

1 Type of the Paper (Article)

2 3-D Printable Polymer Pelletizer Chopper for Fused 3 Granular Fabrication-based Additive Manufacturing

4 Aubrey L. Woern ¹ and Joshua M. Pearce ^{2,3*}

5 ¹ Department of Mechanical Engineering—Engineering Mechanics, Michigan Technological University,
6 Houghton, MI, 49931; alwoern@mtu.edu

7 ² Department of Material Science & Engineering and Department of Electrical & Computer Engineering,
8 Michigan Technological University, Houghton, MI, 49931; pearce@mtu.edu

9 ³ Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University,
10 Espoo, Finland, FI-00076; joshua.pearce@aalto.fi

11 * Correspondence: pearce@mtu.edu; Tel.: +01-906-487-1466

13

14 **Abstract:** Although distributed additive manufacturing can provide high returns on investment the
15 current markup on commercial filament over base polymers limits deployment. These cost barriers
16 can be surmounted by eliminating the entire process of fusing filament by 3-D printing products
17 directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF))
18 is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-
19 D printable invention disclosed here provides for precise controlled pelletizing of both single
20 thermopolymers as well as composites for 3-D printing. The system is designed, built and tested for
21 its ability to provide high tolerance thermopolymer pellets from a number of sizes capable of being
22 used in a FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-
23 materials simultaneously for color mixing and composite fabrication as well as precise fractional
24 measuring back to filament. The US\$185 open-source 3-D printable pelletizer chopper system was
25 successfully fabricated and has a 0.5 kg/hr throughput with one motor, and 1.0 kg/hr throughput
26 with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully
27 printed directly via FGF and indirectly after being converted into high-tolerance filament in a
28 recyclebot.

29 **Keywords:** 3-D printing; additive manufacturing; distributed manufacturing; open-source;
30 polymers; recycling; waste plastic; extruder; upcycle; circular economy

32 1. Introduction

33 Adopting an open-source model of technological development by the founding members of the
34 self-replicating rapid prototyper (RepRap) 3-D printer [1-3] community radically reduced the costs
35 of additive manufacturing (AM). With the costs of prosumer (producing consumer) desktop 3-D
36 printers dropping low enough, the phenomenon of distributed manufacturing with AM emerged [4-
37 6]. Using commercial polymer filament 3-D printing enables prosumers significant savings over
38 purchasing of mass-manufactured products such as glasses [7], alternative energy mechanical parts
39 [8], flexible products [9], toys and games [10], and a wide range of other consumer products [11,12].
40 The business community recognizes the potential shift in manufacturing with AM [13-15] because of
41 millions of freely shared digital design files for 3-D printable products [12]. A high return on
42 investment (ROI) is found for prosumer distributed manufacturing with commercial polymer 3-D
43 printing filament based on downloaded substitution values [16,17]. These savings are somewhat
44 muted by the markup on commercial filament over base commercial polymers, which is currently
45 about five to ten times the cost of the raw plastic pellets. This reduces deployment of distributed

46 manufacturing to accelerate the adoption of AM at the prosumer level [18] as well as limiting the vast
47 majority of 3-D printed articles to small objects.

48 One method of overcoming these cost barriers is to skip the entire process of fusing filament into
49 a 3-D printed object by printing directly from polymer granules. Fused granular fabrication (FGF) or
50 the more generic fused particle fabrication (FPF) (indicating any size or shape of polymer feedstock)
51 has been developed and designs are flourishing in maker communities [19-21] as well as in industry
52 with commercialized printers [21-26]. Academia has also taken a keen interest in the technology
53 [27,28] for virgin [29] and recycled materials [30,31] including multi-head [32], industrial robot
54 adaptations [33], electronics printing [34], flexible materials printing [35], and biopolymer printing
55 [36]. To date, however, only a small subset of the thermoplastic materials capable of being printed by
56 such systems have been investigated and there has been almost no research into printing with the
57 nearly unlimited variety of obvious composites 3-D printing materials [37].

58 Potential applications available from coupling materials science with FGF is being held back in
59 part by the accessibility of low-cost pelletizers and choppers. In general, these are large industrial
60 machines not conducive for research or prosumer use because of their high throughputs and capital
61 costs. There have been some attempts at making such systems on the small scale by the maker
62 community [38-41]. These systems have several deficiencies. First, with current solutions, the feed
63 rate is fixed at a constant speed meaning the size of the granules cannot be changed. The current
64 solutions also only allow one inlet for filaments, meaning you can only chop one type of filament at
65 a time. The throughput of material can be slower as well, because of the single input on the currently
66 available machines.

67 In order to provide a low cost tool for making precise chopped pellets of both single
68 thermopolymers as well as composites this study follows the open-source hardware design paradigm
69 [42,43]. It thus provides open-source designs of a 3-D printable polymer pelletizer chopper for FGF-
70 based AM. The system is designed, built and tested for its ability to provide high tolerance
71 thermopolymer pellets from a number of sizes capable of being used in a FGF printer. In addition,
72 the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing
73 and composite fabrication as well as precise fractional measuring. The results are presented and
74 discussed.

75 **2. Materials and Methods**

76 *2.1 Designs*

77 The bill of materials (BOM) summary can be seen in Table 1 and the tools and consumables are shown
78 in Table 2. As Table 1 shows a single motor version of the system can be fabricated for US\$185. A
79 more detailed BOM along with the STP (STandard for the Exchange of Product files for redesign in
80 FreeCAD) and STL files (Standard Triangle Language file for direct 3-D printing on any RepRap-class
81 FFF 3-D printer) are available in the Open Science Framework [44]. All STL parts unless specifically
82 labeled to be printed with NinjaFlex can be printed with PLA or any other hard FFF thermoplastic.
83

