

1 *Type of the Paper - Research article, expanded version of the conference paper*
2 Azarov, O.; Krupelnitsky, L.; Rakytyanska, H. A fuzzy model of television rating control with trend
3 rules tuning based on monitoring results. In Proceedings of the 2018 IEEE Second International
4 Conference on Data Stream Mining & Processing (DSMP); Lviv, Ukraine, August 21-25, 2018, pp.
5 369-375. ISBN: 978-1-5386-8175-6

6 **Television Rating Control in the Multichannel 7 Environment Using Trend Fuzzy Knowledge Bases 8 and Monitoring Results**

9 **Olexiy Azarov¹, Leonid Krupelnitsky¹ and Hanna Rakytyanska^{2,*}**

10 ¹ Vinnytsia National Technical University, Computer Facilities Department, 95, Khmelnitske sh., Vinnytsia,
11 Ukraine, 21021, azarov2@vntu.edu.ua, krupost@gmail.com

12 ² Vinnytsia National Technical University, Soft Ware Design Department, 95, Khmelnitske sh., Vinnytsia,
13 Ukraine, 21021, h_rakit@ukr.net

14 * Correspondence: h_rakit@ukr.net; Tel.: +38-0432-61-68-02

15

16 **Abstract:** The purpose of the study is to control the ratio of programs of different genres when
17 forming the broadcast grid in order to increase and maintain the rating of the channel. In the
18 multichannel environment, television rating control consists of selecting such content, ratings of
19 which are completely restored after advertising. A hybrid approach combining the benefits of
20 semantic training and fuzzy relational equations in simplification of the expert recommendation
21 systems construction is proposed. The problem of retaining the television rating can be attributed
22 to the problems of fuzzy resources control. The increase or decrease trends of the demand and
23 supply are described by primary fuzzy relations. The rule-based solutions of fuzzy relational
24 equations connect significance measures of the primary fuzzy terms. Rules refinement by solving
25 fuzzy relational equations allows avoiding labor-intensive procedures for the generation and
26 selection of expert rules. The solution set generation corresponds to the granulation of the
27 television time, where each solution represents the time slot and the granulated rating of the
28 content. In automated media planning, generation of the weekly TV program in the form of the
29 granular solutions provides the decrease of the time needed for the programming of the channel
30 broadcast grid.

31 **Datasets:**

32 TV Channel Inter: Ratings. Available online: <http://inter.ua/uk/about/rating>

33 TV Channel Inter: Weekly TV Program. Available online: <https://inter.ua/uk/tv>

34 IMDb Top Rated Movies. Available online: <https://www.imdb.com>

35 Ukrainian Films Catalog. Available online: <https://kinoafisha.ua/ratings/>

36 **Dataset License:** open access data set

37 **Keywords:** TV channel rating, expert recommendation systems, fuzzy resources control, fuzzy
38 classification knowledge bases, solving fuzzy relational equations.

39

40

41

42 1. Summary

43 The top priority task of the personnel of TV companies is to control the ratio of programs of
44 different genres when forming the broadcast grid in order to increase and maintain the rating of the
45 channel [1]. The rating of a television channel is determined by specialized sociological services and
46 directly affects the cost of advertising time. Content management is modeled by integrating trials,
47 expert recommendations and users' preferences [2]. The recommendation accuracy strongly
48 depends on the mechanisms of the supply and demand regulation [3], which consider time factors
49 and users' preferences simultaneously [4, 5]. Parametric statistical models are widely used to
50 evaluate the viewers' demand and the popularity of TV programs [6–9]. These models are adjusted
51 to fit the distribution of user ratings in video on demand services dealing specifically with TV
52 content [6, 7]. To enhance the recommendation accuracy, the statistical models aim to learn
53 audience preferences that follow from the rich user content generated in the social networks [8, 9].
54 The timing and item recommendations are generated via clustering the common interests of a group
55 of people [10, 11]. Finally, the cognitive models describe the behavior of viewers when choosing a
56 TV channel [12, 13]. Such models predict program commitments based on viewer-program
57 emotional relationships reflecting satisfaction and perception toward alternative programs.

58 The television domain has become increasingly complex due to the multichannel environment.
59 Television advertising time is purchased on the basis of the projected future ratings [14]. The
60 problem lies in the paradoxical connection between the programs ratings before and after the ad unit
61 [15]. In the multichannel environment, the ad skipping behaviors may result in the lower ratings
62 [16]. Restoration of the program rating after the ad unit depends on the decision to watch or skip the
63 program, i.e. give preference to the programs broadcast by the concurrent channels. The
64 conventional recommender systems concentrate on the targeted advertising and do not take the ad
65 break-factor into account [17, 18]. In this case, the skipping phenomenon stipulated by the
66 multichannel environment is ignored. Such methods of media planning will inevitably reduce the
67 rating points because of the content sensitivity to the advertisement insertion [18].

68 The problem of retaining the television rating can be attributed to the problems of fuzzy
69 resources control [1, 19]. In such models, the "demand-supply" relationships are described by fuzzy
70 IF-THEN rules. In works [19, 20], it is suggested to build the fuzzy resources control model on the
71 grounds of the general method of nonlinear dependencies identification by means of fuzzy
72 knowledge bases. The method [19, 20] implies the stage of tuning the fuzzy control model using
73 "demand-supply" training data. The tuning stage consists of finding such fuzzy rules weights and
74 such membership functions forms, which provide maximum proximity of the results of fuzzy logic
75 inference to the correct managerial decisions.

76 In work [21], the fuzzy control model, which provides the balanced demand and supply for
77 each content category was proposed. Experienced managers make effective administrative decisions
78 based on a comparison of the viewers' demand for the programs of different genres with the rating
79 of the programs offered at the given time. Dependent upon this, a control action is formed, which
80 consists of increasing or decreasing the rating of the programs in the channel broadcast grid [21].

81 Unlike [21], the fuzzy control model is expanded on the account of the supplementary factors
82 influencing the demand and supply. The viewers' demand for different content categories is defined
83 by the time factors, i.e. the time of viewing and the day of the week. In the multichannel
84 environment, television rating control consists of selecting such content, ratings of which are

85 completely restored after advertising. Therefore, projected ratings after control in each genre
86 category are evaluated by the content attributes and the ad break-factor. In this case, targeted
87 advertising is augmented by the viewer intention to watch the program. Finally, the content
88 category for each time slot is recommended on the grounds of users' preferences.

89 The construction of expert recommendation systems is associated with computational costs.
90 Constantly changing preferences of different categories of viewers require the selection and
91 adjustment of the appropriate set of expert rules. At the same time, experts establish the trends of
92 demand-supply relationships, which are subject to further refinement. Such trend dependencies are
93 described by primary fuzzy knowledge bases. In this case, the increase or decrease of the television
94 indices can be considered as the primary fuzzy terms. The solution to the problem of expert rules
95 refinement may be the use of fuzzy relational equations [22, 23], the solutions of which represent the
96 linguistic modification of the primary terms. The obtained solutions can be considered as composite
97 fuzzy rules that connect significance measures of the primary fuzzy terms and reflect the semantic
98 intensiveness of the increase or decrease trend [24-27]. The number of rules is determined by the
99 number of solutions. The recommendation accuracy is achieved through the complete solution set,
100 i.e. the complete rule set of the recommendation knowledge base [28, 29].

101 The composite fuzzy model of the control action balancing the demand and supply was
102 proposed in [21]. In this paper, the composite fuzzy models for the demand and supply are
103 proposed. The composite fuzzy model of the demand defined by the time factors allows generating
104 item and timing recommendations simultaneously. The composite fuzzy model of the supply
105 defined by the content and advertisement attributes provides the rating restoration in the
106 multichannel environment. Refinement of the rule set by solving fuzzy relational equations allows
107 avoiding labor-intensive procedures for the generation and selection of expert rules. The solution set
108 generation corresponds to the granulation of the television time, where each solution represents the
109 time slot and the granulated rating of the content. In automated media planning, generation of the
110 weekly TV program in the form of the granular solutions provides the decrease of the time needed
111 for the programming of the channel broadcast grid. Therefore, it is important to develop a hybrid
112 approach combining the benefits of semantic training [19, 20] and fuzzy relational equations [24-27]
113 in simplification of the process of expert recommendation systems construction. Following the
114 approach proposed in [24-27], the genetic-neuro algorithm is used for tuning the primary fuzzy
115 model and solving the primary system of fuzzy relational equations [28, 29].

116 2. Data Description

117 The fuzzy model of resources management was constructed using the example of the television
118 channel Inter, which holds leading positions in the Ukrainian media market [30]. The TV channel
119 Inter presents programs of such basic genres: political programs and news releases ($k = 1$); TV serials
120 and documentary projects ($k = 2$); entertaining and sports programs ($k = 3$).

121 For the TV rating control problem, the monitoring and forecast window will be for one week.
122 We shall denote the time and day of the week for the TV program release as $t = (t_1, t_2)$.
123 Management is carried out at the level of each air-hour, i.e. $t_1 \in [0, 24]$, $t_2 \in [1, 7]$. Let p be the
124 number of the current week for media planning. The proportion of TV viewers who watch TV at the
125 time moment (t, p) determines the rating of the TV channel. For the channel Inter, the ratings reach
126 20%. The analysis of the TV channel rating is carried out according to the results of monitoring of the

127 TV programs ratings obtained for the previous week p-1. The TV program is compiled for the
 128 forthcoming week p.

129 The timing and item recommendations in the form of the weekly TV program is presented in
 130 [31]. The weekly TV program is compiled as a grid with the following nodes: the date (the time of
 131 viewing and the day of the week) and the attributes of the program (the genre and title of the
 132 program).

133 The popularity estimates of the TV programs included in the weekly broadcast grid can be
 134 obtained from the Internet Movie Data Base (imdb) [32]. This data set contains nearly 5000 titles of
 135 the top rated TV shows in 26 genre categories. Imdb-ratings of the TV shows produced in Ukraine
 136 are collected in [33]. In developing fuzzy model of resources control, we shall use the imdb-ratings
 137 as the supply attributes weighted using the scale from 0 to 10 [32, 33].

