Resolution of Intergeneric Relationships within the Early-Diverging Angiosperm Family Nymphaeaceae Based on Chloroplast Phylogenomics

Ding-Xuan He1,2†, Andrew W. Gichira1,4,5†, Zhi-Zhong Li1,4, John M. Nzei1,4,5, You-Hao Guo3, Qing-Feng Wang1,5, Jin-Ming Chen1*

1Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
2School of Biological and Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang, China
3Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
4University of Chinese Academy of Sciences, Beijing, China
5Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
†These authors contributed equally to this work

Running head: Intergeneric phylogeny of Nymphaeaceae

*Corresponding author: Jin-Ming Chen:

Address: Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
Tel.: +86-27-87700881; Fax: +86-27-87700802
E-mail: jmchen@wbgcas.cn
Abstract:

The order Nymphaeales, consisting of three families with a record of eight genera, has gained significant interest from botanists probably due to its position as a basal-angiosperm. The phylogenetic relationships within the order have well been studied and resolved; however, a few controversial nodes still remain in the Nymphaeaceae including the position of the genus *Nuphar*. The position of the genus *Nuphar* and the monophyly of the Nymphaeaceae family remain uncertain. This study adds to the increasing number of completely sequenced plastid genomes of the Nymphaeales and applies large chloroplast gene data set in reconstructing the intergeneric relationships within the Nymphaeaceae. Five complete chloroplast genomes were newly generated, including a first one for the monotypic genus *Euryale*. Using a set of 66 protein coding genes from the chloroplast genomes of 17 taxa, the phylogenetic position of *Nuphar* was determined and a monophyletic Nymphaeaceae family was obtained with a convincing statistical support from both partitioned and unpartitioned data schemes. Although genomic comparative analyses revealed a high degree of synteny among the chloroplast genomes of the ancient angiosperms, key minor variations were evident particularly in the contraction/expansion of the Inverted Repeat regions and in RNA editing events. Genome structure, gene content and arrangement were highly conserved among the chloroplast genomes.

Keywords: basal angiosperms; chloroplast; comparative genomics; Nymphaeales; Nymphaeaceae; phylogenomics; water lily
1. Introduction

Considerable effort has been put into divulging the evolutionary origin of Angiosperms and subsequently, significant progress has been made over the years [1-8]. The order Nymphaeales is currently considered as one of the early-diverging clades of Angiosperms, being the second group after Amborellales [2,4,9-11]. The circumscription of Nymphaeales varies from two families, Nymphaeales and Cabombaceae [12-14], to three families [15,16]. When included in the Nymphaeales, Hydatellaceae has been recognized as sister to Nymphaeaceae [17].

Advances in molecular methodologies, especially the use of combined datasets, have led to significant strides towards attaining strongly resolved monophyletic clades within the three families of Nymphaeales. Cabombaceae is monophyletic comprising of two genera, Cabomba and Brasenia, with strong support from both morphological and molecular datasets [17-20]. The twelve species of family Hydatellaceae were initially placed into two genera; Hydatella and Trithuria [16], but later combined into a single genus based on their reproductive characters and other morphological synapomorphies [21]. Uncertainties, however, exist concerning the monophyletic nature of Nymphaeaceae more so in relation to the position of the genus Nuphar. This is despite the numerous studies aiming at reconstructing the phylogenetic relationships within the family.

Nymphaeaceae comprises of ca. 70 species which are classified under five genera [22], including Nuphar (~12), Barclaya (~4), Euryale (1), Victoria (2) and the largest and paraphyletic Nymphaea (~50 species). A phylogenetic analysis conducted on Nymphaeales, using fast evolving and non-coding chloroplast markers, weakly supported the monophyly of Nymphaeaceae and suggested several alternatives for the placement of Nuphar [19]. In another study, a combined approach of gene tree and species tree based on a dataset of matK and ITS2,
failed to give a convincing support on the monophyly of the Nymphaeaceae family [17]. A more recent study [18], analyzed 77 protein encoded chloroplast genes, provided further compelling support to the monophyletic clades of Hydatellaceae and Cabombaceae. The study suggested alternative scenarios that placed *Nuphar* at varying positions, including as a sister clade to Cabombaceae and as a sister to a clade containing both Nymphaeaceae and Cabombaceae, which depicted Nymphaeaceae as paraphyletic.