84

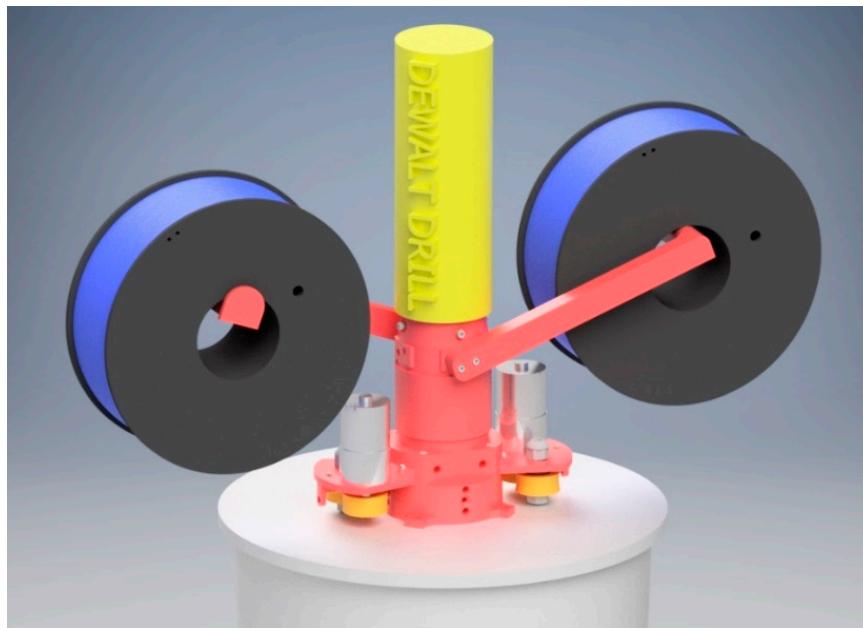
Table 1. Bill of Materials for 1 motor setup

Part	Quantity	Price
Drill motor	1	\$99.00
PLA filament ~400g	1	\$10.00
NinjaFlex filament ~ 20g	1	\$1.60
12V DC motor 200 rpm	1	\$14.99
Caster bearings	3	\$2.99
Speed controller	1	\$8.45
Power supply	1	\$15.84
1" Forstner bit	1	\$11.75
18 AWG hookup wire pack	1	\$14.99
3/8"-16 x 1.25in bolt	1	\$0.32
3/8"-16 regular hex nut	1	\$0.05
M3 hex nut	3	\$0.03
M3 grub screw	3	\$0.29
M3 heat insert	20	\$2.46
M5 heat insert	4	\$0.91
M3 X 10 screw	25	\$1.36
Total		\$185.03

85

86

Table 2. Tools and Consumables

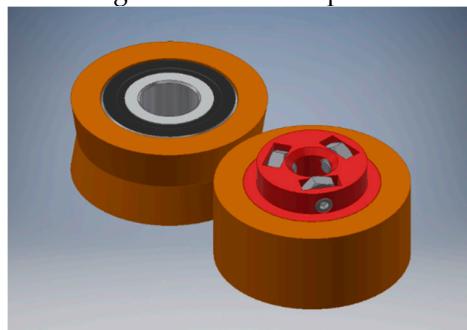

Description	Use
5-gallon bucket or tote	Pellet collection
3-D printer	Part manufacturing
Zip ties	Wire management
Super glue	Mounting NinjaFlex to bearings
Wire strippers (10-18 AWG)	Stripping motor, controller wires
Electronic solder	Soldering wires to motor
Soldering iron	Heat set inserts and wire soldering
Heat shrink tubing	For covering solder joints on motor
Adjustable wrenches	Tightening 3/8" nuts
Micro screwdriver set	Screwing wires into terminals
Allen wrench set (hex key)	For m3 bolts, and m3 grub screws

87

88

2.1.1 Mechanical

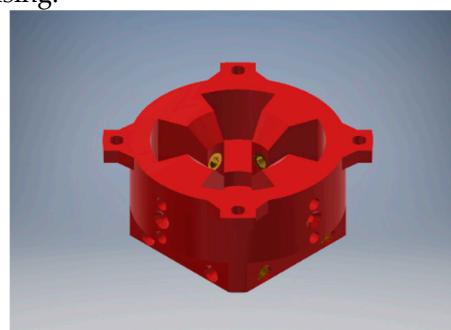
89 3-D printable parts were manufactured on a Lulzbot Taz 6 (Aleph Objects, Loveland, Co) with 50%
90 fill for PLA and 100% NinjaFlex (Ninjatek, St. Manheim, PA). After 3-D printing all of the STLs located
91 at [44] with a RepRap class 3-D printer from NinjaFlex (for gripping wheels) and PLA (all other parts),
92 and purchasing the components in Table 1, assembly can begin. In order to comply with open-source
93 hardware design guidelines detailed assembly instructions are provided in this section. The
94 mechanical assembly can be guided by a rendering of the major components shown in Figure 1.



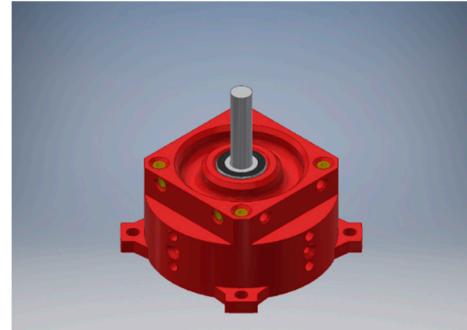
95
96 **Figure 1.** Rendering of major components of the 2x version of the open-source 3-D printable
97 pelletizer chopper.

98 Filament is fed through Ninjaflex gripper wheels into the main assembly where it is chopped by the
99 Forstner bit driven by the drill motor. The size of the pellets is controlled with the speed controller
100 governing the NinjaFlex wheels and the motor.

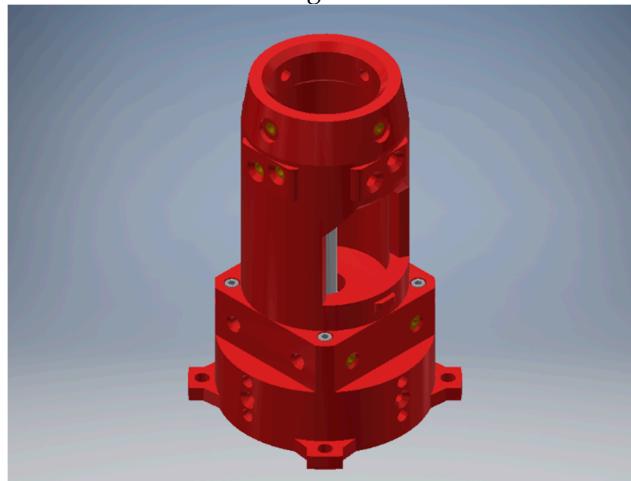
101 The basic mechanical assembly instructions:


- 102 1. Subassembly preparation for grabbing wheels.
- 103 a. Glue Ninjaflex wheels to double stack of bearings
- 104 b. Glue Ninjaflex wheels to printed motor wheel
- 105 c. Place M3 nuts and M3 grub screws into printed motor wheel as shown in Figure 2.