138 Effectiveness of time and content management is evaluated by the weekly top 20 rating [30].
 139 The archive of weekly ratings contains data from 2012-2018 years. The weekly top 20 can be
 140 represented as a table with the following columns: the title of the program, the date and time, the
 141 rating and share. The weekly top 20 list contains the ratings influenced by the ad break-factor. The
 142 ad break-factor can be considered as a proportion of viewers who return to the program after
 143 advertising. TV experts connect the ad break-factor with the lowering down of the possible ratings
 144 up to 40%.

145 Ratings of the programs, which do not fall into the weekly top 20 list are evaluated as follows. It
 146 is obvious, that the ratings of these programs do not exceed the minimum value among the most
 147 popular weekly programs. For the newly launched TV shows, the imdb-ratings can be temporarily
 148 substituted by the actual ratings from the weekly top 20 list.

149 3. Method of the Recommendation System Construction

150 3.1. Structure of the TV Rating Control Model

151 The structure of the TV rating control model corresponds to the following hierarchical tree of
 152 logic inference:

153 - for content management

$$154 \quad x_k = f_x^k(t_1, t_2, p), \quad k = \overline{1, n}, \quad (1)$$

$$155 \quad y_k(t, p) = f_y^k(x_k(t, p), z_k(t, p-1)), \quad (2)$$

156 - for rating evaluation

$$157 \quad a_k(t, p) = f_a^k(x_k(t, p)), \quad (3)$$

$$158 \quad v_k(t, p) = f_v^k(z_k(y_k(t, p)), a_k(t, p)), \quad (4)$$

$$159 \quad u(t, p) = f_u(v_1(t, p), \dots, v_n(t, p)), \quad (5)$$

160 where n is the number of genres of the TV programs;

161 $x_k(t, p)$ is the viewers' demand for the programs of the genre k at the time moment (t, p) ;

162 $z_k(t, p-1)$ is the imdb-rating of the program of the genre k at the time moment $(t, p-1)$;

163 $y_k(t, p)$ is a control action for the time moment (t, p) , consisting in increasing-decreasing the
 164 imdb-rating of the program of the genre k ;
 165 $z_k(y_k(t, p))$ is the imdb-rating of the program offered after the control action;
 166 $a_k(t, p)$ is the break-factor of the program of the genre k with the advertisement at the time
 167 moment (t, p) ;
 168 $v_k(t, p)$ is the rating of the program of the genre k restored after the ad unit at the time
 169 moment (t, p) ;
 170 $u(t, p)$ is the rating of the TV channel at the time moment (t, p) .

171 It is supposed that the control action is determined as the difference between the imdb-rating
 172 values before and after control, i.e. $y_k(t, p) = z_k(t, p) - z_k(t, p-1)$.

173 Variation ranges of the TV indices are defined as follows: [0, 10] points for x_k and z_k ; [-10,
 174 10] points for y_k ; [0.4, 1] for a_k ; [0, 20] % for v_k and u .

175 We shall describe the trend dependencies with the help of the primary fuzzy terms:

- 176 - in the morning (M), in the afternoon (A), in the evening (Ev) for t_1 ;
- 177 - on weekdays (Wd), on weekends (We) for t_2 ;
- 178 - increased (decreased) (I, D) or stable (St) for x_k , z_k , v_k or u ;
- 179 - increase (decrease) (I, D) or stay inactive (N) for y_k .

180 For the composite knowledge base construction, we shall use the linguistic modifiers: sharply
 181 (sh), moderately (m), weakly (w). These modifiers describe the semantic intensity of the primary
 182 terms D and I [26, 27].

183 Functional dependencies (1)-(5) are defined by the primary fuzzy relations presented in Tables
 184 1-5.

185 It is necessary to transfer the primary fuzzy relations into the composite fuzzy rules for the
 186 modified decision classes of the variables $x_k(t, p)$, $y_k(t, p)$, $a_k(t, p)$, $v_k(t, p)$ and $u(t, p)$. The
 187 composite rules were built for the seven classes (sh-m-wD, St, w-m-shI) of the variables $x_k(t, p)$,
 188 $a_k(t, p)$, $v_k(t, p)$, $u(t, p)$; for the seven classes (sh-m-wD, N, w-m-shI) of the variable $y_k(t, p)$.

189 **Table 1.** Primary fuzzy relations “viewing time - demand”

IF		THEN $x_k(t, p)$		
		D	St	I
t_1	M	w-m	m	w-m
	A	m	m-sh	m
	Ev	w	m-sh	sh
t_2	Wd	m-sh	sh	m-sh
	We	m	m-sh	m-sh

190

191

192

193

194

Table 2. Primary fuzzy relations “demand and supply – control action”

IF		THEN $y_k(t, p)$		
		D	N	I
$x_k(t, p)$	D	sh	sh	w
	St	m-sh	m-sh	sh
	I	w	m	sh
$z_k(t, p-1)$	D	w	sh	sh
	St	m-sh	m-sh	m
	I	sh	m	w

195

Table 3. Primary fuzzy relations “demand – ad break-factor”

IF		THEN $a_k(t, p)$		
		D	St	I
$x_k(t, p)$	D	m-sh	w-m	w
	St	w-m	m-sh	w-m
	I	w	m	sh

196

Table 4. Primary fuzzy relations “supply with the ad break-factor – restored genre ratings”

IF		THEN $v_k(t, p)$		
		D	St	I
$z_k(t, p)$	D	sh	w	w
	St	m	m-sh	m
	I	m	m-sh	sh
$a_k(t, p)$	D	sh	w	w
	St	m	m-sh	w-m
	I	w-m	m-sh	sh

197

Table 5. Primary fuzzy relations “restored genre ratings – rating of the channel”

IF		THEN $u(t, p)$		
		D	St	I
$v_k(t, p)$	D	m-sh	w-m	w
	St	w-m	m-sh	m-sh
	I	w	w-m	sh

198

199 3.2. The Problem of Tuning the Fuzzy Control Model

200 The fuzzy control model connects the vectors of significance measures of the primary fuzzy
 201 terms of the variables t_1 , t_2 , x_k , z_k and y_k in correlations (1), (2); variables x_k , a_k , z_k , v_k
 202 and u in correlations (3)-(5).

203 Correlations (1)-(5) define the primary fuzzy model in the form:

204

205

206 - for content management

207 $\mu_x^k = (\mu_t^1 \circ H_1^k) \cap (\mu_t^2 \circ H_2^k),$ (6)

208 $\mu_y^k = (\mu_x^k \circ Q_1^k) \cap (\mu_z^k \circ Q_2^k),$ (7)

209

210 - for rating evaluation

211 $\mu_a^k = \mu_x^k \circ G^k,$ (8)

212 $\mu_v^k = (\mu_z^k \circ R_1^k) \cap (\mu_a^k \circ R_2^k),$ (9)

213 $\mu_u = (\mu_v^1 \circ W^1) \cup \dots \cup (\mu_v^n \circ W^n),$ (10)

214 where $\mu_t^1 = (\mu_t^{1,1}, \dots, \mu_t^{1,3})$ and $\mu_t^2 = (\mu_t^{2,1}, \mu_t^{2,2})$ are the vectors of the fuzzy causes M, A, Ev and Wd,

215 We for the variables t_1 and t_2 ;

216 $\mu_x^k = (\mu_x^{k,1}, \dots, \mu_x^{k,3})$ and $\mu_z^k = (\mu_z^{k,1}, \dots, \mu_z^{k,3})$ are the vectors of the fuzzy causes D, St, I for the
217 variables x_k and z_k ;

218 $\mu_y^k = (\mu_y^{k,1}, \dots, \mu_y^{k,3})$ is the vector of the fuzzy effects D, N, I for the variable y_k ;

219 $\mu_a^k = (\mu_a^{k,1}, \dots, \mu_a^{k,3})$ and $\mu_z^k = (\mu_z^{k,1}, \dots, \mu_z^{k,3})$ are the vectors of the fuzzy causes D, St, I for the
220 variables a_k and $z_k (y_k)$;

221 $\mu_v^k = (\mu_v^{k,1}, \dots, \mu_v^{k,3})$ and $\mu_u = (\mu_u^1, \dots, \mu_u^3)$ are the vectors of the fuzzy effects D, St, I for the
222 variables v_k and u ;

223 $H_1^k = [h_1^{k,IJ}], H_2^k = [h_2^{k,IJ}]$ and $Q_1^k = [q_1^{k,IJ}], Q_2^k = [q_2^{k,IJ}], I, J = \overline{1,3}, L = \overline{1,2},$ are the primary
224 fuzzy relational matrices “viewing time (t_1, t_2) – demand x_k ” and “demand x_k and supply z_k –
225 control action y_k ”;

226 $G^k = [g^{k,IJ}], I, J = \overline{1,3},$ are the primary fuzzy relational matrices “demand x_k – ad break-factor
227 a_k ”;

228 $R_1^k = [r_1^{k,IJ}], R_2^k = [r_2^{k,IJ}]$ and $W^k = [w^{k,IJ}], I, J = \overline{1,3},$ are the primary fuzzy relational matrices
229 “supply $z_k (y_k)$ with the ad break-factor a_k – restored genre ratings v_k – rating of the channel u ”;

230
231 \circ and \circ, \cap are the operations of the simplified and extended max-min composition
232 corresponding to the correlations f_a^k, f_u and f_x^k, f_y^k, f_v^k [22].

233 We use a bell-shaped membership function model of variable τ to arbitrary term T in the form
234 [19, 20]:

235 $\mu^T(\tau) = 1/(1 + ((\tau - \beta)/\sigma)^2),$

236 where β is a coordinate of function maximum, $\mu^T(\beta) = 1$; σ is a parameter of concentration.

