1 Review

Earth-Abundant Electrocatalysts in Proton Exchange Membrane Electrolyzers

Xinwei Sun ¹, Kaiqi Xu ¹, Christian Fleischer ¹, Xin Liu ¹, Mathieu Grandcolas ², Ragnar
 Strandbakke ¹, Tor S. Bjørheim ¹, Truls Norby ¹, Athanasios Chatzitakis ^{1*}

6 ¹ Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, FERMiO,
 7 Gaustadalléen 21, NO-0349 Oslo, Norway

- 8 ² SINTEF Materials and Chemistry, POB 124 Blindern, NO-0314 Oslo, Norway
- 9 * Correspondence: a.e.chatzitakis@smn.uio.no

10

11 Abstract: Water electrolysis provides efficient and cost-effective production of hydrogen from 12 renewable energy. Currently, the oxidation half-cell reaction relies on noble-metal catalysts, 13 impeding widespread application. In order to adopt water electrolyzers as the main hydrogen 14 production systems, it is critical to develop inexpensive and earth-abundant catalysts. This review 15 discusses the proton exchange membrane (PEM) water electrolysis (WE) and the progress in 16 replacing the noble-metal catalysts with earth-abundant ones. Researchers within this field are 17 aiming to improve the efficiency and stability of earth-abundant catalysts (EACs), as well as to 18 discover new ones. The latter is particularly important for the oxygen evolution reaction (OER) 19 under acidic media, where the only stable and efficient catalysts are noble-metal oxides, such as 20 IrOx and RuOx. On the other hand, there is significant progress on EACs for the hydrogen evolution 21 reaction (HER) in acidic conditions, but how many of these EACs have been used in PEM WEs and 22 tested under realistic conditions? What is the current status on the development of EACs for the 23 OER? These are the two main questions this review addresses.

Keywords: polymer exchange membrane; electrocatalysts; noble metals; earth abundant elements;
 water splitting; acidic environment; oxygen evolution reaction; hydrogen evolution reaction; anode
 and cathode electrodes;

27

28 1. Introduction

Currently, 81% of the global energy demand is met by fossil fuels and it is estimated that more than 540 EJ was supplied for the total global energy demand in 2014. This figure is expected to increase by 40% towards 2050 [1]. The CO₂ emissions from combustion of fossil fuels are large enough to alter the Earth's climate. The severity of climate change in the global ecosystem is forcing mankind to look for renewable energy sources. This is amplified by the reserves of fossil fuels estimated to last only

- 34 50-60 years [2-4].
- Hydrogen (H₂) can meet our future energy demands as a clean and sustainable fuel, but cost-effective ways need to be developed for a successful turn towards the hydrogen economy [5-9].
- 37 Water electrolysis is an environment friendly scheme for conversion of renewable electricity (e.g.
- 38 solar, wind) into high purity hydrogen, but at present electrolysis accounts for only 4% of the total
- 39 hydrogen production [10]. The rest is covered by transformation of fossil fuels, such as natural gas
- 40 steam reforming, coal gasification and partial oxidation of hydrocarbons [11-14], however, all these
- 41 routes involve the release of CO₂. Polymer Electrolyte Membrane Water Electrolysis (PEM-WE) has
- 42 the advantages of simplicity, compact design, fast response, high current densities, production of

43 ultrapure hydrogen that can be electrochemically pressurized, and small footprint. The PEM WE 44 concept was first investigated and demonstrated in the 1960s [15-17]. Since then, substantial research 45 has been dedicated to improve the different PEM WE components, and as a result, this technology is 46 approaching commercial markets [18]. What hinders the implementation of PEM WE on a large scale 47 is its acidity, which necessitates the use of noble metals, such as Ir, Pt, or Ru as electrocatalysts. 48 Additionally, acidic conditions are more preferable as the concentration of reactant protons is higher 49 [19, 20]. The high cost of the polymeric membrane is another obstacle. Currently, the CAPEX cost, i.e. 50 the investment cost, for a PEM WE system, is around \$1500 per kWe (kW electricity input) and the 51 cost per kg of H₂ is \$7.1, taking into account that the electricity is provided by renewables [21-23]. 52

Figure 1: Learning curve for renewable PEM H₂ production showing the projected levelized costs until 2050 per kg H₂ in USD. Reprinted with permission from [24]. Copyright 2018 The Royal Society of Chemistry.

53

54 In comparison, the H_2 cost through steam methane reforming (SMR) is only \$1.40 [25] and the 55 optimistic break-even year for renewable PEM H₂ production based on learning curves is around 56 2033 (Figure 1) [24]. The same study underlines that the major cost of PEM lies in the electricity 57 consumption [24]. This is of course directly connected to the overpotential required for efficient 58 water electrolysis, i.e. the overpotential of the electrocatalysts to reach certain current densities. The 59 replacement of the noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and 60 oxygen evolution reaction (OER) will have a tremendous impact on the future scale-up activities for 61 PEM WE.

62 A wide range of earth abundant catalysts (EACs) for the HER in acidic, neutral and alkaline media 63 has been developed and includes metal sulfides [26-31], metal phosphides [32-37], metal alloys [38, 64 39], chalcogenides [40, 41], as well as metal- and heteroatom-substituted carbon-based materials 65 [42-44]. Some of these EACs show improved efficiencies and good endurance under strong acidic 66 condition [32, 33, 35, 45, 46], but others are not stable or they require large onset overpotentials 67 [47-50]. The situation is even more challenging in the OER side, the bottleneck in overall water 68 splitting, where the complex 4-electron process that produces protons and oxygen requires high 69 overpotentials. Only noble-metal oxides such as IrO2 and RuO2 are efficient catalysts for the OER in 70 acidic media, but the RuO₂ is unstable and deactivates rapidly [51, 52], therefore the lack of 71 cost-efficient alternatives to IrO₂ is the major challenge in the field of PEM-based water electrolysis.

Figure 2: Histogram showing the number of scientific reports on OER and HER from 2005 to 2017. Reprinted with permission from [53]. Copyright 2018 The Royal Society of Chemistry.

73

74 This field of research is very active and according to Web of Science, 2043 reports have been 75 published during 2017 on both OER and HER catalysts (Figure 2). Motivated by these figures, as 76 well as the challenging electrochemistry under the intense conditions required by the PEM WE, we 77 wanted to see how many of these reports referring to EACs were actually applied in PEM WE 78 devices, replacing in fact the noble-metal catalysts. Therefore, the main purpose of this article is not 79 an exhaustive report on EACs developed for the HER and OER in acidic conditions, which were 80 tested and studied in half cells, typically involving measurements in three electrodes with rotating 81 disc electrodes (RDE), but to see how many are applied and tested in full PEM WE cells. Do the 82 catalysts perform as expected from the half-cell measurements, or are there any deviations related to 83 differences in configuration, supply of reactants, deposition on porous substrates, leaching of 84 electroactive elements (i.e. stability), as well as surface area exposed? Moreover, what are the recent 85 advances on EACs for the OER under strongly acidic conditions? In the current article we document 86 the very first reports on EACs for the OER in acidic environment, as well as one applied EACs-based 87 PEM WE system.

88

89 2. Principles of PEM water electrolysis

The electrochemical conversion of water to hydrogen and oxygen is known as water electrolysis, and was discovered already in 1800 [54]. Since then, the idea of using two electrodes immersed in an aqueous caustic solution of KOH electrolyte, known as alkaline water electrolysis, was developed and utilized for industrial applications [55]. Although some improvements as current density and operating pressure are foreseeable [56], this well-established technology is still the most

- 95 cost-effective choice for industrial hydrogen production at present.
- 96 Another promising water electrolysis cell that operates at low temperatures (normally below 80°C) is
- 97 the proton exchange membrane (also known as polymer electrolyte membrane) (PEM) electrolyzers.
- 98 The concept of PEM water electrolysis was idealized by Grubb in the early fifties [15, 16] and first
- 99 manufactured by the General Electric Co. in 1966 [17], where they take the advantage of a solid
- 100 polymer perfluorinated sulfonic membrane as electrolyte for hydrogen production. Some typical
- 101 pros and cons for PEM water electrolyzers compared with the classic alkaline water electrolyzers are
- 102 summarized in Table 1.
- 103 We highlight again that a cost reduction by developing earth-abundant electrocatalysts with
- 104 comparable performance and a further improvement in the energy efficiency of the PEM water

105 electrolyzers are essential factors before PEM WE becomes a competitive solution for large-scale

- 106 hydrogen production.
- 107
- 108 Table 1: Advantages and drawbacks of PEM WE over alkaline water electrolysis

Advantages [17, 56, 57]	Disadvantages [57-59]
Compact system design	Acidic electrolyte
\rightarrow Fast heat-up and cool-off time, short response	\rightarrow Higher manufacturing cost due to
time	expensive materials and components, i.e.
\rightarrow Low gas-cross-permeation. Withstands higher	current collectors, bipolar plates, noble
operating pressure across the membrane. Higher	catalysts, membranes
purity of hydrogen. Higher thermodynamic	ightarrow Limited choices of stable earth-abundant
voltage	electrocatalysts for the OER
ightarrow Easier hydrogen compression, facilitates	
hydrogen storage	Solid, thin electrolyte
	ightarrow Easily damaged by inappropriate
Solid, thin electrolyte	operation and cell design
\rightarrow Shorter proton transport route, lower ohmic	\rightarrow Sensitive to impurities
loss	
\rightarrow Operates under wide range of power input	Higher operating pressure
	ightarrow higher gas-cross-permeation
Operates at higher current density	
\rightarrow lower operational costs	
Differential pressure across the electrolyte	
ightarrow Pressurizes hydrogen side alone, avoids	
danger related to pressurized oxygen	

109

110 2.1 Operating principles

111 When a PEM electrolysis cell is in operation, an excess of water is supplied to the anode, where 112 water decomposes into protons, electrons and oxygen gas by an electrical energy (Equation 1). The 113 protons are transported to the cathode by passing through the polymer electrolyte, while the 114 generated electrons travel along an external circuit and combine with electrons into hydrogen gas, as 115 described in Equation 2. The amount of hydrogen gas generated is twice that of oxygen, as defined 116 by the overall reaction, Equation 3, whereas ΔG^0 is the standard Gibbs free energy of the net water 117 splitting reaction.

Anode (OER)

$$H_2 0 \rightarrow 2H^+ + 2e^- + \frac{1}{2}O_2$$
 Equation 1

119

Cathode (HER) $2H^2 + 2e^{-} \rightarrow H_2$ Equation 2	Cathode (HER)	$2H^+ + 2e^- \rightarrow H_2$	Equation 2
--	---------------	-------------------------------	------------

Net water splitting reaction
$$H_2 0 \xrightarrow{\Delta G^0} H_2 + \frac{1}{2} O_2$$
 Equation 3

121

122 2.2 Thermodynamics

123 The standard theoretical open circuit voltage (OCV), also referred as standard reversible cell voltage, 124 U_{rev}^0 , required by PEM electrolyzers can be derived from the standard Gibbs free energy (ΔG^0) of 125 +237.2 kJ/mol H₂, Faraday's constant (F), and the number of electrons (n = 2) exchanged during water 126 splitting under standard conditions; p = 1 bar, T = 298.15 K (Equation 4) [60].

127

$$|U_{rev}^0| = \left|\frac{-\Delta G_R^0}{n \cdot F}\right| = 1.229 V$$
 Equation 4

129 The positive Gibbs free energy change reflects that the water electrolysis reaction is 130 thermodynamically unfavourable. In reality, the potential needed is higher than the OCV value and 131 will reach typically ~ 1.48V [61] due to overpotentials related to the OER and HER, as well as to 132 limited ionic conductivity of the electrolyte and system losses. [57]. Thus, the actual operating cell 133 voltage is the sum of all the different overpotentials (Equation 5) [56, 62].

134

$$U_{op} = U_{rev}^0 + \eta_a + \eta_c + \eta_{el} + \eta_{sys}$$
 Equation 5

135

136 U_{op} is the operational voltage, U_{rev}^{0} is the standard reversible potential, η_{a} , η_{c} , η_{el} and η_{sys} are 137 the overpotentials related to the anode, cathode, ionic conductivity of the electrolyte membrane, and 138 system losses, respectively. It should be highlighted that the half-reactions described in Equations 1 139 and 2 are simplifications of more complex multistep electrochemical reaction pathways, which can 140 induce competing or parasitic reactions [63].

141

142 2.3 Main cell components and requirements

143 The core component of a PEM electrolysis cell is the membrane electrode assembly (MEA), which is

144 composed of a solid polymer electrolyte (SPE) sandwiched between two electrically conductive
145 electrodes, as shown in Figure 3.

⁶ of 46

148 Figure 3: Basic, key components of a PEM WE.

149

150 The SPE must fulfil particular requirements, such as high chemical and mechanical stability, low gas 151 permeability, and high proton conductivity. In this regard, Nafion® is the most commonly used 152 polymer membrane due to high proton conductivity, good mechanical stability and acceptable gas 153 crossover. The electrodes are usually composed of a porous catalyst layer (CL) and a gas diffusion 154 layer (GDL), coated directly onto the polymer membrane in most cell designs. Electrocatalysts are 155 employed to promote charge transfer kinetics in order to lower the activation energy of the WE 156 process. The MEA is further supported by porous metallic discs/meshes/sinters as current collectors 157 (CC) from both sides, encased by bipolar plates (BPP). The CC has the task of supplying water to the 158 anode and collecting gas from the cathode, also enabling a current flow from the bipolar plates to the 159 electrodes [57]. The BPP function as a water diffusion media to the CC.

160 An effective electrocatalyst minimizes electrode overpotentials. Due to the acidic environment of the 161 cell, the catalysts for the hydrogen evolution reactions (HER) on the cathode and the oxygen 162 evolution reactions (OER) on the anode are essentially dependent on noble metals and their alloys. 163 Pt nanoparticles on carbon support is by far the best catalyst material for the HER because of their 164 good catalytic activity and high corrosion resistance. Besides, Pd and Ir nanoparticles supported on 165 carbon materials are also commonly utilized as HER electrocatalysts [64]. Less expensive 166 earth-abundant materials such as sulfides, phosphides, carbides and nitrides [18], cobalt 167 clathrochelate [65], polyoxometallates [61] have been proposed as alternative HER catalysts.

168 The oxygen electrode determines the reaction rate of the overall process as it is the slowest step.

169 Non-noble catalysts such as Ni and Co in contact with the acidic electrolyte will start to corrode,

170 meanwhile the Pt surface will be covered by a low conducting oxide film, which reduces the

171 catalytic activity for the OER. In this respect, Ir and Ru-oxide based catalysts are typical electrode

172 materials for the OER because of their high structural stability. As reported by Ahn and Holze [66],

173 Ru-oxide appears to be the most catalytically active electrode with the smallest activation

174 overpotential at 353 K, followed by Ir/Ru-oxide, Ir-oxide, Ir, Rh-oxide, Rh and Pt. Ir is however

scarce, its average mass fraction in crustal rock is only 0.001 ppm [56].

7	of	46
---	----	----

177 3. State-of-the-art Devices

178 After General Electric developed the PEM WE technology, its application was mostly limited to 179 oxygen production in ambient conditions [67], i.e. submarine, spacecraft, etc. In the late 1980s, the 180 first pressurized PEM electrolyzer for H₂ production up to 100 bar with efficient MEAs, were 181 created and tested [68, 69]. Since then, MEAs with Ir, Ru and Pt based electrocatalysts and Nafion® 182 proton conductor polymer electrolyte have dominated the frontier PEM electrolyzer cell design [70, 183 71].

184 The state-of-the-art OER catalyst for PEM electrolyzer is an oxide mixture composed of Ru₂O and 185 IrO₂ [72], e.g. Ir_{0.7}Ru_{0.3}O₂ [73], Ir_{0.4}Ru_{0.6}O₂ [74], etc., with slight differences in overpotential and 186 stability when varying the composition of each oxide. Although RuO₂ has shown the best OER 187 performance among all the other materials [52, 74], its poor stability due to the corrosion [75] from 188 the strong local acidity at the perfluorosulfonic membrane and high anodic potential, it requires the 189 addition of IrO2 in order to enhance its stability, as IrO2 is the most resistive material to OER in 190 acidic environment [76, 77]. However, Ir is one of the rarest elements on earth, and this sets the 191 requirement to reduce/replace the Ir content in order to cut down the price, such as by adding other 192 elements that are more earth abundant, e.g. Co [78], Ta [79], Sn [80], etc. A recent study reported the

193 state-of-the-art OER performance of fluoride dope MnO₂, IrO₂ solid solution ((Mn1-xIrx)O₂:F), with 194 even lower onset potential than IrO₂[81], may further reduce the Ir loading of the OER catalysts.

195 For the cathode, it is established that Pt, especially highly dispersed C-based Pt, is the benchmark

196 HER catalyst for PEM electrolyzer [70]. In fact, less research efforts have been made on the cathode

197 material for PEM electrolyzers [52]. The reason is partially that the exchange current of H⁺/H₂ on Pt

198 is almost 1000 times larger than that of H₂O/O₂ on Ir [82], and Ir is also more precious than Pt,

199 therefore research has been mainly focused on how to reduce the cost and increase the efficiency of

200 OER catalyst. However, as the cathode side also contributes to a large extend in the cost of a PEM

201 electrolyzer, it is necessary and important to reduce the loading of Pt [83], or replace it with efficient

202 earth abundant electrocatalysts, such as MoS₂ [84], CoP [85], etc.. This effort is briefly summarized

203 below and as we set earlier, our main target was to document how many researchers apply EACs in

204 actual PEM WE full cells.

205 The PEM electrolyzers with state-of-the-art electrocatalysts are summarized in Table 2. One can

206 notice that the performance of a PEM electrolyzer is not only determined by the electrocatalysts, but

207 also by other elements, e.g. operation temperature, cell area and membrane type. However, those

208 elements are out of the scope of this review, hence they are not to be discussed here.