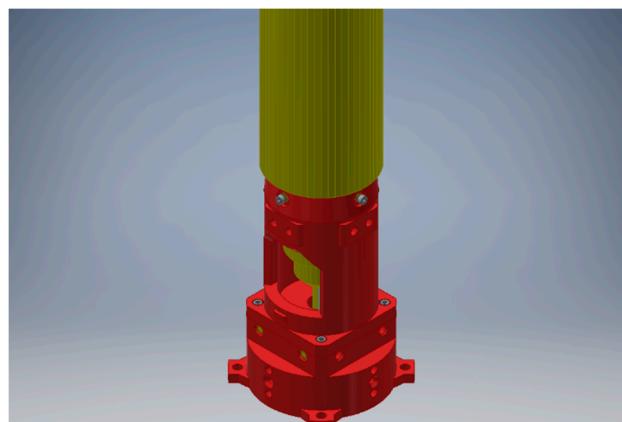
107
108 **Figure 2.** Rendering of Ninjaflex grabber wheels with nut traps and bearings.


109
110 2. Base Layer

- 111 a. Start with the base part facing down (Figure 3), insert an M5 heat insert into the holes
112 you plan on using.


113
114 **Figure 3.** Rendering of base of the open-source 3-D printable pelletizer chopper.

- 115 b. Flip the base over and insert M3 heat inserts into the sides and top. Only insert where
116 needed (e.g. One motor only needs one side, four motors need all sides)
117 c. Once complete (Figure 4), insert bearing into the top as shown, then insert Forstner
118 bit through the bottom


119 **Figure 4.** Rendering of assembled base of the open-source 3-D printable pelletizer chopper.
120

- 121 3. Middle Layer
122 a. Place middle section on top of base, secure using m3 x 10 mm screws.
123 b. Insert m3 heat set inserts into the top four holes, and the angled holes for the spool
124 holders (Only need to insert into sides being used).
125 c. Make sure the Forstner bit is through both the middle and the base as in Figure 5.
126

127 **Figure 5.** Rendering of middle section of the open-source 3-D printable pelletizer chopper.
128

- 129 d. Put drill motor in through the top and use included chuck key to tighten onto
130 Forstner bit (Figure 6).
131

132 **Figure 6.** Rendering of assembled middle section of the open-source 3-D printable pelletizer
133 chopper.
134

135

136

4. Filament Drivers


137

a. Screw motor into the bracket using m3x10mm screws, then place the printed motor

138

wheel onto the shaft.

139

b. Screw in the filament guide using an m3x10mm screw and heat set insert as shown
140 in Figure 7.

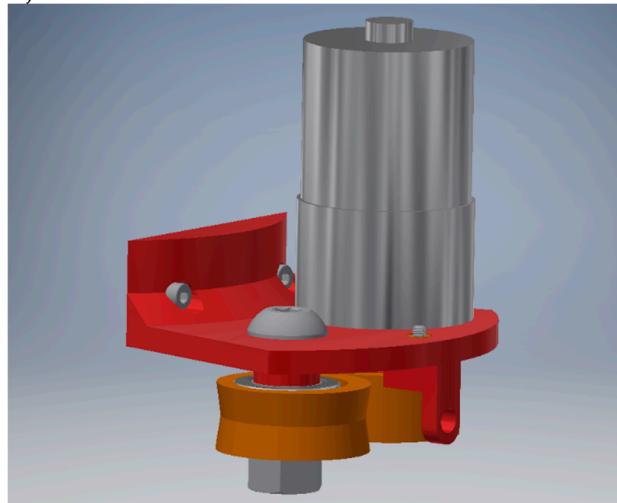

141

Figure 7. Rendering of filament driver of the open-source 3-D printable pelletizer chopper.

142

143

144

c. Assemble the idler wheel by the following sequence: Bolt head, bracket, printed
145 spacer, NinjaFlex wheel, and nut.

146

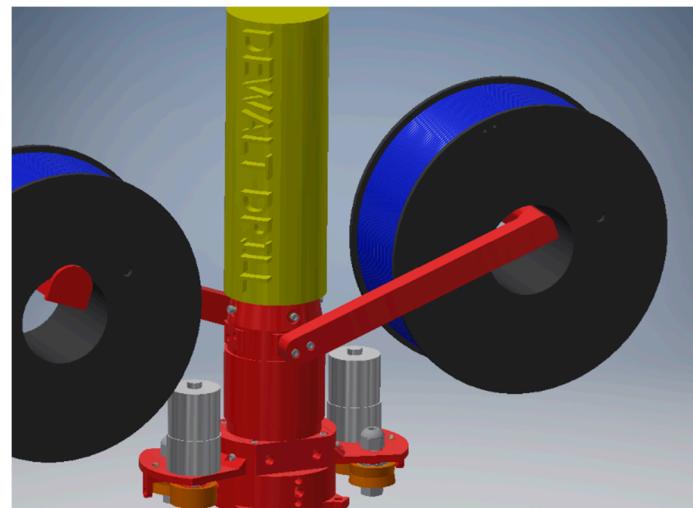
Figure 8. Rendering of the assembled filament driver with motor of the open-source 3-D
147 printable pelletizer chopper.

148

149

150

d. Secure filament driver assembly onto the rest of the main assembly as shown in
151 Figure 8.


152

153

5. Spool Holder

154

a. Use m3x10 mm bolts to attach the spool holder arms (Figure 9).

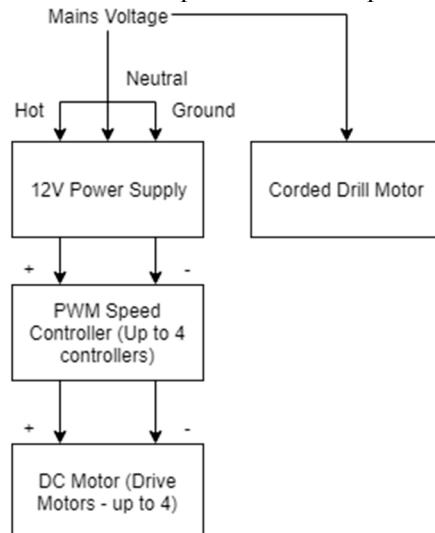

155
156

Figure 9. Rendering of the details of the spool arms of the open-source 3-D printable pelletizer chopper.

157
158

159 2.1.2 Electrical

160 Figure 10 shows the wiring schematic for the open-source 3-D printable pelletizer chopper.

161

162

Figure 10. Pelletizer wiring schematic.

163

164 2.2 Materials

165 For testing, 1.75 mm polylactic acid (PLA) from Matterhackers, 1.75mm acrylonitrile butadiene
166 styrene (ABS) from Matterhackers, 2.85mm PLA and ABS from Ultimachine were used.