237 In this case, correlations (6)-(10) take the form:

238 - for content management

239 $\mu_x^k = f_x^k(t_1, t_2, p, H_1^k, H_2^k, \Psi_t^1, \Psi_t^2), \quad (11)$

240 $\mu_y^k(y_k, \Psi_y) = f_y^k(\mu_x^k, z_k, Q_1^k, Q_2^k, \Psi_z^k), \quad (12)$

241 - for rating evaluation

242 $\mu_a^k = f_a^k(\mu_x^k, G^k), \quad (13)$

243 $\mu_v^k = f_v^k(\mu_z^k, \mu_a^k, R_1^k, R_2^k, \Psi_z^k), \quad (14)$

244 $\mu_u(u, \Psi_u) = f_u(\mu_v^1, \dots, \mu_v^n, W^1, \dots, W^n), \quad (15)$

245 where $\Psi_t^1 = (\beta_t^{1,1}, \sigma_t^{1,1}, \dots, \beta_t^{1,3}, \sigma_t^{1,3})$, $\Psi_t^2 = (\beta_t^{2,1}, \sigma_t^{2,1}, \beta_t^{2,2}, \sigma_t^{2,2})$ and $\Psi_z^k = (\beta_z^{k,1}, \sigma_z^{k,1}, \dots, \beta_z^{k,3}, \sigma_z^{k,3})$ are
246 the vectors of parameters of the primary membership functions of the input variables t_1 , t_2 and
247 z_k ;

248 $\Psi_y^k = (\beta_y^{k,1}, \sigma_y^{k,1}, \dots, \beta_y^{k,3}, \sigma_y^{k,3})$ and $\Psi_u = (\beta_u^1, \sigma_u^1, \dots, \beta_u^3, \sigma_u^3)$ are the vectors of parameters of the
249 primary membership functions of the output variables y_k and u .

250 It is assumed that some training data sample can be obtained on the grounds of successful
251 managerial decisions

252 $\langle \hat{p}, \hat{t}_{kl}^p, \hat{z}_{kl}^p(\hat{t}_{kl}^p, \hat{p}-1), \hat{z}_{kl}^p(\hat{t}_{kl}^p, \hat{p}), \hat{u}_{kl}^p(\hat{t}_{kl}^p, \hat{p}) \rangle, \quad p = \overline{1, P}, \quad l = \overline{1, L_{pk}},$

253 where P is the number of weeks in the data sample;

254 L_{pk} is the number of TV programs of the genre k in the weekly experiment number p ;

255 \hat{t}_{kl}^p and \hat{z}_{kl}^p are the control system state parameters in the experimental time slot number pkl ;

256 \hat{u}_{kl}^p is the TV rating in the experimental time slot \hat{t}_{kl}^p .

257 The essence of the fuzzy model (11)-(15) tuning is as follows. It is necessary to find the relation
258 matrices H_{1-2}^k , Q_{1-2}^k , G^k , R_{1-2}^k , W^k and the vectors of the membership functions parameters

259 $\Psi_t^1, \Psi_t^2, \Psi_z^k, \Psi_y^k, \Psi_u$, which provide the minimum distance between theoretical and
 260 experimental data:

$$261 \quad \sum_{p=1}^P \sum_{k=1}^n \sum_{l=1}^{L_{pk}} [f_u(\hat{p}, \hat{t}_{kl}^p, \hat{z}_{kl}^p, H_{l-2}^k, Q_{l-2}^k, G^k, R_{l-2}^k, W^k, \Psi_t^{l-2}, \Psi_z^k, \Psi_y^k) - \hat{\mu}_u(\hat{u}_{kl}^p, \Psi_u)]^2 = \min_{H, Q, G, R, W, \Psi}. \quad (16)$$

262 We shall denote:

263 X_{kj} and Y_{kj} , $j = \overline{1,7}$, are the modified decision classes of the variables $x_k(t, p)$ and $y_k(t, p)$;

264 A_{kj} , V_{kj} and U_j , $j = \overline{1,7}$, are the modified decision classes of the variables $a_k(t, p)$,
 265 $v_k(t, p)$ and $u(t, p)$, respectively;

266 N_x^{kj} and N_y^{kj} are the numbers of composite rules in the classes X_{kj} and Y_{kj} ;

267 N_a^{kj} , N_v^{kj} and N_u^j are the numbers of composite rules in the classes A_{kj} , V_{kj} and U_j ,
 268 respectively.

269 Given the output classes, the solution set of primary fuzzy relational equations (6)-(10) can be
 270 considered as the set of composite fuzzy rules [24, 25]:

271 - for content management

$$272 \quad \bigcup_{i=1, N_x^{kj}} \left[\left[\underline{\mu}_t^{1,ij}, \bar{\mu}_t^{1,ij} \right] \cap \left[\underline{\mu}_t^{2,ij}, \bar{\mu}_t^{2,ij} \right] \right] \rightarrow x_k = X_{kj}; \quad (17)$$

$$273 \quad \bigcup_{i=1, N_y^{kj}} \left[\left[\underline{\mu}_x^{k,ij}, \bar{\mu}_x^{k,ij} \right] \cap \left[\underline{\mu}_z^{k,ij}, \bar{\mu}_z^{k,ij} \right] \right] \rightarrow y_k = Y_{kj}; \quad (18)$$

274 - for rating evaluation

$$275 \quad \bigcup_{i=1, N_a^{kj}} \left[\left[\underline{\mu}_x^{k,ij}, \bar{\mu}_x^{k,ij} \right] \right] \rightarrow a_k = A_{kj}; \quad (19)$$

$$276 \quad \bigcup_{i=1, N_v^{kj}} \left[\left[\underline{\mu}_z^{k,ij}, \bar{\mu}_z^{k,ij} \right] \cap \left[\underline{\mu}_a^{k,ij}, \bar{\mu}_a^{k,ij} \right] \right] \rightarrow v_k = V_{kj}; \quad (20)$$

$$277 \quad \bigcup_{i=1, N_u^j} \left[\left[\underline{\mu}_v^{1,ij}, \bar{\mu}_v^{1,ij} \right] \cup \dots \cup \left[\underline{\mu}_v^{n,ij}, \bar{\mu}_v^{n,ij} \right] \right] \rightarrow u = U_j. \quad (21)$$

278 In (17)-(21), the fuzzy solution vectors are presented in the form of the vectors of the lower and
 279 upper bounds of the fuzzy causes significance measures, where

280 $\underline{\mu}_t^{1,ij} = (\underline{\mu}_t^{11,ij}, \dots, \underline{\mu}_t^{13,ij})$, $\bar{\mu}_t^{1,ij} = (\bar{\mu}_t^{11,ij}, \dots, \bar{\mu}_t^{13,ij})$ and $\underline{\mu}_t^{2,ij} = (\underline{\mu}_t^{21,ij}, \underline{\mu}_t^{22,ij})$, $\bar{\mu}_t^{2,ij} = (\bar{\mu}_t^{21,ij}, \bar{\mu}_t^{22,ij})$ are
281 the lower and upper fuzzy solution vectors for the variables t_1 and t_2 ;

282 $\underline{\mu}_x^{k,ij} = (\underline{\mu}_x^{k1,ij}, \dots, \underline{\mu}_x^{k3,ij})$, $\bar{\mu}_x^{k,ij} = (\bar{\mu}_x^{k1,ij}, \dots, \bar{\mu}_x^{k3,ij})$ and $\underline{\mu}_z^{k,ij} = (\underline{\mu}_z^{k1,ij}, \dots, \underline{\mu}_z^{k3,ij})$,

283 $\bar{\mu}_z^{k,ij} = (\bar{\mu}_z^{k1,ij}, \dots, \bar{\mu}_z^{k3,ij})$ are the lower and upper fuzzy solution vectors for the variables x_k and z_k ;

284 $\underline{\mu}_Z^{k,ij} = (\underline{\mu}_Z^{k1,ij}, \dots, \underline{\mu}_Z^{k3,ij})$, $\bar{\mu}_Z^{k,ij} = (\bar{\mu}_Z^{k1,ij}, \dots, \bar{\mu}_Z^{k3,ij})$ and $\underline{\mu}_a^{k,ij} = (\underline{\mu}_a^{k1,ij}, \dots, \underline{\mu}_a^{k3,ij})$,

285 $\bar{\mu}_a^{k,ij} = (\bar{\mu}_a^{k1,ij}, \dots, \bar{\mu}_a^{k3,ij})$ are the lower and upper fuzzy solution vectors for the variables z_k (y_k) and
286 a_k ;

287 $\underline{\mu}_v^{k,ij} = (\underline{\mu}_v^{k1,ij}, \dots, \underline{\mu}_v^{k3,ij})$, $\bar{\mu}_v^{k,ij} = (\bar{\mu}_v^{k1,ij}, \dots, \bar{\mu}_v^{k3,ij})$ are the lower and upper fuzzy solution vectors
288 for the variables v_k .

