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Abstract: One control challenge in prosthetic legs is seamless transition from one gait mode to 
another. User intent recognition (UIR) is a high-level controller that tells a low-level controller to 
switch to the identified activity mode, depending on the user’s intent and environment. We propose 
a new framework to design an optimal UIR system with simultaneous maximum performance and 
parsimony for gait mode recognition. We use multi-objective optimization (MOO) to find an optimal 
feature subset that creates a trade-off between these two conflicting objectives. The main contribution 
of this paper is two-fold: (1) a new gradient-based multi-objective feature selection (GMOFS) method 
for optimal UIR design; and (2) the application of advanced evolutionary MOO methods for UIR. 
GMOFS is an embedded method that simultaneously performs feature selection and classification by 
incorporating an elastic net in multilayer perceptron neural network training. Experimental data are 
collected from six subjects, including three able-bodied subjects and three transfemoral amputees. 
We implement GMOFS and four variants of multi-objective biogeography-based optimization 
(MOBBO) for optimal feature subset selection, and we compare their performances using normalized 
hypervolume and relative coverage. GMOFS demonstrates competitive performance compared 
to the four MOBBO methods. We achieve a mean classification accuracy of 97.14% ± 1.51% and 
98.45% ± 1.22% with the optimal selected subset for able-bodied and amputee subjects, respectively, 
while using only 23% of the available features. Results thus indicate the potential of advanced 
optimization methods to simultaneously achieve accurate, reliable, and compact UIR for locomotion 
mode detection of lower-limb amputees with prostheses.

Keywords: User intent recognition; transfemoral prosthesis; multi-objective optimization; 
biogeography-based optimization21

1. Introduction22

Prosthetic legs have significantly enhanced the lifestyle of individuals with a transfemoral23

amputation. Prostheses help lower-limb amputees regain their walking mobility for activities such as24

level walking, stair ascent and descent, incline walking, sitting and standing, etc. One active research25

area is the development of a functional control system for each walking task [1–4]. The main design26

objective is to enable amputees to achieve walking that is similar to that of able-bodied persons, while27

minimizing metabolic energy expenditure. Challenges include recognizing gait modes automatically,28

selecting the appropriate control system corresponding to the identified gait mode, and achieving a29

smooth transition in real time. Activity mode recognition must be achieved in parallel with control30

system development to address these problems. Activity mode recognition is referred to as high-level31
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control, while control system design for each walking activity is referred to as low-level control [5].32

The focus of this paper is the development of a high-level control system.33

In the design of an intent recognition system, several questions arise, including which input34

signals and machine learning algorithms will provide a UIR system with fast and reliable prediction35

performance. Previous research has addressed these questions in different ways. For instance, surface36

electromyography (sEMG) signals were used to train UIR [6,7]. Although sEMG resulted in high37

classification accuracy, [8] reported uncertain performance due to sEMG signal variability in real-world38

conditions. Variation could be because of electrode shift [9], skin temperature change [10], or muscle39

volume change [11]. Therefore, external sensors on the prosthesis have received significant attention.40

For instance, classifiers have been trained with data collected from mechanical sensors [12,13], optical41

distance sensors [14], and inertial measurement units [8]. In addition, [15,16] showed that the42

fusion of sensory measurements could enhance learning, although the amputee subject could be43

inconvenienced by wearing additional sensors. Various supervised machine learning algorithms have44

been implemented to build UIR systems, including linear discriminant analysis (LDA) [17], quadratic45

discriminant analysis (QDA) [18], Gaussian mixture models (GMMs) [12], support vector machines46

(SVMs) [16], and artificial neural networks (ANNs) [6]. To avoid the need for user-specific classifier47

training, [19] proposed a user-independent UIR system in which classifier performance is robust to48

user-specific characteristics.49

Current UIR systems have been designed with one goal in mind: highest possible prediction50

accuracy. In clinical applications, it is extremely important that UIR can accurately predict activity51

modes with substantially different characteristics, because misclassification can cause a loss of52

balance [8,20]. However, there remains a gap in the design of UIR with parsimony, or low complexity.53

A UIR has low complexity if it can be trained with only significant features extracted from minimal54

sensing hardware. UIR with low complexity is important because such systems: (1) eliminate unneeded55

body-worn sensors that may be irritating and cumbersome; (2) avoid numerical instability and56

overfitting during training; (3) are robust to noisy measurement signals and sensor failures; and57

(4) decrease computational effort, which is important for real-time operation. These reasons motivate us58

to develop a new framework for UIR that simultaneously achieves maximum accuracy and maximum59

parsimony. Parsimony and accuracy are two conflicting objectives. This paper is the first attempt to60

find a compromise solution for this problem.61

The main contributions of this paper are two-fold: (1) a new MOO method called GMOFS for62

optimal feature subset selection; and (2) the application of four evolutionary MOBBO methods for the63

UIR problem, including vector evaluated BBO (VEBBO), non-dominated sorting BBO (NSBBO), niched64

Pareto BBO (NPBBO), and strength Pareto BBO (SPBBO). We have chosen to use BBO in this paper65

as the evolutionary algorithm (EA) because of its demonstrated effectiveness and recent popularity66

for optimizing real-world problems [21,22]. MOBBO methods have the potential to find the global67

optimum [23,24]; however, they are computationally expensive due to the many required fitness68

function evaluations. To avoid this drawback, we propose GMOFS for feature selection.69

Several different types of feature selection methods have been proposed. Filter methods are70

feature selection methods that assess the quality of a subset of features independently or with respect71

to the output class [25]. Wrapper methods are feature selection methods that assess the quality of72

a subset of features by measuring the prediction accuracy of a classifier that is trained with that73

subset [26]. Embedded methods are feature selection methods that overcome the disadvantages of filter74

and wrapper methods. Unlike filter methods, embedded methods account for the bias of the classifier,75

and unlike wrapper methods, they are computationally efficient [27,28]. Various embedded feature76

selection algorithms have been proposed, mostly for linear problems with a single objective [28,29].77

Embedded methods also incorporate regularization algorithms, such as ridge regression [30], least78

absolute shrinkage and selection [31], and elastic nets [32].79

GMOFS is our newly proposed embedded method that simultaneously performs feature selection80

and classification, and that accounts for multiple objectives in nonlinear systems such as UIR. GMOFS81
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incorporates an elastic net in multilayer perceptron (MLP) neural network training. The elastic net uses82

a Lagrange multiplier with a complexity parameter to reduce the feature set to an optimal subset, and83

the MLP classifier is trained with the optimal subset. We investigate the influence of the complexity84

parameter on the solution of the constrained MLP optimization problem. We then use the optimization85

solutions to obtain a GMOFS Pareto front, which is a set of non-dominated solutions that are equally86

important apart from the designer’s subjective preference of objectives.87

Section 2 presents a general framework for UIR. In Section 2.1, a rich set of signals reflecting88

various walking tasks are collected experimentally from three able-bodied and three amputee subjects.89