209

210 Table 2: PEM electrolyzers with state-of-the-art electrocatalysts

8	of	46
---	----	----

Cathode	Anode	Т	Test Cell	Current	Cell voltage	Ref.
Pt/C 0.5 mg ^{pt} /cm ²	Ir0.5Ru0.3O2 2.5 mg _{oxide} /cm ²		5 cm ² PEM cell, Nafion		~ 2.2 V	
Pt/C 0.5 mg ^p t/cm ²	Iro.7Ruo.5O2 2.5 mg _{oxide} /cm ²	25 °C	115	1 A/cm ²	~ 2.3 V	[86]
Pt/C 0.5 mg _{Pt} /cm ²	Ir0.7Ru0.5O2 1.5 mg _{oxide} /cm ²	90 °C	5 cm ² PEM cell, Nafion 115	2.6 A/cm ²	1.8 V	[73]
Pt/C 0.4 mg _{Pt} /cm ²	Ir0.7Ru0.3O2 thermally treated 1.0 mg _{oxide} /cm ²	80 °C	25 cm ² PEM cell, Nafion 212 CS	1 A/cm ²	~1.7 V	[87]
Pt/C 0.1 mg _{Pt} /cm ²	Ir0.7Ru0.3O2 1.5 mg _{oxide} /cm ²	90 °C	5 cm² PEM cell, Aquivion ionomer	1.3 A/cm ²	1.6 V	[88]
Pt/C 0.4 mg _{Pt} /cm ²	Ir0.6Ru0.4O2 2.5 mg _{oxide} /cm ²	80 °C	5 cm ² PEM cell, Nafion 115	1 A/cm ²	1.567 V	[79]
Pt/C 0.4 mg _{Pt} /cm ²	Ir0.4Ru0.6O2 1.5 mg _{oxide} /cm ²	80 °C	5 cm ² PEM cell, Nafion 115	1 A/cm ²	1.676 V	[77]
Pt/C 0.5 mg _{Pt} /cm ²	Ir0.2Ru0.8O2 1.5 mg _{oxide} /cm ²	80 °C	5 cm ² PEM cell, Nafion [®] 1035	1 A/cm ²	1.622 V	[74]

212 4. Earth-Abundant Cathode Materials

Thus far, we have explored the theory and principles of PEM WE and summarized the state-of-the-art devices demonstrated in the literature. In the following sections, we will explore the most promising earth-abundant electrocatalyst materials that have been used in PEM WE full cells, replacing noble metal-based anodes and cathodes, especially under acidic conditions.

217

218 4.1 Molybdenum sulfide, MoS₂

Molybdenum sulfide (MoS₂) based materials are among the most extensively studied materials as catalyst for HER over the past decade due to their excellent stability, high activity, earth abundancy and low price. MoS₂ exists in nature with an atomic structure resembling that of graphite, a layered structure where each layer consists of a molybdenum layer sandwiched between two sulfur layers. Alternatively, the monolayers can be characterized as consisting of either edge sharing trigonal prisms (2H) or octahedrons (1T). Packing of these layers gives the basis for the three polytypes of bulk MoS₂ (Figure 4).

227

Figure 4 Figure showing the structures of MoS₂. (a) Illustration of the layer packing in the three polytypes: 2H,

3R and 1T; (b) Top view of MoS₂. Reprinted with permission from [89]. Copyright 2014 American ChemicalSociety.

231

232 Despite the early indications of low HER activity for bulk MoS₂ [90], molybdenum sulfides turned 233 out to be promising for replacing Pt. Theoretical work by Hinnemann et al. in 2005 showed that the 234 edges are in fact catalytically active [91]. Using Density Functional Theory (DFT) they calculated the 235 hydrogen binding energy of the Mo($\overline{1}010$) edge, where sulphur is unsaturated, and found it to be 236 close to ideal value of 0 eV [89]. In addition, they fabricated a MEA using Nafion®, nanoparticle MoS2 237 on graphite as cathode, and Pt as anode, which achieved a current density of 10 mA/cm² at only 175 238 mV of overpotential. This was the best activity shown for an acid-stable and earth abundant catalyst 239 at that time. Two years later, their theoretical prediction of the edges being the activity centers was 240 confirmed experimentally by Jaramillo et al. [40]. They deposited monolayer MoS₂ on Au(111) with 241 physical vapor deposition in an H₂S environment. After finding total edge lengths with STM and 242 comparing with catalytic activity for various samples, they found that the reaction rate scaled with 243 particle perimeter and not area. These findings sparked an interest in improving the catalytic activity

244 in MoS₂ that is still growing today.

245 Since the main objective of the present review is to review the literature on device-tested electrodes, 246 we will not go deep into the vast literature on MoS₂ based electrocatalysts. We will rather briefly 247 mention some of the methods that have been identified for increasing the HER activity of MoS₂. One 248 of the first and obvious approaches was to maximize the edge sites by making small particles. This 249 led to investigations of the activity of [Mo₃S₄]⁴⁺-clusters that showed HER activity but were less 250 stable [92]. Some years later, [Mo₃S₁₃]²-clusters became a hot topic after results showing one of the 251 highest per site activities [31]. Another approach that has produced promising results is to deposit 252 molybdenum sulfide onto something highly conducting and/or with high surface area, like 253 nanotubes, nanowires, reduced graphene oxide etc. [93-96]. Depending on the methods used, one 254 often ends up with amorphous MoSx. Efforts to improve the activity of the semiconductor phase 255 comprises of doping, introducing vacancies and strain engineering, which can activate the basal 256 plane and edges that are not intrinsically active [97-100]. The 1T phase is metastable, however, the

metallic nature makes it highly conductive compared to the 2H phase, and, in addition, the basal plane is active as well, resulting in promising HER activity [101, 102]. For more in-depth reviews the reader is referred to these reviews [84, 89, 103, 104]. Despite all these efforts to improve the catalytic properties over the past decade, there are, to the best of our knowledge, only the following few reports on molybdenum sulfide-based cathodes implemented in a PEM cell.

262 In 2014, Corrales-Sánchez et al. were the first to report the performance of a PEM cell using 263 MoS₂-based cathodes [84]. They reported the performance of three different types of MoS₂-based 264 electrodes, bare pristine MoS₂, MoS₂ mixed with commercial conductive carbon, Vulcan® XC72, and 265 MoS₂ nanoparticles on reduced graphene oxide. The MEA used in the PEM cell consisted of IrO₂ 266 particles and anode material that was spray deposited on each side of a Nafion membrane. Porous 267 titanium diffusion layer and titanium current collectors on both sides of the MEA were sandwiched 268 by the cell housing. The pristine MoS₂ was the worst performing cathode investigated achieving a 269 current density of approximately 0.02 A/cm² at 1.9V. Their best performing MoS₂/rGO electrode 270 achieved a current density of 0.1 A/cm², while the best mixture of MoS₂ and Vulcan® (47 wt% MoS₂) 271 reached almost 0.3 A/cm² at 1.9 V in the initial test. The latter electrode went through a stability test 272 for 18 h at 2.0 V. The current density actually increased steadily for 15 h and reached 0.35 A/cm². The 273 authors speculated that the increase might be due to hydration effects. Furthermore, they also tested 274 the effect of hot pressing of the MEA, which is recommended to ensure good contact between 275 electrode and membrane. For three different MoS₂/Vulcan mixes, the unpressed MEAs performed 276 better than the hot pressed ones.

Ng *et al.* identified three types of Mo-based cathode materials with excellent HER activity from three electrode measurements in 2015 [105]. They later loaded the materials onto carbon black and tested them as cathodes in a PEM electrolyzer with Nafion as membrane and Ir on Ti-mesh as anode. One of their electrodes was based on molybdenum sulfide with an excess of sulfur according to the XPS

281 measurement. The electrode exhibited a good performance and required 1.86 V to reach 0.5 A/cm² in 282 addition to good stability. Furthermore, the current density reached over 0.9 A/cm² at 2 V. Another 283 cathode, based on Mo₃S₁₃ clusters, required only 1.81 V to reach 0.5 A/cm², while at 2 V the current

cathode, based on Mo₃S₁₃ clusters, required only 1.81 V to reach 0.5 A/cm², while at 2 V the current density reached almost 1.1 A/cm². In the stability test, however, the current density dropped by approximately 120 mA/cm² over a period of 14 h at 1.85 V most likely due to detachment from the support or degradation of the clusters. The third and last material they tested was based on sulfur doped molybdenum phosphide and performed slightly better than the Mo₃S₁₃ electrode. These are

the best performances reported for molybdenum sulfide cathode in PEM electrolyzers to this day.

In early 2016 Kumar *et al.* reported that a cell with a MoS₂ nanocapsule cathode maintained a current density of approximately 60 mA/cm² for 200 hours at 2.0 V [106]. The cell consisted of a Nafion membrane and IrO₂ anode. The low performance is likely due to low conductivity and is comparable to that reported for bare MoS₂ [84]. A study of this system mixed with carbon black should follow to

allow comparison with other systems reviewed here.

294 The same year, Lu *et al.* reported the performance of an electrolyzer using amorphous molybdenum

sulfide coated on a carbon cloth as cathode [107]. The cathode was synthesized by using thermolysis

296 to form amorphous MoS_x on the carbon cloth. A post treatment with remote H₂ plasma introduced

297 sulfur vacancies. The cell consisted of a Nafion membrane and RuO₂ nanoparticles on carbon paper

as the anode. The cell required 2.76 V to reach 1 A/cm² and the current density at 2.0 V was slightly

above 0.3 A/cm². Earlier this year, Kim *et al.* published work on a similar cathode. They deposited

300 amorphous molybdenum sulfide on carbon paper using electrodeposition. The PEM cell used a

301 Nafion membrane and electrodeposited IrO₂ on carbon paper as anode. They investigated the effect

of deposition potential and time on the performance. The best performing electrode reached a
 current 0.37 A/cm² at 1.9 V [108].

304

305 4.2 Nickel phosphide, Ni₂P

306 Nickel phosphide (Ni₂P) has been demonstrated as one of the best earth-abundant electrocatalysts 307 for HER [32, 109]. Extensive investigations on Ni2P have been performed in a three-electrode 308 electrochemical cell and Ni₂P exhibits the superior activity to split water with low overpotentials, 309 while sustaining high current densities [110-115]. However, after a thorough literature review, there 310 are no reports, to our best of knowledge, that have implemented Ni₂P in a PEM device. Nevertheless, 311 we compare Ni₂P with other earth-abundant electrocatalysts, and the recent developments on Ni₂P 312 as electrocatalysts for HER are briefly reviewed. 313 Ni₂P can be synthesized by a variety of methods including solution-phase synthesis and gas-solid

- 314 synthesis. The solution-phase synthesis is performed by using tri-n-octylphosphine (TOP) as a
- 315 phosphorus source to react with Ni precursor [116]. At elevated temperatures (above 300 $^{\circ}$ C), the
- 316 TOP vaporizes rapidly and then phosphorizes different precursors, such as bulk Ni or Ni thin films,
- 317 by forming Ni₂P. For instance, Read *et al.* successfully synthesized Ni₂P thin film on Ni substrate by
- $318 \qquad \text{the solution-phase synthesis method [113]. Figure 5a shows SEM images of representative Ni_2P film$
- formed on the surface of Ni foil and the resulting Ni₂P is highly porous. The corresponding powder
- 320 XRD pattern in Figure 5c, clearly shows that both Ni₂P and Ni are present without other impurities.
 321 The EDS element maps in Figure 5d and 2e further confirm the presence of Ni and P at the surface
- The EDS element maps in Figure 5d and 2e further confirm the presence of Ni and P at the surface and the existence of a sharp interface between the Ni₂P coating and the underlying Ni substrate.
- Figure 5f shows polarization data for the HER in 0.5 M H₂SO₄ for a few transition metal phosphides
- 324 (Ni₂P, Fe₂P, Co₂P, Ni₂P, Cu₃P, and NiFeP) as cathodes. Ni₂P showed the best HER performance in
- 325 acidic solutions among those and required overpotentials of only –128 mV and –153 mV to reach a
- 326 current density of -10 mA/cm² and -20 mA/cm², respectively. However, in alkaline media, all tested
- 327 metal phosphide electrodes exhibit lower electrocatalytic HER activity compared to those in acidic
- 328 conditions. Ni₂P films require overpotentials of around -200 mV to reach current densities of -10
- 329 mA/cm² in 1.0 M KOH.
- 330

Equation 6

331

Figure 5: SEM images of a representative Ni₂P film on Ni. (c) Experimental powder XRD pattern of a Ni₂P sample (black), with the simulated patterns of Ni (green) and Ni₂P (red) shown for comparison. The y-axis was truncated to highlight the Ni₂P as the Ni signal would otherwise dominate. (d, e) EDS elemental maps of a cross-section of the sample showing the presence of both Ni (green) and P (red) in a 2:1 ratio. f) Polarization data for the HER in 0.5 M H₂SO₄ and (g) 1 M KOH for a series of metal phosphide films, along with a Pt mesh electrode for comparison. Reprinted with permission from [111]. Copyright 2017 The Royal Society of Chemistry.

339

Gas-solid synthesis has also been implemented to synthesize Ni₂P, where hypophosphites, for
 instance NH₄H₂PO₂ and NaH₂PO₂, can decompose and release PH₃ at elevated temperatures;

342

$$2NaH_2PO_2 \rightarrow PH_3 + Na_2HPO_4$$

343

344 The PH₃ can further react directly with Ni precursors, such as metal oxides and metal hydroxides, to 345 form Ni₂P [117-121]. For instance, Sun et al., reported one porous multishelled Ni₂P, which was 346 successfully synthesis by gas-solid method [120]. The porous multishelled NiO precursor was 347 reacted into Ni₂P by using NaH₂PO₂ as the phosphorus source, as shown in Figure 6a. 348 Electrochemical measurements were performed in a 1 M KOH solution. Figure 6b shows the linear 349 sweep curves for carbon, nanostructured Ni₂P, hierarchical Ni₂P, multishelled Ni₂P, and Pt/C. The 350 multishelled Ni₂P exhibits a small overpotential of 10 mV (at current density of 1.0 mA/cm²) and a 351 rapid cathodic current increase as more negative potentials were applied. The overpotential driving 352 a cathodic current density of 10 mA/cm² is 98 mV, which is much lower than that observed on 353 hierarchical Ni₂P (298 mV) and nanostructured Ni₂P (214 mV). Figure 6c shows the Tafel plots of the 354 tested samples. At lower overpotentials, Tafel analysis on the multishelled Ni₂P exhibits a slope of 355 86.4 mV/decade, which is much smaller than those of hierarchical Ni₂P (108.4 mV/decade) and 356 nanostructured Ni₂P (125.4 mV/decade), suggesting faster HER kinetics of the multishelled Ni₂P. At 357 the high-overpotential regime, a slightly upward deviation is observed in Tafel plots of Pt/C and 358 hierarchical Ni₂P, which could stem from the rate-limiting step gradually changing from the 359 Heyrovsky to the Volmer mechanism at high current densities [122]. This porous multishelled

13	of	46

360 structure endows Ni₂P with short charge transport distances and abundant active sites, resulting in

361 superior catalytic activity than those of Ni₂P with other morphologies [120].

362

363

Figure 6: (a) Synthetic schematic illustration and material characterization of the multishelled Ni₂P. (b) Linear sweep voltammetry (LSV) polarization curves of bare carbon, nanostructured Ni₂P, hierarchical Ni₂P, multishelled Ni₂P, and benchmark Pt/C in 1 M KOH at a scan rate of 5 mV s-1. (c) Corresponding Tafel plots with linear fittings. Reprinted with permission from [120]. Copyright 2017 American Chemical Society.

368

369 Catalytic reaction is highly sensitive to the surface of the catalyst. One of the most common strategies 370 to enhance the catalyst performance is by increasing the active facet of the catalyst. Several 371 computational studies have suggested that Ni₂P(001) surface is an active facet for HER due to an 372 ensemble effect, whereby the presence of P decreases the number of metal-hollow sites, providing a 373 relatively weak binding between proton and Ni-P bridges the sites to facilitate catalysis of the HER 374 [123, 124]. Later on, Popczun et al. successfully synthesized Ni2P nanoparticles which possessed a 375 high density of exposed (001) facets (as shown in Figure 7) and then these Ni₂P were tested as 376 cathodes for the HER in 0.50 M H₂SO₄[125]. The overpotentials required for the Ni₂P nanoparticle to 377 produce cathodic current densities of 20 mA/cm² and 100 mA/cm² were 130 mV and 180 mV, 378 respectively. These overpotentials are lower than those of none-preferred facet Ni₂P [113] and other 379 non-Pt HER electrocatalysts, including bulk MoS₂ [94] and MoC [126]. Figure 7c displays 380 corresponding Tafel plots for Ni2P electrodes. Tafel analyses of the Ni2P nanoparticles show an 381 exchange current density of 3.3×10^{-5} A/cm² and a Tafel slope of ~46 mV decade⁻¹ in the overpotential 382 region of 25–125 mV. At higher overpotentials (150–200 mV), the Tafel slope and exchange current 383 density increased to ~81 mV/decade and 4.9×10⁻⁴ A/cm², respectively. Again, this Tafel slope 384 behavior reflect the change in the rate-limiting step of the HER [122].

Figure 7: (a)HRTEM image of a representative Ni2P nanoparticle, highlighting the exposed Ni2P(001) facet and the 5.2 Å lattice fringes that correspond to the (010) planes. (D) Proposed structural model of the Ni2P nanoparticles. (C) Polarization data for three individual Ni2P electrodes in 0.5 M H2SO₄, along with glassy carbon, Ti foil, and Pt in 0.5 M H2SO₄, for comparison. (D) Corresponding Tafel plots for the Ni2P and Pt electrodes. Reprinted with permission from [125]. Copyright 2013 American Chemical Society.

393 Cation doping is an effective strategy to improve the HER activity of electrocatalysts. A few cations, 394 such as Mn, Fe and Mo, have been reported to dope Ni₂P [110, 111, 127-129]. For instance, Li et al. 395 synthesized a series of (NixFe1-x)2P by varying the amount of Fe doping ratio [128]. They found out 396 that HER activities for (Ni_xFe_{1-x})₂P electrodes show a volcano shape as a function of Fe doping ratio 397 (see Figure 8); HER activities first increased as Fe content increased until the composition reaches 398 (Ni0.33Fe0.67)2P. Then, by further increasing the Fe content, HER performance decreased gradually. 399 $(Ni_{0.33}Fe_{0.67})_2P$ shows the best performance among the tested $(Ni_xFe_{1-x})_2P$ samples, with a small 400 overpotential of 214 mV to reach cathodic current densities of 50 mA/cm². Such an interesting 401 behavior could stem from an increase in the electrochemical surface areas, as well as a change in the 402 electronic structure with increasing Fe content [128, 130].

¹⁴ of 46

Figure 8 :a) Polarization curves of a series of (Ni_xFe_{1-x})₂P and commercial Pt/C electrodes for HER at a scan rate
of 5 mV s⁻¹. B) Time-dependent current density curve of (Ni_{0.33}Fe_{0.67})₂P at a constant overpotential of ≈285 mV.
Reprinted with permission from [128]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

408

409 Electron conductivity and dispersion of electrocatalysts also severely affect the catalytic activity of 410 the electrocatalysts. Various carbon materials, such as carbon nanotube and carbon cloth, which 411 possess both strong electronic conductivity and high surface area, have been implemented as Ni2P 412 support materials to enhance HER activity [131-141]. For instance, Pan et al. reported a hybrid 413 material where Ni₂P was supported on multiwalled carbon nanotubes (Ni₂P/CNT), as shown in 414 Figure 9a [136]. The HER catalytic activity of the Ni2P/CNT nanohybrid was evaluated in 0.5 M 415 H2SO4. Ni2P/CNT exhibits high catalytic activity with a low overpotential of 124 mV when current 416 density reached 10 mA/cm². The corresponding Tafel slope is 53 mV/decade, reflecting that the HER 417 reaction took place via a fast Volmer step followed by a rate-determining Heyrovsky step [142]. 418 Furthermore, the turnover frequency (TOF) was calculated and normalized by the total number of 419 active sites. To achieve a TOF value of 0.1 s-1, Ni2P/CNT only need an overpotential of about 170 mV, 420 much smaller than that required by the Ni12P5/CNT and Ni/CNT hybrid materials, further 421 showcasing the high catalytic activity of Ni₂P. 422

Figure 9: (a) TEM image of Ni₂P/CNT. (b) LSV curves of the Ni₂P/CNT, Ni₁₂P₅/CNT, Ni/CNT, Pt/C, CNT and
bare GCE in 0.5 M H₂SO₄ with a scan rate of 5 mV s⁻¹. (c) Tafel plots of the Ni₂P/CNT, Ni₁₂P₅/CNT, Ni/CNT and
Pt/C. (c) Calculated TOFs for the Ni₂P/CNT, Ni₁₂P₅/CNT and Ni/CNT in 0.5 M H₂SO₄. Reprinted with
permission from [136]. Copyright 2017 The Royal Society of Chemistry.

428

429 4.3 Iron sulfides, Fe_xS_y

430 Metal chalcogenides have received interest as HER electrocatalysts over the past decades such as 431 molybdenum sulfide MoS₂ [40], tungsten sulfide WS₂ [143], iron phosphide FeP [45] or nickel 432 phosphide Ni₂P [125]. Among them, iron sulfides (generally noted as Fe_xS_y) show great interest, 433 especially being the most abundant mineral on the Earth's surface, and pyrrhotite Fe_yS₁₀ being the 434 most abundant iron sulfide in the Earth and solar system [144, 145].

435 To our knowledge, the only study of iron sulfide electrocatalysts in a PEM WE device has been 436 published by Di Giovanni et al. [145]. In this paper the authors describe the synthesis and 437 characterization of different stoichiometries of iron sulfide FexSy nanomaterials and their activity 438 toward the HER. Pyrite FeS₂, greigite Fe₃S₄, and pyrrhotite Fe₃S₁₀ crystalline phases were first 439 prepared using a polyol synthetic route. Morphological and electronic properties of the prepared 440 nanoparticles were characterized, as well as their electrochemical properties. Greigite is formed of 441 micrometer-sized gypsum flowerlike particles consisting of thin platelets with a very high aspect 442 ratio. Pyrite particles have a hierarchical morphology consisting of large micrometer-sized spheres 443 of aggregated smaller particles. Their performances were investigated in situ in a PEM electrolyzer 444 single cell. MEA were prepared using pyrite, pyrrhotite, or greigite as the anode catalyst and tested 445 in a PEM electrolysis single cell. The catalysts were not supported, but were mixed with 20% of 446 carbon black. Nafion 115 (125 µm) was used as the membrane and IrO2 as the anode catalyst. A cross 447 section SEM image is presented in Figure 10 (left). For the same catalyst loading, both ex situ and in 448 situ (Figure 10(right)) electrochemical experiments showed that pyrite (FeS₂) is the most active 449 compared to greigite Fe₃S₄ and pyrrhotite Fe₃S₁₀, with the electrocatalysis starting at an overpotential

- 450 of *ca*. 180 mV. These three materials exhibited a very stable behavior during measurement, with no
- 451 activity degradation for at least 5 days. All catalysts have been tested in a PEM electrolysis single
- 452 cell, and pyrite FeS₂ allows a current density of 2 A/cm² at a voltage of 2.3 V.
- 453

454

Figure 10: (left) SEM image of the cross section of the MEA IrO₂/Nafion/pyrite FeS₂. (right) Polarization curves
at 80°C and atmospheric pressure with (a) Pt/C-based MEA (black squares), (b) pyrite-based MEA (red dots), (c)
greigite-based MEA (green diamonds), (d) pyrrhotite-based MEA (blue triangles) and (e) selected
carbon-only-based MEA (magenta stars) [145]. Reprinted with permission from [142]. Copyright 2018 American
Chemical Society.

460

461 It's noteworthy to emphasize that Fe_xS_y based materials have been studied as electrocatalysts for the
462 HER and showed promising results. Different chemical structures have been studied for
463 electrocatalytic hydrogen evolution and the main results are resumed in table SI.

FeS pyrrhotite has been prepared by a solvothermal route and showed hexagonal shaped nanoparticles with size ranging from 50 to 500 nm, achieving electrocatalysis for molecular hydrogen evolution with no structural decomposition or activity decrease for at least 6 days at an overpotential of 350 mV in neutral water [146].

468 Fe₂S pyrite has been prepared by Faber *et al.* by electron-beam evaporation on borosilicate substrates

469 following by a thermal sulfidation [147]. The cathodic overpotential to drive the HER at 1 mA/cm²

470 for Fe₂S pyrite was 217 mV.

471 Miao *et al.* prepared mesoporous Fe₂S materials with high surface area by a sol-gel method followed

472 by a sulfurization treatment in an H₂S atmosphere [148]. An interesting HER catalytic performance

473 was achieved with a rather low overpotential of 96 mV at a current density of 10 mA/cm² and a Tafel

474 slope of 78 mV/decade under alkaline conditions (pH 13).

475 Jasion *et al.* proposed the synthesis of nanostructured Fe₂S [149]. By changing the Fe₂S ratio in the 476 precursor solution, they were able to preferentially synthesize either 1D wire or 2D disc 477 nanostructures. The HER electrocatalytic activity of the nanostructured FeS₂ (drop-casted on a glassy 478 carbon electrode) was measured via linear sweep voltammetry (LSV) and showed the best results for

- 479 the 2D disc structures with an overpotential of just 50 mV larger than that of Pt.
- 480 Chua and Pumera investigated the electrochemical hydrogen evolution of natural FeS₂ [150].
- 481 Interestingly, they focused on the susceptibility of natural FeS₂ hydrogen evolution performances
- 482 towards sulfide poisoning, a major issue for cathodic hydrogen evolution. The results showed a
- 483 better response of the FeS₂ electrodes than platinum.
- 484 A hybrid catalyst of Cobalt-Doped FeS₂ Nanosheets–Carbon Nanotubes for the HER was proposed
- 485 by Wang *et al.* [151]. The pyrite phase of Fe_{1-x}Co_xS₂/CNT showed a low overpotential of ~120 mV at
- 486 20 mA/cm², a low Tafel slope of ~46 mV/decade, and long-term durability over 40 h of HER

487 operation. Huang *et al.* employed carbon black as a support to prepare a cobalt-doped iron sulfide
488 electrocatalyst with high-electrical conductivity and maximal active sites [152]. Electrochemical

- $489 \qquad \text{results showed an enhancement in the HER activity of Co-doped FeS}_2 \text{ in comparison to undoped}\\$
- 490 FeS₂ in acidic electrolyte (pH = 0). The overpotential necessary to drive a current density of 10
- 491 mA/cm² is 150 mV and only decreases by 1 mV after 500 cycles during a durability test.
- 492 Bi-functional iron-only electrocatalysts for both water splitting half reactions are proposed by
- 493 Martindale *et al.* [153]. Full water splitting at a current density of 10 mA/cm² is achieved at a bias of
- 494 ca. 2 V, which is stable for at least 3 days.
- 495 Iron sulfide alloys have also shown potential catalytic activity. Yu *et al.* report the 3D ternary nickel
- 496 iron sulfide (Nio.7Feo.3S2) microflowers with a hierarchically porous structure delivering an
- 497 overpotential of 198 mV at a current density of 10 mA/cm² [154]. Zhu et al. proposed bimetallic iron-
- 498 nickel sulfide (Fe_{11.1%}–Ni₃S₂) nanoarrays supported on nickel foam having a η₁₀ of 126 mV [155].
- 499 A patent has also been filed for the use of iron sulfide in an electrolytic cell [156].
- 500

501 4.4 Carbon-based materials

502 Due to the earth abundancy and high electronic conductivity, carbon based materials, such as carbon 503 nanoparticles (CNPs), carbon nanotubes (CNTs), graphene, etc., are mostly used as the supporting

- material for the electron transfer between the substrates and the electrocatalysts [157]. One of the most successful carbon material used as electrocatalyst support is carbon black, which is a commercially available product with high surface area (ca. 200-1000 m²/g) [158]. By uniformly dispersing electrocatalyst NPs on carbon black, the electrochemically active surface area (EASA) of the electrocatalyst can be maximized, and the amount of the catalyst, such as Pt, can be minimized.
- 500 the electrocataryst can be maximized, and the amount of the eataryst, such as 1 t, can be minimized.
- 509 Pt/C is actually the benchmark HER catalyst for PEM electrolysis [159].
- In order to further reduce the cost of H₂ produced by the PEM electrolyzer, other carbon-supported
 electrocatalysts, especially those only consist of earth abundant elements, such as Mo₂C/CNTs [160],
 A-Ni-C (atomically isolated Ni anchored on graphitic carbon) [161], Co-doped FeS₂/CNTs [162],
- 513 CoFe nanoalloys encapsulated in N-doped graphene [163], Ni₂P/CNTs [136], WO₂/C nanowires
- 514 [164], etc., have been studied as potential HER catalysts alternative to Pt. However,
- 515 carbon-supported and Pt-free HER catalysts that have actually been tested in a real PEM device are
- 516 rarely reported, and only a few can be found in the literature, and they are summarized in Table 3.
- 517 Nevertheless, the usage of C-based materials is not only limited to the anode. A recent study shows
- 518 that carbon nitride (C₃N₄) can efficiently resist the harsh conditions at the anode side, therefore it can
- 519 be used as the supporting material for OER catalysts, such as IrO₂, hence to reduce the Ir content at
- 520 the anode [165].
- 521
- 522 *4.5 Co-clathrochelates*

523 The interest in Co-clathrochelates as electrocatalysts is prompted by their ability to maintain the 524 same ligand environment for Co in different oxidation states [166]. However, only a few studies can 525 be found implementing Co-clathrochelates in PEM electrolysers. As can be seen from Table *3*, the 526 cell performance when cathodes are impregnated with such stable Co-containing electrocatalyst

- 527 complexes is comparable to other earth-abundant catalyst systems, achieving current densities of
- 528 0.65 and 1 A/cm² at 1.7 and 2.15 V, respectively (Dinh Nguyen *et al.*[167] and Grigoriev *et al.* [168]). In
- 529 both these works, the Co-clathrochelates were implemented in 7 cm² cells, but with different

- 530 loadings. Figure 11a shows how a clean Glassy Carbon Electrode (GCE) (a) is improved by addition
- 531 of [Co(dmg)₃(BF)₂]BF₄ (c) and Co(dmgBF₂)₂ (d) in a 0.5 M H₂SO₄ aqueous solution. The two Co
- 532 clathrochelate molecules are shown in Figure 11b.
- 533

534

Figure 11: Current-potential relations of (a) a clean glassy carbon electrode (GCE), (b) GCE modified with
carbon black (Vulcan XC72) and Nafion 117, (c) GCE modified with Vulcan XC72 (70 wt.%),
[Co(dmg)₃(BF)₂]BF₄ (30 wt.%) and Nafion 117, (d) GCE modified with Vulcan XC72 (70 wt.%), Co(dmgBF₂)₂ (30 wt.%) and Nafion 117, all in a 0.5 M H₂SO₄ aqueous solution, scan rate: 10 mV/s. Reprinted with permission
from [167]. Copyright 2012 Elsevier.

540

In Figure 11 a), the Co(dmgBF₂)₂ shows better electrochemical performance than [Co(dmg)₃(BF)₂]BF₄ in the three-electrode configuration. However, when the two electrode modifications above were implemented in single cells for i-V characterization and stability testing under operational conditions, the [Co(dmg)₃(BF)₂]BF₄ catalyst shows the best performance. The results are given in Figure 12a and b for current-potential and stability, respectively. The results reveal an increased cell voltage of 0.2-0.25 V when substituting the HER catalyst from Pt to Co-clathrochelates. The catalysts show no sign of degradation after 60 hrs of operation at 0.2 A/cm².

548

Figure 12: a) Current-voltage performances for a 7 cm² single cell with different MEAs: (a) $Ir(O_2)/Nafion$ 117/Pt(H₂), (b) Ir/Nafion 117/[Co(dmg)₃(BF)₂]BF⁴-Vulcan XC72, (c) Ir/Nafion 117/[Co(dmgBF₂)₂]-Vulcan XC72, (d) Pt/Nafion 117/Pt, (e) Ir/Nafion 117/[Co(acac)₃]-Vulcan XC72. Experiments were carried at 60° and P = 1 atm. b) Stability of the cells at 0.2 A/cm². Reprinted with permission from [167]. Copyright 2012 Elsevier.

554

555 The discrepancy between the results in half cell and full cell testing clearly underline the need for

556 testing in operation conditions before concluding on electrochemical performance. Co and Fe

557 hexachloroclathrochelates has also been applied by Grigoriev et al. in a full cell, impregnated on 558 Vulcan XC-72 Gas Diffusion Electrodes (GDEs) with a surface area of 7 cm² [168]. The main outcome 559 is that substituting Co with Fe improves the electrocatalytic performance of the same macromolecule 560 (Figure 13). One can also see that the overvoltage is around 0.25 V higher for the 561 hexachloroclathrochelates than for the carbon supported Pt cathode used as reference. Comparing 562 the results of Grigoriev et al. to the results reported by Dinh Nguyen et al. is difficult, since no 563 information is given with respect to ohmic contributions to cell resistance for the former, while 564 ohmic contributions are subtracted for the latter. However, the same difference in overvoltage can be 565 seen with respect to carbon supported Pt.

566

567

568 Figure 13: Current-voltage performances of MEAs with cathodes based on metal(II) clathrochelates 569 $Co(Cl_2Gm)_3(Bn-C_4H_9)_2$ (1), $Co(Cl_2Gm)_3(Bn-C_{16}H_{33})_2$ (2), $Co(Cl_2Gm)_3(BCH_3)_2$ (3), $Co(Cl_2Gm)_3(BC_6H_5)_2$ (4) and 570 $Fe(Cl_2Gm)_3(BC_6H_5)_2$ (5) and Pt/Vulcan XC-72 (6). Reprinted with permission from [168]. Copyright 2017 571 Elsevier.

572

573 Grigoriev et al. reported that the HER performance of Co-encapsulating macromolecules is 574 improved by adding electron-withdrawing ligands, but otherwise changing ligands makes little 575 difference as long as the electronic structure is similar. This can be seen for different aryl and alkyl 576 apical substituents in [168]. El Ghachtouli et al. reported that the exchange of ligands between 577 fluorine and phenyl- methyl groups has negligible effect on i-V behavior, although the ligands go 578 from strongly electron-withdrawing fluorine, via moderately electron withdrawing phenyl- to 579 electron donating methyl groups. The electron affinity of the ligands did, however, affect the 580 reduction potential of Co to surface nanoparticles, which in turn improved the HER [169]. Xile Hu et 581 al. reported a more ambiguous effect of manipulating electron affinities by substituting phenyl- for 582 methyl ligands. In this study, a more positive potential for H₂ evolution correlated with a decreased 583 activity for electrocatalysis. Complex red-ox behavior was also reported in this study, such as Co(III) 584 hydride intermediates formed upon reduction in acidic media [170]. Zelinskii et al. utilized 585 perfluorophenyl ribbed substituents to stabilize Co(I) in an effort to enhance the HER, but although 586 the reduced Co(I) was successfully stabilized, the resulting Co-clathrochelate complex was not 587 electrochemically active in the HER [171].

588 One of the main challenges for non-noble metal catalysts in aqueous electrolyzer cathodes is their

589 stability in harsh acidic conditions. The Co-clathrochelates show good stability in the reported

590 works, exemplified by a stable overvoltage of 240 mV and a faradaic efficiency of 80 %, remaining

stable for more than 7 hrs in pH = 2 and at 1 mA/cm² and 0.9 V [172].

592

593 Table 3: Summary of PEM WE full cells with EACs as cathodes.

Cathode (loading in mg/cm²)	Membrane	Anode (loading in mg/cm²)	Temp. (°C)	Performance	Ref.
MoS ₂	Nafion 117	IrO ₂ (2)	80°C	0.02 A/cm ² @1.9 V	[84]
47wt% MoS ₂ /CB (2.5)	Nafion 117	$IrO_2(2)$	80°C	0.3 A/cm2@1.9 V	[84]
MoS ₂ /rGO (3)	Nafion 117	IrO ₂ (2)	80°C	0.1 A/cm ² @1.9 V	[84]
MoS _x /CB (3)	Nafion 115	Ir black(2)	80°C	0.9 A/cm2@2.0 V	[105]
Mo ₃ S ₁₃ /CB (3)	Nafion 115	Ir black(2)	80°C	1.1 A/cm ² @2.0 V	[105]
MoS ₂ nCapsules (2)	Nafion 117	IrO ₂ (2)	80°C	0.06 A/cm ² @2.0 V	[106]
MoS _x /C-cloth	Nafion 117	RuO ₂ (2)	80°C	0.3 A/cm ² @2.0 V	[107]
MoS _x /C-paper	Nafion 212	IrO ₂ (0.1)	90°C	0.37 A/cm ² @1.9 V	[108]
Pyrite FeS ₂	Nafion 115	IrO ₂ (2)	80°C	1 A/cm ² @2.101 V	[145]
Greigite Fe ₃ S ₄	Nafion 115	IrO ₂ (2)	80°C	1 A/cm ² @2.130 V	[145]
Pyrrholite Fe ₉ S ₁₀	Nafion 115	IrO ₂ (2)	80°C	1 A/cm ² @2.158 V	[145]
30 wt% Pd/P-doped C (carbon black)	Nafion 115	RuO ₂ (3)	80°C	1 A/cm ² @2 V	[173]
30 wt% Pd/N-doped CNTs	Nafion 115	RuO ₂ (3)	80°C	1 A/cm ² @2.01 V	[174]
30 wt% Pd/P-doped Graphene	Nafion 115	RuO ₂ (3)	80°C	1 A/cm ² @1.95 V	[175]
Activated single-wall carbon nanotubes	Nafion 115	IrRuOx	80°C	1 A/cm ² @1.64 V	[176]
Co NPs/N-doped C	Nafion NRE-212	IrO ₂ (0.55)	80°C	1 A/cm²@150 mV η from Pt/C	[177]
Boron-capped tris (glyoximato) cobalt complexes on carbon black (Co(dmg)/C)	Nafion 117	Ir black (2-2.5)	90°C	1 A/cm ² @2.1 V	[178]
[Co(dmgBF ₂) ₂]-Vulcan XC72 2.5 mg cm ⁻² *	Nafion 117	IrO ₂	60°C	0.5A/cm ² @1.7 V	[167]
[Co(dmg) ₃ (BF) ₂]BF ₄ -Vulcan XC72 2.5 mg/cm ² *	Nafion 117	IrO ₂	60°C	0.65A/cm ² @1.7 V	[167]
Co hexachloroclathrochelates impregnated on Vulcan XC-72 5–12·10 ⁻⁴ mg/cm ² **	Nafion 117	Ir black	80°C	1 A/cm ² @2.15 V	[168]

594 * Weight of whole complex

595 ** Weight of catalyst

596

597 4.6 Density Functional Theory (DFT) for HER catalysts

598 Density functional theory (DFT) is an essential tool for understanding the mechanisms and active 599 sites of novel catalysts as it enables evaluation of the thermodynamics of the individual steps in 600 HER. Modelling reaction barriers is however computationally demanding, and most studies as such, 601 rather adopt a " ΔG approach". As HER involves both proton transfer and charge transfer, the 602 activity of a catalyst is intrinsically linked to its crystal and electronic structure. In that respect, the 603 hydrogen bonding strength/adsorption energy (ΔG_H) has been widely used as descriptor of catalyst

activity. Following the Sabatier principle too strong or weak interactions with the catalyst surfacetends to lower the overall catalyst activity yielding the typical volcano type behavior (Figure 14).

606

607

608 Figure 14 Volcano plot of the exchange current density as a function of the DFT-calculated Gibbs free energy of

adsorbed atomic hydrogen for nanoparticulate MoS₂ and the pure metals. Reprinted with permission from[40]. Copyright 2007 Science.

611

612 MoS₂ and similar layered transition metal dichalgogenides (TMD) crystallize in two structures, the 613 2H and 1T polymorphs (Figure 15), with trigonal prismatic and octahedral coordination,

- 614 respectively.
- 615

616

617 Figure 15: Structure of 2H and 1T MX₂ dichalgogenides (top view). Reprinted with permission from [179].

618 Copyright 2015 Elsevier.

619

620 The thermodynamically stable 2H polymorph of single layer MoS₂ is semiconducting with a band 621 gap of 1.74 eV [180], and its (0001) basal plane exhibits negligible catalytic activity towards HER due 622 to a ΔG_{H} of ~2 eV [179]. On the other hand, Hinnemann *et al.* [91] showed that the (-1010) Mo edge 623 sites of single trilayer MoS₂ can be highly active towards HER, and that they resemble the active sites 624 of the hydrogen-evolving enzymes nitrogenase and hydrogenase [40, 91]. The Mo edge exhibits a 625 calculated ΔG_H of merely 0.08 eV (Figure 16), compared to 0.18 eV of the (10-10) S edge [181], and is 626 as such, close to thermoneutral (for low H coverages). The increased activity of the edge sites is 627 attributed to in-gap surface states near the Fermi level, implying that 2D MoS₂ with a high edge site 628 concentration can be activated towards HER [182]. Significant computational studies have been 629 devoted to exploring strategies to increase the density of activity sites in MoS₂, and to optimize ΔG_{H}

630 through electronic structure manipulation. Bonde et al. [3] for instance, showed that Co-promotion 631 decreases the $\Delta G_{\rm H}$ of the S edge to 0.07 eV, but not of the Mo edge, and as such leads to increased 632 number of active sites. Tsai et al. [183] showed that various supports can also be used to tailor the 633 hydrogen bonding to MoS₂; for Mo edges. Increasing the catalyst adhesion to the support was found 634 to weaken the hydrogen bonding, and is attributed to downward shifts of the S p-states, which in 635 turn lead to filling of H 1s antibonding states. Efforts have also been made to understand how the 636 basal plane of MoS₂ can be activated towards HER through defect chemical, structural and strain 637 engineering [184-187]. Li *et al.* [184] showed that $\Delta G_{\rm H}$ of basal plane MoS₂ decreases with increasing S 638 vacancy concentration (Figure 16), and that vacancy formation induces in-gap defect states 639 stemming from undercoordinated Mo (Figure 16b), which allows for favourable hydrogen binding. 640 Straining the vacancies was furthermore shown to decrease the $\Delta G_{\rm H}$ (Figure 16c) even further. 641 Ouyang et al. [187] showed that other native point defects such as VMoS3 and MOS2 and extended 642 defects, such as grain boundaries affect hydrogen bonding and as such the HER performance. In 643 addition, Deng et al. [188] showed that single atom transition metal substitution creates in-gap states 644 that lower the ΔG_{H} , with Pt-MoS₂ yielding a close to thermoneutral binding energy.

645 While the basal plane of $2H-MoS_2$ is semiconducting [180], its metastable 1T phase is metallic [189] 646 and even its basal plane is highly active towards HER. The metallicity and high HER activity stems 647 from the partially filled Mo 4d and S states at the Fermi level, leading to favorable ΔG_{H} [190]. DFT 648 calculations reveal that ΔG_{H} is highly coverage-dependent due to H induced surface reconstructions, 649 reaching values between -0.28 and 0.13 eV for 12.5 to 25 % coverage [190]. The phase stability of the 650 1T phase, and its band gap and as such HER activity, can be tuned by surface functionalization, by 651 e.g. -CH₃, CH₃, OCH₃, and NH₂, which all were shown to bind more strongly to the 1T surface 652 compared to the 2H basal plane [191].

653

656 Figure 16: (a) Free energy vs. reaction coordinate for HER on basal plane MoS₂ for various vacancy 657 concentrations, (b) corresponding band structure, and (c) effect of strain and vacancies on ΔG_{H} . Reprinted with 658 permission from [184]. Copyright 2015 Nature Publishing Group.

659

660 Realizing the importance of crystal and electronic structure with respect to HER activity of MoS₂, a 661 range of other layered TMD have attracted attention both experimentally and computationally. Tsai 662 et al. [192] showed also that for MoSe₂ and WeSe₂, the Mo and Se edge sites are more active than the 663 basal planes, and that the selenides gennerally exhibit weaker H binding than their sulphur 664 counterparts. Tsai *et al.* [179] furthermore explored the electronic structure, ΔG_{H} and the energy of 665 HX adsorption, ΔG_{HX} (i.e. descriptor for stability) for the basal planes of a range of 2D MX₂ (M= Ti, V, 666 Nb, Ta, Mo, W, Pd, and X=S or Se) TMDs.The 2D TMDS vary from semiconducting to metallic 667 (Figure 17), with group 7 TMDs (Mo and W) changing from semiconducting to metallic from the 2H 668 to the 1T phase. The metallic TMD were in general found to exhibit stronger H bonding (lower $\Delta G_{\rm H}$) 669 than the semiconducting phases (Figure 17). The semiconducting TMDs span a wider range of $\Delta G_{\rm H}$ 670 than the metallic phases, reflecting the importance of the electronic structure with respect to the HER 671 activity (Figure 17). They found an inverse correlation between ΔG_{HX} and ΔG_{HX} for both 672 semiconducting and metallic phases, reflecting the general understanding of the relationship 673 between HER activity and. Furthermore, the metallic TMD were in general found to exhibit stronger 674 H bonding (lower $\Delta G_{\rm H}$) than the semiconducting phases.

Figure 17: p-projected density of states on the S or Se atom for 2D TMDs in the 2H and 1T structures relative

to the Fermi level, with blue indicating metallic basal planes, while grey ones are semiconducting. Reprinted with permission from [179]. Copyright 2015 Elsevier.

676

677 Of the HER active transition metal phosphides, those of especially Ni and Mo have been the subject 678 of extensive computational investigations. Bulk Ni2P is metallic with a crystal structure consisting of 679 alternating Ni₃P and Ni₃P₂ planes along the (0001) axis. The HER activity of Ni₂P (0001) surfaces 680 were originally predicted computationally by Liu and Rodriguez [124] [123] showing that the P sites 681 on the phosphide surface play an important role in producing a weak-ligand effect involving Ni \rightarrow P 682 charge transfer, resulting in suitable ΔG_{H} and high activity for the dissociation of H₂. The bare Ni₃P 683 terminated surface exhibits a strongly binding Ni₃ hollow site with $\Delta G_{\rm H}$ of ~ -0.5 eV for the first H, 684 and several sites of lower H binding strength [193, 194]. DFT calculations show that the surfaces 685 prefer a P-covered reconstruction of the Ni₃P termination in which a P ad-atom binds on-top of the 686 strongly H binding Ni₃ hollow site [193] and that this P ad-atom reduces the bindings strength of the 687 site, and can bind up to 3 H atoms [195, 196]. Hakala and Laasonen [194] showed that the H 688 adsorption properties can be modified through Al substitutions, leading to $\Delta G_{\rm H}$ close to 0 eV.

689 In a joint experimental-computational effort, Xiao et al. [197] studied hydrogen binding at the Mo, Mo₃P

690 and MoP surfaces showing that 001-Mo surface binds H strongly with a $\Delta G_{\rm H}$ ranging from -0.54 to -0.46

691 eV for ¹/₄ to ³/₄ monolayers. The Mo and P terminated (001) MoP surfaces was found to exhibit values

of -0.63 to -0.59 and -0.36 to 0.34, respectively, indicating that the P terminated surface can adsorb H

- 693 at low coverages and desorb at high coverages, reflecting the importance of P also in these catalysts.
- 694

695 5. Earth-Abundant Anode Materials

696 As mentioned previously, the only stable and well-established catalysts for the OER in acidic media 697 are noble metal oxides such as IrOx and RuOx [198]. A recent study (2016) on benchmarking of water 698 oxidation catalysts (WOC) revealed that there are no EACs that can reach the target metric of 699 short-term acid stability, which is defined as operation at 10 mA/cm² for 2 h [199]. We also expected 700 that there are no PEM WE reports based on EACs anodes for the OER side, but this is also not the 701 case. Herein, we report on recent advances and current trends on EACs for the OER that show 702 promising results in terms of performance and stability in acidic media, which exceeded the 703 short-term target of 2 h in just two years. The presented materials and their performance are 704 summarized in Table 4.

705 Manganese oxide (MnOx) was reported to be functional under acidic conditions and before 706 activation exhibited a Tafel slope of approx. 650 mV/decade, but after potential cycling and 707 activation of the MnOx film the slope was improved to approx. 90 mV/decade [200]. The authors 708 reported a galvanostatic stability of 8 h in 0.5 M H₂SO₄ at a current density of 0.1 mA/cm² and 709 overpotential of 540 mV. The same group introduced Mn in CoOx with the former acting as a 710 stabilizing structural element and the CoMnOx showed a Tafel slope of 70-80 mV/decade and a 711 stability of more than 12 h without any dissolution [201]. The overpotential for a galvanostatic 712 operation at 0.1 mA/cm², which is 2 orders of magnitude lower than the target values though, was 713 approx. 450 mV. In another work, MnO₂ was stabilized by introduction of TiO₂ in the 714 undercoordinated surface sites of MnO₂. Frydendal et al. applied a 5 nm layer of Ti-modified MnO₂ 715 on a 35 nm think layer of pure MnO₂ [202]. The composite material exhibited a Tafel slope of 170 716 mV/decade and a moderate overpotential of approx. 490 mV at 1 mA/cm². The Mn dissolution in

717 0.05 M H₂SO₄ was suppressed by roughly 50% after the TiO₂ modification. The authors came up with 718 this strategy after an initial DFT study, which indicated that guest oxides such as GeO₂ and TiO₂ 719 should improve the stability of MnO₂. The reason is that both GeO₂ and TiO₂ have lower surface 720 formation energies than MnO₂ and are more favorable for termination at the undercoordinated sites 721 on MnO₂. Another Mn-containing system is reported by Patel et al., and is based on nanostructured 722 Cu1.5Mn1.5O4:x wt.% F (x=0, 5, 10, 15) [203]. The Cu1.5Mn1.5O4:10F electrocatalyst in 0.5 M H2SO4 at 40 723 °C exhibited an onset potential at 1.43 V vs. RHE for the OER and reached 9.15 mA cm-2 at 1.55 V vs. 724 RHE. Interestingly, the in-house made IrO₂ showed the same onset overpotential and 7.74 mA/cm² at 725 1.55 V. The reported Tafel slop for the EAC is 60 mV/decade and it should be noted that the 726 current-voltage curves were iR corrected. In a report by Anantharaj et al. it is suggested that the 727 method used to calculate the iR drop compensation should be reported, along with the 728 uncompensated i-V curves [53]. The material showed also very good stability for almost 24 h of 729 operation at constant current density of 16 mA/cm². This material is also suitable for the oxygen 730 reduction reaction (ORR), where it showed again similar activity to IrO₂. The authors did not apply 731 the Cu1.5Mn1.5O4:10F as a anode in PEM WE full cell, but they did so for the cathode in a PEM fuel cell 732 (PEM FC) mode. The results are very promising and the performance is the same as with IrO_2 and 733 quite close to the operation in a 3-electrode mode. It should be noted though that the loading of the 734 EAC was 6.7 times higher than for IrO₂. 735 Moreno-Hernandez et al. developed a quaternary oxide, Ni0.5Mn0.5Sb1.7Oy, which exhibited an initial 736 OER overpotential of approx. 675 mV vs. RHE in order to reach 10 mA/cm² in 1.0 M H₂SO₄ [204]. The

OER overpotential of approx. 675 mV vs. RHE in order to reach 10 mA/cm² in 1.0 M H₂SO₄ [204]. The overpotential stabilized at approx. 735 mV and the electrocatalyst performed for 168 h of continuous operation (Figure 18). The authors reported a full cell application in a 2-compartment electrolysis cell with Nafion as the separating membrane, but they did not use the catalyst in a PEM WE full cell. The stability of the Ni_{0.5}Mn_{0.5}Sb_{1.7}O_y is comparable to the noble metal oxides and is related to the fact that Ni, Mn and Sb oxides are stable in acidic conditions at OER potentials according to Pourbaix

742 diagrams [205, 206].

Figure 18: Stability of the Ni_{0.5}Mn_{0.5}Sb_{1.7}O_y electrodes at 10 mA/cm² in 1 M H₂SO₄ (a), Cyclic voltammetry at 10 mV/s in between the stability test. Reprinted with permission from [204]. Copyright 2017 The Royal Society of Chemistry.

745 Another important element in the aqueous electrochemistry is cobalt (Co). Co oxide-based catalysts 746 have shown excellent performance in alkaline and near neutral pH solution [207, 208]. Under strong 747 acidic conditions they show fast dissolution, sluggish kinetics and high overpotentials [199, 209, 748 210]. Mondaschein et al. developed a highly crystalline Co₃O₄ nanostructured film, which was 749 deposited on FTO by electron-beam evaporation followed by annealing at 400 °C [211]. The 750 overpotential for 10 mA/cm² was 570 mV vs. RHE in 0.5 M H₂SO₄, and the catalyst maintained an 751 OER with near-quantitative Faradaic yield for over 12 h. Unfortunately, the dissolution rate of Co at 752 this high current density was 100 ng/min and further studies are needed for corrosion protection of 753 such structures. To this end, Yan et al. have recently reported the synthesis of mesoporous Ag-doped 754 Co₃O₄ nanowires, which showed improved stability over 10 h operation at 1.6 V vs. RHE in 0.5 M 755 H₂SO₄, as Ag is known to be stable in acidic media [212]. The Ag-doped Co₃O₄ nanowires were 756 synthesized by electrodeposition-hydrothermal process, which was followed by calcination at 400 757 °C. The nanostructured catalysts showed a Tafel slope of 219 mV/decade and an overpotential of 758 approx. 680 mV at current density of 10 mA/cm². The authors do not provide any dissolution 759 products analysis or any post-operation analysis of the material, as well as no comparison with IrOx. 760 Co-containing polyoxometallates (Co-POMs) have shown promising catalytic properties for water 761 splitting at near-neutral pH [213]. To this end, Blasco-Ahicart et al. developed the Ba salt of 762 Co-phosphotungstate polyanion (Ba[Co-POM]) that outperformed IrO₂ at pH<1, showing an 763 overpotential of 189 mV vs. RHE at 1 mA/cm² with a faradaic efficiency of 99%. The Tafel slope was 764 66 mV/decade at the long-term stability was assessed at an overpotential of 250 mV vs. RHE. The 765 initial current was more than 2 mA/cm² but decreased down to 0.35 mA/cm² after 24 h of operation. 766 This degradation is assigned to charge localization that reduces the overall performance, which can 767 be retrieved after charge delocalization at open-circuit potential. The authors could not assess the 768 performance of the material at 10 mA/cm² as the carbon paste, which acted as a binder was not 769 stable. 770

Figure 19: Molecular structure of the Co-POM cluster (a), Linear sweep voltammetry of different Co-POM electrocatalysts compared with different carbon paste/IrO₂ blends in 1 M H₂SO₄. Reprinted with permission from [213]. Copyright 2017 Elsevier.

771

772 An interesting work conducted by Rodriguez-Garcia et al. combines the Co and Sb elements in a 773 anode made of cobalt hexacyanoferrate supported on Sb-doped SnO₂ [214]. In this work the 774 synergistic effect of the OER catalysts (CoHFe) and the support, antimonite tin oxide (ATO) is 775 highlighted and the "wining" configuration is when 17% wt. of CoHFe is deposited on ATO. The 776 onset of the OER was approx. at 1.75 V vs. RHE as determined by RDE experiments. Interestingly, 777 the authors assembled a PEM WE full cell and they have found the onset potential as from the RDE 778 experiments. A current density of the order of 50-100 mA/cm² was reached at 2 V cell voltage. The 779 authors studied the Sn and Sb leaching rates during PEM operation and they observed increases 780 leaching rates for cell voltages above 2 V. To our knowledge this the first report on PEM WE full cells 781 using EACs for the anode.

782

Figure 20: PEM WE polarization curves before and after 22 h of potentiostatic control at 2 V (a), Stability run at 2 V for 22 h (b). Reprinted with permission from [214]. Copyright 2018 The Royal Society of Chemistry.

783

784 Zhao et al. prepared FeOx which was incorporated into TiO₂ nanowires on Ti foam as the support 785 [215]. The catalyst showed an OER overpotential of 260 mV for 1 mA/cm² in 0.5 M H₂SO₄. The 786 reported Tafel slope was 126.2 mV/decade, while for the RuO₂ it was 56.2 mV/decade. The composite 787 material showed very good stability with no significant degradation and after 20 h operation at the 788 OER potential of 1.9 V the current was reduced by 18.7%, but the faradaic efficiency is not provided. 789 Another catalyst involving Fe as the electroactive transition metal is provided by Kwong et al. [216]. 790 In this work, three different Fe-based oxides are studied; the mixed maghemite-hematite, and the 791 single polymorphs, maghemite and hematite. The hematite film was OER-inactive, the maghemite 792 corroded after approx. 6 h of operation, while the mixed polymorph sustained a 10 mA/cm² for more 793 than 24 h in 0.5 M H₂SO₄. The overpotential was 650 mV vs. RHE and increased about 13% after 24 h. 794 The reported Tafel slope is of the order of 56 mV/decade and the faradaic efficiency is almost 100%. 795 In this paragraph, three more interesting materials for the OER in acid are reported. Yang et al. 796 reported a bifunctional composite material, which is able to catalyze both OER and HER in acidic 797 environment (0.5 M H₂SO₄) [217]. A flexible porous membrane comprised of MoSe₂ nanosheets on 798 MoO₂ nanobelts and carbon nanotubes (MoSe₂ NS/MoO₂ NB/CNT-M) showed a Tafel slope of 112.3 799 mV/decade and an overpotential of 400 mV at 10 mA/cm². More importantly, the authors applied the 800 composite porous membrane in a 2-electrode water splitting cell and they compared the

- $801 \qquad \text{performance of the EAC against a configuration having RuO_2 as the anode and Pt/C as the cathode at}$
- a cell voltage of 2 V. After a large attenuation of the current densities in both configurations the
 composite porous membrane stabilized at 8.87 mA/cm², while the noble-metal configuration at 4.38
 mA/cm².
- 805

Figure 21: Photos of the flexible porous membranes of MoSe₂ NS/MoO₂ NB/CNT-M and the individual components (a) and their i-V characteristics (b), stability in acidic media using as anode and cathode the MoSe₂ NS/MoO₂ NB/CNT-M electrode. Reprinted with permission from [217]. Copyright 2018 The Royal Society of Chemistry.

806

807 A superaerophobic bifunctional N-doped tungsten carbide nanoarrays catalyst was synthesized on 808 carbon paper with a combination of hydrothermal and CVD methods by Han et al. [218]. The OER 809 onset is at an overpotential of approx. 120 mV vs. RHE, while a high current density of 60 mA/cm² 810 was reached at approx. 470 mV overpotential. This catalyst outperformed IrO2 in 0.5 M H2SO4 under 811 3-electrode configuration as well as in a 2-electrode water splitting cell, where both the anode and 812 the cathode were the N-WC nanoarrays. Unfortunately, the stability of the material is limited and 813 after 1 h of operation at 10 mA/cm² the overpotential increased from 120 mV to 320 mV vs. RHE, but 814 the faradaic OER efficiency is not reported. 815

Figure 22: Synthesis route of the N-doped WC nanoarrays (a), i-V curves of water splitting with the N-WC as anode and cathode electrodes compared with N-WC as the cathode and Ir/C as the anode (b), and video snapshot of the water electrolysis with a 1.5 V commercial battery (c). Reprinted with permission from [218]. Copyright 2018 Nature Publishing Group.

- 816
- 817 Mondschein et al. reported the intermetallic Ni₂Ta for the OER in 0.5 M H₂SO₄ [219]. Intermetallic
- 818 alloys are metallic conductors and Ni₂Ta has been used as a corrosion resistance coating [220, 221]. In
- 819 their report, Mondschein *et al.* found that Ni₂Ta combines the OER activity of Ni and the corrosion
- 820 resistance of Ta and the intermetallic compound needed 980 mV to reach 10 mA/cm², a behavior

821 assigned to the low electrochemically active surface area (EASA). The authors prepared a 822 polycrystalline Ni-Ta electrode in order to increase the EASA and indeed, the overpotential at 10 823 mA/cm² was improved to 570 mV. The polycrystalline electrode showed improved corrosion 824 resistance compared to a Ni pellet electrode prepared in a similar way, as the Ni content in the 825 electrolyte after 36 h operation was below the detection limit of ICP-MS, while for the Ni pellet was 826 350.5 ppm.

827

Figure 23: Intermetallic Ni₂Ta for OER in acidic media (a), Galvanostatic measurements of Ni rods (b) and Ni₂Ta rods in 0.5 M H₂SO₄ at 10 mA/cm². Reprinted with permission from [219]. Copyright 2018 Amreican Chemical Society.

828

829 Table 4: Summary of the EACs developed for OER in acidic conditions.

Material	$\eta \ \mathrm{mV}$	Tafel	Loading	Media	Stability	OER	Applied in	Ref
		mV/dec				faradaic	PEM WE	
						efficiency	full cell	
Activated	540@0.1	90	thin film	0.5 M	8 h@0.1	~ 1%	-	[200]
MnOx	mA/cm ²		2-4 nm	H2SO4,	mA/cm ²			
				pH=2.5				
CoMnO _x	450@0.1	70-80	films	0.5 M	12 h@0.1	91%	-	[201]
	mA/cm ²			H2SO4,	mA/cm ²	average		
				pH=2.5				
Ti-stabilized	~490@1	170	thin film	0.05 M	89%,	-	-	[202]
MnO ₂	mA/cm ²		40 nm	H_2SO_4	1h@1.9V			
Cu1.5Mn1.5O4:1	320@9.15	60	1 mg/cm ²	0.5 M	24 h@16	-	ORR in PEM	[203]
0F	mA/cm ²			H_2SO_4	mA/cm ²		fuel cell	
Ni0.5Mn0.5Sb1.7	675@10	60	thin film ~	1 M	168 h@10	95%	-	[204]
Oy	mA/cm ²		300 nm. Ni	H_2SO_4	mA/cm ² . η	average		
			content		increased to			
			0.48		735 mV			
			µmol/cm ²					
crystalline	570@10	80	thin film ~	0.5 M	12 h@10	Above	-	[211]
C03O4	mA/cm ²		300 nm.	H2SO4,	mA/cm ² .	95%		
				pH=0.3	Dissolution			
					rate 100			

					ng/min			
Ag-doped	680@10	219	film, 32.81	0.5 M	10 h@6	-	-	[212]
C03O4	mA/cm ²		m²/g	H2SO4	mA/cm ²			
Ba[Co-POM]	189@1 mA/cm ²	66	11 mg	1 M H2SO4,	From >2 mA/cm ² to	99%	-	[213]
				pH=0.2	0.35 after 24			
					h			
CoHFe on	780@0.9	-	0.61	0.1 M	-	-	OER. 50-100	[214]
Sb-doped	mA/cm ²		mg/cm ²	H2SO4,			mA@2 V. 6	
SnO ₂							mA/cm ² @1.8	
							V with 0.5	
							Stability: 21	
							h. Cathode:	
							0.5 mg/cm ²	
							Pt/C	
Fe-TiO _x	260@1	126.2	60 mg/cm ²	0.5 M	20 h@1.9 V.	-	-	[215]
LNWs/Ti)	mA/cm ²		as of Fe ₂ O ₃	H_2SO_4	18.7%			
					current			
Mixed	650@10	56	1 mg/cm^2	05M	>24 b@10	~100%		[216]
maghemite-he	mA/cm ²	50	i ing/ein	H2SO4,	mA/cm^2 .	100 /0		[210]
matite	·			pH=0.3	,			
MoSe ₂	400@10	112.3	98.46 m²/g	0.5 M	10 h@8.87	-	2-electrode	[217]
nanosheet/Mn	mA/cm ²			H_2SO_4	mA/cm ²		electrolyzer	
O2							as anode and	
nanobelt/CNT							cathode@2 V	
(bifunctional)	470@60		10 mg/sm^2	0.5 M	1 h@10		2 alastrada	[219]
nanoarray	mA/cm^2	-	10 mg/cm ²	0.5 M H ₂ SO ₄	$mA/cm^2 n$	-	electrolyzer	[210]
(bifunctional)	ini i cin			112004	increases		as anode and	
· · · · ·					from 120 to		cathode@1.4	
					310 mV		V	
Intermetallic	570@10	-	0.84 cm ² as	0.5 M	>66 h@10	85% @ 20	-	[219]
polycrystalline	mA/cm ²		EASA	H2SO4	mA/cm ² .	mA/cm ²		
Ni2Ta								

831 6. Summary, challenges, perspectives and future directions

In this review article, a short introduction was given about the energy problem humanity will soonface, due to the depletion of fossil fuels. In addition, their excessive usage is undoubtedly related to

834 the climate changes. The "hydrogen economy" will become part of our future energy solutions and

hydrogen fuel produced by water electrolysis represents a viable, renewable and environmentally

inversion interproduced by water electrolysis represents a viable, renewable and environmentary

836 friendly option that can replace fossil fuels. We presented a brief technoeconomic analysis and from

837 the learning curves it is estimated that PEM water electrolysis will break even with the cost of 838 hydrogen from fossil fuels around 2030, under an optimistic scenario. Currently, the high cost of 839 hydrogen from PEM WE is related to the polymer exchange membrane, the noble electrocatalysts 840 and the high overpotentials for water splitting. With this in mind, we wanted to document the 841 progress done so far in the discovery and development of EACs both for the OER and HER sides of a 842 PEM electrolyzer. There was no point in doing an extensive literature review of EACs, because only 843 for 2017, there were 2043 reports on the development of electrocatalysts. In addition, there are 844 several other reviews, which the reader can refer to in this article, on EACs available in the literature 845 covering either the whole range of new EACs or more specific classes, such as sulfides, phosphides 846 etc. Instead, we reported the state-of-the-art PEM WE full cells based on noble metal catalysts and 847 more importantly, we aimed in documenting how many of the newly developed EACs are actually 848 used in PEM WE full cells, replacing the noble metal-based catalysts. This is equally important 849 during the development stages of any catalyst, in order to observe and record efficiencies and 850 limitations while operating conditions, facts that may differ from the idealized measurements in half 851 cells and rotating disc electrodes. To our surprise, we found only 16 reports on HER EACs employed 852 in PEM WE and only 1 report for the OER. Of course, the great challenge is to find stable EACs for 853 the OER in acidic environment, as currently the only stable and efficient catalyst is IrO₂.

854 On the other hand, we are among the first to compile the very first EACs with promising efficiencies 855 and stability for the OER under acidic environment. The reader can find the very first 14 856 breakthrough papers, which we hope that will motivate more research in order to develop and 857 improve the stability of transition metal elements, such as Ni, Co, Fe and Mn for operation under 858 anodic current flow at strongly acidic conditions. Transition metal antimonates of rutile type, as the 859 Ni0.5Mn0.5Sb1.7Oy reported by Moreno-Hernandez et al. shows very good stability, which is related to 860 the fact that Mn, Ni and Sb oxides are stable in acid, according to their Pourbaix diagrams. The 861 strategy to integrate unstable catalysts with inactive counterparts, i.e. mixed polymorphs, may lead 862 to stable electrocatalysts. Kwong et al. presented a fine example. The authors combined maghemite 863 and hematite and they achieved a stable operation for more than 24 h at 10 mA/cm² in 0.5 M H₂SO₄ at 864 an overpotential of 650 mV vs. RHE, while maghemite and hematite alone are unstable and not 865 active, respectively. The faradaic efficiency for the OER was also close to 100%. Another strategy is to 866 combine a stable oxide with an unstable one, as the TiO₂-stabilized MnO₂ shown by Frydendal *et al.* 867 In this work, a DFT work predicted that TiO₂ can be inserted for termination at the 868 undercoordinated sites on MnO₂ and in fact, the stability of MnO₂ increased by more than 50%. 869 Apart from TiO₂, the authors suggested GeO₂ as well, as it also has a lower surface formation energy

than MnO₂.

871 Intermetallic alloys, such as Ni-Ta, have been used as corrosion protective coatings already from the

- 872 90's. Mondschein *et al.* reported the polycrystalline Ni₂Ta alloy, which was stable for more than 66 h
- at a current density of 10 mA/cm² in 0.5 M H₂SO₄. The challenge with such alloys is to increase their
 surface area by nanostructuring.
- 875 On the other side, the HER, one can find an enormous amount of EACs both for acidic and basic
- 876 conditions. We very selectively touch upon the current state-of-the-art and the most promising HER
- 877 EACs, and our main conclusion is that a lot more applied systems must be reported. Sixteen works
- 878 out of thousands are a very small sample to draw any concrete conclusions. It is encouraging to see
- that the HER and OER EACs tested in PEM WE showed similar performances to that expected by

- 880 measurements in half-cells. There are cases though that the results do not correlate well, as we 881 observed for some Co-clathrochelates. We take some of the best PEM electrolyzers based on noble
- 882 metals and EACs, and a valuable comparison is given in Table 5.
- 883
- 884 Table 5: Comparison between PEM WE full cells based on purely noble metal catalysts and those with EACs in
- 885 the cathode or anode.

Cathode	Anode	Т	Membrane	At current	Ref.
Pt/C 0.1 mg ^{pt} /cm ²	Iro.7Ruo.3O2 1.5 mgoxide/cm ²	90 °C	Aquivion ionomer	1.3 A/cm ² @1.6 V	[88]
Pt/C 0.5 mg ^{pt} /cm ²	Ir0.7Ru0.5O2 1.5 mgoxide/cm ²	90 °C	Nafion 115	2.6 A/cm ² @1.8 V	[73]
Activated single-wall carbon nanotubes (SWNTs)	IrRuOx	80 °C	Nafion 115	1 A/cm ² @1.64 V	[176]
Mo ₃ S ₁₃ /CB 3 mg _{Pt} /cm ²	Ir black(2)	80 °C	Nafion 115	1.1 A/cm ² @2.0 V	[105]
Pt/C 0.5 mg/cm ²	CoHFe on Sb-doped 5 SnO2 5 3 mg/cm ² 5	80 °C	Nafion 115	0.05-0.1 A/cm ² @2 V.	[214]

886

887 It is very encouraging to see that EACs, especially for the HER, have already reached efficiencies 888 very similar to those with noble metal catalysts. Apart from the importance of the transition metals, 889 the non-metallic elements, such as P and S, are also key elements in the development of earth 890 abundant catalysts. DFT works also highlight the noble metal-like activity of the TMD and transition 891 metal phosphides, and in some instances, it is also comparable to the activity and turnover 892 frequencies of enzymes, such as hydrogenases. Furthermore, computational works indicate that P 893 and S, as well as their vacancies, create such an electronic environment that induces favorable 894 binding energies for the adsorption desorption of the H atom.

There is a long way to go for the OER ones, especially concerning their stability, but nevertheless, these results highlight even more the need to employ and operate EACs in full cells. It is also interesting to notice that a PEM WE based on purely EACs can already be realized. It is difficult to say whether the cost of hydrogen from PEM WE breaks even with fossil fuels around 2033, but this review endorses this optimistic scenario. It also provides ways for materials' optimization and development, in order to move forward PEM electrolyzers made purely by EACs, bringing/implying a significant cost reduction to the produced hydrogen.

Author Contributions: X. S. contributed to the principle of operation, K. X. contributed to the documentation ofthe state-of-the-art PEM WE and EACs for the HER based on carbon materials, C. F. contributed to the

34	of	46
----	----	----

905	documentation of MoS ₂ based EACs, X. L. to the phosphide-based EACs, M. G. to the FeS _x -based ECs, R. S. to
906	the Co-based EACs, T. S. B. to the DFT literature research, T. N. contributed to the writing, editing and original

- 907 draft preparation and A. C. to the writing, editing and original draft preparation and EACs for the OER.
- 908

Acknowledgments: X. S., A. C. and T. N. acknowledge MoZEES, a Norwegian Centre for Environment-friendly Energy Research (FME), co-sponsored by the Research Council of Norway (project number 257653) and 40 partners from research, industry and public sector. K. X. and M. G. acknowledge funding from the Research Council of Norway (RCN) NANO2021 project CO2BioPEC (250261). C. F acknowledges funding from the Research Council of Norway (RCN) FRINATEK project 2D (262274). X. L acknowledges funding from the Research Council of Norway (RCN) NANO2021 project EnCaSE (275058). R. S. and T. S. B. acknowledge funding from the Research Council of Norway (272797 "GoPHy MiCO") through the M-ERA.NET Joint Call

- 916 2016.
- 917
- 918 **Conflicts of Interest:** The authors declare no conflict of interest.
- 919 References
- 920 1. IEA. *Key World Energy Statistics*. 2016; Available from: <u>www.iea.org/statistics</u>.
- 921 2. Jakob, M. and J. Hilaire, *Unburnable fossil-fuel reserves*. Nature, 2015. **517**: p. 150.
- 922 3. McGlade, C. and P. Ekins, *The geographical distribution of fossil fuels unused when limiting global*923 *warming to 2 °C.* Nature, 2015. 517: p. 187.
- 4. Abas, N., A. Kalair, and N. Khan, *Review of fossil fuels and future energy technologies*. Futures,
 2015. 69: p. 31-49.
- 9265.Kirubakaran, A., S. Jain, and R.K. Nema, A review on fuel cell technologies and power electronic927interface. Renewable and Sustainable Energy Reviews, 2009. 13(9): p. 2430-2440.
- 9286.Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and929applications. Progress in Energy and Combustion Science, 2010. 36(3): p. 307-326.
- 930 7. Bezerra, C.W.B., *et al.*, *A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction*.
 931 Electrochimica Acta, 2008. 53(15): p. 4937-4951.
- 8. Cipriani, G., et al., Perspective on hydrogen energy carrier and its automotive applications.
 International Journal of Hydrogen Energy, 2014. 39(16): p. 8482-8494.
- 9349.Ghosh, P.C., et al., Ten years of operational experience with a hydrogen-based renewable energy935supply system. Solar Energy, 2003. 75(6): p. 469-478.
- 93610.Rand, D.A.J., A journey on the electrochemical road to sustainability. Journal of Solid State937Electrochemistry, 2011. 15(7): p. 1579-1622.
- Acar, C. and I. Dincer, *Comparative assessment of hydrogen production methods from renewable and non-renewable sources*. International Journal of Hydrogen Energy, 2014. 39(1): p. 1-12.
- 940 12. Balat, M. and M. Balat, *Political, economic and environmental impacts of biomass-based hydrogen.*941 International Journal of Hydrogen Energy, 2009. 34(9): p. 3589-3603.
- 942 13. Holladay, J.D., *et al.*, *An overview of hydrogen production technologies*. Catalysis Today, 2009.
 943 139(4): p. 244-260.
- 944 14. Aho, A., et al., Chemical Energy Storage. 2013: De Gruyter.
- 945 15. Grubb, W.T., *Batteries with Solid Ion Exchange Electrolytes .1. Secondary Cells Employing Metal*946 *Electrodes.* Journal of the Electrochemical Society, 1959. 106(4): p. 275-278.

SS 01 40	35	of	46
----------	----	----	----

947	16.	Grubb, W.T. and L.W. Niedrach, Batteries with Solid Ion-Exchange Membrane Electrolytes .2.
948		Low-Temperature Hydrogen-Oxygen Fuel Cells. Journal of the Electrochemical Society, 1960.
949		107 (2): p. 131-135.
950	17.	Russell, J.H., L.J. Nuttal, and A.P. Fickett, Hydrogen Generation by Solid Polymer Electrolyte
951		Water Electrolysis. Abstracts of Papers of the American Chemical Society, 1973(Aug26): p.
952		2-2.
953	18.	Sapountzi, F.M., et al., Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas.
954		Progress in Energy and Combustion Science, 2017. 58: p. 1-35.
955	19.	Harriman, A., Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels
956		industry. Philosophical Transactions of the Royal Society A: Mathematical,
957		Physical and Engineering Sciences, 2013. 371 (1996).
958	20.	Yu, E.H., et al., Direct oxidation alkaline fuel cells: from materials to systems. Energy &
959		Environmental Science, 2012. 5(2): p. 5668-5680.
960	21.	James, B., et al., PEM Electrolysis H2A Production Case Study Documentation. 2013: United
961		States.
962	22.	Luca Bertuccioli, et al., Study on development of water electrolysis in the EU: Fuel Cells and
963		Hydrogen Joint Undertaking. 2014. p. 1-160.
964	23.	Lymperopoulos, N. FCH JU Support to Electrolysis for Energy Application. 2017.
965	24.	Detz, R.J., J.N.H. Reek, and B.C.C. van der Zwaan, The future of solar fuels: when could they
966		become competitive? Energy & Environmental Science, 2018. 11(7): p. 1653-1669.
967	25.	Report, I.T., Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant
968		with CCS. 2017.
969	26.	Xia, X., et al., Synthesis of Free-Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction
970		and Their Electrochemical Energy Storage Application. Small, 2013. 10(4): p. 766-773.
971	27.	You, B., et al., Microwave vs. solvothermal synthesis of hollow cobalt sulfide nanoprisms for
972		<i>electrocatalytic hydrogen evolution and supercapacitors.</i> Chemical Communications, 2015. 51 (20):
973		p. 4252-4255.
974	28.	Tran, P.D., et al., Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen
975		generation from water. Energy & Environmental Science, 2013. 6(8): p. 2452-2459.
976	29.	Wu, Z., et al., WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction.
977		Applied Catalysis B: Environmental, 2012. 125: p. 59-66.
978	30.	Qin, Z., et al., Composition-Dependent Catalytic Activities of Noble-Metal-Free NiS/Ni3S4 for
979		Hydrogen Evolution Reaction. The Journal of Physical Chemistry C, 2016. 120(27): p.
980		14581-14589.
981	31.	Kibsgaard, J., T.F. Jaramillo, and F. Besenbacher, Building an appropriate active-site motif into a
982		hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nature Chemistry, 2014. 6:
983		p. 248.
984	32.	Shi, Y. and B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and
985		applications in hydrogen evolution reaction. Chemical Society Reviews, 2016. 45(6): p. 1529-1541.
986	33.	Anantharaj, S., et al., Recent Trends and Perspectives in Electrochemical Water Splitting with an
987		Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis,
988		2016. 6 (12): p. 8069-8097.

36	of	46

989	34.	Callejas, J.F., et al., Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and
990		Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles. ACS Nano, 2014. 8(11): p.
991		11101-11107.
992	35.	Xiao, P., W. Chen, and X. Wang, A Review of Phosphide-Based Materials for Electrocatalytic
993		Hydrogen Evolution. Advanced Energy Materials, 2015. 5(24): p. 1500985.
994	36.	Henkes, A.E., Y. Vasquez, and R.E. Schaak, Converting Metals into Phosphides: A General
995		Strategy for the Synthesis of Metal Phosphide Nanocrystals. Journal of the American Chemical
996		Society, 2007. 129 (7): p. 1896-1897.
997	37.	Park, J., et al., Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of
998		Continuously Delivered Metal–Phosphine Complexes Using a Syringe Pump. Journal of the
999		American Chemical Society, 2005. 127 (23): p. 8433-8440.
1000	38.	Greeley, J., et al., Computational high-throughput screening of electrocatalytic materials for
1001		hydrogen evolution. Nature Materials, 2006. 5: p. 909.
1002	39.	McKone, J.R., et al., Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS
1003		Catalysis, 2013. 3 (2): p. 166-169.
1004	40.	Jaramillo, T.F., et al., Identification of Active Edge Sites for Electrochemical
1005		H ₂ Evolution from MoS ₂ Nanocatalysts. Science,
1006		2007. 317 (5834): p. 100.
1007	41.	Faber, M.S., et al., High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro-
1008		and Nanostructures. Journal of the American Chemical Society, 2014. 136(28): p. 10053-10061.
1009	42.	Zou, X., et al., Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen
1010		Evolution Reaction at All pH Values. Angewandte Chemie International Edition, 2014. 53(17):
1011		p. 4372-4376.
1012	43.	Zhou, W., et al., N-Doped Carbon-Wrapped Cobalt Nanoparticles on N-Doped Graphene Nanosheets
1013		for High-Efficiency Hydrogen Production. Chemistry of Materials, 2015. 27(6): p. 2026-2032.
1014	44.	Zhou, W., et al., Bioreduction of Precious Metals by Microorganism: Efficient Gold@N-Doped
1015		Carbon Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie International
1016		Edition, 2016. 55(29): p. 8416-8420.
1017	45.	Xu, Y., et al., Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for
1018		hydrogen evolution reaction. Chemical Communications, 2013. 49(59): p. 6656-6658.
1019	46.	Xu, R., et al., Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional
1020		electrocatalyst for both H2 and O2 generations. Nano Energy, 2016. 24: p. 103-110.
1021	47.	Lu, Z., et al., Ultrahigh Hydrogen Evolution Performance of Under-Water "Superaerophobic" MoS2
1022		Nanostructured Electrodes. Advanced Materials, 2014. 26(17): p. 2683-2687.
1023	48.	Li, F., et al., Designed synthesis of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced
1024		electrocatalyst for highly efficient hydrogen evolution reaction. Journal of Power Sources, 2015.
1025		300 : p. 301-308.
1026	49.	Yang, L., et al., Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic
1027		activity in the hydrogen evolution reaction. Nanoscale, 2015. 7(12): p. 5203-5208.
1028	50.	Zhou, H., et al., One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D
1029		electrode for hydrogen evolution reaction. Nano Energy, 2016. 20: p. 29-36.
1030	51.	Sardar, K., et al., Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate
1031		Pyrochlores. Angewandte Chemie International Edition, 2014. 53(41): p. 10960-10964.

	37	of	46
--	----	----	----

 Hydrogen Energy, 2013. 38(12): p. 4901-4934. Anantharaj, S., et al., Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018. 11(4): p. 744-771. Kreuter, W. and H. Hofmann, <i>Electrolysis: The important energy transformer in a world of sustainable energy</i>. International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666. Eroy, R.L., <i>Industrial Water Electrolysis - Present and Future</i>. International Journal of Hydrogen Energy, 1988. 8(6): p. 401-417. Carmo, M., et al., A comprehensive rocize on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Seasarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyzers is rom electrocatalysis to stack development. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. Millet, P., et al., PEM coater electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 200. 35(10): p. 5043-5052. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 8	1032	52.	Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of
 Anantharaj, S., et al., Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018. 11(4): p. 744-771. Kreuter, W. and H. Hofmann, Electrolysis: The important energy transformer in a world of sustainable energy. International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666. Leroy, R.L., Industrial Water Electrolysis: Present and Future. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Beyers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. Grigoriev, S.A., et al., High-pressure PLM toater electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Koel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrolution eaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pontsti, J., et al., Reis misghts into the electrochemical hydrogen with regard to the electro-electroin of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. Ah	1033	_	Hydrogen Energy, 2013. 38 (12): p. 4901-4934.
 revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018. 11(4): p. 744-771. 54. Kreuter, W. and H. Hofmann, <i>Electrolysis: The important energy transformer in a world of sustainable energy.</i> International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666. 1039 55. Leroy, R.L., <i>Industrial Water Electrolysis - Present and Future.</i> International Journal of Hydrogen Energy, 2013. 38(6): p. 401-417. 1041 56. Carmo, M., <i>et al.</i>, <i>A comprehensive review on PEM water electrolysis.</i> International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. 57. Bessarabov, D., <i>et al.</i>, <i>PEM Electrolysis for Hydrogen Production: Principles and Applications.</i> 2015: Taylor & Francis. 1045 58. Ayers, K.E., <i>et al.</i>, <i>Research Advances Towards Low Cost, High Efficiency PEM Electrolysis.</i> Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1046 59. Grigoriev, S.A., <i>et al.</i>, <i>High-pressure PEM toater electrolysis and corresponding safety issues.</i> International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, <i>Theoretical model and experimental analysis of a high pressure PEM water electrolyzers: From electrocatalysis to stack development.</i> International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 61. Millet, P., <i>et al.</i>, <i>PEM toater electrolyzers: From electrocatalysis to stack development.</i> International Journal of Hydrogen Energy, 2010. 35(10): p. 596. 24(4): p. 817-827. 1056 62. Roel van de Krol and M. Grätzel, <i>Photoelectrochemical hydrogen production.</i> Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 63. Bockris, J.O.M., <i>Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen.</i> The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1056 <l< td=""><td>1034</td><td>53.</td><td>Anantharaj, S., et al., Precision and correctness in the evaluation of electrocatalytic water splitting:</td></l<>	1034	53.	Anantharaj, S., et al., Precision and correctness in the evaluation of electrocatalytic water splitting:
 1036 11(4): p. 744-771. 1037 54. Kreuter, W. and H. Hofmann, Electrolysis: The important energy transformer in a world of sustainable energy. International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666. 1038 1039 55. Leroy, R.L., Industrial Water Electrolysis: Present and Future. International Journal of Hydrogen Energy, 1983. 8(6): p. 401-417. 1041 56. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. 1043 57. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. 1044 2015: Taylor & Francis. 1045 58. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1047 59. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2013. 35(10): p. 5043-5052. 1051 Energy, 2009. 34(3): p. 1143-1158. 1052 61. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and ecolution rea	1035		revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018.
 1037 54. Kreuter, W. and H. Hofmann, <i>Electrolysis: The important energy transformer in a world of sustainable energy</i>. International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666. 1039 55. Leroy, R.L., <i>Industrial Water Electrolysis - Present and Future</i>. International Journal of Hydrogen Energy, 1983. 8(6): p. 401-417. 1041 56. Carmo, M., <i>et al.</i>, <i>A comprehensive review on PEM water electrolysis</i>. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. 1043 57. Bessarabov, D., <i>et al.</i>, <i>PEM Electrolysis for Hydrogen Production: Principles and Applications</i>. 2015: Taylor & Francis. 1044 58. Ayers, K.E., <i>et al.</i>, <i>Research Advances Towards Low Cost</i>, <i>High Efficiency PEM Electrolysis</i>. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1046 Folymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1047 59. Grigoriev, S.A., <i>et al.</i>, <i>High-pressure PEM water electrolysis and corresponding safety issues</i>. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, <i>Theoretical model and experimental analysis of a high pressure PEM water electrolyzers: From electrocatalysis to stack development</i>. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, <i>Photoelectrochemical hydrogen production</i>. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., <i>Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen</i>. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., <i>et al.</i>, <i>New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.</i> 65.	1036		11 (4): p. 744-771.
 sustainable energy. International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666. Leroy, R.L., Industrial Water Electrolysis - Present and Future. International Journal of Hydrogen Energy, 1983. 8(6): p. 401-417. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyzers for hydrogen production. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Bots 4., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., New insights into the electrochemistry Communications, 2007. 9(1): p. 54-58. An, and R. Holze, Bifunctional Electrodys for an Integrated Water-Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal o	1037	54.	Kreuter, W. and H. Hofmann, <i>Electrolysis: The important energy transformer in a world of</i>
 Leroy, R.L., Industrial Water Electrolysis - Present and Future. International Journal of Hydrogen Energy, 1983. 8(6): p. 401-417. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. Grigoriev, S.A., et al., High-pressure PEM twater electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyzers is rom electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Millet, P., et al., PEM water electrolyzers: From electrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Bockris, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., New insights into the electrochemical Physics, 1956. 24(4): p. 817-827. Bockris, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.	1038		sustainable energy. International Journal of Hydrogen Energy, 1998. 23(8): p. 661-666.
 Hydrogen Energy, 1983. 8(6): p. 401-417. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. F. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Boskris, J.O.M., Kinetics of Activation Controlled Physics of and and evelution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., Electroactivity of coball and nickel glyximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. A. Ann, J. and R. Holze, Bifunctional Electrolyte. Journal of Applied Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. Gr	1039	55.	Leroy, R.L., Industrial Water Electrolysis - Present and Future. International Journal of
 1041 56. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013. 38(12): p. 4901-4934. 1043 57. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. 1044 2015: Taylor & Francis. 1045 58. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1046 91. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. 1047 59. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. 1048 International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. 1052 61. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and ecolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 1060 65. Pantani, O., et al., Electroactivity of coball and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. 1063 66. Ahn, J. and R. Holz	1040		Hydrogen Energy, 1983. 8 (6): p. 401-417.
 Hydrogen Energy, 2013. 38(12): p. 4901-4934. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015: Taylor & Francis. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolysers is to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Millet, P., et al., PEM water electrolyse: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Burst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. A. Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 	1041	56.	Carmo, M., et al., A comprehensive review on PEM water electrolysis. International Journal of
 1043 57. Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications. 1044 2015: Taylor & Francis. 1045 58. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. 1046 Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1047 59. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. 1048 International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. 1052 61. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 1060 65. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. 1063 66. Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, P	1042		Hydrogen Energy, 2013. 38 (12): p. 4901-4934.
 1044 2015: Taylor & Francis. 1045 58. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. 1046 Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1047 59. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. 1048 International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. 1052 61. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 1060 65. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. 1063 66. Ahn, J. and R. Holze, Bifunctional Electrody for an Integrated Water-Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 	1043	57.	Bessarabov, D., et al., PEM Electrolysis for Hydrogen Production: Principles and Applications.
 1045 58. Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis. 1046 Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15. 1047 59. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. 1048 International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 2009. 34(3): p. 1143-1158. 1052 61. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., et al., New insights into the electrochemical hydrogen with regard to the electro-reduction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 1060 65. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. 1063 66. Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 1065 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 	1044		2015: Taylor & Francis.
1046Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33(1): p. 3-15.104759.Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues.1048International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728.104960.Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high1050pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen1051Energy, 2009. 34(3): p. 1143-1158.105261.Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International1053Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrodyte. Journal of Applied Electrochem	1045	58.	Ayers, K.E., et al., Research Advances Towards Low Cost, High Efficiency PEM Electrolysis.
 1047 59. Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues. 1048 International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728. 1049 60. Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen 1050 Energy, 2009. 34(3): p. 1143-1158. 1052 61. Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. 1054 62. Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic 1055 Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. 1056 63. Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic 1057 Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. 1058 64. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction 1059 mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. 1060 65. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction 1061 of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. 1063 66. Ahn, J. and R. Holze, Bifunctional Electrolyse for an Integrated Water-Electrolysis and Hydrogen 1064 Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 1065 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 	1046		Polymer Electrolyte Fuel Cells 10, Pts 1 and 2, 2010. 33 (1): p. 3-15.
1048International Journal of Hydrogen Energy, 2011. 36(3): p. 2721-2728.104960.Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high1050pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen1051Energy, 2009. 34(3): p. 1143-1158.105261.Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International1053Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.67.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM el	1047	59.	Grigoriev, S.A., et al., High-pressure PEM water electrolysis and corresponding safety issues.
104960.Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high1050pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen1051Energy, 2009. 34(3): p. 1143-1158.105261.Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International1053Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrolyte. Journal of Applied Electrochemistry, 1992.1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis<	1048		International Journal of Hydrogen Energy, 2011. 36 (3): p. 2721-2728.
1050pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen1051Energy, 2009. 34(3): p. 1143-1158.105261.Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International1053Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1049	60.	Marangio, F., M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high
1051Energy, 2009. 34(3): p. 1143-1158.105261.Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International1053Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052.105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1050		pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen
105261.Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International1053Journal of Hydrogen Energy, 2010. 35 (10): p. 5043-5052.105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24 (4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrolyse for an Integrated Water-Electrolysis and Hydrogen1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.1065 22 (12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1051		Energy, 2009. 34 (3): p. 1143-1158.
 Journal of Hydrogen Energy, 2010. 35(10): p. 5043-5052. Roel van de Krol and M. Grätzel, <i>Photoelectrochemical hydrogen production</i>. Electronic Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer. Bockris, J.O.M., <i>Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic</i> <i>Evolution of Oxygen</i>. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction <i>mechanism</i>. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. Ahn, J. and R. Holze, <i>Bifunctional Electrolyte</i>. Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, <i>Pure hydrogen production by PEM electrolysis</i> 	1052	61.	Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International
105462.Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.67.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1053		Journal of Hydrogen Energy, 2010. 35 (10): p. 5043-5052.
1055Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.105663.Bockris, J.O.M., <i>Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic</i> 1057Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827.105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1054	62.	Roel van de Krol and M. Grätzel, Photoelectrochemical hydrogen production. Electronic
 Bockris, J.O.M., <i>Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic</i> <i>Evolution of Oxygen.</i> The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction <i>mechanism.</i> Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. Ahn, J. and R. Holze, <i>Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen</i> <i>Oxygen Fuel-Cell with a Solid Polymer Electrolyte.</i> Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, <i>Pure hydrogen production by PEM electrolysis</i> 	1055		Materials: Science & Technology, ed. H.L. Tuller. 2012, New York: Springer.
 Evolution of Oxygen. The Journal of Chemical Physics, 1956. 24(4): p. 817-827. Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260. Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 9(1): p. 54-58. Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 22(12): p. 1167-1174. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 	1056	63.	Bockris, J.O.M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic
105864.Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.67.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1057		<i>Evolution of Oxygen.</i> The Journal of Chemical Physics, 1956. 24 (4): p. 817-827.
1059mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis10671067	1058	64.	Durst, J., et al., New insights into the electrochemical hydrogen oxidation and evolution reaction
106065.Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction1061of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.10629(1): p. 54-58.106366.1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.67.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis	1059		mechanism. Energy & Environmental Science, 2014. 7(7): p. 2255-2260.
 1061 of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007. 1062 9(1): p. 54-58. 1063 66. Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen 1064 Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992. 1065 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 1067 for the home of the production o	1060	65.	Pantani, O., et al., Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction
 9(1): p. 54-58. 66. Ahn, J. and R. Holze, <i>Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen</i> 064 <i>Oxygen Fuel-Cell with a Solid Polymer Electrolyte</i>. Journal of Applied Electrochemistry, 1992. 1065 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, <i>Pure hydrogen production by PEM electrolysis</i> 	1061		of protons into molecular hydrogen in acidic media. Electrochemistry Communications, 2007.
106366.Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis106767.	1062		9 (1): p. 54-58.
1064Oxygen Fuel-Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 1992.106522(12): p. 1167-1174.106667.Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis106767.	1063	66.	Ahn, J. and R. Holze, Bifunctional Electrodes for an Integrated Water-Electrolusis and Hudrogen
1065 22(12): p. 1167-1174. 1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, Pure hydrogen production by PEM electrolysis 1067	1064		Oxygen Fuel-Cell with a Solid Polymer Electrolyte, Journal of Applied Electrochemistry, 1992.
1066 67. Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, <i>Pure hydrogen production by PEM electrolysis</i>	1065		22 (12): p. 1167-1174.
	1066	67.	Grigoriev, S.A., V.I. Porembsky, and V.N. Fateev, <i>Pure hydrogen production by PEM electrolysis</i>
100/ tor hydrogen energy. International Journal of Hydrogen Energy. 2006. 31(2): p. 171-175.	1067	011	for hydrogen energy. International Journal of Hydrogen Energy, 2006. 31 (2): p. 171-175.
1068 68 Millet P et al GenHuPEM: a research program on PEM water electrolysis supported by the	1068	68	Millet P et al. GenHuPEM: a research program on PEM water electrolysis supported by the
1069 European Commission International Journal of Hydrogen Energy, 2009 34(11): p. 4974-4982	1069	00.	European Commission International Journal of Hydrogen Energy, 2009 34(11): p. 4974-4982
1070 69 Millet P. M. Pineri and R. Durand. New solid volumer electrolyte composites for water	1070	69	Millet P M Pineri and R Durand New solid nolumer electrolute composites for water
1071 electrolysis Journal of Applied Electrochemistry 1989 19(2): p 162-166	1071		electrolysis Journal of Applied Electrochemistry 1989 19(2): p 162-166
1072 70 Sapountzi FM et al Electrocatalusts for the generation of hydrogen oxygen and synthesis age	1072	70	Sanountzi F M et al Electrocatalusts for the opperation of hydrogen oxygen and synthesis age
1073 Progress in Energy and Combustion Science 2017 58: p. 1-35	1073	70.	Progress in Energy and Combustion Science, 2017 58: p. 1-35

38 o	f 4	6
------	-----	---

1074	71	Chi I and H Vu Water electrolycic based on renewable energy for hydrogen production. Chiposo
1074	/1.	Journal of Catalysis 2018 39 (3): p. 390-394
1076	72	Ogawa T. M. Takeuchi and V. Kajikawa Anglusis of Trends and Emerging Technologies in
1070	72.	Water Electrolusis Research Based on a Computational Method: A Comparison with Fuel Cell
1078		Research Sustainability 2018 10(2): n 478
1070	73	Siracusano S et al Nanosized Ir Ω_r and Ir $R_U\Omega_r$ electrocatalusts for the Ω_r evolution reaction in
1075	75.	PEM suster electrolusers Applied Catalysis B: Environmental 2015 164: p. 488-495
1081	74	Chang I et al Study of $IrxRu1-xO2$ oxides as anodic electrocatalysts for solid nohumer electrolyte
1082	/ 4.	water electrolusis Electrochimica Acta 2009 54(26): p. 6250-6256
1083	75	Kötz R et al. In-situ identification of RuO_4 as the corrosion product during oxygen evolution on
1084	70.	ruthenium in acid media. Journal of electroanalytical chemistry and interfacial
1085		electrochemistry 1984 172(1-2): p 211-219
1086	76	Cherevko S. Stabilitu and dissolution of electrocatalusts: Building the bridge between model and
1087	70.	"real world" systems. Current Opinion in Electrochemistry, 2018, 8: p. 118-125.
1088	77.	Li, G_{i} et al., Zeolite-templated IrxRu1– xO2 electrocatalusts for oxygen evolution reaction in solid
1089		nolumer electrolute water electroluzers, international journal of hydrogen energy, 2012, 37(22):
1090		p. 16786-16794.
1091	78.	Corona-Guinto. L. et al., Performance of a PEM electrolyzer using $RuIrCoO_x$ electrocatalysts for the
1092		oxygen evolution electrode. International Journal of Hydrogen Energy, 2013. 38(28): p.
1093		12667-12673.
1094	79.	Marshall, A.T., et al., Performance of a PEM water electrolysis cell using $Ir_xRu_yTa_zO_2$
1095		electrocatalysts for the oxygen evolution electrode. International Journal of Hydrogen Energy,
1096		2007. 32 (13): p. 2320-2324.
1097	80.	Kadakia, K., et al., High performance fluorine doped (Sn, Ru) O_2 oxygen evolution reaction
1098		electro-catalysts for proton exchange membrane based water electrolysis. Journal of Power Sources,
1099		2014. 245 : p. 362-370.
1100	81.	Ghadge, S.D., et al., Fluorine substituted (Mn, Ir) O 2: F high performance solid solution oxygen
1101		evolution reaction electro-catalysts for PEM water electrolysis. RSC Advances, 2017. 7(28): p.
1102		17311-17324.
1103	82.	Millet, P., et al., Electrochemical performances of PEM water electrolysis cells and perspectives.
1104		International Journal of Hydrogen Energy, 2011. 36 (6): p. 4134-4142.
1105	83.	Martin, S., P. Garcia-Ybarra, and J. Castillo, Ten-fold reduction from the state-of-the-art platinum
1106		loading of electrodes prepared by electrospraying for high temperature proton exchange membrane fuel
1107		cells. Electrochemistry Communications, 2018.
1108	84.	Corrales-Sánchez, T., J. Ampurdanés, and A. Urakawa, MoS2-based materials as alternative
1109		cathode catalyst for PEM electrolysis. International journal of hydrogen energy, 2014. 39(35): p.
1110		20837-20843.
1111	85.	Liu, Q., et al., Carbon Nanotubes Decorated with CoP Nanocrystals: A Highly Active Non-Noble-
1112		Metal Nanohybrid Electrocatalyst for Hydrogen Evolution. Angewandte Chemie International
1113		Edition, 2014. 53(26): p. 6710-6714.
1114	86.	Mayousse, E., et al., Synthesis and characterization of electrocatalysts for the oxygen evolution in
1115		PEM water electrolysis. international journal of hydrogen energy, 2011. 36(17): p. 10474-10481.

1116	87.	Wang, L., et al., Highly active anode electrocatalysts derived from electrochemical leaching of Ru from
1117		metallic Ir0. 7Ru0. 3 for proton exchange membrane electrolyzers. Nano energy, 2017. 34: p.
1118		385-391.
1119	88.	Siracusano, S., et al., Enhanced performance and durability of low catalyst loading PEM water
1120		electrolyser based on a short-side chain perfluorosulfonic ionomer. Applied energy, 2017. 192: p.
1121		477-489.
1122	89.	Benck, J.D., et al., Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide
1123		Nanomaterials. ACS Catalysis, 2014. 4(11): p. 3957-3971.
1124	90.	Tributsch, H. and J.C. Bennett, Electrochemistry and photochemistry of MoS2 layer crystals. I.
1125		Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 81(1): p.
1126		97-111.
1127	91.	Hinnemann, B., et al., Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for
1128		Hydrogen Evolution. Journal of the American Chemical Society, 2005. 127(15): p. 5308-5309.
1129	92.	Jaramillo, T.F., et al., Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+
1130		Electrocatalysts. The Journal of Physical Chemistry C, 2008. 112(45): p. 17492-17498.
1131	93.	Nakayasu, Y., et al., One-Pot Rapid Synthesis of Mo(S,Se)2 Nanosheets on Graphene for Highly
1132		Efficient Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 2018. 6(9): p.
1133		11502-11510.
1134	94.	Li, Y., et al., MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen
1135		Evolution Reaction. Journal of the American Chemical Society, 2011. 133(19): p. 7296-7299.
1136	95.	Ling, C., et al., Template-Grown MoS2 Nanowires Catalyze the Hydrogen Evolution Reaction:
1137		Ultralow Kinetic Barriers with High Active Site Density. ACS Catalysis, 2017. 7(8): p. 5097-5102.
1138	96.	Liu, Z., et al., Amorphous MoSx-Coated TiO2 Nanotube Arrays for Enhanced Electrocatalytic
1139		Hydrogen Evolution Reaction. The Journal of Physical Chemistry C, 2018. 122(24): p.
1140		12589-12597.
1141	97.	Sun, T., et al., Engineering the Electronic Structure of MoS2 Nanorods by N and Mn Dopants for
1142		Ultra-Efficient Hydrogen Production. ACS Catalysis, 2018. 8(8): p. 7585-7592.
1143	98.	Wang, Y., et al., Fluorine- and Nitrogen-Codoped MoS2 with a Catalytically Active Basal Plane.
1144		ACS Applied Materials & Interfaces, 2017. 9(33): p. 27715-27719.
1145	99.	Kiriya, D., et al., General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic
1146		Hydrogen Evolution Reaction. Nano Letters, 2016. 16(7): p. 4047-4053.
1147	100.	Xie, J., et al., Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin
1148		Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2013.
1149		135 (47): p. 17881-17888.
1150	101.	Lukowski, M.A., et al., Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated
1151		Metallic MoS2 Nanosheets. Journal of the American Chemical Society, 2013. 135(28): p.
1152		10274-10277.
1153	102.	Wang, H., et al., Electrochemical Tuning of MoS2 Nanoparticles on Three-Dimensional Substrate for
1154		Efficient Hydrogen Evolution. ACS Nano, 2014. 8(5): p. 4940-4947.
1155	103.	Vesborg, P.C.K., B. Seger, and I. Chorkendorff, Recent Development in Hydrogen Evolution
1156		Reaction Catalysts and Their Practical Implementation. The Journal of Physical Chemistry
1157		Letters, 2015. 6(6): p. 951-957.

1158 1159	104.	Jin, H., <i>et al.</i> , <i>Emerging Two-Dimensional Nanomaterials for Electrocatalysis</i> . Chemical Reviews, 2018. 118 (13): p. 6337-6408.
1160	105.	Ng. LW.D., et al., Polymer Electrolyte Membrane Electrolyzers Utilizing Non-precious Mo-based
1161	1001	Hudrogen Evolution Catalysts. ChemSusChem, 2015. 8(20): p. 3512-3519.
1162	106.	Senthil Kumar. S.M., et al., Hydrothermal assisted morphology designed MoS2 material as
1163		alternative cathode catalyst for PEM electrolyser application. International Journal of Hydrogen
1164		Energy, 2016. 41 (31): p. 13331-13340.
1165	107.	Lu, AY., et al., High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current
1166		Electrocatalyst in Hydrogen Evolution. Small, 2016. 12 (40): p. 5530-5537.
1167	108.	Kim, J.H., et al., Electrodeposited molybdenum sulfide as a cathode for proton exchange membrane
1168		<i>water electrolyzer.</i> Journal of Power Sources, 2018. 392 : p. 69-78.
1169	109.	You, B. and Y. Sun, Chalcogenide and Phosphide Solid-State Electrocatalysts for Hydrogen
1170		Generation. ChemPlusChem, 2016. 81(10): p. 1045-1055.
1171	110.	Wang, J., et al., Fe-Doped Ni2P Nanosheet Array for High-Efficiency Electrochemical Water
1172		Oxidation. Inorganic Chemistry, 2017. 56(3): p. 1041-1044.
1173	111.	Sun, Y., et al., Mo doped Ni2P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution
1174		reaction with enhanced activity at all pH values. Nanoscale, 2017. 9 (43): p. 16674-16679.
1175	112.	Wang, XD., et al., Large-Area Synthesis of a Ni2P Honeycomb Electrode for Highly Efficient Water
1176		Splitting. ACS Applied Materials & Interfaces, 2017. 9(38): p. 32812-32819.
1177	113.	Read, C.G., et al., General Strategy for the Synthesis of Transition Metal Phosphide Films for
1178		Electrocatalytic Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2016.
1179		8(20): p. 12798-12803.
1180	114.	Bai, Y., et al., Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for
1181		hydrogen evolution and lithium storage. Nanoscale, 2015. 7(4): p. 1446-1453.
1182	115.	Feng, L., et al., Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust
1183		electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics, 2014. 16(13): p.
1184		5917-5921.
1185	116.	Lin, Y., Y. Pan, and J. Zhang, In-situ grown of Ni2P nanoparticles on 2D black phosphorus as a
1186		novel hybrid catalyst for hydrogen evolution. International Journal of Hydrogen Energy, 2017.
1187		42 (12): p. 7951-7956.
1188	117.	You, B., et al., Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam
1189		as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2016. 6(2): p.
1190		714-721.
1191	118.	Jin, Y., et al., Preparation of mesoporous Ni2P nanobelts with high performance for electrocatalytic
1192		<i>hydrogen evolution and supercapacitor.</i> International Journal of Hydrogen Energy, 2018. 43 (7):
1193		p. 3697-3704.
1194	119.	Kucernak, A.R.J. and V.N. Naranammalpuram Sundaram, Nickel phosphide: the effect of
1195		phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium.
1196		Journal of Materials Chemistry A, 2014. 2 (41): p. 17435-17445.
1197	120.	Sun, H., et al., Porous Multishelled Ni2P Hollow Microspheres as an Active Electrocatalyst for
1198		Hydrogen and Oxygen Evolution. Chemistry of Materials, 2017. 29(19): p. 8539-8547.

41	of	46

1199	121.	Liu, S., et al., Template-free synthesis of Ni2P hollow microspheres with great photocatalytic and
1200		electrochemical properties. Journal of Materials Science: Materials in Electronics, 2016. 27(3): p.
1201		2248-2254.
1202	122.	Wolf Vielstich, A.L., Hubert A. Gasteiger, in Handbook of Fuel Cells: Fundamentals, Technology,
1203		Applications. 2009: New York.
1204	123.	Liu, P., et al., Desulfurization Reactions on Ni2P(001) and α -Mo2C(001) Surfaces: Complex Role of
1205		<i>P and C Sites</i> . The Journal of Physical Chemistry B, 2005. 109 (10): p. 4575-4583.
1206	124.	Liu, P. and J.A. Rodriguez, Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the
1207		Ni2P(001) Surface: The Importance of Ensemble Effect. Journal of the American Chemical
1208		Society, 2005. 127 (42): p. 14871-14878.
1209	125.	Popczun, E.J., et al., Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen
1210		Evolution Reaction. Journal of the American Chemical Society, 2013. 135(25): p. 9267-9270.
1211	126.	Chen, W.F., et al., Highly active and durable nanostructured molybdenum carbide electrocatalysts
1212		for hydrogen production. Energy & Environmental Science, 2013. 6(3): p. 943-951.
1213	127.	Zhang, Y., et al., A Mn-doped Ni2P nanosheet array: an efficient and durable hydrogen evolution
1214		reaction electrocatalyst in alkaline media. Chemical Communications, 2017. 53(80): p.
1215		11048-11051.
1216	128.	Li, Y., et al., 3D Self-Supported Fe-Doped Ni2P Nanosheet Arrays as Bifunctional Catalysts for
1217		Overall Water Splitting. Advanced Functional Materials, 2017. 27(37): p. 1702513.
1218	129.	Feng, Y., et al., Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced
1219		water splitting and lithium storage performance. Journal of Materials Chemistry A, 2015. 3(18): p.
1220		9587-9594.
1221	130.	Tang, C., et al., Ternary FexCo1–xP Nanowire Array as a Robust Hydrogen Evolution Reaction
1222		Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano Letters, 2016.
1223		16 (10): p. 6617-6621.
1224	131.	Pu, Z., et al., General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon
1225		Frameworks for Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2017.
1226		9 (19): p. 16187-16193.
1227	132.	Jeoung, S., et al., Direct conversion of coordination compounds into Ni2P nanoparticles entrapped in
1228		3D mesoporous graphene for an efficient hydrogen evolution reaction. Materials Chemistry
1229		Frontiers, 2017. 1 (5): p. 973-978.
1230	133.	Wang, AL., et al., Ni2P–CoP hybrid nanosheet arrays supported on carbon cloth as an efficient
1231		flexible cathode for hydrogen evolution. Journal of Materials Chemistry A, 2016. 4(43): p.
1232		16992-16999.
1233	134.	Pan, Y., et al., Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst
1234		for enhanced hydrogen evolution activity. Journal of Power Sources, 2015. 297: p. 45-52.
1235	135.	Pan, Y., Y. Liu, and C. Liu, Nanostructured nickel phosphide supported on carbon nanospheres:
1236		Synthesis and application as an efficient electrocatalyst for hydrogen evolution. Journal of Power
1237		Sources, 2015. 285 : p. 169-177.
1238	136.	Pan, Y., et al., Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient
1239		nanohybrid electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A,
1240		2015. 3 (24): p. 13087-13094.

42	of	46
----	----	----

1241	137.	Cai, Zx., et al., Electrodeposition-Assisted Synthesis of Ni2P Nanosheets on 3D Graphene/Ni Foam
1242		<i>Electrode and Its Performance for Electrocatalytic Hydrogen Production.</i> ChemElectroChem, 2015.
1243		2 (11): p. 1665-1671.
1244	138.	Pu, Z., et al., Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution
1245		<i>cathode.</i> Nanoscale, 2014. 6 (19): p. 11031-11034.
1246	139.	Jiang, P., Q. Liu, and X. Sun, NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D
1247		hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014. 6(22): p.
1248		13440-13445.
1249	140.	Chang, J., et al., An Effective Pd–Ni2P/C Anode Catalyst for Direct Formic Acid Fuel Cells.
1250		Angewandte Chemie International Edition, 2014. 53(1): p. 122-126.
1251	141.	Lu, Y., et al., Ni2P/Graphene Sheets as Anode Materials with Enhanced Electrochemical Properties
1252		versus Lithium. The Journal of Physical Chemistry C, 2012. 116(42): p. 22217-22225.
1253	142.	Xu, YF., et al., Nickel/Nickel(II) Oxide Nanoparticles Anchored onto Cobalt(IV) Diselenide
1254		Nanobelts for the Electrochemical Production of Hydrogen. Angewandte Chemie International
1255		Edition, 2013. 52(33): p. 8546-8550.
1256	143.	Yang, J., et al., Two-Dimensional Hybrid Nanosheets of Tungsten Disulfide and Reduced Graphene
1257		Oxide as Catalysts for Enhanced Hydrogen Evolution. Angewandte Chemie International
1258		Edition, 2013. 52(51): p. 13751-13754.
1259	144.	Rickard, D. and G.W. Luther, Chemistry of Iron Sulfides. Chemical Reviews, 2007. 107(2): p.
1260		514-562.
1261	145.	Giovanni, C.D., et al., Low-cost nanostructured iron sulfide electrocatalysts for PEM water
1262		<i>electrolysis.</i> ACS Catalysis, 2016. 6 (4): p. 2626-2631.
1263	146.	Di Giovanni, C., et al., Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived
1264		Electrocatalytic Molecular Hydrogen Evolution in Neutral Water. ACS Catalysis, 2014. 4(2): p.
1265		681-687.
1266	147.	Faber, M.S., et al., Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly
1267		Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. The Journal of Physical
1268		Chemistry C, 2014. 118(37): p. 21347-21356.
1269	148.	Miao, R., et al., Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution.
1270		Journal of the American Chemical Society, 2017. 139 (39): p. 13604-13607.
1271	149.	Jasion, D., et al., Low-Dimensional Hyperthin FeS2 Nanostructures for Efficient and Stable
1272		Hydrogen Evolution Electrocatalysis. ACS Catalysis, 2015. 5(11): p. 6653-6657.
1273	150.	Chua, C.K. and M. Pumera, Susceptibility of FeS2 hydrogen evolution performance to sulfide
1274		poisoning. Electrochemistry Communications, 2015. 58: p. 29-32.
1275	151.	Wang, DY., et al., Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets–
1276		Carbon Nanotubes for Hydrogen Evolution Reaction. Journal of the American Chemical Society,
1277		2015. 137 (4): p. 1587-1592.
1278	152.	Huang, SY., et al., Cobalt-Doped Iron Sulfide as an Electrocatalyst for Hydrogen Evolution.
1279		Journal of The Electrochemical Society, 2017. 164(4): p. F276-F282.
1280	153.	Martindale, B.C.M. and E. Reisner, Bi-Functional Iron-Only Electrodes for Efficient Water
1281		Splitting with Enhanced Stability through In Situ Electrochemical Regeneration. Advanced Energy
1282		Materials, 2015. 6 (6): p. 1502095.

43 Of 46

1283	154.	Yu, J., G. Cheng, and W. Luo, Ternary nickel-iron sulfide microflowers as a robust electrocatalyst
1284		for bifunctional water splitting. Journal of Materials Chemistry A, 2017. 5(30): p. 15838-15844.
1285	155.	Zhu, W., et al., Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an
1286		advanced and versatile catalyst for energy efficient overall water and urea electrolysis. Journal of
1287		Materials Chemistry A, 2018. 6(10): p. 4346-4353.
1288	156.	Cédric TARD and M. Giraud, Iron sulfide based catalyst for electrolytic water reduction into
1289		hydrogen gas 2014.
1290	157.	Wang, J., et al., Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction:
1291		Fundamentals to Applications. Advanced materials, 2017. 29(14): p. 1605838.
1292	158.	Mansor, N., et al., Graphitic carbon nitride as a catalyst support in fuel cells and electrolyzers.
1293		Electrochimica Acta, 2016. 222 : p. 44-57.
1294	159.	Paciok, P., et al., On the mobility of carbon-supported platinum nanoparticles towards unveiling
1295		cathode degradation in water electrolysis. Journal of Power Sources, 2017. 365: p. 53-60.
1296	160.	Chen, WF., et al., Highly active and durable nanostructured molybdenum carbide electrocatalysts
1297		for hydrogen production. Energy & Environmental Science, 2013. 6(3): p. 943-951.
1298	161.	Fan, L., et al., Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen
1299		evolution electrocatalysis. Nature communications, 2016. 7: p. 10667.
1300	162.	Wang, DY., et al., Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon
1301		nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society, 2015.
1302		137 (4): p. 1587-1592.
1303	163.	Barman, B.K. and K.K. Nanda, CoFe Nanoalloys Encapsulated in N-doped Graphene Layers as
1304		Pt-Free Multi-functional Robust Catalyst: Elucidating the Role of Co-Alloying and N-doping. ACS
1305		Sustainable Chemistry & Engineering, 2018.
1306	164.	Wu, R., et al., Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for
1307		hydrogen evolution reaction. Journal of the American Chemical Society, 2015. 137(22): p.
1308		6983-6986.
1309	165.	Jorge, A.B., et al., Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange
1310		Membrane Water Electrolyzers. Nanomaterials, 2018. 8(6).
1311	166.	Dinh Nguyen, M.T., MF. Charlot, and A. Aukauloo, Structural, Electronic, and Theoretical
1312		Description of a Series of Cobalt Clathrochelate Complexes in the Co(III), Co(II) and Co(I) Oxidation
1313		States. The Journal of Physical Chemistry A, 2011. 115(5): p. 911-922.
1314	167.	Dinh Nguyen, M.T., et al., Implementing molecular catalysts for hydrogen production in proton
1315		exchange membrane water electrolysers. Coordination Chemistry Reviews, 2012. 256(21): p.
1316		2435-2444.
1317	168.	Grigoriev, S.A., et al., Hydrogen production by proton exchange membrane water electrolysis using
1318		cobalt and iron hexachloroclathrochelates as efficient hydrogen-evolving electrocatalysts.
1319		International Journal of Hydrogen Energy, 2017. 42 (46): p. 27845-27850.
1320	169.	El Ghachtouli, S., et al., Monometallic Cobalt–Trisglyoximato Complexes as Precatalysts for
1321		Catalytic H2 Evolution in Water. The Journal of Physical Chemistry C, 2013. 117(33): p.
1322		17073-17077.
1323	170.	Hu, X., B.S. Brunschwig, and J.C. Peters, Electrocatalytic Hydrogen Evolution at Low
1324		Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes. Journal of the
1325		American Chemical Society, 2007. 129(29): p. 8988-8998.

TT OT TO	44	of	46
-----------------	----	----	----

1326	171.	Zelinskii, G.E., et al., A New Series of Cobalt and Iron Clathrochelates with Perfluorinated Ribbed
1327		Substituents. ACS Omega, 2017. 2(10): p. 6852-6862.
1328	172.	Berben, L.A. and J.C. Peters, Hydrogen evolution by cobalt tetraimine catalysts adsorbed on
1329		electrode surfaces. Chemical Communications, 2010. 46(3): p. 398-400.
1330	173.	Kumar, S.S., et al., Phosphorus-doped carbon nanoparticles supported palladium electrocatalyst for
1331		the hydrogen evolution reaction (HER) in PEM water electrolysis. Ionics, 2018: p. 1-9.
1332	174.	Ramakrishna, S.U.B., et al., Nitrogen doped CNTs supported Palladium electrocatalyst for hydrogen
1333		evolution reaction in PEM water electrolyser. International Journal of Hydrogen Energy, 2016.
1334		41 (45): p. 20447-20454.
1335	175.	Shiva Kumar, S., et al., Phosphorus-doped graphene supported palladium (Pd/PG) electrocatalyst for
1336		the hydrogen evolution reaction in PEM water electrolysis. International Journal of Green Energy,
1337		2018: p. 1-10.
1338	176.	Das, R.K., et al. A Pt-Free, Activated Carbon Nanotube Cathode, PEM Water Splitting Electrolyzer.
1339		in Meeting Abstracts. 2016. The Electrochemical Society.
1340	177.	Wang, J., et al., Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst
1341		for water electrolysis. Journal of Materials Chemistry A, 2014. 2(47): p. 20067-20074.
1342	178.	Millet, P., et al., PEM water electrolyzers: From electrocatalysis to stack development. International
1343		Journal of Hydrogen Energy, 2010. 35 (10): p. 5043-5052.
1344	179.	Tsai, C., et al., Theoretical insights into the hydrogen evolution activity of layered transition metal
1345		<i>dichalcogenides.</i> Surface Science, 2015. 640 : p. 133-140.
1346	180.	Mak, K.F., et al., Atomically Thin \${\mathrm{MoS}}_{2}\$: A New Direct-Gap Semiconductor.
1347		Physical Review Letters, 2010. 105 (13): p. 136805.
1348	181.	Bonde, J., et al., Hydrogen evolution on nano-particulate transition metal sulfides. Faraday
1349		Discussions, 2009. 140 (0): p. 219-231.
1350	182.	Li, T. and G. Galli, Electronic Properties of MoS2 Nanoparticles. The Journal of Physical
1351		Chemistry C, 2007. 111(44): p. 16192-16196.
1352	183.	Tsai, C., F. Abild-Pedersen, and J.K. Nørskov, Tuning the MoS2 Edge-Site Activity for Hydrogen
1353		Evolution via Support Interactions. Nano Letters, 2014. 14(3): p. 1381-1387.
1354	184.	Li, H., et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the
1355		formation of strained sulphur vacancies. Nature Materials, 2015. 15: p. 48.
1356	185.	Tsai, C., et al., Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen
1357		evolution. Nature Communications, 2017. 8: p. 15113.
1358	186.	Kronberg, R., et al., Hydrogen adsorption on MoS2-surfaces: a DFT study on preferential sites and
1359		the effect of sulfur and hydrogen coverage. Physical Chemistry Chemical Physics, 2017. 19 (24): p.
1360		16231-16241.
1361	187.	Ouyang, Y., et al., Activating Inert Basal Planes of MoS2 for Hydrogen Evolution Reaction through
1362		the Formation of Different Intrinsic Defects. Chemistry of Materials, 2016. 28(12): p. 4390-4396.
1363	188.	Deng, J., et al., Triggering the electrocatalytic hydrogen evolution activity of the inert
1364		two-dimensional MoS2 surface via single-atom metal doping. Energy & Environmental Science,
1365		2015. 8 (5): p. 1594-1601.
1366	189.	Bollinger, M.V., et al., One-Dimensional Metallic Edge States in \${\mathrm{MoS}}_{2}\$. Physical
1367		Review Letters, 2001. 87(19): p. 196803.

1368	190.	Tang, Q. and De. Jiang, Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First
1369		<i>Principles</i> . ACS Catalysis, 2016. 6 (8): p. 4953-4961.
1370	191.	Tang, Q. and De. Jiang, Stabilization and Band-Gap Tuning of the 1T-MoS2 Monolayer by
1371		Covalent Functionalization. Chemistry of Materials, 2015. 27(10): p. 3743-3748.
1372	192.	Tsai, C., et al., Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a
1373		<i>density functional study</i> . Physical Chemistry Chemical Physics, 2014. 16 (26): p. 13156-13164.
1374	193.	Wexler, R.B., J.M.P. Martirez, and A.M. Rappe, Stable Phosphorus-Enriched (0001) Surfaces of
1375		Nickel Phosphides. Chemistry of Materials, 2016. 28(15): p. 5365-5372.
1376	194.	Hakala, M. and K. Laasonen, Hydrogen adsorption trends on Al-doped Ni2P surfaces for optimal
1377		catalyst design. Physical Chemistry Chemical Physics, 2018. 20(20): p. 13785-13791.
1378	195.	Ariga, H., et al., Density Function Theoretical Investigation on the Ni3PP Structure and the
1379		Hydrogen Adsorption Property of the Ni2P(0001) Surface. Chemistry Letters, 2013. 42(12): p.
1380		1481-1483.
1381	196.	Wexler, R.B., J.M.P. Martirez, and A.M. Rappe, Active Role of Phosphorus in the Hydrogen
1382		Evolving Activity of Nickel Phosphide (0001) Surfaces. ACS Catalysis, 2017. 7(11): p. 7718-7725.
1383	197.	Xiao, P., et al., Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution
1384		reaction. Energy & Environmental Science, 2014. 7(8): p. 2624-2629.
1385	198.	Lewis, N.S., Developing a scalable artificial photosynthesis technology through nanomaterials by
1386		design. Nature Nanotechnology, 2016. 11: p. 1010.
1387	199.	McCrory, C.C.L., et al., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction
1388		Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society,
1389		2015. 137 (13): p. 4347-4357.
1390	200.	Huynh, M., D.K. Bediako, and D.G. Nocera, A Functionally Stable Manganese Oxide Oxygen
1391		Evolution Catalyst in Acid. Journal of the American Chemical Society, 2014. 136(16): p.
1392		6002-6010.
1393	201.	Huynh, M., et al., Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the
1394		American Chemical Society, 2015. 137(47): p. 14887-14904.
1395	202.	Frydendal, R., et al., Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media:
1396		Ti-Stabilized MnO2. Advanced Energy Materials, 2015. 5(22): p. 1500991.
1397	203.	Patel, P.P., et al., Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media
1398		electro-catalysts. Scientific Reports, 2016. 6: p. 28367.
1399	204.	Moreno-Hernandez, I.A., et al., Crystalline nickel manganese antimonate as a stable
1400		water-oxidation catalyst in aqueous 1.0 M H2SO4. Energy & Environmental Science, 2017.
1401		10 (10): p. 2103-2108.
1402	205.	Jain, A., et al., Commentary: The Materials Project: A materials genome approach to accelerating
1403		materials innovation. APL Materials, 2013. 1(1): p. 011002.
1404	206.	Jain, A., et al., Formation enthalpies by mixing GGA and GGA \$+\$ \$U\$ calculations. Physical
1405		Review B, 2011. 84 (4): p. 045115.
1406	207.	Jiao, F. and H. Frei, Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient
1407		Oxygen-Evolving Catalysts. Angewandte Chemie International Edition, 2009. 48(10): p.
1408		1841-1844.
1409	208.	McKendry, I.G., et al., Water Oxidation Catalyzed by Cobalt Oxide Supported on the Mattagamite
1410		<i>Phase of CoTe2.</i> ACS Catalysis, 2016. 6 (11): p. 7393-7397.

46	of	46
----	----	----

209.	Gerken, J.B., et al., Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0–
	14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity. Journal of the
	American Chemical Society, 2011. 133 (36): p. 14431-14442.
210.	Bloor, L.G., et al., Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts
	<i>That Self-Assemble in Situ.</i> Journal of the American Chemical Society, 2014. 136 (8): p.
	3304-3311.
211.	Mondschein, J.S., et al., Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen
	Evolution under Strongly Acidic Conditions. Chemistry of Materials, 2017. 29(3): p. 950-957.
212.	Yan, KL., et al., Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient
	electrocatalysts for oxygen evolution reaction in acidic media. Renewable Energy, 2018. 119 : p.
	54-61.
213.	Blasco-Ahicart, M., et al., Polyoxometalate electrocatalysts based on earth-abundant metals for
	efficient water oxidation in acidic media. Nature Chemistry, 2017. 10: p. 24.
214.	Rodríguez-García, B., et al., Cobalt hexacyanoferrate supported on Sb-doped SnO2 as a non-noble
	catalyst for oxygen evolution in acidic medium. Sustainable Energy & Fuels, 2018. 2 (3): p.
	589-597.
215.	Zhao, L., et al., Iron oxide embedded titania nanowires – An active and stable electrocatalyst for
	oxygen evolution in acidic media. Nano Energy, 2018. 45: p. 118-126.
216.	Kwong, W.L., et al., High-performance iron (III) oxide electrocatalyst for water oxidation in strongly
	acidic media. Journal of Catalysis, 2018. 365: p. 29-35.
217.	Yang, L.J., et al., MoSe2 nanosheet/MoO2 nanobelt/carbon nanotube membrane as flexible and
	multifunctional electrodes for full water splitting in acidic electrolyte. Nanoscale, 2018. 10(19): p.
	9268-9275.
218.	Han, N., et al., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst
	for water splitting in acid. Nature Communications, 2018. 9(1): p. 924.
219.	Mondschein, J.S., et al., Intermetallic Ni2Ta Electrocatalyst for the Oxygen Evolution Reaction in
	Highly Acidic Electrolytes. Inorganic Chemistry, 2018. 57(10): p. 6010-6015.
220.	Kolosov, V.N., E.S. Matychenko, and A.T. Belyaevskii, The Corrosion Protection of Nickel
	Equipment in Chloride-Fluotantalate Melts. Protection of Metals, 2000. 36(6): p. 545-550.
221.	Lee, H.J., et al., The corrosion behavior of amorphous and crystalline Ni-10Ta-20P alloys in 12 M
	HCl. Corrosion Science, 1996. 38(8): p. 1269-1279.
	 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221.