289 Given the primary fuzzy model (6), (7) and the output classes X_{kj} and Y_{kj} , $j = \overline{1,7}$, the
290 problem of tuning the composite fuzzy model for content management is formulated as follows
291 [24–27]. For each output class X_{kj} and Y_{kj} , $j = \overline{1,7}$, the solution set (17), (18) should be found
292 which provides the least distance between observed and model fuzzy effects vectors in correlations
293 (6), (7):

$$294 \quad [f_y^k(\underline{\mu}_x^k, \underline{\mu}_z^k, Q_{1-2}^k) - \underline{\mu}_y^k(Y_{kj})]^2 = \min_{\underline{\mu}_x^k, \underline{\mu}_z^k}, \quad (22)$$

$$295 \quad [f_x^k(\underline{\mu}_t^1, \underline{\mu}_t^2, H_{1-2}^k) - \underline{\mu}_x^k(X_{kj})]^2 = \min_{\underline{\mu}_t^1, \underline{\mu}_t^2}. \quad (23)$$

296 Given the primary fuzzy model (8)–(10) and the output classes A_{kj} , V_{kj} and U_j , $j = \overline{1,7}$, the
297 problem of tuning the composite fuzzy model for rating evaluation is formulated as follows [24–27].
298 For each output class A_{kj} , V_{kj} and U_j , $j = \overline{1,7}$, the solution set (19)–(21) should be found which
299 provides the least distance between observed and model fuzzy effects vectors in correlations (8)–(10):

$$300 \quad [f_u(\underline{\mu}_v^1, \dots, \underline{\mu}_v^n, W^1, \dots, W^n) - \underline{\mu}_u(U_j)]^2 = \min_{\underline{\mu}_v^1, \dots, \underline{\mu}_v^n}, \quad (24)$$

$$301 \quad [f_v^k(\underline{\mu}_Z^k, \underline{\mu}_a^k, R_{1-2}^k) - \underline{\mu}_v^k(V_{kj})]^2 = \min_{\underline{\mu}_Z^k, \underline{\mu}_a^k}, \quad (25)$$

$$302 \quad [f_a^k(\underline{\mu}_x^k, G^k) - \underline{\mu}_a^k(A_{kj})]^2 = \min_{\underline{\mu}_x^k}. \quad (26)$$

303 The genetic-neuro algorithm is used for solving the optimization problems (16), (22)–(26) of
304 tuning the primary fuzzy model and rule-based solutions of primary fuzzy relational equations [28,
305 29].

306 3.3. Solving Fuzzy Relational Equations

307 Let us consider the construction of the composite fuzzy rules (17)-(21). The primary system of
 308 fuzzy relational equations (6)-(10) has the form:

309 - for content management

$$310 \quad \mu_x^{k,1} = ((\mu_t^{1,1} \wedge h_1^{1,11}) \vee \dots \vee (\mu_t^{1,3} \wedge h_1^{1,31})) \wedge ((\mu_t^{2,1} \wedge h_2^{2,11}) \vee (\mu_t^{2,2} \wedge h_2^{2,21})); \\ \dots \\ \mu_x^{k,3} = ((\mu_t^{1,1} \wedge h_1^{1,13}) \vee \dots \vee (\mu_t^{1,3} \wedge h_1^{1,33})) \wedge ((\mu_t^{2,1} \wedge h_2^{2,13}) \vee (\mu_t^{2,2} \wedge h_2^{2,23})); \quad (27)$$

$$311 \quad \mu_y^{k,1} = ((\mu_x^{k,1} \wedge q_1^{k,11}) \vee \dots \vee (\mu_x^{k,3} \wedge q_1^{k,31})) \wedge ((\mu_z^{k,1} \wedge q_2^{k,11}) \vee \dots \vee (\mu_z^{k,3} \wedge q_2^{k,31})); \\ \dots \\ \mu_y^{k,3} = ((\mu_x^{k,1} \wedge q_1^{k,13}) \vee \dots \vee (\mu_x^{k,3} \wedge q_1^{k,33})) \wedge ((\mu_z^{k,1} \wedge q_2^{k,13}) \vee \dots \vee (\mu_z^{k,3} \wedge q_2^{k,33})); \quad (28)$$

312 - for rating evaluation

$$313 \quad \mu_a^{k,1} = (\mu_x^{k,1} \vee g^{k,11}) \vee \dots \vee (\mu_x^{k,3} \vee g^{k,31}); \\ \dots \\ \mu_a^{k,3} = (\mu_x^{k,1} \vee g^{k,13}) \vee \dots \vee (\mu_x^{k,3} \vee g^{k,33}); \quad (29)$$

$$314 \quad \mu_v^{k,1} = ((\mu_z^{k,1} \wedge r_1^{k,11}) \vee \dots \vee (\mu_z^{k,3} \wedge r_1^{k,31})) \wedge ((\mu_a^{k,1} \wedge r_2^{k,11}) \vee \dots \vee (\mu_a^{k,3} \wedge r_2^{k,31})); \\ \dots \\ \mu_v^{k,3} = ((\mu_z^{k,1} \wedge r_1^{k,13}) \vee \dots \vee (\mu_z^{k,3} \wedge r_1^{k,33})) \wedge ((\mu_a^{k,1} \wedge r_2^{k,13}) \vee \dots \vee (\mu_a^{k,3} \wedge r_2^{k,33})); \quad (30)$$

$$315 \quad \mu_u^1 = ((\mu_v^{1,1} \vee w^{1,11}) \vee \dots \vee (\mu_v^{1,3} \vee w^{1,31})) \vee \dots \vee ((\mu_v^{n,1} \vee w^{n,11}) \vee \dots \vee (\mu_v^{n,3} \vee w^{n,31})); \\ \dots \\ \mu_u^3 = ((\mu_v^{1,1} \vee w^{1,13}) \vee \dots \vee (\mu_v^{1,3} \vee w^{1,33})) \vee \dots \vee ((\mu_v^{n,1} \vee w^{n,13}) \vee \dots \vee (\mu_v^{n,3} \vee w^{n,33})). \quad (31)$$

316 In (27), (29) and (31), the trend fuzzy relations are tuned for each content category. In (28) and
 317 (30), the trend fuzzy relations are tuned regardless of the genre. Evaluation of the ratings of TV
 318 programs in the channel broadcasting network is carried out with the help of the authors'
 319 monitoring system [34]. The training sample includes data from 2015 to 2018.

320 The results of the primary fuzzy model tuning are presented in Appendix A. Parameters of the
 321 membership functions for the input and output primary fuzzy terms are presented in Tables A1, A2.
 322 The primary fuzzy relational matrices after tuning are presented in Tables A3-A7.

323 The results of the composite fuzzy model tuning are presented in Appendix B. In Tables B1-B5,
 324 the sets of solutions in the form of the fuzzy causes vectors correspond to the fuzzy effects vectors
 325 obtained for the given decision classes. Bounds of the decision classes U_j and Y_{kj} , $j = \overline{1,7}$, were
 326 defined as follows:

$$327 \quad [\underline{u}, \overline{u}] = [\underbrace{0, 3}_{shD}] \cup [\underbrace{3, 6}_{mD}] \cup [\underbrace{6, 9}_{wD}] \cup [\underbrace{9, 11}_{St}] \cup [\underbrace{11, 13}_{wI}] \cup [\underbrace{13, 17}_{mI}] \cup [\underbrace{17, 20}_{shI}],$$

328 $[\underline{y}_k, \bar{y}_k] = \underbrace{[-10, -7]}_{\text{shD}} \cup \underbrace{[-7, -3]}_{\text{mD}} \cup \underbrace{[-3, -1]}_{\text{wD}} \cup \underbrace{[-1, 1]}_{\text{N}} \cup \underbrace{[1, 3]}_{\text{wI}} \cup \underbrace{[3, 7]}_{\text{mI}} \cup \underbrace{[7, 10]}_{\text{shI}}.$

329 For the given bounds of decision classes, the fuzzy effects vectors $\mu_u(U_j)$ and $\mu_y^k(Y_{kj})$ were
 330 defined with the help of the primary membership functions of the variables u and y_k (Table A2).
 331 For the decision classes V_{kj} , A_{kj} and X_{kj} , $j = \overline{1, 7}$, the fuzzy effects vectors $\mu_v^k(V_{kj})$, $\mu_a^k(A_{kj})$
 332 and $\mu_x^k(X_{kj})$ were defined by the fuzzy solution vectors obtained for the higher levels of the
 333 hierarchical tree of logic inference.

334 The sets of interval rules corresponding to the sets of solutions from Tables B1-B5 are presented
 335 in Tables 6-10. Linguistic interpretation of the obtained solutions allows generating the hierarchical
 336 composite fuzzy rules. For the simplified and extended composition laws [22], the sets of solutions
 337 are interpreted in the form of the “single input – single output” (Tables 6, 8) and “multiple inputs –
 338 single output” (Tables 7, 9, 10) rules [28, 29]. The lower and upper bounds of the interval rules were
 339 obtained with the help of the primary membership functions of the variables t_1 , t_2 and z_k
 340 (Table A1).

341 **Table 6.** Composite fuzzy rules for the TV rating

IF (or)		THEN	
$v_1(t, p)$	$v_2(t, p)$	$v_3(t, p)$	$u(t, p)$
0–2.0, shD	0–4.0, shD	0–9.0, shD–wD	shD
2.0–4.4, shD–mD	3.8–4.4, mD	0–9.0, shD–wD	mD
4.4–7.4, mD–wD	4.4–7.4, mD–wD	6.2–11.2, wD–St	wD
6.8–9.0, wD	7.6–10.0, wD–St	6.2–11.2, wD–St	St
8.4–12.9, St–wI	10.2–12.9, wI	8.8–14.0, St–wI	wI
10.8–16.7, wI–mI	12.4–15.6, wI–mI	10.8–15.6, wI–mI	mI
16.7–20, shI	15.6–20, mI–shI	15.6–20, mI–shI	shI

342

343

344

345

346

347

348

349

Table 7. Composite fuzzy rules for the restored genre ratings

IF (and)		THEN
$z_k(y_k(t, p))$	$a_k(t, p)$	$v_k(t, p)$
0–1.2	shD	shD
1.2–2.2	shD	mD
0–2.2	mD	
2.2–3.7	mD–wD	wD
3.5–4.4	wD–St	
2.9–4.4	St–wI	
3.7–5.0	wD–wI	St
5.0–6.9	wD–St	
5.1–6.9	wI–mI	wI
5.9–7.7	St–wI	
6.9–7.9	wI–mI	mI
5.4–7.6	mI–shI	
7.9–10	shI	shI

350

Table 8. Composite fuzzy rules for the ad break-factor

IF (or)		THEN	
$x_1(t, p)$	$x_2(t, p)$	$x_3(t, p)$	$a_k(t, p)$
shD–mD	shD	shD	shD
mD	mD	mD	mD
mD–wD	mD–wD	mD–wD	wD
wD–St	wD–wI	St–wI	St
wI–mI	wI	wI–mI	wI
St–mI	mI	wI–mI	mI
shI	shI	shI	shI