In addition, the data are filtered and processed to eliminate noise and missing data points. In Section 2.2,90

we use both disjoint windowing and overlapped windowing to extract data frames. The length of the91

data frame and the increment of the moving window are chosen to compromise the richness of the92

data and the computational effort, while taking real-time computational constraints into account. In93

Section 2.3, various time-domain (TD) and frequency-domain (FD) features are extracted from each94

data frame for each measurement signal. A training data set is obtained in which all features are95

normalized to have a zero mean and unity variance. In Section 2.4, we use a pre-selection approach to96

exclude insignificant features, and then apply MOO for final feature selection. We implement GMOFS97

and four variants of MOBBO to minimize the size of the selected feature subset and maximize the98

prediction accuracy. In Section 2.5, the performance of several classifiers, including LDA, QDA, SVMs99

with both linear and RBF kernels, MLPs, and decision trees (DTs), are compared, and the best one is100

selected for UIR. In Section 2.6, MVF is implemented to avoid sudden jumps between identified classes101

and enhance UIR performance. Section 3 discusses the experimental setup and classification results for102

the optimally designed UIR system. Finally, Section 4 discusses conclusions and future work.103

2. User Intent Recognition Framework104

In this section, we present the methodology used to design the UIR system. The architecture of the105

UIR system is illustrated in Figure 1. Our new contribution is a novel feature selection method based106

on MOO, as illustrated in Figure 1 in the double-lined box (Section 2.4). In this box, the application of107

four MOBBO methods for gait mode classification is new, and a novel MOO-based feature selection108

method called GMOFS is new. The remaining parts of the UIR system are implemented based on the109

existing literature. The role of each subsystem is explained in more detail in the following subsections.110

Data Collection

& Preparation

(Section 2.1)

Data 

Windowing

(Section 2.2)

Feature 

Extraction

(Section 2.3)

Classification

(Section 2.5)

Feature 

Selection

(Section 2.4)

Filter

(Section 2.6)

1. level walking
2. stairs up

3. stairs down

4. ramp ascent

5. ramp descent

6. standing

Gait Mode Recognition

1
2 3

4 5 6

Figure 1. Architecture of user intent recognition system. The double-lined box indicates that an
evolutionary algorithm is used for optimization.

2.1. Data Collection and Preparation111

Data collection can significantly affect the accuracy of UIR. Input signals must be informative112

enough to accurately discriminate between various human gait modes. Four types of input data are113

commonly used in the literature for the gait mode recognition of transfemoral amputees [12,13]. These114
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four types include signals that reflect: (1) the state of the prosthesis, (2) the state of the residual limb,115

(3) the user-prosthesis interaction, and (4) the prosthesis-environment interaction.116

In this paper, we collect vertical hip position and thigh angle to indicate the state of the residual117

limb, and hip moment to indicate the user-prosthesis interaction. These signals are like an implicit118

communication link between the user and the prosthesis and can be used to infer user intent. Based119

on Nyquist’s sampling theorem, measurement signals are sampled at 100 Hz, a frequency that is120

significantly higher than that of human walking [33]. Then the signals are filtered to eliminate noise121

and to handle missing measurement data points [34]. Missing data points are recovered with basic122

interpolation methods.123

2.2. Data Windowing124

To effectively classify human gait modes, we extract appropriate features from a frame (window)125

of measurement signals. Frame length L f defines the number of samples in a frame. A short frame126

fails to provide a rich data set and may lead to significant classification bias and variance. On the other127

hand, a long frame is a computational burden for real-time implementation. In this paper, L f is chosen128

to trade off feature richness and computational load.129

We apply two different methods for data windowing: disjoint windowing and overlapped
windowing [35]. Figure 2 illustrates the two windowing approaches. In disjoint windowing, the
class outcome Oi corresponding to frame Si is output every L f ms. τ is the time required for feature
extraction, classification, commanding the appropriate low-level controller, and prosthesis response
time. In overlapped windowing, we use a sliding frame with length L f and increment I, and the class
outcome is output every I ms. Disjoint windowing is a special case of overlapped windowing when
I = L f . To achieve real-time operation, the parameters of the windowing approaches should satisfy

τ ≤ L f disjoint windowing

τ ≤ I ≤ L f overlapped windowing
(1)

In this paper, we apply disjoint and overlapped windowing with various frame and increment130

lengths. We consider two important characteristics to determine L f [35]: (1) the minimum interval131

between two distinct muscle contractions is 200 ms [36], and (2) the delay between user intent and the132

resultant prosthesis motion should be no more than 300 ms [37,38]. The first property implies that a133

200 ms frame of data should have the potential to provide rich features for gait mode classification. The134

second property, which is known as the real-time constraint, ensures that the amputee will experience135

the prosthesis as responsive to his or her intent. The real-time constraint requires τ ≤ L f ≤ 300 ms136

for disjoint windowing, and I ≤ 300 ms for overlapped windowing. Therefore, we use overlapped137

windowing when the frame length is larger than 300 ms, noting that a larger frame will require a138

higher computational load.

Raw data

t (s)... ...

1iS iS
1iS

2iO 1iO iO 1iOτ τ ττ

fLfLfL

(a) Disjoint windowing

Raw data

t (s)

I

τ

... ...
1iS

iS

1iO

iO

τ

fL

fL

(b) Overlapped windowing
Figure 2. Data windowing. Si represents the i-th data segment, L f is the frame length, τ is the required
processing time, I is the increment length for overlapped windowing, and Oi is the detected gait mode
corresponding to frame Si.

