. Characteristics of retained austenite obtained by EBSD.

steel id	F/P	HA900	HA1100
grain size [μm]	0.7 ± 0.3	1.0 ± 0.6	1.0 ± 0.5
aspect ratio	2.7 ± 1.6	2.6 ± 1.3	2.9 ± 1.6
RA vol. fraction %	5.9	5.3	3.5
martensite vol. fraction %	2.5	4.1	4.8
aust. after IB treatment %	8.4	9.4	8.3
aust. transf. to martensite by cooling from IB %	30.0	43.6	57.8

220

221 **Figure 5.** IQ + phase map for each steel. Due to IQ map, dark zones correspond to low IQ
 222 value, and due to phase map, in red BCC structures (ferrite, bainite, martensite), green
 223 FCC structures (austenite). (a) F/P steel, (b) HA900 steel, (c) HA1100 steel. Step size 60 nm.

224 **3.3 Texture Analyses**

225 Fig. 6 shows the Orientation Distribution Function (ODF) for the BCC structures (mainly ferrite
 226 and bainite) in each steel. Fig. 6a shows the key for the main orientations in BCC iron. Fig. 6 also
 227 shows that, in all cases, there is a maximum intensity on $\{554\} < 225 >$ and $\{112\} < 110 >$, and variants
 228 near to them like $\{332\} < 113 >$ and $\{111\} < 112 >$ or $\{113\} < 110 >$ and $\{223\} < 110 >$. It is known that $\{554\} < 225 >$
 229 promotes good drawing properties while $\{112\} < 110 >$ is not good for drawing properties [18]. On the
 230 other hand, HA steels exhibited a considerable wide range of variants related to $\{001\} < 110 >$ texture.
 231 Although the three steels exhibit α and γ fibre components, it is noticeable that they are more intense
 232 in F/P steel.

233 **Figure 6.** (a) ODF map with exact positions of important orientations for bcc structures in
 234 steel, Euler space ($\phi_2=45^\circ$) section. (b), (c) and (d) Euler space section of the ODF of the
 235 constituents with bcc structures for each steel at same intensity scale ($\phi_2=45^\circ$), F/P, HA900
 236 and HA1100 respectively. Bunge notation. Intensity in mrd (multiple of random density).

237

238 Retained austenite ODF map for F/P steel (Fig. 7b) shows the maximum intensity for Brass,
 239 Goss, Copper and Rotated Goss fibre components. Several authors [18,19] have shown that Copper
 240 texture ($\{112\}<111>$) generates $\{113\}<110>$ (and near variants like $\{112\}<110>$) in BCC structures due
 241 to the Kurdjumov-Sachs K-S relationship, while Brass texture ($\{110\}<112>$) promotes $\{332\}<113>$ (and
 242 near variants like $\{554\}<225>$). On the other hand, Goss texture ($\{110\}<001>$) generates $\{111\}<110>$ and
 243 $\{112\}<110>$ BCC textures. From these results α and γ fiber textures are expected.

244

245 **Figure 7.** (a) Exact position of the most important austenite texture components on Euler
 246 space section $\varphi_1=(0^\circ, 90^\circ)$, $\phi=(0^\circ, 90^\circ)$ and $\varphi_2=45^\circ$. (b), (c) and (d): Retained austenite ODF
 247 maps of F/P, HA900 and HA1100 respectively. Bunge notation. Intensity on mrd.

248 Some authors [18,20] have shown that $\{112\}<110>$ ferrite texture component increases
 249 significantly with cold-rolling, which means that the initial material, proeutectoid ferrite 42% cold-
 250 rolled, has a strong $\{112\}<110>$ texture component. Ray and Jonas [18] have also indicated that at
 251 ferrite with $\{112\}<110>$ texture recrystallizes into $\{554\}<225>$, which means that during intercritical
 252 annealing, ferrite F/P steel would develop a strong $\{554\}<225>$ texture component. Summarizing, a
 253 strong α and γ fibres components BCC textures are expected in F/P steel due to austenite developed
 254 and ferrite recrystallization during intercritical annealing treatment at 750°C.

255 For HA steels, BCC textures must be related to homogenized austenite textures at 900 and
 256 1,100°C respectively. It is expected that retained austenite must inherit its texture from homogenized

257 austenite. Retained austenite ODF maps for HA900 and HA1100 are shown in Fig. 7c and 7d
258 respectively.

259 Retained austenite in HA900 steel shows maxima in Cube and Goss textures and also a wide
260 range of variants related to $\{110\} < 112 >$ Brass texture. Cube texture promotes Rotated Cube texture
261 $\{001\} < 110 >$ [19]. Brass texture, as was mentioned previously, generates $\{332\} < 113 >$ (and near texture
262 variants), and in less grade, Brass texture can also transforms into Rotated Cube variants. In the
263 current case, the main BCC texture components observed for HA900 (Fig. 6c) were inherited from
264 Brass and Cube prior austenite texture.

265 Retained austenite in HA1100 exhibited a maximum close to Cube position, and it could be
266 related to $\{001\} < 110 >$ texture variants observed on HA1100 ODF map of BCC structure (Fig. 6d). It is
267 also shown Fig 6d that the retained austenite exhibits variants close to Goss and Copper texture
268 components, which are related to α and γ fibres.

269 According to Ray and Jonas [18] there is an effect of the temperature above A_3 (and then, the
270 austenite grain size) on deformation textures of ferrite: $\{332\} < 113 >$ component in ferrite is
271 strengthened noticeably when the initial austenite grain size is small (heated slightly above A_3),
272 while $\{113\} < 110 >$ remains insensitive to austenitic grain size. This result is in agreement with the
273 current research, in the sense that $\{554\} < 225 >$ component, which comes from $\{332\} < 113 >$, is strong for
274 HA900 steel (austenized at low temperature).

275 Based on scale map of BCC structures (Fig. 6), in F/P steel the maximum intensity for
276 components related to γ fibre is 5.2 multiple of random density (mrd), in HA900 steel is 2.9 mrd and
277 in HA1100 steel is 2.5 mrd. For HA steels, the intensity of Rotated Cube components is higher than
278 F/P, it means that the ratio between γ fibre and Rotated Cube is higher for F/P steel. Due to this facts,
279 is expected that F/P steels will have a better deep drawing behavior than HA steels, provided that
280 there are no other disturbing constituents in the microstructure.

281 **3.4 Retained austenite stabilization**

282 *3.4.1 Mechanical stability*

283 Mechanical stability was evaluated measuring the austenite volume fraction transformed into
284 martensite due to tensile testing. These results are shown in Table 3. F/P steel exhibit less relative
285 transformation than HA steels. This implies that retained austenite is more stable in F/P steel. These
286 results, together with the austenite grain sizes shown in Table 4 are in accordance with other authors
287 [6,7]: the coarser the retained austenite, the lower its stability. Both HA steels presented similar
288 retained austenite grain size and, in both cases, the residual austenite volume fraction, after tensile
289 testing, was near to zero. Although it is difficult to compare the mechanical stability between HA
290 steels, the main conclusion is, that retained austenite was unstable and prone to transform into
291 martensite during deformation.

292 *3.4.2 Chemical stability*

293 The chemical stability was measured by the fraction of austenite transformed into martensite
294 during cooling from austempering treatment. These results are shown in Table 4. Clearly, the
295 austenite in F/P steel is the most stable. Although HA steels exhibits a similar mechanical stability,
296 there is an important difference in chemical stability. Due to the coarser prior austenite, the HA1100
297 steel presents the less stable austenite. This instability comes from the larger defect density associated
298 to a larger grain size [8] and then, a higher number of available sites for martensite nucleation.

299 **3.5 Mechanical properties**

300 Tensile tests results are summarized in Table 5. Fig. 8 shows true stress v/s true strain curves in
301 the homogeneous deformation range. As the austenite in F/P steel is with the highest chemical
302 stability, there is a low amount of austenite-martensite transformation by cooling from
303 austempering, and then, a lower dislocation increment in the ferrite matrix due to Greenwood-

304 Johnson [21] effect (dislocations increment on ferrite matrix due to volume accommodation by
 305 austenite martensite transformation). So, ferrite of F/P steel exhibits a lower hardening by this way,
 306 and then, a larger straining capacity. In order to understand the elongation improvement of F/P steel,
 307 it is necessary to mention that these materials are constituted by ferrite, bainite, austenite and
 308 martensite, with ferrite (a soft constituent) and bainite (hard constituent) present in similar
 309 proportion, although in larger amount than austenite and martensite. So, it is expected that ferrite
 310 must be the constituent with most contribution to the total strain. Then, F/P steel exhibits the highest
 311 plastic deformation due to the lowest hardening that ferrite experiments by austenite transformation.

312 HA steels exhibit a similar UTS and elongation behavior although noticeable microstructural
 313 differences. HA1100 presents the highest YS and HA900 steel has the highest work hardening
 314 exponent. The highest n value for HA900 steel can be due to the greater absolute amount of retained
 315 austenite transform into martensite by plastic strain and its finest microstructure. F/P steels show the
 316 lowest UTS due to the low fraction of austenite transformed into martensite in both ways: after
 317 cooling from austempering and under plastic strain.

318 **Table 5.** Mechanical properties (average of three tests).

Steel id	UTS [MPa]	YS [MPa]	EL [%]	hardening index n
F/P	385 \pm 27	732 \pm 13	22.7 \pm 2.0	0.19 \pm 0.00
HA900	401 \pm 39	787 \pm 23	16.8 \pm 0.7	0.22 \pm 0.01
HA1100	438 \pm 16	796 \pm 8	16.3 \pm 1.7	0.20 \pm 0.00

319
 320

Figure 8. (a) True stress v/s true strain curves.

321

322 4. Conclusions

323 Heat treatments were performed to obtain similar α/γ fractions after intercritical annealing
 324 treatment from three different microstructures: ferrite/pearlite and homogenized austenite with two
 325 different prior grain sizes 10.3 μm and 18.9 μm . This allowed to relate microstructural characteristics
 326 with austenite stability and mechanical properties. The most important findings can be summarized
 327 as follows:

328

329 • A change from 900 to 1100°C in the homogenization temperature of austenite does not exert
330 an effect on the retained austenite grain size, but it affects the prior austenite grain size and the
331 austenite chemical stability. At homogenization temperature of 1100°C, the chemical stability is
332 lower (higher Ms) than after homogenization of 900°C and a higher amount of austenite
333 transforms into martensite after cooling from the austempering treatment.

334 • The homogenized at 1100 and 900°C steels exhibit the highest UTS value. This is related to
335 the austenite martensite transformation which induces an extra dislocation increment and
336 consequently, a high strength.

337 • Extra dislocation increment also decreases the strain ability, so the homogenized steels
338 exhibit lower elongation than the ferrite-pearlite steel.

339 • The global mechanical response is also related to the surrounding phases. Thus, the steel
340 homogenized at 900 °C exhibits the highest strain hardening index, due to its finest
341 microstructure.

342 • An austenization treatment at elevated temperature increases the yield strength. The steel
343 homogenized at 1100 °C exhibits the highest YS despite its coarsest microstructure.

344 • A ferrite pearlite cold rolled initial microstructure promotes better texture components for
345 deep drawing process than homogenized austenite initial microstructure. For HA initial
346 microstructure, a lower homogenization temperature promotes γ fibre components.

347 Acknowledgments

348 The authors wish to thank to "Proyectos Basal USA 1555 - Vrdei 051714MG_MOV. Universidad
349 Santiago de Chile", FONDECYT Grant 1170905, CONICYT-PFCHA/Doctorado Nacional/2013-
350 21130833 and DICYT USACH for the economic support.

351 References

- 352 1. Petrov, R.; Kenstens, L.; Houbaert, Y. Recrystallization of a cold rolled **TRIP**-assisted steel
353 during reheating for intercritical annealing. *ISIJ Int.* **2001** *41*, 883-890, DOI:
354 10.2355/isijinternational.41.883.
- 355 2. Jacques, P.J.; Furnémont, Q.; Lani, F.; Pardoën, T.; Delannay, F. Multiscale mechanics of TRIP-
356 assisted multiphase steels: I. Characterization and mechanical testing. *Acta Mater.* **2007** *55*, 3684-
357 3693, DOI: 10.1016/j.actamat.2007.02.029.
- 358 3. Van Dijk, N.H.; Butt, A.M.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Van der Zwaag, S.
359 Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction
360 during cooling. *Acta Mater.* **2005** *53*, 5439-5447, DOI: 10.1016/j.actamat.2005.08.017.
- 361 4. Zrník, J.; Muránsky, O.; Lukáš, P.; Nový, Z.; Sittner, P.; Horňák, P. Retained austenite stability
362 investigation in TRIP steel using neutron diffraction. *Mater. Sci. Eng. A*, **2006** *437*, 114-119, DOI:
363 10.1016/j.msea.2006.04.067.
- 364 5. Van Der Zwaag, S.; Zhao, L.; Kruijver, S.O.; Sietsma, J. Thermal and mechanical stability of
365 retained austenite in aluminum-containing multiphase TRIP steels. *ISIJ Int.* **2002** *42*, 1565-1570,
366 DOI: 10.2355/isijinternational.42.1565.
- 367 6. Basuki, A.; Aernoudt, E. Influence of rolling of TRIP steel in the intercritical region on the
368 stability of retained austenite. *J. Mater. Process. Technol.* **1999** *89-90*, 37-43, DOI: 10.1016/S0924-
369 0136(99)00037-0.
- 370 7. Wang, X.D.; Huang, B.X.; Rong, Y.H.; Wang, L. Microstructures and stability of retained
371 austenite in TRIP steels. *Mater. Sci. Eng. A*, **2006** *438-440*, 300-305, DOI:
372 10.1016/j.msea.2006.02.149.

373 8. Chatterjee, S. Transformations in TRIP-assisted Steels: Microstructure and Properties. Ph.D.
374 thesis, Cambridge University, 2006.

375 9. Sugimoto, K.; Usui, N.; Kobayashi, M.; Hashimoto, S. Effects of volume fraction and stability of
376 retained austenite on ductility of TRIP-aided dual-phase steels. *ISIJ Int.* **1992** *32*, 1311-1318, DOI:
377 10.2355/isijinternational.32.1311.

378 10. Pereloma, E.V.; Timokhina, I.B.; Miller, M.K.; Hodgson, P.D. Three-dimensional atom probe
379 analysis of solute distribution in thermomechanically processed TRIP steels. *Acta Mater.* **2007** *55*,
380 2587-2598, DOI: 10.1016/j.actamat.2006.12.001.

381 11. De Cooman, B.C. Structure–properties relationship in TRIP steels containing carbide-free
382 bainite. *Curr. Opin. Solid State Mater. Sci.* **2004** *8*, 285-303, DOI: 10.1016/j.cossms.2004.10.002.

383 12. Guzmán, A. Obtención y estudio de las propiedades mecánicas y microestructurales de un acero
384 con comportamiento TRIP (0,21%C, 0,82%Si, 1,87%Mn y 0,43%Al). Phd. Thesis, Universidad de
385 Santiago de Chile, 2012.

386 13. Matsumara, O.; Sakuma, Y.; Takechi, H. Enhancement of elongation by retained austenite in
387 intercritical annealed 0.4C-1.5Si-0.8Mn steel. *Trans. ISIJ.* **1987** *27*, 570-579, DOI:
388 10.2355/isijinternational1986.27.570.

389 14. Roberts, C.S.; Effect of carbon on the volume fractions and lattice parameters of retained
390 austenite and martensite. *J. Met.* **1953** *197*, 203-204.

391 15. Ryde, L. Application of EBSD to analysis of microstructures in commercial steels. *Mater. Sci.*
392 *Technol.* **2006** *22*, 1297-1306, DOI: 10.1179/174328406X130948.

393 16. Petrov, R.; Kestens, L. Advanced high-strength steels: Electron Backscatter^{ing} diffraction
394 (EBSD), In *Encyclopedia of Iron, Steel and Their Alloys*; Colás, R., Totten, G.E., Eds.; CRC Press: Boca
395 Ratón, FL, USA, 2016; pp. 46-69, DOI: 10.1081/E-EISA-120050786.

396 17. Roberts, G.A.; Mehl, R.F. The mechanism and the rate of formation of austenite from ferrite-
397 cementite aggregates. *Trans. ASM.* **1943** *31*, 613-650.

398 18. Ray, R.K.; J.J. Jonas, J.J. Transformation textures in steels. *Int. Mater. Rev.* **1990** *35*, 1-36, DOI:
399 10.1179/095066090790324046.

400 19. Butrón-Guillén, M.P.; Jonas, J.J.; Ray, R.K. Effect of austenite pancaking on texture formation in
401 a plain carbon and a Nb microalloyed steel. *Acta Metall. Mater.* **1994** *42*, 3615-3627, DOI:
402 10.1016/0956-7151(94)90428-6.

403 20. Hutchinson, B. Deformation microstructures and textures in steels. *Philos. Trans. R. Soc. Lond. A.*
404 **1999** *357*, 1471-1485, DOI: 10.1098/rsta.1999.0385.

405 21. Greenwood, G.W.; Johnson, R.H. The deformation of metals under small stresses during phase
406 transformations. *Proc. R. Soc. Lond. A* **1965** *283*, 403-422, DOI: 10.1098/rspa.1965.0029.