351

Table 9. Composite fuzzy rules for the control action

IF (and)		THEN
$x_k(t, p)$	$z_k(t, p-1)$	$y_k(t, p)$
shD	8.3–10	shD
mD	7.6–10	
mD–shD	6.1–7.6	
mD–shD	3.6–5.9	mD
wD–wI	7.6–10	
mD–shD	1.8–2.6	
wD–wI	5.9–6.2	
wD	3.4–6.2	wD
mI	7.1–10	

shD	0–1.8	
St	3.8–5.0	N
shI	7.9–10	
mD	0–2.1	
wD-wI	3.4–3.5	
wI	3.50–5.8	wI
mI-shI	7.4–7.9	
wD-wI	0–1.9	
mI-shI	3.4–5.3	
mI	0–1.9	mI
mI-shI	1.9–2.8	
shI	0–1.4	shI

352

Table 10. Composite fuzzy rules for the viewers' demand

IF (and)						THEN
k=1		k=2		k=3		
t ₁	t ₂	t ₁	t ₂	t ₁	t ₂	x _k (t, p)
12–14	1–5	5–8	1–5	11–14	1–5	shD
10–12	1–5					
14–16	1–5	5–8	6, 7			
11–17	6,7	8–11	1–5	10–12	1–5	mD
5–7	1–5					
18–20	6, 7	8–10	6, 7			
22–24	1–5	10–12	1–5	8–10	1–7	wD
7–8	1–7			5–8	1–7	
19–21	6, 7	12–16	1–7	12–16	6, 7	St
21–22	1–7			14–16	1–5	
8–11	6, 7			9–12	6, 7	
16–18	1–7	16–18	1–7	16–18	1–7	wI
8–10	1–5	17–19	6, 7	17–20	1–7	
18–20	1–5	18–24	1–5	18–24	1–5	mI
20–21	1–5	18–24	6, 7	19–24	6, 7	shI

353 3.4. Example of the TV Rating Control: Construction of the Weekly TV Program

354 The values (viewers' demand $\hat{x}_k(t, p)$, supply before and after control $\hat{z}_k(t, p-1)$, $\hat{z}_k(t, p)$,
 355 control action $\hat{y}_k(t, p) = \hat{z}_k(t, p) - \hat{z}_k(t, p-1)$, rating $\hat{u}(t, p)$), corresponding to the experienced
 356 manager actions were taken as the training data sample. In this case, the TV rating was maintained
 357 at a consistently high level, and the unmet viewers' demand was reduced to a minimum. The unmet
 358 demand after control in each genre category can be defined as $\Delta_k(t, p) = x_k(t, p) - z_k(t, p)$. It is
 359 supposed, that for the balanced demand $x_k(t, p) = z_k(t, p)$. The experimental values $\hat{x}_k(t, p)$ for
 360 each genre category can be obtained from Table 10. The experimental values $\hat{z}_k(t, p-1)$, $\hat{z}_k(t, p)$
 361 and $\hat{u}(t, p)$ were determined on the basis of the weekly top 20 rating [30].

362 The training sample fragment is presented in Tables 11, 12 in the form of the weekly TV
 363 program constructed for weekdays and weekends from 1.10.2018 to 7.10.2018. Media planning is
 364 accompanied with the analysis of the main television indices. Tables 11, 12 reflect the dynamics of
 365 the demand and supply change for each genre during the day. The experimental demand
 366 $\hat{x}_k(t, p)$ and supply $\hat{z}_k(t, p-1)$ are balanced by the model control action $y_k(t, p)$. To balance the
 367 demand, the priority content category is chosen for each time slot. The priority genre k is in high
 368 demand compared to other categories. The obtained pairs "time slot t – imdb-rating $z_k(t, p)$ after
 369 control" represent the broadcast grid of the forthcoming week. The characteristics of the generated
 370 content are evaluated by the ad break-factor $a_k(t, p)$. Stability of the content to the ad break-factor
 371 guarantees the high television ratings $v_k(t, p)$. Planning without alternatives is based on the past
 372 behavior of viewers. In this case, monitoring results depict the rating restored after the ad unit,
 373 i.e. $u(t, p) = v_k(t, p)$. In the case of the alternative propositions $v_k(t, p)$, the preliminary selection is
 374 based on users preferences. Finally, the model $u(t, p)$ and experimental $\hat{u}(t, p)$ ratings are compared
 375 for each time slot.

376 It is shown from Tables 11, 12, that the weekly top 20 list covers each time slot. For the political
 377 genre, the offered programs have balanced the viewers' demand. On weekdays from 18 to 23 hours,
 378 some popular serials have been offered instead of the entertainment programs. On weekends, the
 379 demand for the genre of television serials from 18 to 23 hours has been satisfied with the programs
 380 of the sports and entertainment genre.

381

Table 11. Weekdays timetable

Time slot	Television indices for genre k						
	$\hat{x}_k(t, p)$	$\Delta_k(t, p)$	$\hat{z}_k(t, p-1)$	$y_k(t, p)$	$z_k(t, p)$	$a_k(t, p)$	$v_k(t, p) / u(t, p)$
7-8	1, 3, St	2, shD					
8-9	1, mI;		1, 3, 5.6	0	1, 3, 5.6	1, 3, 0.99	1, 3, 14.0
9-10	2, mD						1, 3, 15.0
3, wD							
10-11							
11-12	2, wD	1, 3, mD	2, 4.5	0	2, 4.5	2, 0.84	2, 5.5
12-13			1, 3.9	0	1, 3.9	1, 0.89	1, 4.3
13-14	1, 2, St	3, shD					1, 4.5
3, shD							
14-15			2, 4.8				
15-16	2, 3, St	1, mD		2, +0.7	2, 5.5	2, 0.88	2, 11.0
2, 3, St							2, 9.5
16-17			2, 5.9	2, +0.5	2, 6.4	2, 0.89	2, 12.9
2, 3 wI	1, wI		2, 5.9	2, +0.5	2, 6.4	2, 0.89	2, 12.1
17-18			1, 6.2	0	1, 6.2	1, 0.85	1, 12.5
1, wI			1, 6.2	0	1, 6.2	1, 0.85	1, 13.0
18-19			2, 8.6	0	2, 8.6	2, 0.99	2, 16.5
2, 3, mI	1, mI		2, 8.6	0	2, 8.6	2, 0.99	2, 14.0
19-20							
20-21	1, shI	2, 3, mI	1, 8.3	0	1, 8.3	1, 0.98	1, 12.0
2, 3, mI	1, St		1, 8.3	0	1, 8.3	1, 0.98	1, 10.5
21-22							
2, 6.7			2, +1.3	2, +1.3	2, 8.0	2, 0.87	2, 11.5
2, 3, mI	1, St		2, +1.3	2, +1.3	2, 8.0	2, 0.87	2, 7.5
22-23							
2, 6.1			2, 7.4 or	2, 7.4 or	2, 0.86 or	2, 9.0 or	2, 6.8
2, 3, mI	1, wD		2, 7.4 or	2, 7.4 or	2, 0.86 or	2, 9.0 or	2, 6.8
23-24			3, +8.1	3, +8.1	3, 0.72	3, 0.72	3, 8.5
2, 6.1			3, +8.1	3, +8.1	3, 0.72	3, 0.72	3, 8.5

382

383

Table 12. Weekends timetable

Time slot	Television indices for genre k							
	$\hat{x}_k(t,p)$	$\Delta_k(t,p)$	$\hat{z}_k(t,p-1)$	$y_k(t,p)$	$z_k(t,p)$	$a_k(t,p)$	$v_k(t,p)/u(t,p)$	$\hat{u}(t,p)$
7-8	1, 3, St	2, mD		1, 3, 4.4	0	1, 3, 4.4	1, 3, 0.85	1, 3, 5.5
8-9								1, 3, 4.5
9-10	1, wI; 3, wD	2, wD	1, 3, 3.1	1, 3, +1.9	1, 3, 5.0	1, 3, 0.90	1, 3, 10.0	1, 3, 8.1
10-11	1, 3, wI	2, wD		2, +4.8 or	2, 4.8 or	2, 0.81 or	2, 7.2 or	
11-12	2, wD; 3, wI	1, mD	3, 6.5	3, 0	3, 6.5	3, 0.84	3, 8.5	3, 6.1
12-13				2, -0.3	2, 5.5	2, 0.79	2, 11.0	2, 9.0
13-14	2, 3, St	1, mD	2, 5.8					
14-15				2, +0.4	2, 6.2	2, 0.81	2, 11.5	2, 8.6
15-16								
16-17	2, 3, wI	1, mD	2, 6.9	2, +0.5	2, 7.4	2, 0.75	2, 8.2	2, 5.5
17-18	2, wI	1, 3, wI						
18-19	2, 3 ml	1, wD		2, +9.1 or	2, 9.1 or	2, 0.82 or	2, 12.5 or	
19-20	2, shI; 3, ml	1, wD	3, 8.8	3, 0	3, 8.8	3, 0.90	3, 12.9	3, 8.2
20-21	1, St;	2, 3, shI	1, 6.7	0	1, 6.7	1, 0.90	1, 8.3	1, 7.6
21-22	2, 3, shI	1, St	3, 9.1	2, +9.3 or	2, 9.3 or	2, 0.95 or	2, 12.0 or	
22-23				3, 0	3, 9.1	3, 0.99	3, 12.2	3, 8.6
23-24	2, 3, shI	1, wD	3, 8.7		0	3, 8.7	3, 0.79	3, 9.0
								3, 5.6

384

385

Comparison of the model and experimental ratings for $p \in [1, 32]$ weeks is shown in Figure 1.

386

Figure 1 depicts the dynamics of the average weekly rating change at the level of each air-hour on weekdays and weekends from autumn 2017 to spring 2018. When compiling the average weekly rating, the time range is $t_1 \in [8, 23]$ hours, since the programs in the range $t_1 \in [0, 7]$ do not fall into the weekly top 20 rating.

387

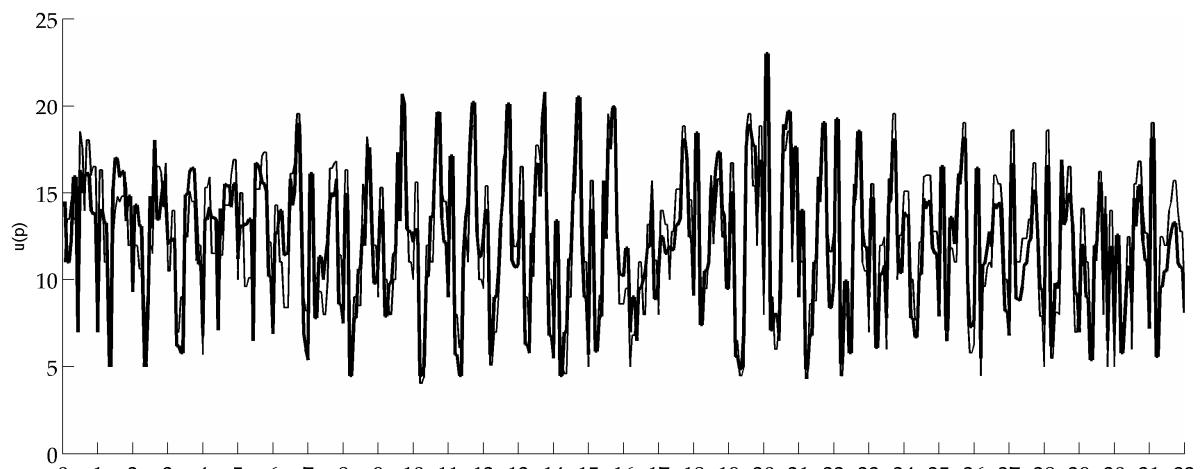
The fuzzy control model ensures the correctness of rating evaluation at the level of RMSE=1.88 for weekdays; RMSE=2.54 for weekends. On weekdays, the TV ratings are less sensitive to the multichannel environment. The ratings are sufficiently high and the evaluation error decreases. On weekends, the multichannel environment influences the TV ratings significantly. The ratings are unstable and the evaluation error increases.

388

389

390

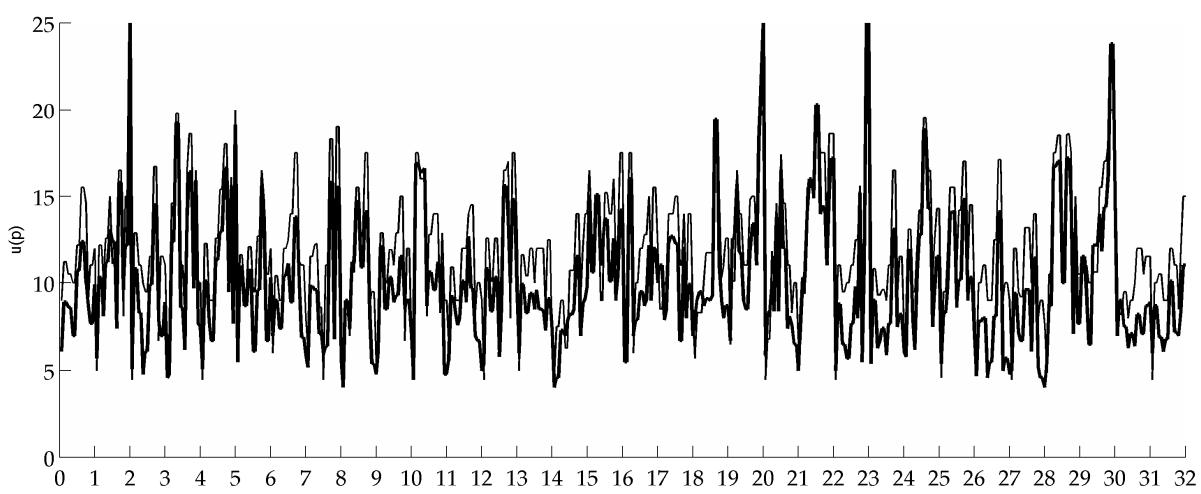
391


392

393

394

395


396

397

398

(a)

399

400

(b)

401

402

Figure 1. The dynamics of the average weekly TV rating change for the model (---) and experimental (—) control action: (a) on weekdays; (b) on weekends.

403

4. Effectiveness Estimation of the Hybrid Approach

404

The papers [19, 20] proposed methods of semantic training the linguistically modified knowledge bases in the problems of fuzzy resources control. The given method simplifies the process of tuning the modified fuzzy knowledge base by solving the primary system of fuzzy relational equations. The effectiveness estimates of the hybrid approach proposed are given below.

408

We shall denote:

409

n is the number of input parameters (genres);

410

T and M are the numbers of input and output primary fuzzy terms;

411

Z is the number of composite fuzzy rules.

412

Candidate rule generation corresponds to the construction of a zero option of the timetable. In semantic training, candidate rule generation requires solving the optimization problem with $2nZ$ variables for boundaries of interval rules [19, 20]. Application of the hybrid approach allows reducing the number of tuning parameters by solving Z optimization problems for $2T$ boundaries of

416 significance measures [24–27]. Rule generator tuning is the optimization problem with $2T+2M+TM$
417 variables for the trend relational matrix and membership functions parameters.

418 Selection, that is, finding the best configuration of zero option terms and rules, corresponds to
419 the granulation of the television time. As a result, the broadcast grid can be represented in the form
420 of the time slots and the granulated ratings of the content.

421 In semantic training, selection requires solving the optimization problem with nZ variables. A
422 term selection sign with the possibility of merging the similar terms, as well as the degree of the rule
423 relevance are subject to tuning [19, 20]. In the case of Z solutions of the trend system of equations,
424 selection is reduced to maintaining the level of detail and density of coverage. Application of the
425 hybrid approach reduces the number of tuning parameters by solving Z optimization problems for T
426 modified terms in each rule [24–27].

427 The problem of TV rating control is reduced to the parallel programming of the television time
428 for six genres (news and analytics, TV serials, documentary projects, programs for children, sports,
429 entertainment). The permissible value of the planning time-frame is 1 hour. The time of tuning the
430 fuzzy control model according to the method [19, 20] is 1 hour 20 min, which exceeds the planning
431 time-frame (Intel Core i5 LGA1151 3.5 GHz processor). The tuning time for this method is 45 min,
432 which allows media planning at the level of each air-hour.

433 5. Conclusions

434 1. The fuzzy model for retaining the TV rating is proposed in the framework of fuzzy resources
435 control. The demand-supply trends are described by the primary fuzzy knowledge bases, where the
436 increase or decrease of the television indices is described by the primary fuzzy terms. The refined
437 fuzzy model is built using the linguistic modifiers of the primary fuzzy terms. The time factors,
438 content and advertisement attributes are taken into account to balance the demand and supply. The
439 fuzzy model of the demand allows generating item and timing recommendations simultaneously.
440 The fuzzy model of the supply provides restoration of the ratings in the multichannel environment.

441 2. The method of expert recommendation systems construction for TV domain is proposed. TV
442 experts define the primary fuzzy relational matrices. Automated media planning is carried out by
443 solving the primary system of fuzzy relational equations. The granulated television time is
444 determined by the rule-based solution set. The program attributes for each time slot are determined
445 by significance measures of the primary fuzzy terms. The recommendation accuracy is achieved
446 through the complete rule-based solution set. Rule set refinement by solving fuzzy relational
447 equations allows avoiding labor-intensive procedures for the generation and selection of expert
448 rules. Generation of the weekly TV program in the form of the granular solutions provides the
449 decrease of the computational costs needed for the programming of the television time.

450 **Supplementary Materials:** are not submitted.

451 **Author Contributions:** conceptualization, Azarov, O. and Krupelnitsky, L.; methodology, Azarov, O.,
452 Krupelnitsky, L. and Rakytyanska, H.; software, Krupelnitsky, L. and Rakytyanska, H.; validation, Azarov, O.,
453 Krupelnitsky, L. and Rakytyanska, H.; formal analysis, Rakytyanska, H.; investigation, Krupelnitsky, L. and
454 Rakytyanska, H.; resources, Krupelnitsky, L.; data curation, Krupelnitsky, L.; writing—original draft
455 preparation, Rakytyanska, H.; writing—review and editing, Rakytyanska, H.; visualization, Krupelnitsky, L.
456 and Rakytyanska, H.; supervision, Azarov, O.; project administration, Azarov, O.; funding acquisition, Azarov,
457 O. and Krupelnitsky, L.

458 **Funding:** This research received no external funding.

459 **Acknowledgments:** The paper was prepared within the 58-D-369 “Technologies of the construction of
460 intelligent analog-digital systems for monitoring and analysis of multimedia information” project.

461 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
462 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
463 publish the results.

464 **Appendix A**

465 *Results of the Primary Fuzzy Model Tuning*

466 **Table A1.** Parameters of the membership functions for the input primary fuzzy terms

Parameter	t ₁			t ₂			z _k	
	M	A	Ev	Wd	We	D	St	I
β	5	14	22	1	6	0.51	4.43	9.12
σ	3.92	3.19	3.75	4.52	0.94	2.67	1.28	2.54

467 **Table A2.** Parameters of the membership functions for the output primary fuzzy terms

Parameter	y _k			u		
	D	N	I	D	St	I
β	-9.53	0.41	9.60	2.14	9.22	16.70
σ	5.15	2.76	4.89	3.70	2.56	4.39

468 **Table A3.** Primary fuzzy relations “viewing time - demand” after tuning

IF	THEN x ₁ (t, p)			THEN x ₂ (t, p)			THEN x ₃ (t, p)			
	D	St	I	D	St	I	D	St	I	
t ₁	M	0.11	0.75	0.67	0.64	0.50	0.16	0.35	0.65	0.48
	A	0.79	0.62	0.54	0.22	0.75	0.51	0.59	0.82	0.67
	Ev	0.10	0.51	0.80	0.14	0.83	1.0	0.18	0.77	0.94
t ₂	Wd	0.80	0.91	1.0	0.61	0.85	0.68	0.64	0.89	0.67
	We	0.56	0.70	0.59	0.27	0.92	1.0	0.19	0.86	1.0

469 **Table A4.** Primary fuzzy relations “demand and supply – control action” after tuning

IF	THEN y _k (t, p)			
	D	N	I	
x _k (t, p)	D	0.98	0.81	0.12
	St	0.75	0.68	0.95
	I	0.07	0.62	0.90
z _k (t, p - 1)	D	0.14	0.85	0.97
	St	0.83	0.70	0.65
	I	0.91	0.63	0.18

470

471

472

Table A5. Primary fuzzy relations “demand – ad break-factor” after tuning

IF	THEN $a_k(t, p)$		
	D	St	I
$x_1(t, p)$	D	0.65	0.52
	St	0.26	0.82
	I	0.19	0.75
$x_2(t, p)$	D	0.88	0.24
	St	0.43	0.59
	I	0.16	0.71
$x_3(t, p)$	D	0.90	0.32
	St	0.27	0.81
	I	0.11	0.60
			0.99

473

Table A6. Primary fuzzy relations “supply with the ad break-factor – restored genre ratings” after tuning

IF	THEN $v_k(t, p)$		
	D	St	I
$z_k(y_k(t, p))$	D	1.0	0.12
	St	0.56	0.80
	I	0.42	0.78
$a_k(t, p)$	D	0.93	0.08
	St	0.50	0.67
	I	0.39	0.70
			0.81

475

Table A7. Primary fuzzy relations “restored genre ratings – rating of the channel” after tuning

IF	THEN $u(t, p)$		
	D	St	I
$v_1(t, p)$	D	0.96	0.20
	St	0.45	0.84
	I	0	0.63
$v_2(t, p)$	D	0.75	0.26
	St	0.34	0.87
	I	0	0.59
$v_3(t, p)$	D	0.69	0.30
	St	0.33	0.76
	I	0	0.50
			0.82

476

477

478

479 **Appendix B**480 *Results of the Composite Fuzzy Model Tuning*481 **Table B1.** Solutions of fuzzy relational equations for the TV rating

Genre	IF			$\mu_u(U_j)$
	D	St	I	
k=1	0.96–1			
k=2	0.75–1	0–0.21	0–0.21	shD, (0.97, 0.40, 0.21)
k=3	0.30–1			
k=1	0.72			
k=2	0.25–0.72	0.25	0.25	mD, (0.72, 0.56, 0.25)
k=3	0.30–1			
k=1, 2	0–0.45	0.30–0.80	0.27	wD, (0.43, 0.80, 0.27)
k=3		0.51–1		
k=1		0.84–1		
k=2	0.45	0.30–0.84	0–0.51	St, (0.30, 1, 0.39)
k=3		0.51–1		
k=1		0.76	0–0.51	
k=2	0.34	0.30–0.76	0–0.51	wL, (0.21, 0.76, 0.54)
k=3		0.76–1	0.57	
k=1	0.34	0–0.63	0.74	mL, (0.17, 0.50, 0.74)
k=2, 3			0.34–0.74	
k=1	0–0.32	0–0.32	0.90–1	shL, (0.14, 0.32, 0.91)
k=2, 3			0.82–1	

482

483

484

485

486

487

488

489

490

491

Table B2. Solutions of fuzzy relational equations for the restored genre ratings

IF						THEN
μ_Z^k			μ_a^k			$\mu_v^k (V_{kj})$
D	St	I	D	St	I	
0.93–1	0.21	0–0.21	0.93–1	0.21	0–0.21	shD, (0.96, 0.21, 0.21)
0.72	0.25	0–0.25	0.72–1	0.25	0–0.25	mD,
0.72–1	0–0.25	0.25	0.72	0–0.25	0.25	(0.72, 0.25, 0.25)
0.45–1	0.80–1 0–0.80	0.27–1 0.78–1	0–0.50	0.67–1	0–0.33	wD, (0.45, 0.80, 0.27)
0.56	0.80–1	0–0.58	0–0.50	0.67–1	0.58–1	St,
0–0.56	0.80–1	0.58	0–0.50	0.50–1	0.70–1	(0.45, 1, 0.51)
0.45	0–0.80	0.78–1	0–1	0.67–1	0.51	mI,
0–1	0.76	0–0.58	0–0.39	0–0.39	0.70–1	wI,
0–0.42	0–0.42	0.76	0–1	0.67–1	0.57	(0.34, 0.76, 0.57)
0–0.42	0–0.42	0.74–1	0–1	0.67	0.74	mI,
0–1	0–0.63	0.74	0–0.39	0–0.39	0.74–1	(0.34, 0.63, 0.74)
0–0.32	0–0.32	0.81–1	0–0.39	0–0.39	0.81–1	shI, (0.32, 0.32, 0.82)

492

493

494

495

496

497

498

499

500

501

502

503

504

505

Table B3. Solutions of fuzzy relational equations for the ad break-factor

Genre	IF			$\mu_a^k (A_{kj})$	
	μ_x^k				
	D	St	I		
k=1	0.65–1	0–0.21	0–0.21	shD, (0.93, 0.21, 0.21)	
k=2	0.88–1	0–0.24	0–0.24		
k=3	0.90–1	0.21	0–0.21		
k=1	0.65–0.72	0.25	0–0.25	mD, (0.72, 0.25, 0.25)	
k=2, 3	0.72		0–0.25		
k=1	0.50–0.67	0–0.41	0–0.33	wD, (0.50, 0.67, 0.33)	
k=2	0.50	0.59–0.67	0.33		
k=3	0.50	0.67	0–0.33		
k=1	0.82–1	0–0.41	St, (0.50, 1, 0.51)		
k=2		0.67–1	0.51		
k=3		0.81–1	0–0.51		
k=1	0.39	0.57–0.67	0–0.57	wI, (0.39, 0.67, 0.57)	
k=2	0–0.43	0.59–0.67	0.57		
k=3	0.39	0.67	0–0.67		
k=1	0.39	0–0.74	mI, (0.39, 0.59, 0.74)		
k=2	0–0.43	0.59	0.74		
k=3	0.39	0–0.60			
k=1, 2	0–0.39	0.39	0.81–1	shI, (0.39, 0.39, 0.81)	
k=3	0–0.27		0.81–1		

506

507

508

509

510

511

512

513

514

515

516

Table B4. Solutions of fuzzy relational equations for the control action

IF						THEN
μ_x^k			μ_z^k			$\mu_y^k (Y_{kj})$
D	St	I	D	St	I	
0.91–1	0–0.12	0–0.12	0–0.14	0–0.14	0.91–1	shD, (0.96, 0.17, 0.11)
0.73–1	0.16	0–0.16	0.38	0–0.38	0.73–1	
0.73–1	0.38	0.16	0.16	0.73–1	0–0.38	mD, (0.73, 0.38, 0.16)
0–0.38	0.73–1	0.38	0–0.16	0.16	0.73–1	
0.62–1	0.20	0–0.20	0.62–1	0.43	0–0.43	
0.43	0.62–1	0–0.20	0.20	0.62–1	0–0.43	wD, (0.43, 0.62, 0.20)
0–0.43	0.43	0.62–1	0–0.20	0.20	0.62–1	
0.81–1	0.27	0–0.27	0.81–1	0.30	0–0.30	
0–0.30	0.81–1	0–0.27	0–0.27	0.81–1	0–0.30	N, (0.30, 0.96, 0.27)
0–0.30	0.30	0.81–1	0–0.27	0.27	0.81–1	
0.74–1	0.45	0–0.45	0.74–1	0.21	0–0.21	
0–0.21	0.68–1	0.45	0–0.45	0.68–1	0.21	wI, (0.21, 0.74, 0.45)
0–0.21	0.21	0.68–1	0–0.45	0.45	0.68–1	
0.16	0.77–1	0–0.40	0.77–1	0.40	0–0.16	
0–0.16	0.40	0.65–1	0–0.40	0.65–1	0.16	mI, (0.16, 0.40, 0.77)
0–0.16	0.16	0.77–1	0.77–1	0–0.40	0.40	
0–0.14	0–0.21	0.90–1	0.90–1	0–0.21	0.14	shI, (0.11, 0.21, 0.94)

517

518

519

520

521

522

523

524

525

526

527

528

Table B5. Solutions of fuzzy relational equations for the viewers' demand

Genre	IF					THEN
	μ_t^1		μ_t^2		$\mu_x^k (X_{kj})$	
	M	A	Ev	Wd	We	
k=1	0–0.15	0.79–1	0–0.15	0.56–1	0–1	shD, (0.91, 0.16, 0.12)
k=2	0.61–1	0–0.17	0–0.17	0.61–1	0–1	
k=3	0–0.15	0.59–1	0–0.15	0.81–1	0–0.59	
k=1	0–0.38	0.62–1	0–0.29	0.62–1	0.56–1	mD, (0.62, 0.38, 0.20)
k=2	0.62	0–0.50	0–0.20	0.61–1	0.61–1	
k=3	0–0.38	0.62	0–0.20	0.62–1	0–1	
k=1	0.80–1	0–0.43	0.80–1	0.73–1	0–0.73	wD, (0.43, 0.73, 0.38)
k=2	0.43	0.73–1	0–0.14	0–0.73	0.73–1	
k=3	0.65	0–0.41	0–0.41	0–0.81	0–0.81	
k=1	0.75–1	0–0.30	0.81–1	0.81–1	0–0.70	St, (0.30, 0.81, 0.27)
				0–0.70	0.70–1	
k=2	0.30	0.75–1	0–0.27	0.81–1	0.81	
k=3	0.65–1	0.81–1	0–0.27	0–0.81	0–0.81	wI, (0.16, 0.68, 0.45)
k=1	0.68	0–0.54	0–0.51	0.68–1	0–0.68	
k=2	0–0.22	0.68	0–0.51	0–0.68	0.68–1	
k=3	0.45	0.68	0–0.45	0–0.68	0.68–1	
k=1	0–0.65	0–0.40	0–0.65	0.65–1	0–1	mI, (0.21, 0.40, 0.65)
k=2	0–0.22	0–0.65	0.65–1	0.65	0–0.65	
k=3	0–0.21	0–0.52	0.65–1	0–0.65	0.65–1	
k=1	0–0.18	0.18	0.80–0.90	0.80–1	0–0.59	shI, (0.14, 0.21, 0.80)
k=2	0–0.22	0–0.51	0.80–1	0–0.80	0.80–1	
k=3	0–0.17	0.21	0.72–1	0–1	0.72–1	

529

530

531

532

533

534

535

536

537

538

539

540

541 **References**

542 1. Žilic Fišer, S. *Successful Television Management: the Hybrid Approach*. Peter Lang GmbH: Int. Verlag der
543 Wissenschaften, Germany, 2015; 169 p., ISBN: 978-3-653-96696-1.

544 2. Schuurman, D.; Marez, L.D.; Veevaete, P.; Evens, T. Content and context for mobile television: integrating
545 trial, expert and user findings. *Telematics and Informatics* **2009**, Volume 26 (3), pp. 293–305, DOI:
546 10.1016/j.tele.2008.11.004.

547 3. Véras, D.; Prota, T.; Bispo, A.; Prudêncio, R.; Ferraz, C. A literature review of recommender systems in the
548 television domain. *Expert Syst. Appl.* **2015**, Volume 42 (22), pp. 9046–9076, DOI: 10.1016/j.eswa.2015.06.052.

549 4. Oh, J.; Kim, S.; Kim, J.; Yu, H. When to recommend: a new issue on TV show recommendation.
550 *Information Sciences* **2014**, Volume 280, pp. 261–274, DOI: 10.1016/j.ins.2014.05.003.

551 5. Park, Y.; Oh, J.; Yu, H. RecTime: Real-Time recommender system for online broadcasting. *Information
552 Sciences* **2017**, Volume 409–410, pp. 1–16, DOI: 10.1016/j.ins.2017.04.038.

553 6. Fraile, F.; Guerri, J.C. Simple models of the content duration and the popularity of television content.
554 *Journal of Network and Computer Applications* **2014**, Volume 40, pp. 12–20, DOI: 10.1016/j.jnca.2013.08.010.

555 7. Moreno, M.; Segrera, S.; López, V.; Munoz, M.; Sánchez, Á. Web mining based framework for solving
556 usual problems in recommender systems. A case study for movies' recommendation. *Neurocomputing*
557 **2016**, Volume 176, pp. 72–80, DOI: 10.1016/j.neucom.2014.10.097.

558 8. Zhang, Y.; Chen, W.; Yin, Z. Collaborative filtering with social regularization for TV program
559 recommendation, *Knowledge-Based Systems* **2013**, Volume 54, pp. 310–317, DOI: 10.1016/j.knosys.2013.09.
560 018.

561 9. Xu, Y.; Yin, J. Collaborative recommendation with user generated content. *Eng. Appl. Artif. Intell.*
562 **2015**, Volume 45, pp. 281–294, DOI: 10.1016/j.engappai.2015.07.012.

563 10. Wang, Z.; He, L. User identification for enhancing IP-TV recommendation. *Knowledge-Based Systems*
564 **2016**, Volume 98, pp. 68–75, DOI: 10.1016/j.knosys.2016.01.018.

565 11. Boratto, L.; Carta, S.; Fenu, G. Investigating the role of the rating prediction task in granularity-based
566 group recommender systems and big data scenarios. *Information Sciences* **2017**, Volume 378, pp. 424–443,
567 DOI: 10.1016/j.ins.2016.07.060.

568 12. Panova, E.; Raikov, A.; Smirnova, O. Cognitive television viewer rating. *Procedia Comput. Sci.* **2015**, Volume
569 66, pp. 328–335, DOI: 10.1016/j.procs.2015.11.038.

570 13. Lin, J.-S.; Sung, Y.; Chen, K.-J. Social television: examining the antecedents and consequences of
571 connected TV viewing. *Computers in Human Behaviour* **2016**, Volume 58, pp. 171–178, DOI: 10.1016/
572 j.chb.2015.12.025.

573 14. Danaher, P.; Dagger, T.; Smith, M. Forecasting television ratings. *International Journal of Forecasting*
574 **2011**, Volume 27 (4), pp. 1215–1240, DOI: 10.1016/j.ijforecast.2010.08.002.

575 15. Kotkov, D.; Wang, S.; Veijalainen, J. A survey of serendipity in recommender systems.
576 *Knowledge-Based Systems* **2016**, Volume 111, pp. 180–192, DOI: 10.1016/j.knosys.2016.08.014.

577 16. Belanche, D.; Flavián, C.; Pérez-Rueda, A. User adaptation to interactive advertising formats: The effect of
578 previous exposure, habit and time urgency on ad skipping behaviors. *Telematics and Informatics*
579 **2017**, Volume 34 (7), pp. 961–972, DOI: 10.1016/j.tele.2017.04.006.

580 17. Abrahams, A.; Coupey, E.; Zhong, E.; Barkhi, R.; Manasantivongs, P. Audience targeting by B-to-B
581 advertisement classification: A neural network approach. *Expert Syst. Appl.* **2013**, Volume 40 (8), pp.
582 2777–2791, DOI: 10.1016/j.eswa.2012.10.068.

583 18. Wang, G.; Zhuo, L.; Li, J.; Ren, D.; Zhang, J. An efficient method of content-targeted online
584 video advertising. *J. Visual Commun. Image Represent.* **2018**, Volume 50, pp. 40–48, DOI:
585 10.1016/j.jvcir.2017.11.001.

586 19. Rotshtein, A.; Rakityanska, H. *Fuzzy Evidence in Identification, Forecasting and Diagnosis*. Studies in
587 Fuzziness and Soft Computing, Volume 275; Springer: Heidelberg, Germany, 2012; 313 p., ISBN:
588 978-3-642-25785-8.

589 20. Rotshtein, A.; Rakityanskaya, A. Inventory control as an identification problem based on fuzzy logic.
590 *Cybern. Syst. Anal.* **2006**, Volume 42 (3), pp. 411–419, DOI: 10.1007/s10559-006-0078-3.

591 21. Azarov, O.; Krupelnitsky, L.; Rakityanska, H. A fuzzy model of television rating control with trend rules
592 tuning based on monitoring results. In Proceedings of the 2018 IEEE Second International Conference on
593 Data Stream Mining & Processing (DSMP); Lviv, Ukraine, August 21–25, 2018, pp. 369–375. ISBN:
594 978-1-5386-8175-6.

595 22. Yager, R.; Filev, D. *Essentials of Fuzzy Modeling and Control*. Willey: New York, USA, 1994; 408 p., ISBN: 978-0471017615.

596 23. Peeva, K.; Kyosev, Y. *Fuzzy Relational Calculus. Theory, Applications and Software*. World Scientific: New

597 York, USA, 2004; 291 p., ISBN: 978-9812560766.

598 24. Rotshtein, A.; Rakytyanska, H. Expert rules refinement by solving fuzzy relational equations. In

599 Proceedings of the VIth IEEE Conference on Human System Interaction; Sopot, Poland, June 6-8, 2013, pp.

600 257–264, DOI: 10.1109/HSI.2013.6577833.

601 25. Rotshtein, A.; Rakytyanska, H. Optimal design of rule-based systems by solving fuzzy relational

602 equations. In *Issues and Challenges in Artificial Intelligence. Studies in Computational Intelligence*; Hippe,

603 Z., Kulikowski, L., Mroczek, T., Wtorek, J., Eds.; Springer: Cham, Switzerland, 2014; Volume 559, pp.

604 167–178, ISBN: 978-3-319-06882-4.

605 26. Rakytyanska, H. Fuzzy classification knowledge base construction based on trend rules and inverse

606 inference. *Eastern-European Journal of Enterprise Technologies* **2015**, Volume 1(3), pp. 25–32, DOI:

607 10.15587/1729-4061.2015.36934.

608 27. Rakytyanska, H. Classification rule hierarchical tuning with linguistic modification based on solving

609 fuzzy relational equations, *Eastern-European Journal of Enterprise Technologies* **2018**, Volume 1(4), pp. 50–58,

610 DOI: 10.15587/1729-4061.2018.123567.

611 28. Rotshtein, A.; Rakytyanska, H. Adaptive diagnostic system based on fuzzy relations. *Cybern. Syst. Anal.*

612 **2009**, Volume 45(4), pp. 623–637, DOI: 10.1007/s10559-009-9130-4.

613 29. Rotshtein, A.; Rakytyanska, H. Fuzzy logic and the least squares method in diagnosis problem solving. In

614 *Genetic Diagnoses*; Sarma, R., Ed.; Nova Science Publishers: New York, USA, 2011; pp. 53–97,

615 ISBN: 978-1-61324-866-9.

616 30. TV Channel Inter: Ratings. Available online: <http://inter.ua/uk/about/rating>

617 31. TV Channel Inter: Weekly TV Program. Available online: <https://inter.ua/uk/tv>

618 32. IMDb Top Rated Movies. Available online: <https://www.imdb.com>

619 33. Ukrainian Films Catalog. Available online: <https://kinoafisha.ua/ratings/>

620 34. Azarov, O.D.; Krupelnitsky, L.V.; Steiskal, V.Y.; Bilokon', O.A. *Specialized and Measuring Equipment of Own*

621 *Design and Production for TV and Radio Broadcasting*, Catalog of the Scientific and Technical Center

622 «Analog-Digital Systems», VNTU: Vinnitsya, Ukraine, 2015. <http://ot.vntu.edu.ua/katalog>.

623

624