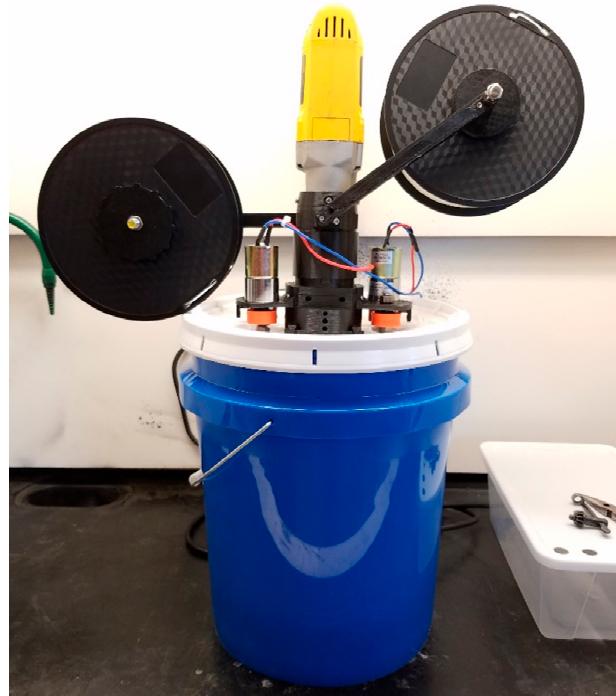
167

168 2.3 System Performance Quantification

169 The size characteristics of the particles for each starting material as a function of drive speed
170 from 200RPM to 100RPM to 50RPM were quantified using digital imaging and the open-source
171 Fiji/ImageJ [45].The rate of pellet production (kg/hour) was timed with a digital watch and
172 determined with an electronic scale (+/- 0.05). Electricity consumption was monitored with a
173 multimeter (± 0.005 kW h) for each material during processing.

174

175 2.4 FPF 3-D Printing

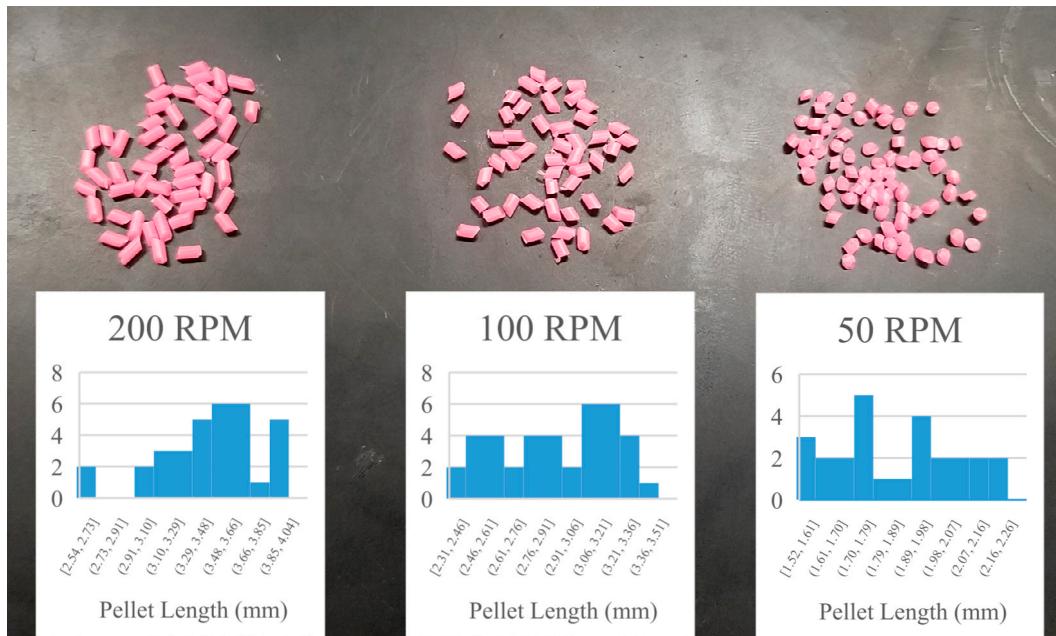

176 A prototype Gigabot X [46,47] was used to print the materials. 3-D models were sliced with
177 Slic3r [48] and the printer was controlled with Marlin Firmware [49].

178 *2.5 Pellets as Recyclebot feedstock*

179 A RepRapable recyclebot [50] (an open-source waste plastic extruder [51,52]) was used to make
180 PLA filament from pellets. The extrusion temperature was set at 170°C with cooling enabled at
181 100% and a fixed puller rate.

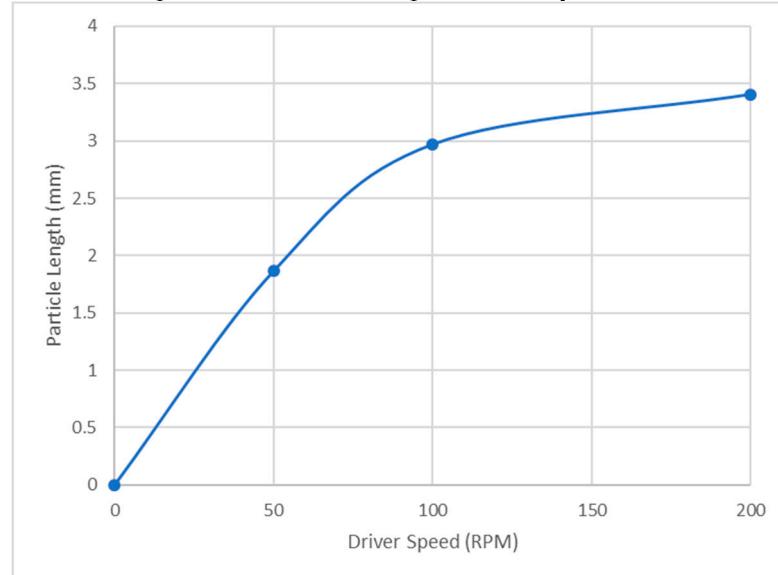
182 **3. Results**

183 The open-source 3-D printable pelletizer chopper system was successfully fabricated as shown
184 in Figure 11 and operated as demonstrated in supplemental video 1. It has a 0.5 kg/hr throughput
185 with one motor and 1.0 kg/hr throughput with two motors. Electricity consumption was found to be
186 0.24 kWh/kg during the chopping process with 2 motors. It should be noted that the power draw
187 from the feeder motors did not have an impact on energy utilization of the entire device.



188
189 **Figure 11.** Fully assembled open-source 3-D printable pelletizer chopper system.

190 *3.1 Pellet Manufacturing*


191 The system could control the particle size by changing the speed. The particle size distributions
192 are shown in Figure 12.

193

194
195 **Figure 12.** Photograph of particle sizes for 200, 100 and 50 RPM with the particle size
196 distributions shown in the inset.
197
198

A graph of the mean particle size and the speed of the system is shown in Figure 13.

199
200 **Figure 13.** Mean particle size as a function of the speed of the filament driver.
201
202
203

The pellet production rate in kg/hr is function of speed of the motor and is linear: 0.5 kg/hr at full speed 1 motor, 0.25 at 100 rpm and 0.125 at 50 rpm.

204 3.1.1. Pellets for FGF

205 PLA pellets (Figure 14a) were fed into the prototype Gigabot X and no issues were detected
206 during the printing process (Figure 14b). The small size, and cylindrical shape of the uniform pellets
207 made it very easy to flow through the hopper and down into the extrusion screw.

208
209

(a)

(b)

210 Figure 14. a) PLA pellets made with the pelletizer b) printing with ease on the Gigabot X.

211

212 3.1.2 Pellets for Recyclebot

213 The results from making filament from the pelletized PLA are shown in Figure 15. Feeding into
214 the hopper was consistent and no issues occurred during the filament extrusion process. The filament
215 came out with a diameter of 1.75mm +/- 0.10mm which is the same result when using the virgin PLA
216 pellets from NatureWorks LLC.217
218
219220 Figure 15. Example filament with a diameter of 1.75mm +/- 0.10mm made from RepRapable
221 recyclebot from pelletized filament shown in bag.

222

3.2 Fractional Control of Color and Composite Mixing

Multi materials can be chopped simultaneously as shown in supplemental video 2.

223

224

225 Figure 16. Image analysis of multiple size palletization demonstrated with large (white) and small (226 brown) filament.

227

228 In addition, the system can do multi material size chops as shown in different size distribution in 229 Figure 16 to change color or other properties using mixing in the composition.

230

231 4. Discussion

232 4.1 Pellet manufacturing

233 4.1.1. Pellets for FGF

234 There were no issues with feeding the pellets into the hopper or having the auger push the pellets 235 into the barrel of the Gigabot X. This process could be used when trying to extrude ground up 236 plastic flakes or chunks to convert them into more uniform shape for better feeding into the auger 237 such as was done by Pringle et al. for waste wood-PLA composites [66]. Each time a polymer is 238 heated and extruded (whether in the recyclebot filament making process or during conventional 239 fused filament fabrication (FFF)/ fused deposition modeling (FDM) 3-D printing) the mechanical 240 properties of the thermopolymer are degraded [53-56]. FGF reduces the number of melt-solidify 241 cycles a polymer must go through to get to a finished product. Thus, FGF printing has advantages 242 of better economics and environmental footprint than conventional FFF 3-D printing [30,31].

243 4.1.2 Pellets for Recyclebot Filament Manufacturing

244 3-D printing with filament is still by far the most widespread method of AM [18]. Thus, this is a 245 form of downcycling [57] that is acceptable for about five cycles [53,54]. To maintain acceptable 246 mechanical properties, the recycled filament must be blended with virgin materials or reinforce with

247 more robust materials. Despite these drawbacks, life cycle analysis of materials processed with a
248 recyclebot found a 90% decrease in the embodied energy of the filament compared to traditional
249 filament manufacturing [58-60]. Thermopolymers already demonstrated to be acceptable to the
250 recyclebot process include successfully recycled as single component thermoplastic filaments such as
251 polylactic acid (PLA) [50,53,54,61,62], high-density polyethylene (HDPE) [52,63,64], acrylonitrile
252 butadiene styrene (ABS) [64-66], elastomers [9] as well as composites like waste wood biopolymers
253 [67] and carbon fiber reinforced plastics [68]). With commercial versions of recyclebots becoming
254 more prevalent [51] there is an opportunity to drive a tighter loop for the circular economy [60]. The
255 system here was shown to be able to produce pellets for the recyclebot, which could be used for
256 making composites and altering the properties of filament (e.g. change color).

257 4.2 Fractional Control of Color and Composite Mixing

258 However, producing pellets from these systems for complex composites like waste wood
259 biopolymer composites [67], provide an even larger ecologically beneficial opportunity. The device
260 disclosed and characterized supports this aim. So for example in an industrial or quasi-industrial
261 granulator [69] is used to make flakes or chips it can be converted to low-quality filament, which can
262 then be subsequently chopped by the invention discussed here and then converted to high-quality 3-
263 D printing filament. This filament can be tuned for specific properties like those needed for scientific
264 hardware [70-73]. This becomes important as manufacturers begin to disclose the materials they are
265 made from [74] in order to facilitate recycling and/or market opportunities from consumers
266 understanding the material ingredients that make up their products. Some countries like China
267 already aid more aggressive recycling by having a detail-rich recycling code system and this has
268 already been adapted to the 3-D printing community [75]. The invention of the open-source 3-D
269 printable pelletizer chopper system can speed research and development in these areas. Also, in large
270 scale niche 3D printing markets, the need for more material in the printer is essential to cutting out
271 human intervention for changing out empty spools. When changing over to pellet fed systems, huge
272 hoppers full of pellets can be stored next to the printer, with simple vacuum systems used to feed the
273 printer as needed. This solution removes the need for large, 8-10 kg spools, which cause strain on the
274 extruder motors for large 3-D printers and can almost provide an endless source of feedstock [76].
275 These features generally enable the technical and economic potential of large-scale polymer 3-D
276 printing.

277 4.3 Future Work

278 This study investigated both single- and double-line use of the open-source 3-D printable
279 pelletizer chopper system. This is adequate for matching the majority this generation of polymer 3-D
280 printing available on the market (e.g. colorants or simple composites like glitter or glow-in-the-dark
281 filaments). The current design can hold up to 4 incoming lines, which can be used to make more
282 complex composites such as those designed to be used for sintering metal or other higher
283 temperature materials. In addition, the open-source 3-D printable pelletizer chopper system can be
284 easily expanded to even increase upon that using the STP file (STandard for the Exchange of Product).
285 Future designs should also look into replacing the expensive and proprietary drill motor with a
286 cheaper dc gear motor or other alternative including the distributed manufacturing of the motor
287 itself.

288 5. Conclusions

289 This study disclosed a low-cost open-source 3-D printable invention of a pelletizer chopper for
290 precise control of pelletizing of both single thermopolymers as well as composites for 3-D printing
291 applications. The system was successfully developed using open-source design strategies and
292 fabricated using low-cost open-source 3-D printers. The invention provided high tolerance
293 thermopolymer pellets from a number of sizes capable of being used in a FGF printer as well as for

294 recyclebot reformulation of 3-D printing filament. It has a 0.5 kg/hr throughput with one motor, and
295 1.0 kg/hr throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets
296 were successfully 3-D printed directly via FGF and indirectly after being converted into high-
297 tolerance filament in a recyclebot.

298 **Supplementary Materials:** The following are available online, Video S1: Open-source 3-D printable pelletizer
299 chopper system during production and Video S2: Multi materials chopped simultaneously by the open-source
300 3-D printable pelletizer chopper system.

301 **Author Contributions:** Conceptualization, Joshua M. Pearce; Data curation, Aubrey L. Woern; Formal analysis,
302 Aubrey L. Woern and Joshua M. Pearce; Funding acquisition, Joshua M. Pearce; Methodology, Aubrey L. Woern
303 and Joshua M. Pearce; Writing – original draft, Joshua M. Pearce; Writing – review & editing, Aubrey L. Woern
304 and Joshua M. Pearce.

305 **Funding:** This research was funded by the National Science Foundation SBIR Phase I grant number: 1746480,
306 re:3D, Aleph Objects, and the Richard Witte Endowment.

307 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
308 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
309 to publish the results.

310 References

- 311 1. Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper-
312 Maximizing Customizability by Breeding the Means of Production. *Proceedings in the World Conference
313 on Mass Customization and Personalization*, **2010**. Cambridge, MA, USA, 7-10 October 2007.
- 314 2. Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap-the Replicating Rapid
315 Prototyper. *Robotica* **2011**, *29* (01): 177–91.
- 316 3. Bowyer, A. 3D Printing and Humanity's First Imperfect Replicator. *3D Printing and Additive Manufacturing*
317 **2014**, *1* (1): 4–5.
- 318 4. Scan, B. 2005. How to Make (almost) Anything. *The Economist*. Available from internet:
319 <http://www.economist.com/node/4031304>.
- 320 5. Gershenfeld, N. 2012. How to Make Almost Anything: The Digital Fabrication Revolution. Available from
321 internet: <http://cba.mit.edu/docs/papers/12.09.FA.pdf>.
- 322 6. Markillie, P. 2012. A Third Industrial Revolution. *The Economist*. Available from internet:
323 <http://www.economist.com/node/21552901>.
- 324 7. Gwamuri, J.; Wittbrodt, B.; Anzalone, N.; Pearce, J. Reversing the Trend of Large Scale and Centralization
325 in Manufacturing: The Case of Distributed Manufacturing of Customizable 3-D-Printable Self-Adjustable
326 Glasses. *Challenges in Sustainability* **2014**, *2*(1), 30–40.
- 327 8. Wittbrodt, B.; Laureto, J.; Tymrak, B.; Pearce, J. Distributed Manufacturing with 3-D Printing: A Case Study
328 of Recreational Vehicle Solar Photovoltaic Mounting Systems. *Journal of Frugal Innovation* **2015**, *1* (1): 1–7.
- 329 9. Woern, A. L.; Pearce, J. M. Distributed Manufacturing of Flexible Products: Technical Feasibility and
330 Economic Viability. *Technologies* **2017**, *5*, 71, doi:10.3390/technologies5040071.
- 331 10. Petersen, E. E.; Kidd, R. W.; Pearce, J. M. Impact of DIY Home Manufacturing with 3D Printing on the Toy
332 and Game Market. *Technologies* **2017**, *5*, 45, doi:10.3390/technologies5030045.
- 333 11. Petersen, E. E.; Pearce, J. Emergence of Home Manufacturing in the Developed World: Return on
334 Investment for Open-Source 3-D Printers. *Technologies* **2017**, *5*, 7, doi:10.3390/technologies5010007.
- 335 12. Wittbrodt, B. T.; Glover, A. G.; Laureto, J.; Anzalone, G. C.; Oppliger, D.; Irwin, J. L.; Pearce, J. M. Life-cycle
336 economic analysis of distributed manufacturing with open-source 3-D printers. *Mechatronics* **2013**, *23*, 713–
337 726, doi:10.1016/j.mechatronics.2013.06.002.
- 338 13. Anderson, P.; Sherman, C.A. A discussion of new business models for 3D printing. *International Journal of
339 Technology Marketing* **2007**, *2*(3), pp.280–294.
- 340 14. Laplume, A.; Anzalone, G.; Pearce, J. Open-source, self-replicating 3-D printer factory for small-business
341 manufacturing. *International Journal of Advanced Manufacturing Technology* **2015**, *85*(1), 633–642.
- 342 15. Laplume, A.; Petersen, B.; Pearce, J. Global value chains from a 3D printing perspective. *Journal of
343 International Business Studies* **2016**, *47*(5), 595–609.
- 344 16. Pearce, J. Quantifying the Value of Open Source Hardware Development. *Modern Economy* **2015**, *6* (1): 1–11.

- 345 17. Pearce, J.M. Return on investment for open source scientific hardware development. *Science and Public*
346 *Policy* **2016**, 43(2), pp.192-195.
- 347 18. Wohlers Report 2016: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide
348 Progress Reports Associates Inc: Fort Collins, CO, USA, **2016**.
- 349 19. Horne, R. Reprap development and further adventures in DIY 3D printing: No more filament? - Quest for
350 a Universal Pellet Extruder for 3D Printing. Reprap development and further adventures in DIY 3D
351 printing 2014. <https://richrap.blogspot.com/2014/12/no-more-filament-quest-for-universal.html>
- 352 20. Universal Pellet Extruder. <http://upe3d.blogspot.com/>
- 353 21. Braanker, G.B., Duwel, J.E.P., Flohil, J.J. and Tokaya, G.E., Developing a plastics recycling add-on for the
354 RepRap 3D-printer. Delft University of Technology, **2010**.
- 355 22. The PartDaddy - Large Format Delta 3D Printer - Custom Available online:
356 <https://www.seemecnc.com/products/partdaddy-large-format-delta-3d-printer> (accessed on Jul 9, 2018).
- 357 23. Cheetah Pro Large Format 3D Printer by Hans Fouche Available online: <http://www.fouche3dprinting.com>
358 (accessed on Jul 9, 2018).
- 359 24. Introducing David Available online: </pages/david> (accessed on Jul 9, 2018).
- 360 25. Erecto-Struder 24v, ErectorBot Store Available online:
361 http://www.erectorbot.com/store/product_info.php?cPath=23&products_id=65 (accessed on Jul 9, 2018).
- 362 26. Gigabot X: Large-Scale, Recycled Plastic Pellet 3D Printer Available online:
363 <https://www.kickstarter.com/projects/re3d/gigabot-x-your-direct-pellet-extrusion-3d-printer> (accessed on
364 Jul 9, 2018).
- 365 27. Giberti, H.; Sbaglia, L.; Silvestri, M. Mechatronic Design for an Extrusion-Based Additive Manufacturing
366 Machine. *Machines* **2017**, 5, 29, doi:10.3390/machines5040029.
- 367 28. Liu, X.; Chi, B.; Jiao, Z.; Tan, J.; Liu, F.; Yang, W. A large-scale double-stage-screw 3D printer for fused
368 deposition of plastic pellets. *Journal of Applied Polymer Science* **2017**, 134, 45147, doi:10.1002/app.45147.
- 369 29. Volpato, N., Kretschek, D., Foggiatto, J.A. and da Silva Cruz, C.G., Experimental analysis of an extrusion
370 system for additive manufacturing based on polymer pellets. *The International Journal of Advanced
371 Manufacturing Technology*, **2015**, 81(9-12), pp.1519-1531.
- 372 30. Woern, A.; Byard, D.; Oakley, R.; Fiedler, M.; Snabes, S.; Pearce, J.; Woern, A.L.; Byard, D.J.; Oakley, R.B.;
373 Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Fused Particle Fabrication 3-D Printing: Recycled Materials'
374 Optimization and Mechanical Properties. *Materials* **2018**, 11, 1413, doi:[10.3390/ma11081413](https://doi.org/10.3390/ma11081413).
- 375 31. Byard, D.J.; Woern, A.L.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Green Fab Lab Applications
376 of Large-Area Waste Polymer-based Additive Manufacturing (to be published).
- 377 32. Beaudoin, A., JMS-1704: Multihead 3D Printer (Doctoral dissertation, Worcester Polytechnic Institute) **2016**.
- 378 33. Wang, Z.; Liu, R.; Sparks, T.; Liou, F. Large-Scale Deposition System by an Industrial Robot (I): Design of
379 Fused Pellet Modeling System and Extrusion Process Analysis. *3D Printing and Additive Manufacturing* **2016**,
380 3, 39-47, doi:10.1089/3dp.2015.0029.
- 381 34. Kumar, N.; Jain, P. K.; Tandon, P.; Pandey, P. M. Additive manufacturing of flexible electrically conductive
382 polymer composites via CNC-assisted fused layer modeling process. *J Braz. Soc. Mech. Sci. Eng.* **2018**, 40,
383 175, doi:10.1007/s40430-018-1116-6.
- 384 35. Kumar, N.; Jain, P. K.; Tandon, P.; Pandey, P. M. Extrusion-based additive manufacturing process for
385 producing flexible parts. *J Braz. Soc. Mech. Sci. Eng.* **2018**, 40, 143, doi:10.1007/s40430-018-1068-x.
- 386 36. Whyman, S.; Arif, K. M.; Potgieter, J. Design and development of an extrusion system for 3D printing
387 biopolymer pellets. *The International Journal of Advanced Manufacturing Technology*, **2018**, 96, 3417-3428,
388 doi:10.1007/s00170-018-1843-y.
- 389 37. Pearce, J. M. A novel approach to obviousness: An algorithm for identifying prior art concerning 3-D
390 printing materials. *World Patent Information* **2015**, 42, 13-18, doi:[10.1016/j.wpi.2015.07.003](https://doi.org/10.1016/j.wpi.2015.07.003).
- 391 38. Barbosa, F. Thingiverse.com High speed filament pelletizer by fred_barbosa Available online:
392 <https://www.thingiverse.com/thing:397524> (accessed on Nov 1, 2018).
- 393 39. Hada, W. Thingiverse.com 3D Filament Pelletizer Powered by Drill by wahada Available online:
394 <https://www.thingiverse.com/thing:288465> (accessed on Nov 1, 2018).
- 395 40. Scott, C. Shred-Buddy 3D Recycler Turns Your Old Filament, Bottles, and Even Fishing Line into Brand
396 New 3D Printing Material. *3DPrint.com | The Voice of 3D Printing / Additive Manufacturing* **2016**.
- 397 41. Filament Pelletizer (Page 1) — Filastruder — SoliForum - 3D Printing Community Available online:
398 <http://www.soliforum.com/topic/5159/filament-pelletizer/> (accessed on Nov 1, 2018).

- 399 42. Gibb, A. *Building Open Source Hardware: DIY Manufacturing for Hackers and Makers*; Pearson Education, 2014; ISBN 978-0-321-90604-5.
- 400 43. Oberloier, S. and Pearce, J.M., 2017. General Design Procedure for Free and Open-Source Hardware for 401 Scientific Equipment. *Designs*, 2(1), p.2. doi:[10.3390/designs2010002](https://doi.org/10.3390/designs2010002).
- 401 44. 3-D Printable Polymer Pelletizer Chopper. 2018, Open science framework. <https://osf.io/6t4dn/>
- 402 45. Fiji is just ImageJ Available online: <https://fiji.sc/> (accessed on Jul 9, 2018).
- 403 46. Re:3D <https://github.com/Gigabot-Labs/Pellet-Extruder> (accessed on Jul 21, 2018).
- 404 47. re:3D | Life-Sized Affordable 3D Printing. <https://re3d.org/> (accessed on Jul 9, 2018).
- 405 48. Slic3r - G-code generator for 3D printers - Available online: <http://slic3r.org> (accessed on Jul 10, 2018).
- 406 49. Marlin Firmware - Available online: <http://marlinfw.org> (accessed on Jul 10, 2018)
- 407 50. Woern, A. L.; McCaslin, J. R.; Pringle, A. M.; Pearce, J. M. RepRapable Recyclebot: Open source 3-D 408 printable extruder for converting plastic to 3-D printing filament. *HardwareX* 2018, 4, e00026, 409 doi:10.1016/j.ohx.2018.e00026.
- 410 51. Recyclebot. Appropedia. <http://www.appropedia.org/Recyclebot> (accessed 12.19.2017).
- 411 52. Baechler, C.; DeVuono, M.; Pearce, J. M. Distributed recycling of waste polymer into RepRap feedstock. 412 *Rapid Prototyping Journal* 2013, 19, 118–125, doi:10.1108/13552541311302978.
- 413 53. Cruz Sanchez, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive 414 Manufacturing in an Open Source context: Optimization of processes and methods. In *2015 Annual 415 International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Austin, Texas 416 (USA) 2015* (pp. 10-12).
- 417 54. Cruz Sanchez, F. A. C., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer recycling in an open-source 418 additive manufacturing context: Mechanical issues. *Additive Manufacturing* 2017, 17, 87-105.
- 419 55. Oblak, P.; Gonzalez-Gutierrez, J.; Zupančič, B.; Aulova, A.; Emri, I. Processability and mechanical 420 properties of extensively recycled high density polyethylene, *Polymer Degradation and Stability*, 2015, 421 114, <https://doi.org/10.1016/j.polymdegradstab.2015.01.012>
- 422 56. Hyung Lee, J.; Sub Lim, K.; Gyu Hahn, W; Hun Kim, S. Properties of recycled and virgin poly(ethylene 423 terephthalate) blend fibers, *Applied Polymer Science* 2012, 128, 2, <https://doi.org/10.1002/app.38502>
- 424 57. McDonough, W.; Braungart, M. *Cradle to Cradle: Remaking the Way We Make Things*; Farrar, Straus and 425 Giroux, 2010; ISBN 978-1-4299-7384-7.
- 426 58. Kreiger, M., Anzalone, G. C., Mulder, M. L., Glover, A., & Pearce, J. M. Distributed recycling of post- 427 consumer plastic waste in rural areas. *MRS Online Proceedings* 2013, 1492, 91-96.
- 428 59. Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. Life cycle analysis of distributed recycling of 429 post-consumer high density polyethylene for 3-D printing filament. *Journal of Cleaner Production*, 2014, 70, 430 90-96.
- 431 60. Zhong, S., Rakhe, P., & Pearce, J. M. Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic 432 Recyclebot System. *Recycling*, 2017, 2(2), 10.
- 433 61. Anderson, I. Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid. *3D 434 Printing and Additive Manufacturing* 2017, 4, 110–115, doi:10.1089/3dp.2016.0054.
- 435 62. Pakkanen, J., Manfredi, D., Minetola, P., Iuliano, L. About the Use of Recycled or Biodegradable Filaments 436 for Sustainability of 3D Printing. In *Sustainable Design and Manufacturing 2017*; Smart Innovation, Systems 437 and Technologies; Springer, Cham, 2017; pp. 776–785.
- 438 63. Chong, S., Pan, G.-T., Khalid, M., Yang, T. C.-K., Hung, S.-T., Huang, C.-M. Physical Characterization and 439 Pre-assessment of Recycled High-Density Polyethylene as 3D Printing Material. *Journal of Polymers and the 440 Environment*, 2017, 25(2), 136-145. doi:10.1007/s10924-016-0793-4.
- 441 64. Mohammed, M. I., Mohan, M., Das, A., Johnson, M. D., Badwal, P. S., McLean, D., Gibson, I. A low carbon 442 footprint approach to the reconstitution of plastics into 3D-printer filament for enhanced waste reduction. 443 *KnE Engineering*, 2017, 2, 234–241.
- 444 65. Mohammed, M. I., Das, A., Gomez-Kervin, E., Wilson, D., Gibson, I. EcoPrinting: Investigating the use of 445 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. *Solid Freeform 446 Fabrication 2017. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium*. 2017. 447 [http://sffsymposium.enr.utexas.edu/sites/default/files/2017/Manuscripts/EcoprintingInvestigatingtheUs 449 eof100Recycle.pdf](http://sffsymposium.enr.utexas.edu/sites/default/files/2017/Manuscripts/EcoprintingInvestigatingtheUs 448 eof100Recycle.pdf)
- 450

- 451 66. Zhong, S., & Pearce, J. M. Tightening the loop on the circular economy: Coupled distributed recycling and
452 manufacturing with recyclebot and RepRap 3-D printing. *Resources, Conservation and Recycling*, **2018**, 128,
453 48-58.
- 454 67. Pringle, A. M.; Rudnicki, M.; Pearce, J. Wood Furniture Waste-Based Recycled 3-D Printing Filament. *Forest*
455 *Products Journal*. **2018**, 68, 1, 86-95. <https://doi.org/10.13073/FPJ-D-17-00042>
- 456 68. Tian, X.; Liu, T.; Wang, Q.; Dilmurat, A.; Li, D.; Ziegmann, G. Recycling and remanufacturing of 3D printed
457 continuous carbon fiber reinforced PLA composites. *Journal of Cleaner Production* **2017**, 142, 1609-1618,
458 doi:10.1016/j.jclepro.2016.11.139.
- 459 69. OSHE Granulator MKII, Open Science Framework, Available online: <https://osf.io/auswp/> (accessed on
460 July 10, 2018).
- 461 70. Baden, T.; Chagas, A.M.; Gage, G.; Marzullo, T.; Prieto-Godino, L.L.; Euler, T. Open Labware: 3-D
462 Printing Your Own Lab Equipment. *PLOS Biology* **2015**, 13, e1002086, doi:[10.1371/journal.pbio.1002086](https://doi.org/10.1371/journal.pbio.1002086).
- 463 71. Winters, B.J.; Shepler, D. 3D printable optomechanical cage system with enclosure. *HardwareX* **2018**, 3,
464 62-81, doi:[10.1016/j.ohx.2017.12.001](https://doi.org/10.1016/j.ohx.2017.12.001).
- 465 72. Hietanen, I.; Heikkinen, I.T.S.; Savin, H.; Pearce, J.M. Approaches to open source 3-D printable probe
466 positioners and micromanipulators for probe stations. *HardwareX* **2018**, 4, e00042,
467 doi:[10.1016/j.ohx.2018.e00042](https://doi.org/10.1016/j.ohx.2018.e00042).
- 468 73. Bellon, J.A.; Pino, M.J.; Wilke, N. Low-cost equipment for electroformation of Giant Unilamellar
469 Vesicles. *HardwareX* **2018**, 4, e00037, doi:[10.1016/j.ohx.2018.e00037](https://doi.org/10.1016/j.ohx.2018.e00037).
- 470 74. Pearce, J.M., Expanding the Consumer Bill of Rights for material ingredients. *Materials Today* **2018**. 21(3),
471 197-198.
- 472 75. Hunt, E. J.; Zhang, C.; Anzalone, N.; Pearce, J. M. Polymer recycling codes for distributed manufacturing
473 with 3-D printers. *Resources, Conservation and Recycling* **2015**, 97, 24-30, doi:10.1016/j.resconrec.2015.02.004.
- 474 76. Stevenson, K. The Other Reason for 3D Printing Pellets. Fabbaloo. Available online:
475 <http://www.fabbaloo.com/blog/2018/5/10/the-other-reason-for-3d-printing-pellets> (accessed on Jul 9,
476 2018).