139
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2.3. Feature Extraction140

Various features can be extracted from a frame of measurement data and used for classification.141

Features should be rich enough to discriminate between various gait modes. In addition, feature142

extraction needs to be computationally fast for real-time implementation. In general, both time-domain143

(TD) and frequency-domain (FD) features are frequently used for classification [35,39,40]. We compare144

TD and FD features in this paper, and select the optimal subset of features for UIR.145

TD features are computationally fast, and include information about the data waveform and146

frequency. We extract the following TD features from each frame of data: slope sign change (SSC), zero147

crossing (ZC), waveform length (WL), variance (VAR), mean absolute value (MAV), modified MAV,148

root mean square (RMS), Willison amplitude (WAMP), skewness (SK), kurtosis (KU), and correlation149

coefficient (COR) and angle (ANG) between two frames of data from different measurement signals.150

In addition, multiple FD features have been extracted. FD features are computationally slower151

than TD features, but include information about the frame’s frequency content. We use periodograms152

to measure the power spectrum density (PSD) of a frame, and calculate the following FD features:153

mean frequency (MNF), median frequency (MDF), maximum frequency (MAXF), and fourth-order154

auto-regressive coefficients (AR4).155

Previous research has shown the applicability of these TD and FD features for prosthetic limb156

pattern recognition [39–41]. Therefore, we are motivated to investigate the performance of these157

features for gait mode recognition. The mathematical definitions of these TD and FD features are given158

in [39].159

After extracting TD and FD features from a frame of measurement data, the features are160

concatenated and labeled to create a single training pattern. For instance, extraction of VAR,161

MAV + RMS, and AR4 features from a frame of three measurement signals (e.g., vertical hip position,162

thigh angle, and thigh moment) would produce a training vector with 3, 6, and 12 elements, respectively.163

We perform the above procedure for all features and all frames of measurement data to create the164

training data set. The training set is then normalized to equalize the relative magnitude of each feature.165

2.4. Feature Selection166

The objective of feature selection is to find a subset of the features that were obtained with the167

feature extraction method. The feature selection method attempts to find a parsimonious feature subset168

that results in accurate classification. However, subset size and classification accuracy are conflicting169

objectives. A small feature subset will probably result in high classification error, whereas a large170

feature subset will probably result in lower classification error. Therefore, feature selection can be171

viewed as an MOO problem. In MOO problems, no single solution can simultaneously optimize all172

objectives. The solutions comprise a set of possible alternative solutions known as the optimal Pareto173

set [22].174

We seek the most informative but parsimonious subset of features for gait mode classification.175

Note that exhaustive search is not practical in cases with a high-dimensional set of features. A set176

of n features has 2n different subsets. Many heuristic search strategies, such as sequential forward177

selection, sequential backward elimination, and evolutionary search, have been suggested for this178

type of combinatorial problem [42]. EAs have been demonstrated as an efficient search strategy for179

feature selection [43]. In this section, we propose a search strategy based on BBO, in addition to a180

new gradient-based algorithm, to solve the MOO problem. We then use two systematic approaches to181

compare the performance of the different search strategies.182

2.4.1. Biogeography-Based Multi-Objective Optimization183

We propose the application of MOBBO for feature selection of the UIR system. The dimension of
the optimization problem is equal to the number of available features (independent variables). Each
feature is represented by a binary value where 1 indicates that the feature is used for classification,
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and 0 indicates otherwise. Therefore, each individual in the MOO algorithm is a binary sequence
with length equal to the problem dimension. We evaluate the following two objective functions for all
individuals in the population.

f i
1 = number of selected features in the i-th individual

f i
2 = average prediction error using c-fold cross validation

(2)

where i = 1, · · · , N, and N is the population size. We combine BBO with four MOO algorithms [22] to184

obtain VEBBO, NSBBO, NPBBO, and SPBBO. We apply these MOBBO variants to find the optimal185

Pareto set for the optimization problem. We investigate the performance of each method in a later186

section.187

Although it is possible to use any classification algorithm, we use LDA to compute f i
2. LDA,188

unlike other learning algorithms such as MLP, does not require time-consuming iterations to build a189

model. This point is important because EAs require many objective function evaluations to find the190

solution. It is possible to use either classification accuracy or error as the quality measure for the second191

objective. We use average classification error of c-fold cross validation (CV). In c-fold CV, we randomly192

divide the training set into c distinct folds. Then we repeat training c times; each time the model is193

trained using c− 1 folds and is tested with the remaining fold. The average of the c classification errors194

is used as the quality measure.195

2.4.2. Gradient-Based Multi-Objective Feature Selection196

Although MOBBO and other gradient-free MOO methods have the potential to find the globally197

optimal solution [23,24], they are computationally expensive due to the need for many iterations of198

the classifier training process (multiple individuals in the population, and multiple generations). To199

reduce computational complexity, we propose a novel algorithm called GMOFS for feature selection.200

In GMOFS, feature selection and data classification are performed simultaneously.201

GMOFS incorporates a regularization penalty term to the optimization problem of its learning
algorithm. The penalty term, which is handled by a Lagrange multiplier, directs the trained model
toward a parsimonious as well as accurate model. We use an MLP network as the classifier, and
include an elastic net to penalize the size of the selected feature subset. The first step of GMOFS is to
train a constrained MLP network with the cost function

J =
1
2

m

∑
l=1

K

∑
j=1

(
t(l)j − o(l)j

)2
+ λ

n

∑
i=1

(
αβ2

i + (1− α)|βi|
)

(3)

where βi is the multiplier of the i-th input feature before input to the MLP network; t(l)j and o(l)j are the
target and actual value, respectively, of the j-th output neuron associated with the l-th training pattern;
K is the number of output neurons (classes); m is the number of training patterns; and n is the number
of input features. We use an MLP network with one hidden layer and p hidden neurons (including
the bias node). vih denotes the weight that connects the i-th input neuron to the h-th hidden neuron,
and whj denotes the weight that connects the h-th hidden neuron to the j-th output neuron. The first
term of the cost function penalizes classification error while the second term, which is the elastic net,
penalizes the number of selected features. The elastic net is a convex combination of ridge regression
(α = 1) and least absolute shrinkage and selection operator (α = 0). λ ≥ 0 is a complexity parameter
that controls the shrinkage of the input features. Large λ leads to a shrinkage of βi toward zero, which
implies that the input feature corresponding to βi is not significant. However, as shrinkage increases,
classification error tends to increase. Therefore λ provides a trade-off between classification error and
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the number of selected features. In summary, the construction of the MLP network with the elastic net
is formulated as the following optimization problem:

min
β,w,v

J subject to

{
0 ≤ βi ≤ 1

|whj| ≤ a and |vih| ≤ b
(4)

for all i, j, h, where βi = 0 or 1 implies that the associated feature is the least or most significant input
variable, respectively. However, due to the direct relationship between βi and neuron weights vih and
whj, we cannot conclude that an input feature with small βi and large neuron weights is insignificant.
To avoid optimization solutions with large weights, neuron weights are constrained. Backpropagation
is used to update βi, vih, and whj. The derivative of J with respect to output weights whj, hidden
weights vih, and input weights βi is obtained by the chain rule as

∂J
∂whj

=
m

∑
l=1

δ
(l)
j y(l)h

∂J
∂vih

=
m

∑
l=1

 ∑
k∈D2(h)

[
δ
(l)
k whk

]
y(l)h (1− y(l)h ) βix

(l)
i


∂J
∂βi

=
m

∑
l=1

 ∑
s∈D1(i)

 ∑
k∈D2(h)

[
δ
(l)
k wsk

]
y(l)s (1− y(l)s )vis

 x(l)i

+ λ

[
2αβi + (1− α)