Plastid genomes, compared to nuclear genomes, are relatively smaller and are abundantly present in a single cell making it easier to extract, sequence and fully annotate. Chloroplast genomes have low rates of nucleotide substitutions, they lack recombination and mostly follow a non-mendelian inheritance making them more preferable for elucidating evolutionary relationships. The prospective of chloroplast phylogenomics to resolve contentious phylogenetic relationships, at nearly all taxonomic levels, have been proven over the recent past, e.g., in providing strong support for the evolutionary clades of the basal Angiosperms [4,7], the early-diverging eudicots [8,23], and the early-diverging monocots [6]. Furthermore, through comparative phylogenomics, the availability of complete chloroplast genome sequences have significantly contributed to our understanding of genome evolutionary patterns driven by events such as gene transfers, duplications, and rearrangements [24,25].

Based on the most recent insights by Gruenstaeudl et al., [18] few species of the order Nymphaeales, only eight from four genera of Nymphaeaceae, have their complete chloroplast genomes sequenced. Increasing the number of taxa will significantly improve phylogenetic resolutions within Nymphaeaceae. In addition to an increased number of taxa, the choice of an outgroup is equally essential in resolving taxonomic relationships. In order to avoid long-branch artifacts and providing ambiguous inferences, the chosen outgroup should not be distantly related
to the ingroup [26]. This study aimed at: (1) introducing more plastid genomes for the family, and especially for the genus *Nuphar*, whose position could not be resolved in an earlier study probably due to the low number of species used; (2) identifying the ideal rooting group and use it to elucidate the phylogenetic position of *Nuphar* and delimit intergeneric relationships within Nymphaeaceae family, and (3) characterizing the newly generated chloroplast genomes and examine codon usage, repeat sequences and RNA editing tendencies within Nymphaeaceae.

2. Results

2.1. Structure and gene content of the chloroplast genomes

After discarding low quality reads and sequence adaptors, 31,494,464-40,202,250 (99.82-99.94%) clean reads of 150 bp were generated for the newly sequenced species of Nymphaeaceae. The total length of the chloroplast genome sequence ranged from 159,930 bp in *E. ferox* to 160,858 bp in *N. longifolia* (Table 1, Fig.1). Identical to a majority of terrestrial plants, each of the five chloroplast genomes had two single copies of unequal length; a large single copy (LSC) and a small single copy (SSC), flanked by two equal inverted repeat (IR) regions. Nucleotide composition, with a GC content (39.1%), is nearly identical in all the chloroplast genomes (Table 1).
Figure 1. Circular gene maps of five chloroplast genomes of Nymphaeaceae. The grey arrows indicate the direction in which genes are transcribed. The color codes indicate the various gene functional groups and the grey-shaded part in the inner circle shows the GC level of each chloroplast genome.

A total of 113 unique genes, were annotated in each of the newly reported chloroplast genomes. Out of which 79 were protein coding, 30 were transfer RNA, while four genes coded for the ribosomal RNAs (Table 2). In four of the species, 17 genes including six PCGs, seven tRNAs and four rRNAs, were wholly duplicated in the inverted repeat regions. In *N. longifolia* an extra gene, *trnH-GUG*, was located in the IRa region and therefore it was entirely duplicated.
on IRb. In *N. pumila*, *N. shimadai* and *B. kunstleri* gene *trnH-GUG* was located at the IRb/LSC junction thus only a few base pairs of its 3’ end were duplicated in IRb. The coding region of 18 PCGs and tRNA genes was interrupted by either one or two introns (Table 2). The *rps12* gene has its 5’ exon in the LSC region while two 3’ exons are duplicated in the IR region and thus it is presumed to require trans-splicing during RNA processing.

2.2 Codon usage, RNA editing and repetitive sequences analyses

Slight variations were observed in the usage of codons in all the analyzed species of Nymphaeaceae. Seventy-nine protein coding genes in each of the chloroplast genomes, encoded between 26129 and 26378 codons (Table S2). In all the species, amino acid Leucine was encoded by the highest number of codons ranging from 2669 in *N. pumila* to 2698 in *N. jamesoniana*. Cysteine was encoded by the least number of codons varying from 302 in the three newly reported species of *Nuphar* to 314 in *B. longifolia* and *N. advena*. As it is normally the case with most angiosperms, only two codons; AUG for Methionine and UGG for Tryptophan were used without any bias (RSCU = 1). The selection and usage of stop codons was biased in favor of TAA (RSCU >1). The codons with A or T at their third positions were highly preferred to those with a C or G, in this regard, codon ATT for amino acid isoleucine (average 1023.58) had the highest count. Out of the 64 codons, 31 had RSCU values of more than 1 an indication that they were frequently used. The average number and RSCU for each codon was calculated for all the 12 species (Fig. 2; Table S2). The common initiation codon was ATG, although deviations were observed within some species where GTG was noted in genes *rpoc1*, *cemA* and *rps19* while *psbL* and *ndhD* had ACG as the first codon.
Figure 2. Details of codon preferences (Bar) and relative synonymous codon usage values (Line) of 12 chloroplast genomes of Nymphaeaceae.

Potential RNA editing sites were detected in between 24 and 28 protein coding genes (Table 3; Table S3). All RNA editing sites reported here were of the C to U type, the majority of which affected a single site; either the first or the second position of a given codon. However, in some genes, e.g. ccsA and rpoC1, only the third position was conserved in some codons. A total of 19 genes were commonly affected in each of the genomes, out of these, rpoC2, ndhA, ndhB, ndhD had the highest number of editing sites in each genome (Fig. 3). In order to test for correlation between RNA editing events and phylogenetic relationships, we used details of the 19 common genes to create a binary data matrix which was then used to construct a UPGMA dendrogram in MEGA7 software (Fig. S1).
Figure 3. The number of RNA editing sites in each of the transcripts of 19 common genes in all analyzed chloroplast genomes.

A total of 438 short tandem repeats were mined in 12 species of Nymphaeaceae. The number of repeats in each chloroplast genome varied from 19 (N. jamesoniana) to 58 (N. shimadai). Interestingly, each species of Nuphar had a high number of repeats (>50) followed by species of Barclaya (> 30). Majority of the microsatellites were A-T rich homopolymers which was a common observation across all species except in N. jamesoniana which had two strings of polyC (C10) and only one polyT (T13). Non-coding regions possessed more SSRs compared to the coding regions. The repeat motif, length and the location of the microsatellites are shown in (Table S4). In addition, a total of 128 long tandem repeats were discovered in the 12 chloroplast genomes. Forty nine repeats were found in the genome of E. ferox, which was the highest number of repeats in a single genome, other genomes had between 12 in N. pumila and one in B.
longifolia. Forward repeats exhibited a large percentage (80.5\%) with the rest being the palindromic repeat sequences. (Table S4).

2.3 Inverted repeats and genome comparison

Gene positioning at the IR/SSC junctions was stable in that the JSA boundary expanded into the \textit{ycf1} gene in all species at varying lengths while the \textit{ndhF} gene was squarely located in the IR, leaving a gap of varying length between JLB and the 3’ end of the gene. However, in all species of \textit{Nuphar}, the JLB expanded into \textit{ndhF} gene resulting into an overlap of 11 to 12 bp between the \textit{ndhF} and the \textit{ycf1} pseudogene and a relatively smaller SSC region compared to the other species. Significant variations were observed at the JLA and JLB junctions (Fig. 4). Whole genome alignments, using Mauve, revealed well conserved chloroplast genomes which lacked major inversions or rearrangements. Gene content and order was highly maintained and thus only three locally collinear blocks were identified among the species of Nymphaeaceae (Fig. 5).
Figure 4. Comparison of the border positions of the large single copy, small single copy and the inverted repeat regions among chloroplast genomes of twelve species of Nymphaeaceae. Complete genes and portions of genes adjacent the junctions are depicted by the differently colored blocks.
Figure 5. MAUVE alignment of whole chloroplast genome of 12 species of Nymphaeaceae. Local collinear blocks representing identical gene clusters are depicted by same color and are connected by lines.

2.4 Phylogenetic analyses

The 66 protein coding genes dataset produced highly congruent topologies based on the various ML and BI strategies and using different partitioning approaches. Using Amborella trichopoda and under partitioned data matrix, a weakly supported clade containing Cabombaceae and four genera of Nymphaeaceae was recovered; Nuphar was positioned (strongly supported) at the base and as a sister clade (Fig. S2a). Under unpartitioned data, a clade containing Nuphar as
a sister to Cabombaceae was strongly supported (Fig. S2b). Using *Trithuria incospicua* and *T. filamentosa* (Hydatellaceae) as outgroup in the phylogenetic analyses, the monophyly of Nymphaeaceae and Cabombaceae were strongly supported (BS = 100, PP = 1.0) by both ML and BI phylogenetic analyses using unpartitioned and partitioned data matrix (Fig. 6). The three newly generated species of *Nuphar* were fully supported as sisters to *N. advena* in a monophyletic clade. Similarly, *B. kunstleri* and *E. ferox* had full support at their respective nodes as sisters to *B. longifolia* and *V. cruziana* respectively. The genus *Nymphaea* was strongly supported to be a paraphyletic clade in relation to *E. ferox* and *V. cruziana*.

3. Discussion

3.1 Chloroplast genomes structure

Normally, chloroplast genomes of higher plants are highly conserved circular molecules with a size range of 120 to 160 kb, and they typically contain ~110-~130 unique genes [27,28]. In this study, five recently sequenced complete chloroplast genome sequences on Nymphaeaceae were reported. These are added to the small but a steadily growing number of species whose chloroplast genomes have been reported in this family and in the order Nymphaeales. The overall structure, nucleotide composition, gene content and arrangement among the reported taxa were nearly identical to each other and among those of early diverging angiosperms (Table 1 in this study, Table 1 in Gruenstaeudl et al. [18]). The genomes encoded an equal number of genes, in total 113 unique genes. The potential of genes *ycf15* and *ycf68* to encode for protein in chloroplast genomes of basal angiosperms have previously been questioned [18,29,30]. Although sequences of the two hypothetical genes are well preserved, partially or in whole in most of the species, studies suggest that these are not protein coding genes and therefore they were not
annotated in the currently reported genomes. Likewise, the two open reading frames; orf42 and orf56 which had been annotated in some genomes of Nymphaeaceae, were excluded in this study, based on the observation that their ability to code for proteins in Angiosperm is yet to be confirmed [18,31].

3.2 Codon usage, RNA editing, and repetitive sequences analyses

The genetic code in both eukaryotes and prokaryotes is degenerate and, with 61 codons encoding for only 20 amino acids, some amino acids are encoded by more than one codon [32]. Therefore, since codons are used with varying frequency, codon usage bias is generally inevitable. Codon usage is usually driven by mutational bias and natural selection [33] and the mostly affected bases are usually at the third and sometimes at the second position of a codon which was evident in the chloroplast genomes of Nymphaeaceae species. Normally, RSCU values greater than 1 indicate over representation of a given codon, while values below 1 show less usage and values of 1 indicate lack of biasness in codon usage [34]. In each species, over 30 codons had RSCU > 1 an indication that these were highly preferred and as expected, all had A/T at their third position. Understanding codon usage patterns may be effective in discerning the different evolutionary processes that affect the chloroplast genomes. A well preserved pattern of CUB was observed in all the studied species of Nymphaeaceae which was nearly identical to those reported in other plant species [35,36].

RNA editing is typical in chloroplast genome sequences of most land plants. The sequences are subjected to regular modification at the transcript level through RNA editing and transsplicing [37]. Thus, recognition of RNA editing sites in transcripts is elemental for comprehending the coding patterns in chloroplast genomes. In addition, certain RNA editing events cause divergence in the evolutionarily conserved amino acid sequences [38]. Here we
identified RNA editing sites in transcripts from each of the 12 complete chloroplast genomes of Nymphaeaceae. The number of editing sites varied slightly between 94 in *V. cruziana* and 108 in *B. kunstleri*. Although the majority of editing sites were in internal codons, the initiation codon ATG (amino acid Methionine) was restored from ACG in the transcripts of genes *psbL*, *ndhB* and *rpoC1*. There was no considerable difference in the number of genes affected by RNA editing which varied from 24, in two species of *Nuphar*, to 28 in *B. kunstleri*. Nineteen genes were common in all the chloroplast genomes and majority of their editing sites were conserved.

Comparative analyses have shown no correlation between RNA editing events and phylogenetics in major groups of land plants [39]. However, in this study, further comparative analysis revealed certain patterns that are worth mentioning. For example, potential RNA editing sites were predicted in genes *atpB*, *atpI* and *rpl2* in all the genera except in *Nuphar* while genes *psbF* and *petG* had no editing sites in the *Nymphaea*, *Victoria* and *Euryale* clade. These patterns were also observed in the number of sites predicted in some gene transcripts, e.g., gene *accD* had three editing sites in *Nuphar* and only two in all the other genera. The UPGMA dendrogram, constructed based on RNA editing events, inferred a paraphyletic Nymphaeaceae supporting *Nuphar* as a sister to Cabombaceae. This implied that RNA editing events are well conserved genus/clade-specific evolutionary processes in chloroplast genomes of Nymphaeaceae.

Repetitive sequences play various roles in genome organization, gene activities, DNA recombination, replication and repair [40]. Those located in the protein coding regions may interfere with the normal functions of proteins [41]. Majority of the tandem repeats discovered in the chloroplast genomes of Nymphaeaceae were located in the non-coding segments. Short tandem repeats are plentifully distributed within genomes. Interestingly, species of *Nuphar*, with largest genome sizes exhibit the largest number of SSRs compared to the other genomes. In
situations where SSRs are randomly distributed, more SSRs would be identified in larger chloroplast genomes compared to the smaller ones [30]. However, a positive correlation between genome size and the number of SSRs seems elusive as because *Nymphaea jameisoniana* had fewer SSR repeats than the species with the smallest genome size.

3.3 Comparative analyses

Comparative chloroplast genomics provides insights into the evolutionary patterns of chloroplast [24] and lays the foundation for functional genomic and phylogenomic studies [42]. The five genomes exhibit a quadripartite structure that is distinctive to majority of land plants. Although chloroplast genomes are highly conserved, particularly among closely related species, minor variations are evident and perhaps the most noticeable difference is the total genome sizes of the various species. Species of Nymphaeaceae have so far displayed a narrow range of size disparity, with *B. longifolia* (158,360 bp) [18] and *N. advena* (160,866 bp) [30] possessing the smallest and the largest genomes respectively. Chloroplast genomes reported in this study differed slightly in size with a difference of about 1 kb between the smallest and the largest. The contraction/expansion of the Inverted Repeat regions is listed among the main sources of size variations in chloroplast genomes. The IRs can greatly fluctuate in size and their positions differ even among species of the same genus [43]. The genus *Nuphar* harbors the largest chloroplast genomes among the Nymphaeaceae species and this is as a result of increased expansion of the IRs into the SC regions. In most chloroplast genomes of non-monocot angiosperms, the *trnH-GUG* and *rps19* genes lie within the LSC region [43,44]. The JLA boundaries of *N. advena* and *N. longifolia*, the largest chloroplast genomes of Nymphaeaceae, are located upstream of *trnH-GUG* gene which is therefore placed within the IRa region. The positioning of the IR/SC junction in these two species of *Nuphar*, is congruent with the reports by Wang et al. [44] who, based on the
results of *N. advena*, made a generalized observation for the Nymphaeaceae family. However, based on the results in this study, the positioning of JLA and JLB junctions in Nymphaeaceae are rather more divergent. Other species whose genome sizes were over 160 kb including *N. pumila*, *N. shimadai* and *B. kunstleri*, had their IR/LSC expanded into *trnH-GUG* gene, which based on Wang et al. [44], belong to the same category (c) as some eudicots.

The mechanisms of expansion and contraction of the inverted repeat regions have been shown to have evolutionary significance and could be used as sources of important molecular markers to elucidate relationships among various plant species [44,45]. The variations observed at the IR/LSC boundaries could be potential sources of phylogenetic markers ideal to study interfamilial relationships within Nymphaeaceae. Mauve software combines the analysis of large scale evolutionary events with the traditional sequence alignments, in order to identify the conserved regions, rearrangements and inversions in genomes [46]. The alignments revealed that the entire genome structure and gene arrangement are collinear and highly conserved within the Nymphaeaceae family. Only three locally collinear blocks were identified which were interpreted to harbor three clusters of conserved homologous genes (Fig. 5).

3.4 Phylogenetic inference

Coding and non-coding regions of chloroplast genomes are subjected to varying rates of molecular evolution thus providing ample genetic variation for phylogenetic investigations at diverse taxonomic levels [47,48]. Phylogenetic analyses of one of the early diverging-angiosperms; Nymphaeales, have been limited to the use of one or a few molecular markers obtained from plastid or nuclear genomes [13,17,19,49]. Consequently, they have provided important insights into the evolutionary relationships between major lineages of Nymphaeales. However, with the use of large-scale genome-wide datasets that have been made available by the
rapidly increasing number of completely sequenced plastid genomes, well resolved and strongly supported phylogenetic clades have been obtained [4,5,7]. The most recent phylogenetic analysis utilizing multiple chloroplast protein coding genes [18] strongly supported the monophyly of Cabombaceae and Hydatellaceae under different data partitions, but could not firmly support a monophyletic Nymphaeaceae family. In this study, more taxa of Nymphaeaceae were added to the eight used by Gruenstaeudl et al. [18]. A multi-gene phylogenetic analysis was conducted using 66 protein coding genes obtained from 17 chloroplast genomes of Nymphaeales.

In spite of an increased taxon sampling in *Nuphar*, its phylogenetic position remained vague in relation to the outgroups used. Using Amborellaceae to root the phylogenetic tree, both partitioned and unpartitioned data schemes placed *Nuphar* at two different positions confirming earlier proposed hypotheses. Without data partitioning, *Nuphar* and Cabombaceae formed a weakly supported (44/0.5 BS/PP) clade that was sister to the rest of Nymphaeaceae, whereas under partitioned data *Nuphar* was positioned at the base while Cabombaceae and the rest of Nymphaeaceae formed a weak (26/0.9 BS/PP) relationship (Fig. S2). An outgroup provides evolutionary information including a more precise determination of pleisiomorphic traits of an ingroup [50]. Accordingly, inappropriate choice of outgroup and limited taxon sampling may fail or give misleading phylogenetic resolutions [29,51,52].

The proximity of Hydatellaceae to the ingroup, containing Cabombaceae and Nymphaeaceae, makes it a fundamental root in defining the character homology in *Nuphar* and the other genera. Consequently, our analyses provided strong statistical support for a monophyletic Nymphaeaceae and resolutely confirmed the monophyly of Cabombaceae based on various data partitioning schemes (Fig. 6). In additional, the relationship between the five genera of Nymphaeaceae; *Nuphar*, *Barclaya*, *Nymphaea*, *Euryale* and *Victoria* was defined.
Nuphar was placed at the base of the Nymphaeaceae family as a sister to *Barclaya*. These results are consistent with morphological circumscriptions of the family which places *Nuphar* at the basal position due to the lack of significant specialized features synapomorphic for other Nymphaeaceae species [53,54]. Similarly, the clade consisting of *Barclaya, Nymphaea, Euryale* and *Victoria* was strongly supported and congruent to Loehne et al. [19]. The relationship between the species of *Nuphar* corresponds to the New World and Old world monophyletic subclades which were well outlined and supported by both morphology and molecular datasets [54,55].

Figure 6. Phylogenetic relationships among the species of Nymphaeaceae, Cabombaceae and Hydatellaceae (outgroup). The Maximum Likelihood (ML) and Bayesian Inference (BI) phylogenetic tree was based on 66 protein codon genes. The numbers indicate ML bootstrap support (100) and BI posterior probabilities (1.0) values. The – symbol indicates maximum support.
The genus *Barclaya*, endemic to Southeast Asia, was previously classified under a monotypic family Barclayaceae based on morphological traits, but later moved to Nymphaeaceae based on cladistics and molecular evidence [56]. Within Nymphaeaceae, *Barclaya* was confirmed to be a close relative of *Nuphar* [53] a position that was strongly supported by genome-scale plastid data in this study (100%, ML and 1.0 PP, BI) under both partitioned and unpartitioned. *Nymphaea*, the largest and the most cosmopolitan genus within the family [57], has remained taxonomically challenging despite being accorded considerable attention, e.g. although Borsch et al. [58] increased taxa sampling and improved molecular character sampling compared to the analysis done by Borsch et al. [58], certain nodes of *Nymphaea* subg. *Nymphaea* gained weak or lacked statistical support. In this study a paraphyletic *Nymphaea* was strongly supported. However, certain internal nodes such as the node linking *N. jamesoniana* and *N. ampla*, were moderately supported by ML analyses (BS= 79 and 94%, unpartitioned and partitioned data respectively) despite being strongly supported by the BI (PP=1.0). The currently used chloroplast DNA dataset has the potential to resolve these nodes but to achieve this, extensive taxon sampling is needed.

The relationship of *Victoria* and the monotypic genus *Euryale* has long been accepted and supported by a combination of molecular and morphological data [53,59]. These two genera are associated by their aculeate character and their leaves are shield-like with petioles inserted at the center of the leaf blades, they are however easily distinguished based on the shape of the leaf margin and the presence or absence of staminodia and carpellary appendages [57]. Their relationship was strongly confirmed in this study although their connection to *Nymphaea* was only moderately supported. Previous investigations firmly positioned *Victoria* within *Nymphaea*
Addition of *Euryale*, slightly reduced that support although the position within *Nymphaea* was maintained. Strong conclusions concerning the phylogenetic and evolutionary relationships between the *Victoria-Euryale* clade and *Nymphaea*, can only be made after more plastid genome data are made available.

4. Materials and Methods

4.1 Plant material and genome sequencing

Fresh leaf samples of *Nuphar pumila, N. shimadai, N. longifolia* and *Euryale ferox* were obtained from Wuhan Botanical Garden, Chinese Academy of Sciences, China and voucher specimens were deposited in the Herbarium of Wuhan Botanical Garden, Chinese Academy of Sciences (HIB). Leaf materials of *Barclaya kunstleri* were obtained from Bkt. Timah Natural Reserve, Singapore, and a voucher specimen was deposited in Singapore Botanic Gardens Herbarium. About 5 g of fresh leaves per plant were collected and immediately dried with silica gel.

Total genomic DNA was isolated from 150 mg of silica-dried leaf tissues with DNeasy Plant Mini Kits (Qiagen CA, U.S.A) following the manufacturer’s instructions. Approximately 5-10 μg of genomic DNA was used to construct paired-end sequencing libraries with insert sizes of between 250 bp and 350 bp for each species. These libraries were then sequenced using the Illumina Hiseq 2500 platform (Illumina Inc., USA) to generate at least 5 Gb of 300 bp paired-end read for all the species. The quality of the raw sequence reads was checked using FastQC v0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) where ambiguous and low-quality reads were discarded.
4.2 Genome assembly and annotation

A reference-guided strategy was used to assemble the chloroplast genomes. In order to identify and retrieve the chloroplast sequences, the filtered reads were mapped to two reference chloroplast genomes; *Barclaya longifolia* (KY_284156) [18] and *Nuphar advena* (NC_008788) [30], using Bowtie2 2.2.9 [60] with the parameters D 15 -R 2 -N 1 -L 22 -i S,1,1.15. The extracted reads were assembled *de novo* using Velvet 1.2.10 [61] with the following settings: velveth K = 79–105 and velvetg cov_cutoff = 100, resulting into 3-5 contigs. All contigs of each species were mapped to reference using GENEIOUS R8 (Biomatters Ltd., Auckland, New Zealand). The overlapping ends, 50-80 bp, were trimmed, while the gaps were filled by PCR amplification and Sanger sequencing using specifically designed primers. The positions of the Single Copies and the Inverted Repeat regions were confirmed through self-blasting using Basic Local Alignment Search Tool (BLAST+). To verify the generated contigs, the reads were remapped to the complete chloroplast genomes using Bowtie2 2.2.9 with default parameters [60].

Each of the assembled chloroplast genomes was annotated using GeSeq [62] and Dual Organellar GenoMe Annotator (DOGMA) [63] using *B. longifolia* and *N. advena* as references. The annotations were manually corrected, wherever necessary, and verified using GENEIOUS R8 (Biomatters Ltd., