Abstract: Water electrolysis provides efficient and cost-effective production of hydrogen from renewable energy. Currently, the oxidation half-cell reaction relies on noble-metal catalysts, impeding widespread application. In order to adopt water electrolyzers as the main hydrogen production systems, it is critical to develop inexpensive and earth-abundant catalysts. This review discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in replacing the noble-metal catalysts with earth-abundant ones. Researchers within this field are aiming to improve the efficiency and stability of earth-abundant catalysts (EACs), as well as to discover new ones. The latter is particularly important for the oxygen evolution reaction (OER) under acidic media, where the only stable and efficient catalysts are noble-metal oxides, such as IrOx and RuOx. On the other hand, there is significant progress on EACs for the hydrogen evolution reaction (HER) in acidic conditions, but how many of these EACs have been used in PEM WEs and tested under realistic conditions? What is the current status on the development of EACs for the OER? These are the two main questions this review addresses.

Keywords: polymer exchange membrane; electrocatalysts; noble metals; earth abundant elements; water splitting; acidic environment; oxygen evolution reaction; hydrogen evolution reaction; anode and cathode electrodes;

1. Introduction
Currently, 81% of the global energy demand is met by fossil fuels and it is estimated that more than 540 EJ was supplied for the total global energy demand in 2014. This figure is expected to increase by 40% towards 2050 [1]. The CO2 emissions from combustion of fossil fuels are large enough to alter the Earth’s climate. The severity of climate change in the global ecosystem is forcing mankind to look for renewable energy sources. This is amplified by the reserves of fossil fuels estimated to last only 50-60 years [2-4].

Hydrogen (H2) can meet our future energy demands as a clean and sustainable fuel, but cost-effective ways need to be developed for a successful turn towards the hydrogen economy [5-9]. Water electrolysis is an environment friendly scheme for conversion of renewable electricity (e.g. solar, wind) into high purity hydrogen, but at present electrolysis accounts for only 4% of the total hydrogen production [10]. The rest is covered by transformation of fossil fuels, such as natural gas steam reforming, coal gasification and partial oxidation of hydrocarbons [11-14], however, all these routes involve the release of CO2. Polymer Electrolyte Membrane Water Electrolysis (PEM-WE) has the advantages of simplicity, compact design, fast response, high current densities, production of
ultrapure hydrogen that can be electrochemically pressurized, and small footprint. The PEM WE concept was first investigated and demonstrated in the 1960s [15-17]. Since then, substantial research has been dedicated to improve the different PEM WE components, and as a result, this technology is approaching commercial markets [18]. What hinders the implementation of PEM WE on a large scale is its acidity, which necessitates the use of noble metals, such as Ir, Pt, or Ru as electrocatalysts. Additionally, acidic conditions are more preferable as the concentration of reactant protons is higher [19, 20]. The high cost of the polymeric membrane is another obstacle. Currently, the CAPEX cost, i.e. the investment cost, for a PEM WE system, is around $1500 per kWe (kW electricity input) and the cost per kg of H₂ is $7.1, taking into account that the electricity is provided by renewables [21-23].

Figure 1: Learning curve for renewable PEM H₂ production showing the projected levelized costs until 2050 per kg H₂ in USD. Reprinted with permission from [24]. Copyright 2018 The Royal Society of Chemistry.

In comparison, the H₂ cost through steam methane reforming (SMR) is only $1.40 [25] and the optimistic break-even year for renewable PEM H₂ production based on learning curves is around 2033 (Figure 1) [24]. The same study underlines that the major cost of PEM lies in the electricity consumption [24]. This is of course directly connected to the overpotential required for efficient water electrolysis, i.e. the overpotential of the electrocatalysts to reach certain current densities. The replacement of the noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) will have a tremendous impact on the future scale-up activities for PEM WE.

A wide range of earth abundant catalysts (EACs) for the HER in acidic, neutral and alkaline media has been developed and includes metal sulfides [26-31], metal phosphides [32-37], metal alloys [38, 39], chalcogenides [40, 41], as well as metal- and heteroatom-substituted carbon-based materials [42-44]. Some of these EACs show improved efficiencies and good endurance under strong acidic condition [32, 33, 35, 45, 46], but others are not stable or they require large onset overpotentials [47-50]. The situation is even more challenging in the OER side, the bottleneck in overall water splitting, where the complex 4-electron process that produces protons and oxygen requires high overpotentials. Only noble-metal oxides such as IrO₂ and RuO₂ are efficient catalysts for the OER in acidic media, but the RuO₂ is unstable and deactivates rapidly [51, 52], therefore the lack of cost-efficient alternatives to IrO₂ is the major challenge in the field of PEM-based water electrolysis.
This field of research is very active and according to Web of Science, 2043 reports have been published during 2017 on both OER and HER catalysts (Figure 2). Motivated by these figures, as well as the challenging electrochemistry under the intense conditions required by the PEM WE, we wanted to see how many of these reports referring to EACs were actually applied in PEM WE devices, replacing in fact the noble-metal catalysts. Therefore, the main purpose of this article is not an exhaustive report on EACs developed for the HER and OER in acidic conditions, which were tested and studied in half cells, typically involving measurements in three electrodes with rotating disc electrodes (RDE), but to see how many are applied and tested in full PEM WE cells. Do the catalysts perform as expected from the half-cell measurements, or are there any deviations related to differences in configuration, supply of reactants, deposition on porous substrates, leaching of electroactive elements (i.e. stability), as well as surface area exposed? Moreover, what are the recent advances on EACs for the OER under strongly acidic conditions? In the current article we document the very first reports on EACs for the OER in acidic environment, as well as one applied EACs-based PEM WE system.

2. Principles of PEM water electrolysis

The electrochemical conversion of water to hydrogen and oxygen is known as water electrolysis, and was discovered already in 1800 [54]. Since then, the idea of using two electrodes immersed in an aqueous caustic solution of KOH electrolyte, known as alkaline water electrolysis, was developed and utilized for industrial applications [55]. Although some improvements as current density and operating pressure are foreseeable [56], this well-established technology is still the most cost-effective choice for industrial hydrogen production at present.

Another promising water electrolysis cell that operates at low temperatures (normally below 80°C) is the proton exchange membrane (also known as polymer electrolyte membrane) (PEM) electrolyzers. The concept of PEM water electrolysis was idealized by Grubb in the early fifties [15, 16] and first manufactured by the General Electric Co. in 1966 [17], where they take the advantage of a solid polymer perfluorinated sulfonic membrane as electrolyte for hydrogen production. Some typical pros and cons for PEM water electrolyzers compared with the classic alkaline water electrolyzers are summarized in Table 1.

We highlight again that a cost reduction by developing earth-abundant electrocatalysts with comparable performance and a further improvement in the energy efficiency of the PEM water
electrolyzers are essential factors before PEM WE becomes a competitive solution for large-scale hydrogen production.

Table 1: Advantages and drawbacks of PEM WE over alkaline water electrolysis

<table>
<thead>
<tr>
<th>Advantages [17, 56, 57]</th>
<th>Disadvantages [57-59]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact system design</td>
<td>Acidic electrolyte</td>
</tr>
<tr>
<td>→ Fast heat-up and cool-off time, short response time</td>
<td>→ Higher manufacturing cost due to expensive materials and components, i.e. current collectors, bipolar plates, noble catalysts, membranes</td>
</tr>
<tr>
<td>→ Low gas-cross-permeation. Withstands higher operating pressure across the membrane. Higher purity of hydrogen. Higher thermodynamic voltage</td>
<td>→ Limited choices of stable earth-abundant electrocatalysts for the OER</td>
</tr>
<tr>
<td>→ Easier hydrogen compression, facilitates hydrogen storage</td>
<td>Solid, thin electrolyte</td>
</tr>
<tr>
<td>Solid, thin electrolyte</td>
<td>→ Easily damaged by inappropriate operation and cell design</td>
</tr>
<tr>
<td>→ Shorter proton transport route, lower ohmic loss</td>
<td>→ Sensitive to impurities</td>
</tr>
<tr>
<td>→ Operates under wide range of power input</td>
<td>Higher operating pressure</td>
</tr>
<tr>
<td>Operates at higher current density</td>
<td>→ higher gas-cross-permeation</td>
</tr>
<tr>
<td>→ lower operational costs</td>
<td></td>
</tr>
</tbody>
</table>

Differential pressure across the electrolyte
→ Pressurizes hydrogen side alone, avoids danger related to pressurized oxygen

2.1 Operating principles
When a PEM electrolysis cell is in operation, an excess of water is supplied to the anode, where water decomposes into protons, electrons and oxygen gas by an electrical energy (Equation 1). The protons are transported to the cathode by passing through the polymer electrolyte, while the generated electrons travel along an external circuit and combine with electrons into hydrogen gas, as described in Equation 2. The amount of hydrogen gas generated is twice that of oxygen, as defined by the overall reaction, Equation 3, whereas ΔG^0 is the standard Gibbs free energy of the net water splitting reaction.

Anode (OER)

$$H_2O \rightarrow 2H^+ + 2e^- + \frac{1}{2} O_2$$

Cathode (HER)

$$2H^+ + 2e^- \rightarrow H_2$$
Net water splitting reaction

\[\text{H}_2\text{O} \xrightarrow[\Delta G^0]{\text{Δ}} \text{H}_2 + \frac{1}{2}\text{O}_2 \quad \text{Equation 3} \]

2.2 Thermodynamics

The standard theoretical open circuit voltage (OCV), also referred as standard reversible cell voltage, \(U_{rev}^0 \) required by PEM electrolyzers can be derived from the standard Gibbs free energy (\(\Delta G^0 \)) of +237.2 kJ/mol H\(_2\), Faraday’s constant (F), and the number of electrons (\(n = 2 \)) exchanged during water splitting under standard conditions; \(p = 1 \) bar, \(T = 298.15 \) K (Equation 4) [60].

\[|U_{rev}^0| = |\frac{-\Delta G^0}{n \cdot F}| = 1.229 \text{ V} \quad \text{Equation 4} \]

The positive Gibbs free energy change reflects that the water electrolysis reaction is thermodynamically unfavorable. In reality, the potential needed is higher than the OCV value and will reach typically ~ 1.48V [61] due to overpotentials related to the OER and HER, as well as to limited ionic conductivity of the electrolyte and system losses. [57]. Thus, the actual operating cell voltage is the sum of all the different overpotentials (Equation 5) [56, 62].

\[U_{op} = U_{rev}^0 + \eta_a + \eta_c + \eta_{el} + \eta_{sys} \quad \text{Equation 5} \]

\(U_{op} \) is the operational voltage, \(U_{rev}^0 \) is the standard reversible potential, \(\eta_a, \eta_c, \eta_{el} \) and \(\eta_{sys} \) are the overpotentials related to the anode, cathode, ionic conductivity of the electrolyte membrane, and system losses, respectively. It should be highlighted that the half-reactions described in Equations 1 and 2 are simplifications of more complex multistep electrochemical reaction pathways, which can induce competing or parasitic reactions [63].

2.3 Main cell components and requirements

The core component of a PEM electrolysis cell is the membrane electrode assembly (MEA), which is composed of a solid polymer electrolyte (SPE) sandwiched between two electrically conductive electrodes, as shown in Figure 3.
The SPE must fulfill particular requirements, such as high chemical and mechanical stability, low gas permeability, and high proton conductivity. In this regard, Nafion® is the most commonly used polymer membrane due to high proton conductivity, good mechanical stability and acceptable gas crossover. The electrodes are usually composed of a porous catalyst layer (CL) and a gas diffusion layer (GDL), coated directly onto the polymer membrane in most cell designs. Electrocatalysts are employed to promote charge transfer kinetics in order to lower the activation energy of the WE process. The MEA is further supported by porous metallic discs/meshes/sinters as current collectors (CC) from both sides, encased by bipolar plates (BPP). The CC has the task of supplying water to the anode and collecting gas from the cathode, also enabling a current flow from the bipolar plates to the electrodes [57]. The BPP function as a water diffusion media to the CC.

An effective electrocatalyst minimizes electrode overpotentials. Due to the acidic environment of the cell, the catalysts for the hydrogen evolution reactions (HER) on the cathode and the oxygen evolution reactions (OER) on the anode are essentially dependent on noble metals and their alloys. Pt nanoparticles on carbon support is by far the best catalyst material for the HER because of their good catalytic activity and high corrosion resistance. Besides, Pd and Ir nanoparticles supported on carbon materials are also commonly utilized as HER electrocatalysts [64]. Less expensive earth-abundant materials such as sulfides, phosphides, carbides and nitrides [18], cobalt clathrochelate [65], polyoxometallates [61] have been proposed as alternative HER catalysts.

The oxygen electrode determines the reaction rate of the overall process as it is the slowest step. Non-noble catalysts such as Ni and Co in contact with the acidic electrolyte will start to corrode, meanwhile the Pt surface will be covered by a low conducting oxide film, which reduces the catalytic activity for the OER. In this respect, Ir and Ru-oxide based catalysts are typical electrode materials for the OER because of their high structural stability. As reported by Ahn and Holze [66], Ru-oxide appears to be the most catalytically active electrode with the smallest activation overpotential at 353 K, followed by Ir/Ru-oxide, Ir-oxide, Ir, Rh-oxide, Rh and Pt. Ir is however scarce, its average mass fraction in crustal rock is only 0.001 ppm [56].
3. State-of-the-art Devices

After General Electric developed the PEM WE technology, its application was mostly limited to oxygen production in ambient conditions [67], i.e. submarine, spacecraft, etc. In the late 1980s, the first pressurized PEM electrolyzer for H₂ production up to 100 bar with efficient MEAs, were created and tested [68, 69]. Since then, MEAs with Ir, Ru and Pt based electrocatalysts and Nafion® proton conductor polymer electrolyte have dominated the frontier PEM electrolyzer cell design [70, 71].

The state-of-the-art OER catalyst for PEM electrolyzer is an oxide mixture composed of Ru₂O and IrO₂ [72], e.g. Ir₀.₇Ru₀.₃O₂ [73], Ir₀.₄Ru₀.₆O₂ [74], etc., with slight differences in overpotential and stability when varying the composition of each oxide. Although RuO₂ has shown the best OER performance among all the other materials [52, 74], its poor stability due to the corrosion [75] from the strong local acidity at the perfluorosulfonic membrane and high anodic potential, it requires the addition of IrO₂ in order to enhance its stability, as IrO₂ is the most resistive material to OER in acidic environment [76, 77]. However, Ir is one of the rarest elements on earth, and this sets the requirement to reduce/replace the Ir content in order to cut down the price, such as by adding other elements that are more earth abundant, e.g. Co [78], Ta [79], Sn [80], etc. A recent study reported the state-of-the-art OER performance of fluoride dope MnO₂, IrO₂ solid solution ((Mn₁₋ₓIrₓ)O₂:F), with even lower onset potential than IrO₂ [81], may further reduce the Ir loading of the OER catalysts.

For the cathode, it is established that Pt, especially highly dispersed C-based Pt, is the benchmark HER catalyst for PEM electrolyzer [70]. In fact, less research efforts have been made on the cathode material for PEM electrolyzers [52]. The reason is partially that the exchange current of H⁺/H₂ on Pt is almost 1000 times larger than that of H₂O/O₂ on Ir [82], and Ir is also more precious than Pt, therefore research has been mainly focused on how to reduce the cost and increase the efficiency of OER catalyst. However, as the cathode side also contributes to a large extend in the cost of a PEM electrolyzer, it is necessary and important to reduce the loading of Pt [83], or replace it with efficient earth abundant electrocatalysts, such as MoS₂ [84], CoP [85], etc.. This effort is briefly summarized below and as we set earlier, our main target was to document how many researchers apply EACs in actual PEM WE full cells.

The PEM electrolyzers with state-of-the-art electrocatalysts are summarized in Table 2. One can notice that the performance of a PEM electrolyzer is not only determined by the electrocatalysts, but also by other elements, e.g. operation temperature, cell area and membrane type. However, those elements are out of the scope of this review, hence they are not to be discussed here.

Table 2: PEM electrolyzers with state-of-the-art electrocatalysts
Thus far, we have explored the theory and principles of PEM WE and summarized the state-of-the-art devices demonstrated in the literature. In the following sections, we will explore the most promising earth-abundant electrocatalyst materials that have been used in PEM WE full cells, replacing noble metal-based anodes and cathodes, especially under acidic conditions.

4. Earth-Abundant Cathode Materials

Molybdenum sulfide (MoS$_2$) based materials are among the most extensively studied materials as catalyst for HER over the past decade due to their excellent stability, high activity, earth abundancy and low price. MoS$_2$ exists in nature with an atomic structure resembling that of graphite, a layered structure where each layer consists of a molybdenum layer sandwiched between two sulfur layers. Alternatively, the monolayers can be characterized as consisting of either edge sharing trigonal prisms (2H) or octahedrons (1T). Packing of these layers gives the basis for the three polytypes of bulk MoS$_2$ (Figure 4).

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Anode</th>
<th>T</th>
<th>Test Cell</th>
<th>Current</th>
<th>Cell voltage</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/C</td>
<td>0.5 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 2.5 mgs/m2</td>
<td>25 °C</td>
<td>5 cm2 PEM cell, Nafion 115</td>
<td>1 A/cm2</td>
<td>~ 2.2 V</td>
</tr>
<tr>
<td>Pt/C</td>
<td>0.5 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 2.5 mgs/m2</td>
<td>90 °C</td>
<td>5 cm2 PEM cell, Nafion 115</td>
<td>2.6 A/cm2</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Pt/C</td>
<td>0.4 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 1.0 mgs/m2</td>
<td>thermally treated</td>
<td>80 °C</td>
<td>25 cm2 PEM cell, Nafion 212 CS</td>
<td>1 A/cm2</td>
</tr>
<tr>
<td>Pt/C</td>
<td>0.1 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 1.5 mgs/m2</td>
<td>90 °C</td>
<td>5 cm2 PEM cell, Aquipvion ionomer</td>
<td>1.3 A/cm2</td>
<td>1.6 V</td>
</tr>
<tr>
<td>Pt/C</td>
<td>0.4 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 2.5 mgs/m2</td>
<td>80 °C</td>
<td>5 cm2 PEM cell, Nafion 115</td>
<td>1 A/cm2</td>
<td>1.567 V</td>
</tr>
<tr>
<td>Pt/C</td>
<td>0.4 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 1.5 mgs/m2</td>
<td>80 °C</td>
<td>5 cm2 PEM cell, Nafion 1035</td>
<td>1 A/cm2</td>
<td>1.676 V</td>
</tr>
<tr>
<td>Pt/C</td>
<td>0.5 mgs/cm2</td>
<td>Ir${0.2}$Ru${0.8}$O$_2$ 1.5 mgs/m2</td>
<td>80 °C</td>
<td>5 cm2 PEM cell, Nafion b 1035</td>
<td>1 A/cm2</td>
<td>1.622 V</td>
</tr>
</tbody>
</table>
Despite the early indications of low HER activity for bulk MoS$_2$ [90], molybdenum sulfides turned out to be promising for replacing Pt. Theoretical work by Hinnemann et al. in 2005 showed that the edges are in fact catalytically active [91]. Using Density Functional Theory (DFT) they calculated the hydrogen binding energy of the Mo($\bar{1}010$) edge, where sulphur is unsaturated, and found it to be close to ideal value of 0 eV [89]. In addition, they fabricated a MEA using Nafion®, nanoparticle MoS$_2$ on graphite as cathode, and Pt as anode, which achieved a current density of 10 mA/cm2 at only 175 mV of overpotential. This was the best activity shown for an acid-stable and earth abundant catalyst at that time. Two years later, their theoretical prediction of the edges being the activity centers was confirmed experimentally by Jaramillo et al. [40]. They deposited monolayer MoS$_2$ on Au(111) with physical vapor deposition in an H$_2$S environment. After finding total edge lengths with STM and comparing with catalytic activity for various samples, they found that the reaction rate scaled with particle perimeter and not area. These findings sparked an interest in improving the catalytic activity in MoS$_2$ that is still growing today.

Since the main objective of the present review is to review the literature on device-tested electrodes, we will not go deep into the vast literature on MoS$_2$ based electrocatalysts. We will rather briefly mention some of the methods that have been identified for increasing the HER activity of MoS$_2$. One of the first and obvious approaches was to maximize the edge sites by making small particles. This led to investigations of the activity of [Mo$_3$S$_4$]$^{4-}$-clusters that showed HER activity but were less stable [92]. Some years later, [Mo$_3$S$_{13}$]$^{2-}$-clusters became a hot topic after results showing one of the highest per site activities [31]. Another approach that has produced promising results is to deposit molybdenum sulfide onto something highly conducting and/or with high surface area, like nanotubes, nanowires, reduced graphene oxide etc. [93-96]. Depending on the methods used, one often ends up with amorphous MoS$_x$. Efforts to improve the activity of the semiconductor phase comprises of doping, introducing vacancies and strain engineering, which can activate the basal plane and edges that are not intrinsically active [97-100]. The 1T phase is metastable, however, the
metallic nature makes it highly conductive compared to the 2H phase, and, in addition, the basal plane is active as well, resulting in promising HER activity [101, 102]. For more in-depth reviews the reader is referred to these reviews [84, 89, 103, 104]. Despite all these efforts to improve the catalytic properties over the past decade, there are, to the best of our knowledge, only the following few reports on molybdenum sulfide-based cathodes implemented in a PEM cell.

In 2014, Corrales-Sánchez et al. were the first to report the performance of a PEM cell using MoS2-based cathodes [84]. They reported the performance of three different types of MoS2-based electrodes, bare pristine MoS2, MoS2 mixed with commercial conductive carbon, Vulcan® XC72, and MoS2 nanoparticles on reduced graphene oxide. The MEA used in the PEM cell consisted of IrO2 particles and anode material that was spray deposited on each side of a Nafion membrane. Porous titanium diffusion layer and titanium current collectors on both sides of the MEA were sandwiched by the cell housing. The pristine MoS2 was the worst performing cathode investigated achieving a current density of approximately 0.02 A/cm2 at 1.9V. Their best performing MoS2/rGO electrode achieved a current density of 0.1 A/cm2, while the best mixture of MoS2 and Vulcan® (47 wt% MoS2) reached almost 0.3 A/cm2 at 1.9 V in the initial test. The latter electrode went through a stability test for 18 h at 2.0 V. The current density actually increased steadily for 15 h and reached 0.35 A/cm2. The authors speculated that the increase might be due to hydration effects. Furthermore, they also tested the effect of hot pressing of the MEA, which is recommended to ensure good contact between electrode and membrane. For three different MoS2/Vulcan mixes, the unpressed MEAs performed better than the hot pressed ones.

Ng et al. identified three types of Mo-based cathode materials with excellent HER activity from three electrode measurements in 2015 [105]. They later loaded the materials onto carbon black and tested them as cathodes in a PEM electrolyzer with Nafion as membrane and Ir on Ti-mesh as anode. One of their electrodes was based on molybdenum sulfide with an excess of sulfur according to the XPS measurement. The electrode exhibited a good performance and required 1.86 V to reach 0.5 A/cm2 in addition to good stability. Furthermore, the current density reached over 0.9 A/cm2 at 2 V. Another cathode, based on MoS13 clusters, required only 1.81 V to reach 0.5 A/cm2, while at 2 V the current density reached almost 1.1 A/cm2. In the stability test, however, the current density dropped by approximately 120 mA/cm2 over a period of 14 h at 1.85 V most likely due to detachment from the support or degradation of the clusters. The third and last material they tested was based on sulfur doped molybdenum phosphide and performed slightly better than the MoS13 electrode. These are the best performances reported for molybdenum sulfide cathode in PEM electrolyzers to this day.

In early 2016 Kumar et al. reported that a cell with a MoS2 nanocapsule cathode maintained a current density of approximately 60 mA/cm2 for 200 hours at 2.0 V [106]. The cell consisted of a Nafion membrane and IrO2 anode. The low performance is likely due to low conductivity and is comparable to that reported for bare MoS2 [84]. A study of this system mixed with carbon black should follow to allow comparison with other systems reviewed here.

The same year, Lu et al. reported the performance of an electrolyzer using amorphous molybdenum sulfide coated on a carbon cloth as cathode [107]. The cathode was synthesized by using thermolysis to form amorphous MoS2 on the carbon cloth. A post treatment with remote H2 plasma introduced sulfur vacancies. The cell consisted of a Nafion membrane and RuO2 nanoparticles on carbon paper as the anode. The cell required 2.76 V to reach 1 A/cm2 and the current density at 2.0 V was slightly above 0.3 A/cm2. Earlier this year, Kim et al. published work on a similar cathode. They deposited amorphous molybdenum sulfide on carbon paper using electrodeposition. The PEM cell used a Nafion membrane and electrodeposited IrO2 on carbon paper as anode. They investigated the effect...
of deposition potential and time on the performance. The best performing electrode reached a current density of 0.37 A/cm² at 1.9 V [108].

4.2 Nickel phosphide, Ni₂P

Nickel phosphide (Ni₃P) has been demonstrated as one of the best earth-abundant electrocatalysts for HER [32, 109]. Extensive investigations on Ni₃P have been performed in a three-electrode electrochemical cell and Ni₃P exhibits the superior activity to split water with low overpotentials, while sustaining high current densities [110-115]. However, after a thorough literature review, there are no reports, to our best of knowledge, that have implemented Ni₃P in a PEM device. Nevertheless, we compare Ni₃P with other earth-abundant electrocatalysts, and the recent developments on Ni₃P as electrocatalysts for HER are briefly reviewed.

Ni₃P can be synthesized by a variety of methods including solution-phase synthesis and gas-solid synthesis. The solution-phase synthesis is performed by using tri-n-octylphosphine (TOP) as a phosphorus source to react with Ni precursor [116]. At elevated temperatures (above 300 ºC), the TOP vaporizes rapidly and then phosphorizes different precursors, such as bulk Ni or Ni thin films, by forming Ni₃P. For instance, Read et al. successfully synthesized Ni₃P thin film on Ni substrate by the solution-phase synthesis method [113]. Figure 5a shows SEM images of representative Ni₃P film formed on the surface of Ni foil and the resulting Ni₃P is highly porous. The corresponding powder XRD pattern in Figure 5c, clearly shows that both Ni₃P and Ni are present without other impurities. The EDS element maps in Figure 5d and 2e further confirm the presence of Ni and P at the surface and the existence of a sharp interface between the Ni₃P coating and the underlying Ni substrate. Figure 5f shows polarization data for the HER in 0.5 M H₂SO₄ for a few transition metal phosphides (Ni₃P, Fe₃P, Co₃P, Ni₅P, Cu₃P, and NiFeP) as cathodes. Ni₃P showed the best HER performance in acidic solutions among those and required overpotentials of only −128 mV and −153 mV to reach a current density of −10 mA/cm² and −20 mA/cm², respectively. However, in alkaline media, all tested metal phosphide electrodes exhibit lower electrocatalytic HER activity compared to those in acidic conditions. Ni₃P films require overpotentials of around −200 mV to reach current densities of −10 mA/cm² in 1.0 M KOH.
Figure 5: SEM images of a representative Ni3P film on Ni. (c) Experimental powder XRD pattern of a Ni2P sample (black), with the simulated patterns of Ni (green) and Ni3P (red) shown for comparison. The y-axis was truncated to highlight the Ni3P as the Ni signal would otherwise dominate. (d, e) EDS elemental maps of a cross-section of the sample showing the presence of both Ni (green) and P (red) in a 2:1 ratio. f) Polarization data for the HER in 0.5 M H2SO4 and (g) 1 M KOH for a series of metal phosphide films, along with a Pt mesh electrode for comparison. Reprinted with permission from [113]. Copyright 2017 The Royal Society of Chemistry.

Gas-solid synthesis has also been implemented to synthesize Ni3P, where hypophosphites, for instance NH4H2PO2 and NaH2PO2, can decompose and release PH3 at elevated temperatures:

\[2\text{NaH}_2\text{PO}_2 \rightarrow \text{PH}_3 + \text{Na}_2\text{HPO}_4 \]

Equation 6

The PH3 can further react directly with Ni precursors, such as metal oxides and metal hydroxides, to form Ni3P [117-121]. For instance, Sun et al., reported one porous multishelled Ni3P, which was successfully synthesized by gas-solid method [120]. The porous multishelled NiO precursor was reacted into Ni3P by using NaH2PO2 as the phosphorus source, as shown in Figure 6a. Electrochemical measurements were performed in a 1 M KOH solution. Figure 6b shows the linear sweep curves for carbon, nanostructured Ni3P, hierarchical Ni3P, multishelled Ni3P, and Pt/C. The multishelled Ni3P exhibits a small overpotential of 10 mV (at current density of 1.0 mA/cm2) and a rapid cathodic current increase as more negative potentials were applied. The overpotential driving a cathodic current density of 10 mA/cm2 is 98 mV, which is much lower than that observed on hierarchical Ni3P (298 mV) and nanostructured Ni3P (214 mV). Figure 6c shows the Tafel plots of the tested samples. At lower overpotentials, Tafel analysis on the multishelled Ni3P exhibits a slope of 86.4 mV/decade, which is much smaller than those of hierarchical Ni3P (108.4 mV/decade) and nanostructured Ni3P (125.4 mV/decade), suggesting faster HER kinetics of the multishelled Ni3P. At the high-overpotential regime, a slightly upward deviation is observed in Tafel plots of Pt/C and hierarchical Ni3P, which could stem from the rate-limiting step gradually changing from the Heyrovsky to the Volmer mechanism at high current densities [122]. This porous multishelled structure endows Ni3P with short charge transport distances and abundant active sites, resulting in superior catalytic activity than those of Ni3P with other morphologies [120].
Catalytic reaction is highly sensitive to the surface of the catalyst. One of the most common strategies to enhance the catalyst performance is by increasing the active facet of the catalyst. Several computational studies have suggested that Ni₃P(001) surface is an active facet for HER due to an ensemble effect, whereby the presence of P decreases the number of metal-hollow sites, providing a relatively weak binding between proton and Ni–P bridges the sites to facilitate catalysis of the HER [123, 124]. Later on, Popczun et al. successfully synthesized Ni₃P nanoparticles which possessed a high density of exposed (001) facets (as shown in Figure 7) and then these Ni₃P were tested as cathodes for the HER in 0.50 M H₂SO₄ [125]. The overpotentials required for the Ni₃P nanoparticle to produce cathodic current densities of 20 mA/cm² and 100 mA/cm² were 130 mV and 180 mV, respectively. These overpotentials are lower than those of none-preferred facet Ni₃P [113] and other non-Pt HER electrocatalysts, including bulk MoS₂ [94] and MoC [126]. Figure 7c displays corresponding Tafel plots for Ni₃P electrodes. Tafel analyses of the Ni₃P nanoparticles show an exchange current density of 3.3×10⁻⁵ A/cm² and a Tafel slope of ~46 mV decade⁻¹ in the overpotential region of 25–125 mV. At higher overpotentials (150–200 mV), the Tafel slope and exchange current density increased to ~81 mV/decade and 4.9×10⁻⁴ A/cm², respectively. Again, this Tafel slope behavior reflect the change in the rate-limiting step of the HER [122].
Figure 7: (a) HRTEM image of a representative Ni$_2$P nanoparticle, highlighting the exposed Ni$_2$P(001) facet and the 5.2 Å lattice fringes that correspond to the (010) planes. (D) Proposed structural model of the Ni$_2$P nanoparticles. (C) Polarization data for three individual Ni$_2$P electrodes in 0.5 M H$_2$SO$_4$, along with glassy carbon, Ti foil, and Pt in 0.5 M H$_2$SO$_4$ for comparison. (D) Corresponding Tafel plots for the Ni$_2$P and Pt electrodes. Reprinted with permission from [125]. Copyright 2013 American Chemical Society.

Cation doping is an effective strategy to improve the HER activity of electrocatalysts. A few cations, such as Mn, Fe and Mo, have been reported to dope Ni$_2$P [110, 111, 127-129]. For instance, Li et al. synthesized a series of (Ni$_x$Fe$_{1-x}$)$_2$P by varying the amount of Fe doping ratio [128]. They found out that HER activities for (Ni$_x$Fe$_{1-x}$)$_2$P electrodes show a volcano shape as a function of Fe doping ratio (see Figure 8); HER activities first increased as Fe content increased until the composition reaches (Ni$_{0.33}$Fe$_{0.67}$)$_2$P. Then, by further increasing the Fe content, HER performance decreased gradually. (Ni$_{0.33}$Fe$_{0.67}$)$_2$P shows the best performance among the tested (Ni$_{x}$Fe$_{1-x}$)$_2$P samples, with a small overpotential of 214 mV to reach cathodic current densities of 50 mA/cm2. Such an interesting behavior could stem from an increase in the electrochemical surface areas, as well as a change in the electronic structure with increasing Fe content [128, 130].
Figure 8: a) Polarization curves of a series of \((\text{Ni}_{x}\text{Fe}_{1-x})_2\text{P}\) and commercial Pt/C electrodes for HER at a scan rate of 5 mV s\(^{-1}\). B) Time-dependent current density curve of \((\text{Ni}_{0.33}\text{Fe}_{0.67})_2\text{P}\) at a constant overpotential of \(\approx 285\) mV. Reprinted with permission from [128]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Electron conductivity and dispersion of electrocatalysts also severely affect the catalytic activity of the electrocatalysts. Various carbon materials, such as carbon nanotube and carbon cloth, which possess both strong electronic conductivity and high surface area, have been implemented as \(\text{Ni}_2\text{P}\) support materials to enhance HER activity [131-141]. For instance, Pan et al. reported a hybrid material where \(\text{Ni}_2\text{P}\) was supported on multiwalled carbon nanotubes (\(\text{Ni}_2\text{P}/\text{CNT}\)), as shown in Figure 9a [136]. The HER catalytic activity of the \(\text{Ni}_2\text{P}/\text{CNT}\) nanohybrid was evaluated in 0.5 M \(\text{H}_2\text{SO}_4\). \(\text{Ni}_2\text{P}/\text{CNT}\) exhibits high catalytic activity with a low overpotential of 124 mV when current density reached 10 mA/cm\(^2\). The corresponding Tafel slope is 53 mV/decade, reflecting that the HER reaction took place via a fast Volmer step followed by a rate-determining Heyrovsky step [142]. Furthermore, the turnover frequency (TOF) was calculated and normalized by the total number of active sites. To achieve a TOF value of 0.1 s\(^{-1}\), \(\text{Ni}_2\text{P}/\text{CNT}\) only need an overpotential of about 170 mV, much smaller than that required by the \(\text{Ni}_2\text{P}_x/\text{CNT}\) and \(\text{Ni}/\text{CNT}\) hybrid materials, further showcasing the high catalytic activity of \(\text{Ni}_2\text{P}\).
Figure 9: (a) TEM image of Ni₂P/CNT. (b) LSV curves of the Ni₂P/CNT, Ni₁₂P₅/CNT, Ni/CNT, Pt/C, CNT and bare GCE in 0.5 M H₂SO₄ with a scan rate of 5 mV s⁻¹. (c) Tafel plots of the Ni₂P/CNT, Ni₁₂P₅/CNT, Ni/CNT and Pt/C. (c) Calculated TOFs for the Ni₂P/CNT, Ni₁₂P₅/CNT and Ni/CNT in 0.5 M H₂SO₄. Reprinted with permission from [136]. Copyright 2017 The Royal Society of Chemistry.

4.3 Iron sulfides, FeₓSᵧ

Metal chalcogenides have received interest as HER electrocatalysts over the past decades such as molybdenum sulfide MoS₂ [40], tungsten sulfide WS₂ [143], iron phosphide FeP [45] or nickel phosphide Ni₂P [125]. Among them, iron sulfides (generally noted as FeₓSᵧ) show great interest, especially being the most abundant mineral on the Earth’s surface, and pyrrhotite Fe₉S₁₀ being the most abundant iron sulfide in the Earth and solar system [144, 145].

To our knowledge, the only study of iron sulfide electrocatalysts in a PEM WE device has been published by Di Giovanni et al. [145]. In this paper the authors describe the synthesis and characterization of different stoichiometries of iron sulfide FeₓSᵧ nanomaterials and their activity toward the HER. Pyrite FeS₂, greigite Fe₃S₄, and pyrrhotite Fe₉S₁₀ crystalline phases were first prepared using a polyl synthetic route. Morphological and electronic properties of the prepared nanoparticles were characterized, as well as their electrochemical properties. Greigite is formed of micrometer-sized gypsum flowerlike particles consisting of thin platelets with a very high aspect ratio. Pyrite particles have a hierarchical morphology consisting of large micrometer-sized spheres of aggregated smaller particles. Their performances were investigated in situ in a PEM electrolyzer single cell. MEAs were prepared using pyrite, pyrrhotite, or greigite as the anode catalyst and tested in a PEM electrolysis single cell. The catalysts were not supported, but were mixed with 20% of carbon black. Nafion 115 (125 µm) was used as the membrane and IrO₂ as the anode catalyst. A cross section SEM image is presented in Figure 10 (left). For the same catalyst loading, both ex situ and in situ (Figure 10(right)) electrochemical experiments showed that pyrite (FeS₂) is the most active compared to greigite Fe₃S₄ and pyrrhotite Fe₉S₁₀, with the electrocatalysis starting at an overpotential of ca. 180
These three materials exhibited a very stable behavior during measurement, with no activity degradation for at least 5 days. All catalysts have been tested in a PEM electrolysis single cell, and pyrite FeS₂ allows a current density of 2 A/cm² at a voltage of 2.3 V.

It's noteworthy to emphasize that FeₓSᵧ based materials have been studied as electrocatalysts for the HER and showed promising results. Different chemical structures have been studied for electrocatalytic hydrogen evolution and the main results are resumed in table SI.

FeS pyrrhotite has been prepared by a solvothermal route and showed hexagonal shaped nanoparticles with size ranging from 50 to 500 nm, achieving electrocatalysis for molecular hydrogen evolution with no structural decomposition or activity decrease for at least 6 days at an overpotential of 350 mV in neutral water [146].

Miao et al. prepared mesoporous Fe₂S materials with high surface area by a sol-gel method followed by a sulfurization treatment in an H₂S atmosphere [148]. An interesting HER catalytic performance was achieved with a rather low overpotential of 96 mV at a current density of 10 mA/cm² and a Tafel slope of 78 mV/decade under alkaline conditions (pH 13).

Jasion et al. proposed the synthesis of nanostructured FeS₂ [149]. By changing the Fe:S ratio in the precursor solution, they were able to preferentially synthesize either 1D wire or 2D disc nanostructures. The HER electrocatalytic activity of the nanostructured FeS₂ (drop-casted on a glassy carbon electrode) was measured via linear sweep voltammetry (LSV) and showed the best results for the 2D disc structures with an overpotential of just 50 mV larger than that of Pt.

Chua and Pumera investigated the electrochemical hydrogen evolution of natural FeS₂ [150]. Interestingly, they focused on the susceptibility of natural FeS₂ hydrogen evolution performances towards sulfide poisoning, a major issue for cathodic hydrogen evolution. The results showed a better response of the FeS₂ electrodes than platinum.

A hybrid catalyst of Cobalt-Doped FeS₂ Nanosheets–Carbon Nanotubes for the HER was proposed by Wang et al. [151]. The pyrite phase of Fe₁₋ₓCoₓS₂/CNT showed a low overpotential of ~120 mV at 20 mA/cm², a low Tafel slope of ~46 mV/decade, and long-term durability over 40 h of HER operation. Huang et al. employed carbon black as a support to prepare a cobalt-doped iron sulfide...
electrocatalyst with high-electrical conductivity and maximal active sites [152]. Electrochemical results showed an enhancement in the HER activity of Co-doped FeS2 in comparison to undoped FeS2 in acidic electrolyte (pH = 0). The overpotential necessary to drive a current density of 10 mA/cm² is 150 mV and only decreases by 1 mV after 500 cycles during a durability test.

Bi-functional iron-only electrocatalysts for both water splitting half reactions are proposed by Martindale et al. [153]. Full water splitting at a current density of 10 mA/cm² is achieved at a bias of ca. 2 V, which is stable for at least 3 days.

Iron sulfide alloys have also shown potential catalytic activity. Yu et al. report the 3D ternary nickel iron sulfide (Ni0.7Fe0.3S2) microflowers with a hierarchically porous structure delivering an overpotential of 198 mV at a current density of 10 mA/cm² [154]. Zhu et al. proposed bimetallic iron-nickel sulfide (Fe11.1%–Ni3S2) nanoarrays supported on nickel foam having a η_{10} of 126 mV [155]. A patent has also been filed for the use of iron sulfide in an electrolytic cell [156].

4.4 Carbon-based materials

Due to the earth abundancy and high electronic conductivity, carbon based materials, such as carbon nanoparticles (CNPs), carbon nanotubes (CNTs), graphene, etc., are mostly used as the supporting material for the electron transfer between the substrates and the electrocatalysts [157]. One of the most successful carbon material used as electrocatalyst support is carbon black, which is a commercially available product with high surface area (ca. 200-1000 m²/g) [158]. By uniformly dispersing electrocatalyst NPs on carbon black, the electrochemically active surface area (EASA) of the electrocatalyst can be maximized, and the amount of the catalyst, such as Pt, can be minimized. Pt/C is actually the benchmark HER catalyst for PEM electrolysis [159].

In order to further reduce the cost of H₂ produced by the PEM electrolyzer, other carbon-supported electrocatalysts, especially those only consist of earth abundant elements, such as Mo/C/CNTs [160], A-Ni-C (atomically isolated Ni anchored on graphitic carbon) [161], Co-doped FeS2/CNTs [162], CoFe nanoalloys encapsulated in N-doped graphene [163], Ni3P/CNTs [136], WO2/C nanowires [164], etc., have been studied as potential HER catalysts alternative to Pt. However, carbon-supported and Pt-free HER catalysts that have actually been tested in a real PEM device are rarely reported, and only a few can be found in the literature, and they are summarized in Table 3.

Nevertheless, the usage of C-based materials is not only limited to the anode. A recent study shows that carbon nitride (C₃N₄) can efficiently resist the harsh conditions at the anode side, therefore it can be used as the supporting material for OER catalysts, such as IrO₂, hence to reduce the Ir content at the anode [165].

4.5 Co-clathrochelates

The interest in Co-clathrochelates as electrocatalysts is prompted by their ability to maintain the same ligand environment for Co in different oxidation states [166]. However, only a few studies can be found implementing Co-clathrochelates in PEM electrolysers. As can be seen from Table 3, the cell performance when cathodes are impregnated with such stable Co-containing electrocatalyst complexes is comparable to other earth-abundant catalyst systems, achieving current densities of 0.65 and 1 A/cm² at 1.7 and 2.15 V, respectively (Dinh Nguyen et al. [167] and Grigoriev et al. [168]). In both these works, the Co-clathrochelates were implemented in 7 cm² cells, but with different loadings. Figure 11a shows how a clean Glassy Carbon Electrode (GCE) (a) is improved by addition of
[Co(dmg)(BF₂)₃]BF₄ (c) and Co(dmgBF₂)₂ (d) in a 0.5 M H₂SO₄ aqueous solution. The two Co clathrochelate molecules are shown in Figure 11b.

Figure 11: Current-potential relations of (a) a clean glassy carbon electrode (GCE), (b) GCE modified with carbon black (Vulcan XC72) and Nafion 117, (c) GCE modified with Vulcan XC72 (70 wt.%), [Co(dmg)(BF₂)₃]BF₄ (30 wt.%) and Nafion 117, (d) GCE modified with Vulcan XC72 (70 wt.%), Co(dmgBF₂)₂ (30 wt.%) and Nafion 117, all in a 0.5 M H₂SO₄ aqueous solution, scan rate: 10 mV/s. Reprinted with permission from [167]. Copyright 2012 Elsevier.

In Figure 11a), the Co(dmgBF₂)₂ shows better electrochemical performance than [Co(dmg)(BF₂)₃]BF₄ in the three-electrode configuration. However, when the two electrode modifications above were implemented in single cells for i-V characterization and stability testing under operational conditions, the [Co(dmg)(BF₂)₃]BF₄ catalyst shows the best performance. The results are given in Figure 12a and b for current-potential and stability, respectively. The results reveal an increased cell voltage of 0.2-0.25 V when substituting the HER catalyst from Pt to Co-clathrochelates. The catalysts show no sign of degradation after 60 hrs of operation at 0.2 A/cm².

Figure 12: a) Current-voltage performances for a 7 cm² single cell with different MEAs: (a) Ir(O₂)/Nafion 117/Pt(H₂), (b) Ir/Nafion 117/[Co(dmg)(BF₂)₃]BF₄-Vulcan XC72, (c) Ir/Nafion 117/[Co(dmgBF₂)₂]-Vulcan XC72, (d) Pt/Nafion 117/Pt, (e) Ir/Nafion 117/[Co(acac)₃]-Vulcan XC72. Experiments were carried at 60° and P = 1 atm. b) Stability of the cells at 0.2 A/cm². Reprinted with permission from [167]. Copyright 2012 Elsevier.

The discrepancy between the results in half cell and full cell testing clearly underline the need for testing in operation conditions before concluding on electrochemical performance. Co and Fe hexachloroclathrochelates has also been applied by Grigoriev et al. in a full cell, impregnated on
Vulcan XC-72 Gas Diffusion Electrodes (GDEs) with a surface area of 7 cm² [168]. The main outcome is that substituting Co with Fe improves the electrocatalytic performance of the same macromolecule (Figure 13). One can also see that the overvoltage is around 0.25 V higher for the hexachloroclathrochelates than for the carbon supported Pt cathode used as reference. Comparing the results of Grigoriev et al. to the results reported by Dinh Nguyen et al. is difficult, since no information is given with respect to ohmic contributions to cell resistance for the former, while ohmic contributions are subtracted for the latter. However, the same difference in overvoltage can be seen with respect to carbon supported Pt.

Figure 13: Current-voltage performances of MEAs with cathodes based on metal(II) clathrochelates Co(Cl₂Gm)(Bn-C₄H₉): (1), Co(Cl₂Gm)(Bn-C₆H₁₃): (2), Co(Cl₂Gm)(BCH₃): (3), Co(Cl₂Gm)(BC₆H₅): (4) and Fe(Cl₂Gm)(BC₆H₅): (5) and Pt/Vulcan XC-72 (6). Reprinted with permission from [168]. Copyright 2017 Elsevier.

Grigoriev et al. reported that the HER performance of Co-encapsulating macromolecules is improved by adding electron-withdrawing ligands, but otherwise changing ligands makes little difference as long as the electronic structure is similar. This can be seen for different aryl and alkyl apical substituents in [168]. El Ghachtouli et al. reported that the exchange of ligands between fluorine and phenyl- methyl groups has negligible effect on i-V behavior, although the ligands go from strongly electron-withdrawing fluorine, via moderately electron withdrawing phenyl- to electron donating methyl groups. The electron affinity of the ligands did, however, affect the reduction potential of Co to surface nanoparticles, which in turn improved the HER [169]. Xile Hu et al. reported a more ambiguous effect of manipulating electron affinities by substituting phenyl- for methyl ligands. In this study, a more positive potential for H₂ evolution correlated with a decreased activity for electrocatalysis. Complex red-ox behavior was also reported in this study, such as Co(III) hydride intermediates formed upon reduction in acidic media [170]. Zelinskii et al. utilized perfluorophenyl ribbed substituents to stabilize Co(I) in an effort to enhance the HER, but although the reduced Co(I) was successfully stabilized, the resulting Co-clathrochelate complex was not electrochemically active in the HER [171].

One of the main challenges for non-noble metal catalysts in aqueous electrolyzer cathodes is their stability in harsh acidic conditions. The Co-clathrochelates show good stability in the reported works, exemplified by a stable overvoltage of 240 mV and a faradaic efficiency of 80 %, remaining stable for more than 7 hrs in pH = 2 and at 1 mA/cm² and 0.9 V [172].
Table 3: Summary of PEM WE full cells with EACs as cathodes.

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Membrane</th>
<th>Anode</th>
<th>Temp. (°C)</th>
<th>Performance</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS₂</td>
<td>Nafion 117</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>0.02 A/cm²@1.9 V</td>
<td>[84]</td>
</tr>
<tr>
<td>47wt% MoS₂/CB (2.5)</td>
<td>Nafion 117</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>0.3 A/cm²@1.9 V</td>
<td>[84]</td>
</tr>
<tr>
<td>MoS₂/rGO (3)</td>
<td>Nafion 117</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>0.1 A/cm²@1.9 V</td>
<td>[84]</td>
</tr>
<tr>
<td>MoS₂/CB (3)</td>
<td>Nafion 115</td>
<td>Ir black (2)</td>
<td>80°C</td>
<td>0.9 A/cm²@2.0 V</td>
<td>[105]</td>
</tr>
<tr>
<td>MoS₂/C/CB (3)</td>
<td>Nafion 115</td>
<td>Ir black (2)</td>
<td>80°C</td>
<td>1.1 A/cm²@2.0 V</td>
<td>[105]</td>
</tr>
<tr>
<td>MoS₂ nCapsules (2)</td>
<td>Nafion 117</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>0.06 A/cm²@2.0 V</td>
<td>[106]</td>
</tr>
<tr>
<td>MoS₂/C-cloth</td>
<td>Nafion 117</td>
<td>RuO₂ (2)</td>
<td>80°C</td>
<td>0.3 A/cm²@2.0 V</td>
<td>[107]</td>
</tr>
<tr>
<td>MoS₂/C-paper</td>
<td>Nafion 212</td>
<td>IrO₂ (0.1)</td>
<td>90°C</td>
<td>0.37 A/cm²@1.9 V</td>
<td>[108]</td>
</tr>
<tr>
<td>Pyrite FeS₂</td>
<td>Nafion 115</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>1 A/cm²@2.101 V</td>
<td>[145]</td>
</tr>
<tr>
<td>Greigite Fe₃S₄</td>
<td>Nafion 115</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>1 A/cm²@2.130 V</td>
<td>[145]</td>
</tr>
<tr>
<td>Pyrrholite FeS₉₈</td>
<td>Nafion 115</td>
<td>IrO₂ (2)</td>
<td>80°C</td>
<td>1 A/cm²@2.158 V</td>
<td>[145]</td>
</tr>
<tr>
<td>30 wt% Pd/P-doped C</td>
<td>Nafion 115</td>
<td>RuO₂ (3)</td>
<td>80°C</td>
<td>1 A/cm²@2 V</td>
<td>[173]</td>
</tr>
<tr>
<td>(carbon black)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 wt% Pd/N-doped CNTs</td>
<td>Nafion 115</td>
<td>RuO₂ (3)</td>
<td>80°C</td>
<td>1 A/cm²@2.01 V</td>
<td>[174]</td>
</tr>
<tr>
<td>30 wt% Pd/P-doped</td>
<td>Nafion 115</td>
<td>RuO₂ (3)</td>
<td>80°C</td>
<td>1 A/cm²@1.95 V</td>
<td>[175]</td>
</tr>
<tr>
<td>Graphene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated single-wall</td>
<td>Nafion 115</td>
<td>IrRuO₅</td>
<td>80°C</td>
<td>1 A/cm²@1.64 V</td>
<td>[176]</td>
</tr>
<tr>
<td>carbon nanotubes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co NPs/N-doped C</td>
<td>Nafion NRE-212</td>
<td>IrO₂ (0.55)</td>
<td>80°C</td>
<td>1 A/cm²@150 mV</td>
<td>[177]</td>
</tr>
<tr>
<td>Boron-capped tris</td>
<td>Nafion 117</td>
<td>Ir black (2-2.5)</td>
<td>90°C</td>
<td>1 A/cm²@2.1 V</td>
<td>[178]</td>
</tr>
<tr>
<td>(glyoximato) cobalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>complexes on carbon black (Co(dmg)/C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Co(dmgBF₂)₂]-Vulcan XC72</td>
<td>Nafion 117</td>
<td>IrO₂</td>
<td>60°C</td>
<td>0.5 A/cm²@1.7 V</td>
<td>[167]</td>
</tr>
<tr>
<td>2.5 mg cm⁻² *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Co(dmg)(BF)₂]BF₄-Vulcan</td>
<td>Nafion 117</td>
<td>IrO₂</td>
<td>60°C</td>
<td>0.65 A/cm²@1.7 V</td>
<td>[167]</td>
</tr>
<tr>
<td>XC72 2.5 mg/cm² *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co hexachlorocloanthochelates impregnated on Vulca</td>
<td>Nafion 117</td>
<td>Ir black</td>
<td>80°C</td>
<td>1 A/cm²@2.15 V</td>
<td>[168]</td>
</tr>
<tr>
<td>n XC-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–12·10⁻⁴ mg/cm² **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Weight of whole complex
** Weight of catalyst

4.6 Density Functional Theory (DFT) for HER catalysts

Density functional theory (DFT) is an essential tool for understanding the mechanisms and active sites of novel catalysts as it enables evaluation of the thermodynamics of the individual steps in HER. Modelling reaction barriers is however computationally demanding, and most studies as such, rather adopt a “ΔG approach”. As HER involves both proton transfer and charge transfer, the activity of a catalyst is intrinsically linked to its crystal and electronic structure. In that respect, the hydrogen bonding strength/adsorption energy (ΔGₐ) has been widely used as descriptor of catalyst activity. Following the Sabatier principle too strong or weak interactions with the catalyst surface tends to lower the overall catalyst activity yielding the typical volcano type behavior (Figure 14).
Figure 14 Volcano plot of the exchange current density as a function of the DFT-calculated Gibbs free energy of adsorbed atomic hydrogen for nanoparticulate MoS$_2$ and the pure metals. Reprinted with permission from [40]. Copyright 2007 Science.

MoS$_2$ and similar layered transition metal dichalcogenides (TMD) crystallize in two structures, the 2H and 1T polymorphs (Figure 15), with trigonal prismatic and octahedral coordination, respectively.

The thermodynamically stable 2H polymorph of single layer MoS$_2$ is semiconducting with a band gap of 1.74 eV [180], and its (0001) basal plane exhibits negligible catalytic activity towards HER due to a ΔG_H of \sim2 eV [179]. On the other hand, Hinnemann et al. [91] showed that the (-1010) Mo edge sites of single trilayer MoS$_2$ can be highly active towards HER, and that they resemble the active sites of the hydrogen-evolving enzymes nitrogenase and hydrogenase [40, 91]. The Mo edge exhibits a calculated ΔG_H of merely 0.08 eV (Figure 16), compared to 0.18 eV of the (10-10) S edge [181], and is as such, close to thermoneutral (for low H coverages). The increased activity of the edge sites is attributed to in-gap surface states near the Fermi level, implying that 2D MoS$_2$ with a high edge site concentration can be activated towards HER [182]. Significant computational studies have been devoted to exploring strategies to increase the density of activity sites in MoS$_2$ and to optimize ΔG_H through electronic structure manipulation. Bonde et al. [3] for instance, showed that Co-promotion decreases the ΔG_H of the S edge to 0.07 eV, but not of the Mo edge, and as such leads to increased number of active sites. Tsai et al. [183] showed that various supports can also be used to tailor the
hydrogen bonding to MoS$_2$ for Mo edges. Increasing the catalyst adhesion to the support was found to weaken the hydrogen bonding, and is attributed to downward shifts of the S p-states, which in turn lead to filling of H 1s antibonding states. Efforts have also been made to understand how the basal plane of MoS$_2$ can be activated towards HER through defect chemical, structural and strain engineering [184-187]. Li et al. [184] showed that ΔG_{H} of basal plane MoS$_2$ decreases with increasing S vacancy concentration (Figure 16), and that vacancy formation induces in-gap defect states stemming from undercoordinated Mo (Figure 16b), which allows for favourable hydrogen binding. Straining the vacancies was furthermore shown to decrease the ΔG_{H} (Figure 16c) even further. Ouyang et al. [187] showed that other native point defects such as V_{MoS} and V_{MoS} and extended defects, such as grain boundaries affect hydrogen bonding and as such the HER performance. In addition, Deng et al. [188] showed that single atom transition metal substitution creates in-gap states that lower the ΔG_{H}, with Pt-MoS$_2$ yielding a close to thermoneutral binding energy.

While the basal plane of 2H-MoS$_2$ is semiconducting [180], its metastable 1T phase is metallic [189] and even its basal plane is highly active towards HER. The metallicity and high HER activity stems from the partially filled Mo 4d and S states at the Fermi level, leading to favorable ΔG_{H} [190]. DFT calculations reveal that ΔG_{H} is highly coverage-dependent due to H induced surface reconstructions, reaching values between -0.28 and 0.13 eV for 12.5 to 25 % coverage [190]. The phase stability of the 1T phase, and its band gap and as such HER activity, can be tuned by surface functionalization, by e.g. -CH$_3$, CH$_3$, OCH$_3$, and NH$_2$, which all were shown to bind more strongly to the 1T surface compared to the 2H basal plane [191].

Figure 16: (a) Free energy vs. reaction coordinate for HER on basal plane MoS$_2$ for various vacancy concentrations, (b) corresponding band structure, and (c) effect of strain and vacancies on ΔG_{H}. Reprinted with permission from [184]. Copyright 2015 Nature Publishing Group.

Realizing the importance of crystal and electronic structure with respect to HER activity of MoS$_2$, a range of other layered TMD have attracted attention both experimentally and computationally. Tsai
et al. [192] showed also that for MoSe$_2$ and WeSe$_2$, the Mo and Se edge sites are more active than the basal planes, and that the selenides generally exhibit weaker H binding than their sulphur counterparts. Tsai et al. [179] furthermore explored the electronic structure, ΔG_H and the energy of HX adsorption, ΔG_{HX} (i.e. descriptor for stability) for the basal planes of a range of 2D MX$_2$ (M= Ti, V, Nb, Ta, Mo, W, Pd, and X=S or Se) TMDs. The 2D TMDs vary from semiconducting to metallic (Figure 17), with group 7 TMDs (Mo and W) changing from semiconducting to metallic from the 2H to the 1T phase. The metallic TMD were in general found to exhibit stronger H bonding (lower ΔG_H) than the semiconducting phases (Figure 17). The semiconducting TMDs span a wider range of ΔG_H than the metallic phases, reflecting the importance of the electronic structure with respect to the HER activity (Figure 17). They found an inverse correlation between ΔG_H and ΔG_{HX} for both semiconducting and metallic phases, reflecting the general understanding of the relationship between HER activity and. Furthermore, the metallic TMD were in general found to exhibit stronger H bonding (lower ΔG_H) than the semiconducting phases.

![Figure 17: p-projected density of states on the S or Se atom for 2D TMDs in the 2H and 1T structures relative to the Fermi level, with blue indicating metallic basal planes, while grey ones are semiconducting. Reprinted with permission from [179]. Copyright 2015 Elsevier.](image-url)
Of the HER active transition metal phosphides, those of especially Ni and Mo have been the subject of extensive computational investigations. Bulk Ni$_2$P is metallic with a crystal structure consisting of alternating Ni$_3$P and Ni$_3$P$_2$ planes along the (0001) axis. The HER activity of Ni$_2$P (0001) surfaces were originally predicted computationally by Liu and Rodriguez [124] [123] showing that the P sites on the phosphide surface play an important role in producing a weak-ligand effect involving Ni \rightarrow P charge transfer, resulting in suitable ΔG_H and high activity for the dissociation of H$_2$. The bare Ni$_3$P terminated surface exhibits a strongly binding Ni$_3$ hollow site with ΔG_H of \sim -0.5 eV for the first H, and several sites of lower H binding strength [193, 194]. DFT calculations show that the surfaces prefer a P-covered reconstruction of the Ni$_3$P termination in which a P ad-atom binds on-top of the strongly H binding Ni$_3$ hollow site [193] and that this P ad-atom reduces the bindings strength of the site, and can bind up to 3 H atoms [195, 196]. Hakala and Laasonen [194] showed that the H adsorption properties can be modified through Al substitutions, leading to ΔG_H close to 0 eV.

In a joint experimental-computational effort, Xiao et al. [197] studied hydrogen binding at the Mo, Mo$_3$P and MoP surfaces showing that 001-Mo surface binds H strongly with a ΔG_H ranging from -0.54 to -0.46 eV for ¼ to ¾ monolayers. The Mo and P terminated (001) MoP surfaces was found to exhibit values of -0.63 to -0.59 and -0.36 to 0.34, respectively, indicating that the P terminated surface can adsorb H at low coverages and desorb at high coverages, reflecting the importance of P also in these catalysts.

5. Earth-Abundant Anode Materials

As mentioned previously, the only stable and well-established catalysts for the OER in acidic media are noble metal oxides such as IrO$_x$ and RuO$_x$ [198]. A recent study (2016) on benchmarking of water oxidation catalysts (WOC) revealed that there are no EACs that can reach the target metric of short-term acid stability, which is defined as operation at 10 mA/cm2 for 2 h [199]. We also expected that there are no PEM WE reports based on EACs anodes for the OER side, but this is also not the case. Herein, we report on recent advances and current trends on EACs for the OER that show promising results in terms of performance and stability in acidic media, which exceeded the short-term target of 2 h in just two years. The presented materials and their performance are summarized in Table 4. Manganese oxide (MnO$_x$) was reported to be functional under acidic conditions and before activation exhibited a Tafel slope of approx. 650 mV/decade, but after potential cycling and activation of the MnO$_x$ film the slope was improved to approx. 90 mV/decade [200]. The authors reported a galvanostatic stability of 8 h in 0.5 M H$_2$SO$_4$ at a current density of 0.1 mA/cm2 and overpotential of 540 mV. The same group introduced Mn in CoO$_x$ with the former acting as a stabilizing structural element and the CoMnO$_x$ showed a Tafel slope of 70-80 mV/decade and a stability of more than 12 h without any dissolution [201]. The overpotential for a galvanostatic operation at 0.1 mA/cm2, which is 2 orders of magnitude lower than the target values though, was approx. 450 mV. In another work, MnO$_2$ was stabilized by introduction of TiO$_2$ in the undercoordinated surface sites of MnO$_2$. Frydendal et al. applied a 5 nm layer of Ti-modified MnO$_2$ on a 35 nm think layer of pure MnO$_2$ [202]. The composite material exhibited a Tafel slope of 170 mV/decade and a moderate overpotential of approx. 490 mV at 1 mA/cm2. The Mn dissolution in 0.05 M H$_2$SO$_4$ was suppressed by roughly 50% after the TiO$_2$ modification. The authors came up with this strategy after an initial DFT study, which indicated that guest oxides such as GeO$_2$ and TiO$_2$ should improve the stability of MnO$_2$. The reason is that both GeO$_2$ and TiO$_2$ have lower surface formation energies than MnO$_2$ and are more favorable for termination at the undercoordinated sites on MnO$_2$. Another Mn-containing system is reported...
by Patel et al., and is based on nanostructured Cu$_{1.5}$Mn$_{1.5}$O$_{4}$x wt.% F (x=0, 5, 10, 15) [203]. The Cu$_{1.5}$Mn$_{1.5}$O$_{4}$:10F electrocatalyst in 0.5 M H$_2$SO$_4$ at 40 °C exhibited an onset potential at 1.43 V vs. RHE for the OER and reached 9.15 mA cm$^{-2}$ at 1.55 V vs. RHE. Interestingly, the in-house made IrO$_2$ showed the same onset overpotential and 7.74 mA/cm2 at 1.55 V. The reported Tafel slope for the EAC is 60 mV/decade and it should be noted that the current-voltage curves were iR corrected. In a report by Anantharaj et al. it is suggested that the method used to calculate the iR drop compensation should be reported, along with the uncompensated i-V curves [53]. The material showed also very good stability for almost 24 h of operation at constant current density of 16 mA/cm2. This material is also suitable for the oxygen reduction reaction (ORR), where it showed again similar activity to IrO$_2$. The authors did not apply the Cu$_{1.5}$Mn$_{1.5}$O$_{4}$:10F as a anode in PEM WE full cell, but they did so for the cathode in a PEM fuel cell (PEM FC) mode. The results are very promising and the performance is the same as with IrO$_2$ and quite close to the operation in a 3-electrode mode. It should be noted though that the loading of the EAC was 6.7 times higher than for IrO$_2$.

Moreno-Hernandez et al. developed a quaternary oxide, Ni$_{0.5}$Mn$_{0.5}$Sb$_{1.7}$O$_{y}$, which exhibited an initial OER overpotential of approx. 675 mV vs. RHE in order to reach 10 mA/cm2 in 1.0 M H$_2$SO$_4$ [204]. The overpotential stabilized at approx. 735 mV and the electrocatalyst performed for 168 h of continuous operation (Figure 18). The authors reported a full cell application in a 2-compartment electrolysis cell with Nafion as the separating membrane, but they did not use the catalyst in a PEM WE full cell. The stability of the Ni$_{0.5}$Mn$_{0.5}$Sb$_{1.7}$O$_{y}$ is comparable to the noble metal oxides and is related to the fact that Ni, Mn and Sb oxides are stable in acidic conditions at OER potentials according to Pourbaix diagrams [205, 206].

Another important element in the aqueous electrochemistry is cobalt (Co). Co oxide-based catalysts have shown excellent performance in alkaline and near neutral pH solution [207, 208]. Under strong acidic conditions they show fast dissolution, sluggish kinetics and high overpotentials [199, 209, 210]. Mondaschein et al. developed a highly crystalline CoO$_x$ nanostructured film, which was deposited on FTO by electron-beam evaporation followed by annealing at 400 °C [211]. The overpotential for 10 mA/cm2 was 570 mV vs. RHE in 0.5 M H$_2$SO$_4$, and the catalyst maintained an OER with near-
quantitative Faradaic yield for over 12 h. Unfortunately, the dissolution rate of Co at this high current density was 100 ng/min and further studies are needed for corrosion protection of such structures.

To this end, Yan et al. have recently reported the synthesis of mesoporous Ag-doped Co₃O₄ nanowires, which showed improved stability over 10 h operation at 1.6 V vs. RHE in 0.5 M H₂SO₄ as Ag is known to be stable in acidic media [212]. The Ag-doped Co₃O₄ nanowires were synthesized by electrodeposition-hydrothermal process, which was followed by calcination at 400 °C. The nanostructured catalysts showed a Tafel slope of 219 mV/decade and an overpotential of approx. 680 mV at current density of 10 mA/cm². The authors do not provide any dissolution products analysis or any post-operation analysis of the material, as well as no comparison with IrO₂. Co-containing polyoxometallates (Co-POMs) have shown promising catalytic properties for water splitting at near-neutral pH [213]. To this end, Blasco-Ahicart et al. developed the Ba salt of Co-phosphotungstate polyanion (Ba[Co-POM]) that outperformed IrO₂ at pH<1, showing an overpotential of 189 mV vs. RHE at 1 mA/cm² with a faradaic efficiency of 99%. The Tafel slope was 66 mV/decade at the long-term stability was assessed at an overpotential of 250 mV vs. RHE. The initial current was more than 2 mA/cm² but decreased down to 0.35 mA/cm² after 24 h of operation. This degradation is assigned to charge localization that reduces the overall performance, which can be retrieved after charge delocalization at open-circuit potential. The authors could not assess the performance of the material at 10 mA/cm² as the carbon paste, which acted as a binder was not stable.

Figure 19: Molecular structure of the Co-POM cluster (a), Linear sweep voltammetry of different Co-POM electrocatalysts compared with different carbon paste/IrO₂ blends in 1 M H₂SO₄. Reprinted with permission from [213]. Copyright 2017 Nature Publishing Group, Macmillan Publishers Limited.

An interesting work conducted by Rodriguez-Garcia et al. combines the Co and Sb elements in an anode made of cobalt hexacyanoferrate supported on Sb-doped SnO₂ [214]. In this work the synergistic effect of the OER catalysts (CoHFe) and the support, antimonite tin oxide (ATO) is highlighted and the “wining” configuration is when 17% wt. of CoHFe is deposited on ATO. The onset of the OER was approx. at 1.75 V vs. RHE as determined by RDE experiments. Interestingly, the authors assembled a PEM WE full cell and they have found the onset potential as from the RDE experiments. A current density of the order of 50-100 mA/cm² was reached at 2 V cell voltage. The
authors studied the Sn and Sb leaching rates during PEM operation and they observed increases in leaching rates for cell voltages above 2 V. To our knowledge this is the first report on PEM WE full cells using EACs for the anode.

![Figure 20: PEM WE polarization curves before and after 22 h of potentiostatic control at 2 V (a), Stability run at 2 V for 22 h (b). Reprinted with permission from [214]. Copyright 2018 The Royal Society of Chemistry.](image)

Zhao *et al.* prepared FeOx which was incorporated into TiO₂ nanowires on Ti foam as the support [215]. The catalyst showed an OER overpotential of 260 mV for 1 mA/cm² in 0.5 M H₂SO₄. The reported Tafel slope was 126.2 mV/decade, while for the RuO₂ it was 56.2 mV/decade. The composite material showed very good stability with no significant degradation and after 20 h operation at the OER potential of 1.9 V the current was reduced by 18.7%, but the faradaic efficiency is not provided.

Another catalyst involving Fe as the electroactive transition metal is provided by Kwong *et al.* [216]. In this work, three different Fe-based oxides are studied; the mixed maghemite-hematite, and the single polymorphs, maghemite and hematite. The hematite film was OER-inactive, the maghemite corroded after approx. 6 h of operation, while the mixed polymorph sustained a 10 mA/cm² for more than 24 h in 0.5 M H₂SO₄. The overpotential was 650 mV vs. RHE and increased about 13% after 24 h. The reported Tafel slope is of the order of 56 mV/decade and the faradaic efficiency is almost 100%.

In this paragraph, three more interesting materials for the OER in acid are reported. Yang *et al.* reported a bifunctional composite material, which is able to catalyze both OER and HER in acidic environment (0.5 M H₂SO₄) [217]. A flexible porous membrane comprised of MoSe₂ nanosheets on MoO₂ nanobelts and carbon nanotubes (MoSe₂ NS/MoO₂ NB/CNT-M) showed a Tafel slope of 112.3 mV/decade and an overpotential of 400 mV at 10 mA/cm². More importantly, the authors applied the composite porous membrane in a 2-electrode water splitting cell and they compared the performance of the EAC against a configuration having RuO₂ as the anode and Pt/C as the cathode at a cell voltage of 2 V. After a large attenuation of the current densities in both configurations the composite porous membrane stabilized at 8.87 mA/cm², while the noble-metal configuration at 4.38 mA/cm².
Figure 21: Photos of the flexible porous membranes of MoSe₂ NS/MoO₂ NB/CNT-M and the individual components (a) and their i-V characteristics (b), stability in acidic media using as anode and cathode the MoSe₂ NS/MoO₂ NB/CNT-M electrode. Reprinted with permission from [217]. Copyright 2018 The Royal Society of Chemistry.

A superaerophobic bifunctional N-doped tungsten carbide nanoarrays catalyst was synthesized on carbon paper with a combination of hydrothermal and CVD methods by Han et al. [218]. The OER onset is at an overpotential of approx. 120 mV vs. RHE, while a high current density of 60 mA/cm² was reached at approx. 470 mV overpotential. This catalyst outperformed IrO₂ in 0.5 M H₂SO₄ under 3-electrode configuration as well as in a 2-electrode water splitting cell, where both the anode and the cathode were the N-WC nanoarrays. Unfortunately, the stability of the material is limited and after 1 h of operation at 10 mA/cm² the overpotential increased from 120 mV to 320 mV vs. RHE, but the faradaic OER efficiency is not reported.

Figure 22: Synthesis route of the N-doped WC nanoarrays (a), i-V curves of water splitting with the N-WC as anode and cathode electrodes compared with N-WC as the cathode and Ir/C as the anode (b), and video snapshot of the water electrolysis with a 1.5 V commercial battery (c). Reprinted with permission from [218]. Copyright 2018 Nature Publishing Group.

Mondschein et al. reported the intermetallic Ni₂Ta for the OER in 0.5 M H₂SO₄ [219]. Intermetallic alloys are metallic conductors and Ni₂Ta has been used as a corrosion resistance coating [220, 221]. In their report, Mondschein et al. found that Ni₂Ta combines the OER activity of Ni and the corrosion resistance of Ta and the intermetallic compound needed 980 mV to reach 10 mA/cm², a behavior assigned to the low electrochemically active surface area (EASA). The authors prepared a polycrystalline Ni-Ta electrode in order to increase the EASA and indeed, the overpotential at 10 mA/cm² was improved to 570 mV. The polycrystalline electrode showed improved corrosion resistance compared to a Ni pellet electrode prepared in a similar way, as the Ni content in the
Electrolyte after 36 h operation was below the detection limit of ICP-MS, while for the Ni pellet was 350.5 ppm.

Figure 23: Intermetallic Ni$_2$Ta for OER in acidic media (a), Galvanostatic measurements of Ni rods (b) and Ni$_2$Ta rods in 0.5 M H$_2$SO$_4$ at 10 mA/cm2. Reprinted with permission from [219]. Copyright 2018 American Chemical Society.

Table 4: Summary of the EACs developed for OER in acidic conditions.

<table>
<thead>
<tr>
<th>Material</th>
<th>η mV</th>
<th>Tafel mV/dec</th>
<th>Loading</th>
<th>Media</th>
<th>Stability</th>
<th>OER faradaic efficiency</th>
<th>Applied in PEM WE full cell</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated MnO$_x$</td>
<td>540@0.1 mA/cm2</td>
<td>90</td>
<td>thin film</td>
<td>0.5 M H$_2$SO$_4$, pH=2.5</td>
<td>8 h@0.1 mA/cm2</td>
<td>~ 1%</td>
<td>-</td>
<td>[200]</td>
</tr>
<tr>
<td>CoMnO$_x$</td>
<td>450@0.1 mA/cm2</td>
<td>70-80</td>
<td>films</td>
<td>0.5 M H$_2$SO$_4$, pH=2.5</td>
<td>12 h@0.1 mA/cm2</td>
<td>91% average</td>
<td>-</td>
<td>[201]</td>
</tr>
<tr>
<td>Ti-stabilized MnO$_2$</td>
<td>~490@170 mA/cm2</td>
<td>0.05 M H$_2$SO$_4$, pH=1.9V</td>
<td>89%</td>
<td>-</td>
<td>-</td>
<td>[202]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu${0.3}$Mn${0.7}$O$_{1.9}$F</td>
<td>320@9.15 mA/cm2</td>
<td>60</td>
<td>1 mg/cm2</td>
<td>0.5 M H$_2$SO$_4$, pH=2.5</td>
<td>24 h@16 mA/cm2</td>
<td>-</td>
<td>ORR in PEM fuel cell</td>
<td>[203]</td>
</tr>
<tr>
<td>Ni$_x$Mn$_y$Sb$_z$O$_y$</td>
<td>675@10 mA/cm2</td>
<td>60</td>
<td>thin film ~300 nm, Ni content 0.48 μmol/cm2</td>
<td>1 M H$_2$SO$_4$, pH=0.3</td>
<td>168 h@10 mA/cm2</td>
<td>95% average</td>
<td>-</td>
<td>[204]</td>
</tr>
<tr>
<td>Crystalline Co$_3$O$_4$</td>
<td>570@10 mA/cm2</td>
<td>80</td>
<td>thin film ~300 nm</td>
<td>0.5 M H$_2$SO$_4$, pH=0.3</td>
<td>12 h@10 mA/cm2</td>
<td>-</td>
<td>Above 95%</td>
<td>[211]</td>
</tr>
<tr>
<td>Ag-doped Co$_3$O$_4$</td>
<td>680@10 mA/cm2</td>
<td>219</td>
<td>film, 32.81 mg/g</td>
<td>0.5 M H$_2$SO$_4$, pH=0.3</td>
<td>10 h@6 mA/cm2</td>
<td>-</td>
<td>-</td>
<td>[212]</td>
</tr>
</tbody>
</table>
6. Summary, challenges, perspectives and future directions

In this review article, a short introduction was given about the energy problem humanity will soon face, due to the depletion of fossil fuels. In addition, their excessive usage is undoubtedly related to the climate changes. The “hydrogen economy” will become part of our future energy solutions and hydrogen fuel produced by water electrolysis represents a viable, renewable and environmentally friendly option that can replace fossil fuels. We presented a brief technoeconomic analysis and from the learning curves it is estimated that PEM water electrolysis will break even with the cost of hydrogen from fossil fuels around 2030, under an optimistic scenario. Currently, the high cost of hydrogen from PEM WE is related to the polymer exchange membrane, the noble electrocatalysts

<table>
<thead>
<tr>
<th>Material</th>
<th>Current Density (mA/cm²)</th>
<th>Mass (mg)</th>
<th>Electrolyte (M H₂SO₄, pH)</th>
<th>Time</th>
<th>Current Efficiency (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba[Co-POM]</td>
<td>189 @ 1</td>
<td>66</td>
<td>1 M H₂SO₄, pH=0.2</td>
<td>From >2 mA/cm² to 0.35 after 24 h</td>
<td>99%</td>
<td>[213]</td>
</tr>
<tr>
<td>CoHFe on Sb-doped SnO₂</td>
<td>780 @ 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[214]</td>
</tr>
<tr>
<td>Fe-TiOₓ LNWs/Ti</td>
<td>260 @ 1</td>
<td>126.2</td>
<td>0.5 M H₂SO₄, pH=0.3</td>
<td>20 h @ 1.9 V</td>
<td>18.7% current reduction</td>
<td>[215]</td>
</tr>
<tr>
<td>Mixed maghemite-hematite</td>
<td>650 @ 10</td>
<td>56</td>
<td>0.5 M H₂SO₄, pH=0.3</td>
<td>>24 h @ 10</td>
<td>~100% mA/cm²</td>
<td>[216]</td>
</tr>
<tr>
<td>MoSe₂ nanosheet/MnO₂ nanobelts/CNT (bifunctional)</td>
<td>400 @ 10</td>
<td>112.3</td>
<td>0.5 M H₂SO₄, pH=0.3</td>
<td>10 h @ 8.87</td>
<td>-</td>
<td>[217]</td>
</tr>
<tr>
<td>N-doped WC nanoarray (bifunctional)</td>
<td>470 @ 60</td>
<td></td>
<td>0.5 M H₂SO₄</td>
<td>1 h @ 10</td>
<td>-</td>
<td>[218]</td>
</tr>
<tr>
<td>Intermetallic polycrystalline Ni/Ta</td>
<td>570 @ 10</td>
<td></td>
<td>EASA</td>
<td>>66 h @ 10</td>
<td>85% @ 20 mA/cm²</td>
<td>[219]</td>
</tr>
</tbody>
</table>
and the high overpotentials for water splitting. With this in mind, we wanted to document the progress done so far in the discovery and development of EACs both for the OER and HER sides of a PEM electrolyzer. There was no point in doing an extensive literature review of EACs, because only for 2017, there were 2043 reports on the development of electrocatalysts. In addition, there are several other reviews, which the reader can refer to in this article, on EACs available in the literature covering either the whole range of new EACs or more specific classes, such as sulfides, phosphides etc. Instead, we reported the state-of-the-art PEM WE full cells based on noble metal catalysts and more importantly, we aimed in documenting how many of the newly developed EACs are actually used in PEM WE full cells, replacing the noble metal-based catalysts. This is equally important during the development stages of any catalyst, in order to observe and record efficiencies and limitations while operating conditions, facts that may differ from the idealized measurements in half cells and rotating disc electrodes. To our surprise, we found only 16 reports on HER EACs employed in PEM WE and only 1 report for the OER. Of course, the great challenge is to find stable EACs for the OER in acidic environment, as currently the only stable and efficient catalyst is IrO2.

On the other hand, we are among the first to compile the very first EACs with promising efficiencies and stability for the OER under acidic environment. The reader can find the very first 14 breakthrough papers, which we hope that will motivate more research in order to develop and improve the stability of transition metal elements, such as Ni, Co, Fe and Mn for operation under anodic current flow at strongly acidic conditions. Transition metal antimonates of rutile type, as the Ni0.5Mn0.5Sb1.7Oy reported by Moreno-Hernandez et al. shows very good stability, which is related to the fact that Mn, Ni and Sb oxides are stable in acid, according to their Pourbaix diagrams. The strategy to integrate unstable catalysts with inactive counterparts, i.e. mixed polymorphs, may lead to stable electrocatalysts. Kwong et al. presented a fine example. The authors combined maghemite and hematite and they achieved a stable operation for more than 24 h at 10 mA/cm² in 0.5 M H2SO4 at an overpotential of 650 mV vs. RHE, while maghemite and hematite alone are unstable and not active, respectively. The faradaic efficiency for the OER was also close to 100%. Another strategy is to combine a stable oxide with an unstable one, as the TiO2-stabilized MnO2 shown by Frydendal et al. In this work, a DFT work predicted that TiO2 can be inserted for termination at the undercoordinated sites on MnO2 and in fact, the stability of MnO2 increased by more than 50%. Apart from TiO2, the authors suggested GeO2 as well, as it also has a lower surface formation energy than MnO2.

Intermetallic alloys, such as Ni-Ta, have been used as corrosion protective coatings already from the 90’s. Mondschein et al. reported the polycrystalline Ni2Ta alloy, which was stable for more than 66 h at a current density of 10 mA/cm² in 0.5 M H2SO4. The challenge with such alloys is to increase their surface area by nanostructuring.

On the other side, the HER, one can find an enormous amount of EACs both for acidic and basic conditions. We very selectively touch upon the current state-of-the-art and the most promising HER EACs, and our main conclusion is that a lot more applied systems must be reported. Sixteen works out of thousands are a very small sample to draw any concrete conclusions. It is encouraging to see that the HER and OER EACs tested in PEM WE showed similar performances to that expected by measurements in half-cells. There are cases though that the results do not correlate well, as we observed for some Co-clathrochelates. We take some of the best PEM electrolyzers based on noble metals and EACs, and a valuable comparison is given in Table 5.
Table 5: Comparison between PEM WE full cells based on purely noble metal catalysts and those with EACs in the cathode or anode.

<table>
<thead>
<tr>
<th>Cathode</th>
<th>Anode</th>
<th>T</th>
<th>Membrane</th>
<th>At current</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/C</td>
<td>Ir0.7Ru0.3O2</td>
<td>90 °C</td>
<td>Aquivion ionomer</td>
<td>1.3 A/cm²@1.6 V</td>
<td>[88]</td>
</tr>
<tr>
<td>0.1 mgPt/cm²</td>
<td>1.5 mgoxide/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/C</td>
<td>Ir0.7Ru0.3O2</td>
<td>90 °C</td>
<td>Nafion 115</td>
<td>2.6 A/cm²@1.8 V</td>
<td>[73]</td>
</tr>
<tr>
<td>0.5 mgPt/cm²</td>
<td>1.5 mgoxide/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated single-wall carbon nanotubes (SWNTs)</td>
<td>IrRuOx</td>
<td>80 °C</td>
<td>Nafion 115</td>
<td>1 A/cm²@1.64 V</td>
<td>[176]</td>
</tr>
<tr>
<td>MoS2/CB</td>
<td>Ir black(2)</td>
<td>80 °C</td>
<td>Nafion 115</td>
<td>1.1 A/cm²@2.0 V</td>
<td>[105]</td>
</tr>
<tr>
<td>3 mg/CB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt/C</td>
<td>CoHFe on Sbdoped SnO2</td>
<td>80 °C</td>
<td>Nafion 115</td>
<td>0.05-0.1 A/cm²@2 V</td>
<td>[214]</td>
</tr>
<tr>
<td>0.5 mg/cm²</td>
<td>3 mg/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is very encouraging to see that EACs, especially for the HER, have already reached efficiencies very similar to those with noble metal catalysts. Apart from the importance of the transition metals, the non-metallic elements, such as P and S, are also key elements in the development of earth abundant catalysts. DFT works also highlight the noble metal-like activity of the TMD and transition metal phosphides, and in some instances, it is also comparable to the activity and turnover frequencies of enzymes, such as hydrogenases. Furthermore, computational works indicate that P and S, as well as their vacancies, create such an electronic environment that induces favorable binding energies for the adsorption desorption of the H atom.

There is a long way to go for the OER ones, especially concerning their stability, but nevertheless, these results highlight even more the need to employ and operate EACs in full cells. It is also interesting to notice that a PEM WE based on purely EACs can already be realized. It is difficult to say whether the cost of hydrogen from PEM WE breaks even with fossil fuels around 2033, but this review endorses this optimistic scenario. It also provides ways for materials’ optimization and development, in order to move forward PEM electrolyzers made purely by EACs, bringing/implying a significant cost reduction to the produced hydrogen.

Author Contributions: X. S. contributed to the principle of operation, K. X. contributed to the documentation of the state-of-the-art PEM WE and EACs for the HER based on carbon materials, C. F. contributed to the documentation of MoS2-based EACs, X. L. to the phosphate-based EACs, M. G. to the FeSx-based ECs, R. S. to the Co-based EACs, T. S. B. to the DFT literature research, T. N. contributed to the writing, editing and original draft preparation and A. C. to the writing, editing and original draft preparation and EACs for the OER.
Acknowledgments: X. S., A. C. and T. N. acknowledge MoZEES, a Norwegian Centre for Environment-friendly Energy Research (FME), co-sponsored by the Research Council of Norway (project number 257653) and partners from research, industry and public sector. K. X. and M. G. acknowledge funding from the Research Council of Norway (RCN) NANO2021 project CO2BioPEC (250261). C. F acknowledges funding from the Research Council of Norway (RCN) FRINATEK project 2D (262274). X. L acknowledges funding from the Research Council of Norway (RCN) NANO2021 project EnCaSE (275058). R. S. and T. S. B. acknowledge funding from the Research Council of Norway (272797 “GoPHy MiCO”) through the M-EERA.NET Joint Call 2016.

Conflicts of Interest: The authors declare no conflict of interest.

References

87. Wang, L., et al., Highly active anode electrocatalysts derived from electrochemical leaching of Ru from metallic Ir0.7Ru0.3 for proton exchange membrane electrolyzers. Nano energy, 2017. 34: p. 385-391.

1193
1195
1197
1199
1201
1203
1205
1207
1209
1211
1213
1215
1217
1219
1221