βi
|βi|

]
(5)

where D1(i) is the set of middle layer neurons whose inputs come from the i-th input neuron, D2(h)202

is the set of output neurons whose inputs come from the h-th middle layer neuron, and δ
(l)
j =203

−(o(l)j − t(l)j )(1− t(l)j )t(l)j . We use the derivatives in Eq. 5 and constraints in Eq. 4 along with the trust204

region reflective algorithm to train the constrained MLP network.205

Once MLP training phase is completed, input weights βi are sorted in descending order. The
input variable with the largest βi is the most significant feature. The second step of GMOFS is to select
the most r significant features, which are associated with the r largest input weights βi, and which
satisfy

∑r
i=1 βi

∑n
j=1 β j

≥ 95%

β1 ≥ β2 ≥ · · · ≥ βn

(6)

We then repeat the first two steps of GMOFS for different λ in the range [λl , λu] with a predefined
increment4λ. The selected subsets associated with each λ comprise a population. The population
size depends on4λ. To assess the performance of the selected feature subset, we train a classifier with
each selected subset and find classification error. In this population, the subset associated with λ→ ∞
has minimum size and maximum classification error, whereas the subset with λ = 0 has maximum
size and probably has the lowest classification error. Thus, the size of the selected subset and the
classification error, defined in Eq. 2, are two conflicting objectives. To find the GMOFS Pareto front, we
first obtain the Pareto set as

Ps =

{
x∗ :

[
@x : fi(x) ≤ fi(x∗) for all i ∈ [1, 2], and f j(x) < f j(x∗) for some j ∈ [1, 2]

]}
(7)

x∗ denotes the set of non-dominated solutions in the population and fi(x) is the i-th objective function.
The Pareto front Pf is obtained from all function vectors f (x) that correspond to the Pareto set:

Pf = { f (x∗) : x∗ ∈ Ps} (8)
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Note that all Pareto points are equally preferable apart from subjective prioritization. The outline of206

GMOFS is given in Algorithm 1.207

Algorithm 1 The outline of gradient-based multi-objective feature selection (GMOFS), where xi is the
i-th feature in the training set X, and Y is the corresponding set of output classes.

Initialization: λ = λl ≤ λu, Population = ∅, k = 1
While λ ≤ λu

Step 1:
Use the training data {X, Y} to train the constrained MLP network in Eq. 3 by solving Eq. 4
Step 2:
Sort the input weights {βi} in descending order
Use Eq. 6 to select subset Sk ⊂ X where size(Sk) ≤ size(X)
Step 3:
Population← Population + Sk
k← k + 1

Next λ← λ +4λ
Step 4:
For each subset Sk in Population

Use cross-validation to train and test a classifier with dataset {Sk, Y}
Calculate objective functions f k

1 and f k
2 using Eq. 2

Next subset Sk
Step 5:
Find the Pareto set using Eq. 7

2.4.3. Evaluation of Multi-Objective Optimization Pareto Fronts208

We will compare the Pareto fronts obtained by each MOO algorithm using normalized
hypervolume and relative coverage. These methods are popular for evaluating the quality of a
Pareto front. The Pareto front normalized hypervolume is computed as follows:

Normalized Hypervolume =
∑

Np
j=1 ∏M

i=1 f ji

Np
(9)

where M is the number of objectives, f ji is the value of the i-th objective function of the j-th Pareto209

point, and Np is the number of Pareto points.210

Another way to compare Pareto sets is to compute the coverage of one Pareto set relative to a211

second Pareto set. This metric is determined by the number of solutions in the first Pareto set that212

are weakly dominated by at least one solution in the second Pareto set [22]. A smaller number for213

normalized hypervolume and relative coverage indicates better performance.214

2.5. Classification215

Accurate classification of gait patterns is the ultimate goal of the UIR system. For this purpose,216

we assess various well-known linear and non-linear classification techniques, including LDA, QDA,217

SVM, DT, and MLP classifiers.218

LDA and QDA classifiers do not require time-consuming iterations for training. In fact, the219

parameters of these classifiers are directly obtained from the training data. Although these classifiers220

are fast in terms of training, they are not as flexible as nonlinear classifiers such as SVM, DT, and MLP.221

These classifiers solve an optimization problem that minimize the classification error. In most cases,222

it is difficult to find optimization solutions in closed form, so we use either iterative optimization223

algorithms such as steepest descent, or EAs.224
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We use one-against-one approach to implement multi-class SVM, and we also evaluate the225

performance of different kernels, such as linear and RBF. We tune the parameters of the SVM kernels to226

achieve the best classification performance. To increase the accuracy of the MLP network, we perform227

a grid search of the number of hidden nodes p from the set {3, 4, 5, 6, 8, 10, 15, 20}, and we measure228

the mean classification error using five-fold CV. Then we choose p to obtain a trade-off between229

classification accuracy and classifier complexity. An MLP with small p may not result in the desired230

accuracy, but an MLP with large p may tend to memorize the noise in the training set and lead to231

overfitting and poor generalization. In addition, we use Wilcoxon signed-rank tests to statistically232

compare the classification methods.233

2.6. Filter234

To enhance the prediction performance of the UIR system, we incorporate a majority voting235

filter (MVF). MVF alleviates transient jumps between classifier output classes and leads to smooth236

transitions from one classified gait mode to another [13]. We implement the MVF using 2q+ 1 classified237

modes [41]: the current, q previous, and q subsequent values. The MVF output is the most frequently238

classified mode among those 2q + 1 values.239

Since MVF uses q future classified gait modes to calculate the current classified mode, an
inappropriate value for q may violate the real-time constraint. The constraint requires that the classified
mode is output with a time delay less than 300 ms (see Section 2.2). The constraint requires

q× L f ≤ 300 ms Disjoint windowing

q× I ≤ 300 ms Overlapped windowing
(10)

An MVF with very small q may not significantly improve classification performance, whereas an MVF240

with very large q may cause misclassification because of time delay. In this paper, we will choose a241

trade-off value for q, and will investigate the effect of the MVF on classification performance.242

3. Results and Discussion243

This section evaluates the performance of the UIR system and its subsystems as discussed in244

Section 2.245

3.1. Experimental Setup and Data Collection246

To design and evaluate the performance of the UIR system, we collect data from three able-bodied247

subjects (AB01, AB02, and AB03) and three transfemoral amputee subjects (AM01, AM02, and AM03).248

All the experiments were approved by the Department of Veterans Affairs Institutional Review Board.249

The above-knee amputees wore an Ottobock prosthesis on the right leg. As discussed in Section 2.1,250

we measure vertical hip position, thigh angle, and thigh moment for UIR. These signals are collected251

for able-bodied subjects during four different activity modes: (1) standing (ST), (2) normal walking252

(NW) at user-preferred speed (PS), (3) slow walking (SW), and (4) fast walking (FW). Due to physical253

limitations, we collect data during only three activity modes for the amputee subjects: ST, NW, and254

SW. Table 1 shows the physical characteristics of the subjects.255

The data were collected at the Motion Study Laboratory of the Cleveland Department of Veterans256

Affairs Medical Center with 47 reflective markers on each subject’s body. Subjects were asked to walk257

on a treadmill with built-in force sensors. A 16-camera Vicon system recorded kinematic data at 100 Hz.258

Ground reaction force along three axes were collected from the force sensors at 1000 Hz. Data were259

filtered with a second-order low-pass filter with a cutoff frequency of 6 Hz. Filtered data were input to260

inverse dynamics software to calculate the joint angles and torques. Detailed methods and sample261

results can be found in [34]. The experimental setup is illustrated in Figure 3. Note that the lower-limb262

amputee demographic at the Veterans Affairs Medical Center, where data collection was performed,263

is dominated by males. Over 98% of veterans who underwent amputation in 2011 were male [44].264
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Table 1. Physical characteristics of the six human test subjects. AB and AM represent able-bodied and
amputee subject, respectively.

Gender Age Weight Height Walking Speed (m/s)
(years) (kg) (cm) SW PS FW

AB01 Male 37 79.5 188 0.98 1.30 1.63
AB02 Male 20 73.9 172 0.86 1.15 1.44
AB03 Male 28 80.9 179 0.75 1.00 1.25
AM01 Male 32 79.1 174 0.60 1.00 –
AM02 Male 64 99.2 177 0.56 0.94 –
AM03 Male 35 81.7 176 0.60 0.90 –

Our future work will need to include more subjects and wider demographics (for example, ages and265

genders).266

Figure 3. Experimental setup for data collection. The left figure shows an able-bodied subject and the
right figure shows an amputee subject with an Ottobock prosthesis on the right leg.

Note that in a real-world, non-laboratory settings, we would measure the required input signals267

directly rather than with cameras. For example, we could use piezo-electric sensors or multi-axis268

load cells for force sensing, and optical encoders or inertial measurement units for position and angle269

sensing [12].270

The able-bodied subjects were asked to perform four sequences of walking trials, each lasting271

approximately 60 seconds. Each sequence consists of four different gait modes (ST, SW, NW, and FW)272

and each mode was maintained for several seconds. Figure 4 illustrates a sample walking trial for273

AB01. The amputee subjects performed six sequences of three different walking modes, each lasting274

approximately 30 seconds.275

In summary, we note a few important points. Firstly, in this paper, the type of walking activities276

used for recognition is not our main focus, but rather the assessment of the proposed methodology277

to eliminate irrelevant/redundant features for UIR is our main goal. Secondly, in human activity278

mode recognition applications, an entire stride is typically used for non-real-time classification [45].279

However, in UIR, we use a small window of measurement signals, mostly within a few milliseconds,280

to identify user’s intent for real-time prosthesis control.281

3.2. Effect of Frame Length on Classification Performance282

The objective of this section is to choose the appropriate data windowing method and frame283

length. We investigate the influence of disjoint and overlapped windowing with different frame284

lengths on the classification accuracy of the UIR system. We use disjoint windowing with frame lengths285

L f = {100, 150, 200, 250}ms, and overlapped windowing with frame lengths L f = {200, 250, 300}ms286

and increments I = {50, 150, 200}ms. We extract TD and FD features from the data frames generated287

by the three measurement signals collected from able-bodied subjects. Figure 5 shows the mean288

classification performance of LDA with different frame lengths. Note that the size of the dataset289

depends on the parameters of the windowing methods. For instance, a 10-second walking sequence290

with disjoint windows of length 100 ms provides 100 frames and consequently 100 training patterns.291
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Figure 4. Sample walking trial with four different gait modes for able-bodied subject AB01

In this experiment, LDA is separately trained and tested using 10-fold CV for each subject292

with only one feature type for each of the measurements: WL, VAR, MAV, RMS, WAMP, ANG,293

and AR4. These features are used because they are considered the most representative TD and FD294

features. Figure 5 illustrates the mean classification accuracy of LDA for the two able-bodied subjects295

using 10-fold CV. A single value on the horizontal axis of the figure indicates the frame length of296

disjoint windowing. A pair of values indicates the frame length and increment length of overlapped297

windowing; for instance, 200−50 denotes L f = 200 ms and I = 50 ms.298

Figure 5 shows that the classification accuracy typically improves as the frame length increases. A299

larger frame is more likely to include richer information, and consequently lower bias and variance300

in classification performance. For instance, the increase in accuracy with WL is approximately 19%301

when the frame length increases from 100 ms to 200 ms. The increases are 14.3% and 16% when302

using the VAR and AR4 features, respectively. However, the accuracy does not vary significantly with303

frame length for the remaining features in Figure 5. The figure illustrates that all representative TD304

features except ANG provide better classification performance than AR4, which is the representative305

FD feature.306

In this experiment, very small frame length is not used because it would result in poor prediction307

accuracy. Conversely, large frame length is not used because it would result in a violation of the308

real-time constraint. To find the best frame length, we statistically compare performance using309
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Figure 5. Mean LDA performance for the able-bodied subjects for different data windowing methods
and frame lengths. On the horizontal axis, a single value indicates the frame length of disjoint
windowing, and a pair of values indicates the frame length and increment length of overlapped
windowing. For instance, 200−50 indicates L f = 200 ms and I = 50 ms for overlapped windowing.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2018                   doi:10.20944/preprints201811.0094.v1

http://dx.doi.org/10.20944/preprints201811.0094.v1


12 of 20

Wilcoxon signed-rank tests. For this purpose, LDA is trained using only one TD or FD feature at310

a time. The null hypothesis of the test is that the differences between mean classification accuracy311

corresponding to two different frame lengths are from a distribution with zero mean at the specified312

level of significance. If the null hypothesis cannot be rejected, then we conclude that the two compared313

frame lengths are not statistically significantly different, as indicated by an ≈ sign and a T (tie). If we314

can reject the null hypothesis, then the two frame lengths are statistically significantly different, and315

this is indicated by a + sign. The better frame length is the one with better mean classification accuracy316

and is shown by B (better) while the worse one is shown by W (worse). Table 2 provides the results of317

the statistical tests at a 10% significance level.318

Table 2 shows that frames with length larger than 200 ms perform better than frames with length319

150 or 100 ms. Table 2 shows that the two overlapped frame windows with L f = 250 ms, I = 50 ms320

and L f = 300 ms, I = 200 ms tie for similar performance, and perform better than the other frame321

lengths.322

Taking into account the real-time constraint, the length of the MVF filter, and processing time, we323

choose overlapped windowing with L f = 250 ms, I = 50 ms throughout the remainder of the paper as324

the best trade-off, except where specifically mentioned otherwise.325

Table 2. Comparison of classification performance for different frame lengths (row values versus
column values) using Wilcoxon signed-rank tests at a 10% significance level. ≈ indicates that the two
compared frame lengths tie (T) with similar performance and are not statistically significantly different.
+ indicates that the two frame lengths are statistically significantly different, and B or W indicates that
the row frame length performs better or worse than the column frame length, respectively.

Frame
Length (ms) 150 200 200-50 200-150 250 250-50 300-200

100 vs. W (+) W (+) W (+) W (+) W (+) W (+) W (+)
150 vs. − W (+) W (+) W (+) W (+) W (+) W (+)
200 vs. ∗ − W (+) T (≈) W (+) W (+) W (+)

200-50 vs. ∗ ∗ − B (+) W (+) W (+) W (+)
200-150 vs. ∗ ∗ ∗ − W (+) W (+) W (+)

250 vs. ∗ ∗ ∗ ∗ − W (+) W (+)
250-50 vs. ∗ ∗ ∗ ∗ ∗ − T (≈)

We use principal component analysis (PCA) [46] and Fisher linear discriminant analysis326

(FLDA) [47] to visualize the training set. A training pattern is a vector of all TD and FD features327

extracted from a frame of raw data. We performed 2D dimension reduction for three different frame328

lengths. Figure 6 illustrates the 2D scatter plot for able-bodied subject AB01. To save space, we do not329

provide the same figures for other subjects because we obtained similar results for those subjects.330

Figure 6 shows that FLDA provides better visualization than PCA in terms of gait mode331

separability. We verify that longer frame length leads to better gait mode separation, and eventually332

better classification performance. Most importantly, Figure 6 verifies the effectiveness of the TD and333

FD features.334

3.3. Multi-Objective Feature Selection335

We perform feature selection in two steps. In the first step we exclude non-informative TD and FD336

features, and in the second step we use MOO to further refine the selected feature set. We implement337

five different MOO methods, including our newly proposed method, to find the optimal set of features.338

The complete set of features includes the following TD and FD features: SSC (F1), ZC (F2), WL (F3),339

VAR (F4), MAV (F5), MAV1 (F6), MAV2 (F7), RMS (F8), WAMP (F9), SK (F10), KU (F11), FMD (F12), FMN340

(F13), FMAX (F14), COR (F15), ANG (F16), and AR4 (F17). We perform preliminary feature selection341

using two able-bodied subjects. We use MOO for final feature selection using only one able-bodied342

subject to reduce computational effort. Later we will investigate the performance of the selected343

features with other able-bodied subjects and with the amputee subjects.344
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Figure 6. Two-dimensional scatter plot for visualization using PCA (left column) and FLDA (right
column) for able-bodied subject AB01

In the first step, we train LDA for each of two able-bodied subjects, and separately for each345

individual feature type listed in the previous paragraph, using 10-fold CV for each training procedure.346

The mean classification accuracy over the two subjects and the ten folds are used to assess the347

importance of each feature type. Since we need to train the classifier several times in this step, we348

choose to use LDA due to its fast training time.349

Figure 7 shows the mean classification accuracy and processing ratio for each feature type.350

Processing ratio indicates the relative computational complexity to compute each feature type. Figure 7351

indicates that TD features require less computational effort than FD features. For instance, F12, F13, and352

F14 require high computational effort compared to other features. We exclude F12, F13, and F14 from353

the candidate feature set due to their relatively high computational expense and poor classification354

accuracy. In addition, F6 and F7, two variants of MAV, are excluded due to their poor classification355

accuracy and because they provide information that is similar to MAV. Therefore, we exclude a total of356

five weak feature types, and pre-select the remaining 12 feature types. This results in a training vector357

with 11×3+4×3=45 elements. Note that the AR4 feature type includes four components and thus358

contributes a total of 12 elements from the three measurement signals. Finally, vertical hip position359

does not cross zero (see Figure 4), thus the ZC feature of this signal is excluded. In summary, we have360

a training data set with 44 features.361

Now we are ready to proceed to the feature selection step. In this step we use VEBBO, NSBBO,362

NPBBO, SPBBO, and GMOFS to select an optimal subset from the 44 pre-selected features. To reduce363

the computational expense, we use only the AB01 training data set in this step. We then verify that the364

selected subset results in a satisfactory UIR system when trained for other subjects. Table 3 shows the365

tuning parameters used in this paper. To tune the parameters, we performed a sensitivity analysis of366

MOO performance to each parameter, one at a time, to find a local optimum of MOO performance with367

respect to each parameter. For instance, GMOFS is implemented with different elastic net parameter368

values α = {0, 0.5, 1}, and we found that the Pareto front with α = 0 dominates Pareto fronts that369

are found with other values of α. For training the neural network in GMOFS, we used the MATLAB370

function fmincon from the Optimization Toolbox to implement a trust region reflective algorithm. We371

mostly used default values for the fmincon parameters, but we found that the performance of GMOFS372

is not very sensitive to these parameters.373

We run each multi-objective method for 10 independent trials, and the best Pareto front of each374

method is selected for MOO comparison. Results show that the GMOFS Pareto front statistically375
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Figure 7. Mean classification accuracy over two able-bodied subjects, and processing ratio of 17 feature
types trained by LDA using 10-fold cross validation

Table 3. Tuning parameters for multi-objective feature selection

Symbol Value
MOBBO
Mutation rate µ 0.04
Number of elites E 2
Population size N 100
Number of generations Gen 1000
Problem dimension d 44
Migration model mflag sinusoidal
GMOFS
Number of hidden nodes p 5
Elastic net parameter α 0
Bound for shrinkage parameter [λl , λu] [0, 150]
Bound for neuron weights a, b 5
Increment of shrinkage parameter 4λ 1 if 0 ≤ λ ≤ 30; and 10 if 30 < λ ≤ 150
Trust region reflective
Maximum allowable iterations MaxIter 100
Termination tolerance on the independent variable TolX 1E–3
Termination tolerance on the cost function TolFun 1E–3
Typical values for the independent variable TypicalX 0.1
Finite difference method FinDiffType central

significantly dominates all four MOBBO Pareto fronts. However, we are aware of the fact that MLP,376

which is used in GMOFS, generally outperforms LDA, which is used in the MOBBO variants, for377

complicated nonlinear problems.378

To have a more fair comparison, we apply SVM with linear kernels to all of the optimal feature379

subsets found by the MOO methods. Figure 8(a) illustrates the Pareto fronts obtained by the five380

MOOs with SVM with linear kernels. Figure 8(a) shows that the Pareto fronts of VEBBO, SPBBO,381

NSBBO, and GMOFS are close, and clearly dominate the NPBBO Pareto points. Figure 8(b) indicates382

the combined Pareto front obtained from all of the non-dominated points in Figure 8(a). GMOFS383

provides the maximum contribution to the combined Pareto front, while NPBBO does not contribute384

any Pareto points. All of the points in Figure 8(b) are labeled for easy referencing.385

To systematically compare the Pareto fronts in Figure 8(a), we use relative coverage and386

normalized hypervolume as discussed in Section 2.4.3. Tables 4 and 5 provide the comparison results387

using these two approaches. In Table 4, an entry in column i and row j (i 6= j) indicates the percentage388

of Pareto points of the method of column i that is dominated by at least one Pareto point of the method389

of row j. We see that on average, only 7.2% of the Pareto points of VEBBO are weakly dominated by390
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Figure 8. (a) Pareto fronts obtained from MOO methods with an SVM classifier with linear kernels
using AB01 training data; (b) combined Pareto front obtained from non-dominated Pareto points in (a).

at least one Pareto point from the other four MOO methods. Therefore, VEBBO ranks first in terms391

of relative coverage. GMOFS ranks second and performs better than SPBBO, NSBBO, and NPBBO.392

In addition, Table 5 shows that VEBBO and GMOFS rank first and second in terms of normalized393

hypervolume, respectively. GMOFS ranks first in terms of the number of Pareto points. These results394

verify the competitive performance of GMOFS compared to the other four MOO methods.395

Most importantly in terms of the advantage of GMOFS, it requires the execution of only 43396

classifier training procedures (due to the number of λ increments), while each of the other four397

EA-based MOO methods require 100,000 training procedures (due to the combination of population398

size and generation limit).399

Table 4. Comparison of Pareto fronts using relative coverage (RC). Only 7.2% and 30% of the VEBBO
and GMOFS points, respectively, are dominated by other Pareto points; so VEBBO and GMOFS rank
first and second, respectively, in terms of RC.

VEBBO SPBBO NSBBO NPBBO GMOFS
VEBBO − 62.5 75.0 85.7 40.0
SPBBO 0.0 − 25.0 71.4 40.0
NSBBO 14.3 50.0 − 100.0 40.0
NPBBO 0.0 0.0 0.0 − 0.0
GMOFS 14.3 50.0 50.0 100.0 −

Mean RC (%) 7.2 40.4 37.5 89.3 30.0

Table 5. Comparison of Pareto fronts using normalized hypervolume. Np is the number of Pareto
points obtained by each MOO method. VEBBO and GMOFS rank first and second, respectively, in
terms of normalized hypervolume, and GMOFS ranks first in terms of the number of points.

Np Normalized Hypervolume
VEBBO 7 0.5026
SPBBO 8 0.5814
NSBBO 8 0.5676
NPBBO 7 0.8013
GMOFS 10 0.5332

The benefit of presenting the data of Figure 8(b) is that it allows us to find the best subset of400

features for an accurate and parsimonious classifier. Among the 12 Pareto points, we choose p9 as401

a potential candidate solution. We could pick any other solution from the Pareto front depending402
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on the priority of the problem objectives, but p9 provides a good trade-off between classification403

error and number of features. Therefore, in Section 3.5 we will investigate classification performance404

with candidate solution p9 for all human subject data AB01, AB02, AB03, AM01, AM02, and AM03.405

However, first we will find the best classifier in the following section.406

3.4. Comparison Results of Classification Algorithms407

In this section, we use p1 through p12 to statistically compare the performance of different408

classifiers for subject AB01. The objective is to find the best classifier for locomotion mode detection409

among LDA, QDA, SVM with linear kernels (SVM-linear), SVM with RBF kernels (SVM-RBF), MLP,410

and DT. The tuned parameter value of RBF kernel is σ = 1. Table 6 shows mean classification accuracy411

and standard deviation of each classifier trained with the features from each Pareto point using 10-fold412

CV.413

Table 7 presents pair-wise statistical comparisons using Wilcoxon signed-rank tests at a 5%414

significance level. If a pair-wise p-value is less than 0.05, the mean performances of the two classifiers415

are statistically significantly different, and the classifier with larger mean prediction accuracy performs416

better than the other one. A pair-wise p-value greater than 0.05 indicates no significant difference417

between the performance of the two classifiers. Table 7 shows that the classification performance418

of MLP and SVM-RBF are statistically equal, and are significantly better than the other methods.419

SVM-linear is statistically better than LDA, QDA, and DT. QDA performs better than LDA and420

similarly to DT. In summary, MLP and SVM-RBF are the best, SVM-linear is the second best, QDA and421

DT are the third best, and LDA is the worst for locomotion mode detection.422

Table 6. Mean classification accuracy (ACC) and standard deviation (STD) for AB01 of classifiers
trained with 13 different feature subsets. NF is the number of features in each set.

Pareto
Point NF LDA QDA SVM-Linear SVM-RBF MLP DT

ACC STD ACC STD ACC STD ACC STD ACC STD ACC STD
p1 6 93.56 0.740 94.33 0.852 95.37 1.218 98.33 0.421 97.34 0.698 96.15 1.16
p2 7 95.31 0.829 96.06 0.711 96.99 0.775 98.88 0.216 98.29 0.539 96.35 1.00
p3 8 96.69 0.835 96.82 0.410 97.47 0.694 98.86 0.378 98.20 0.411 96.67 1.18
p4 9 96.86 0.684 96.95 0.484 98.07 0.576 99.31 0.234 98.34 0.459 96.73 1.25
p5 10 97.04 0.657 96.99 0.427 98.08 0.430 98.90 0.406 98.47 0.645 96.56 1.22
p6 11 96.84 0.536 97.15 0.654 98.14 0.692 98.94 0.293 98.62 0.578 96.32 1.28
p7 12 96.93 0.656 97.36 0.372 98.20 0.497 99.05 0.356 98.87 0.406 97.21 1.00
p8 13 96.61 0.384 97.62 0.554 98.25 0.534 99.14 0.305 95.76 9.180 96.86 1.36
p9 14 96.76 0.485 97.79 0.311 98.49 0.500 98.88 0.290 98.90 0.355 97.15 0.78
p10 16 96.95 0.525 97.84 0.578 98.59 0.467 98.38 0.449 98.66 0.371 96.99 0.72
p11 21 97.13 0.501 97.93 0.716 98.62 0.564 98.40 0.392 99.00 0.432 97.30 0.54
p12 27 97.41 0.568 97.77 0.861 98.70 0.422 97.58 0.663 99.07 0.373 96.91 0.64

Table 7. Comparison of classification performance using Wilcoxon signed-rank tests (W.T.) at a 5%
significance level. B or W indicates that the row method performs better or worse than the column
method, respectively, while T shows that they tie with similar performance. These results are obtained
using all the data from Table 6.

DT SVM-RBF SVM-linear QDA LDA
p-value W.T. p-value W.T. p-value W.T. p-value W.T. p-value W.T.

MLP vs. 2.44E-4 B 7.32E-1 T 8.50E-3 B 5.02E-3 B 2.44E-4 B
DT vs. − 1.23E-4 W 8.20E-3 W 1.33E-1 T 1.70E-1 T

SVM-RBF vs. ∗ − 6.70E-3 B 2.44E-4 B 1.22E-4 B
SVM-linear vs. ∗ ∗ − 1.15E-4 B 1.25E-4 B

QDA vs. ∗ ∗ ∗ − 2.44E-4 B
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3.5. Performance Assessment of Selected Subset423

In this section we train UIR for all able-bodied and transfemoral amputee subjects with feature424

subset p9. All classifiers are trained with three representative methods (SVM-RBF, SVM-linear, and425

QDA). The RBF kernel tuning parameter is σ = 1 and σ = 4 for able-bodied and amputee subjects,426

respectively. In this section, we use multiple-fold CV for learning, where each walking sequence is427

considered a fold.428

We saw in Section 2.2 that overlapped windowing with frame length L f = 250 ms and increment429

I = 50 ms is the best data window option. For real-time operation, a conservative choice for parameter430

q = 5 satisfies the constraint q× I ≤ 300 ms. Therefore, we use MVF with length 2× q + 1 = 11.431

Results verify a fast processing time on a standard desktop computer of less than 50 ms, on average,432

including feature extraction and classification with each of the three classifiers.433

Figure 9 illustrates the mean classification error of QDA, SVM-linear, and SVM-RBF trained with434

feature subset p9. Training was conducted individually for able-bodied subjects AB01, AB02, and AB03435

and amputee subjects AM01, AM02, and AM03, with and without MVF. Figure 9 indicates that: (1)436

SVM-RBF outperforms SVM-linear and QDA, which confirms the statistical results in Section 3.4; (2)437

MVF statistically significantly decreases classification error for locomotion mode detection (p < 0.05);438

and (3) p9 is an effective feature subset and results in accurate as well as compact UIR. Feature subset439

p9 uses only 14 features out of a total of 60 available features, which reduces the size of the feature set440

by 77%.441

SVM-RBF was also trained for the able-bodied subjects with the full set of 60 features. When442

combined with MVF it results in a mean classification accuracy of 98.54%± 1.92%. In comparison,443

we achieve 97.14%± 1.51% mean classification accuracy with feature subset p9, which includes only444

14 features. Statistical tests at 5% significance level indicate no significant difference between UIR445

performance when trained with the full feature set and subset p9.446

SVM-RBF was also trained for the amputee subjects with the full set of 60 features. When447

combined with MVF it results in a mean classification accuracy of 99.37%± 0.96%. In comparison, we448

achieve 98.45%± 1.22% mean classification accuracy with feature subset p9. As with the able-bodied449

subjects, statistical tests indicate no significant difference between UIR performance when trained with450

the full feature set and subset p9. This indicates the satisfactory performance of our framework, which451

is able to eliminate unneeded features with no significant degradation in overall accuracy.452

(a) Trained with subset p9 for able-bodied subjects (b) Trained with subset p9 for amputee subjects
Figure 9. Classification performance of QDA, SVM-Linear, and SVM-RBF with feature subset p9 for
able-bodied subjects (AB01, AB02, and AB03) and amputee subjects (AM01, AM02, and AM03).

4. Conclusion453

We presented a framework for designing a UIR system. We used experimental data collected454

from three able-bodied subjects and three above-knee amputee subjects to classify four and three455

different gait modes, respectively. Overlapped windowing with frame length 250 ms and increment456

50 ms provided a good tradeoff between classification performance and real-time computation. Several457

efficient TD and FD features were extracted from data frames to form the feature set. We performed458
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feature selection in two steps. First, we excluded non-informative features with poor classification459

performance and high computational effort. Second, we used MOO to find an optimal feature subset460

from the remaining features to obtain a UIR system that was both parsimonious and accurate. For461

this purpose, GMOFS, a novel embedded multi-objective feature selection algorithm, was proposed462

and compared with four evolutionary MOOs on the basis of normalized hypervolume and relative463

coverage. Classification results confirmed the competitive performance of GMOFS. Several classifiers464

were trained with the optimal feature subsets that were selected by MOO, and SVM-RBF and MLP465

were found to be the best classifiers for UIR. The outputs of the classifiers were input to an MVF to466

improve classification accuracy and chattering between the identified classes.467

For future work, more above-knee amputee subjects will be involved in data collection and468

classification. In addition, we will include other daily-life activities such as incline walking, stair ascent469

and descent, standing and sitting, etc. It is also of great interest to consider other informative features470

for classification, such as wavelet transform coefficients. Finally, it would be of interest to compare471

GMOFS with other state-of-the-art MOO methods, and to apply GMOFS to other MOO problems.472
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Abbreviations481

The following abbreviations are used in this manuscript.

List of acronyms in order of appearance

Acronym Definition Acronym Definition
UIR User intent recognition ZC Zero crossing
MOO Multi-objective optimization WL Waveform length
GMOFS Gradient-based multi-objective feature selection VAR Variance
MOBBO Multi-objective biogeography-based optimization MAV Mean absolute value
SVM Support vector machine RMS Root mean square
RBF Radial basis function WAMP Willison amplitude
MVF Majority voting filter SK Skewness
sEMG Surface electromyography KU Kurtosis
LDA Linear discriminant analysis COR Correlation
QDA Quadratic discriminant analysis ANG Angle
GMM Gaussian mixture model PSD Periodogram spectrum density
ANN Artificial neural network MNF Mean frequency
BBO Biogeography-based optimization MDF Median frequency
VEBBO Vector evaluated BBO MAXF Maximum frequency
NSBBO Non-dominated sorting BBO AR Auto-regressive model
NPBBO Niched Pareto BBO CV Cross validation
SPBBO Strength Pareto BBO AB01 Able-bodied subject 01
EA Evolutionary algorithm AM01 Amputee subject 01
MLP Multilayer perceptron PS Preferred speed
TD Time domain ST Standing
FD Frequency domain NW Normal walking
FLDA Fisher’s linear discriminant analysis SW Slow walking
PCA Principal component analysis FW Fast walking
DT Decision tree
SSC Slope sign change

482
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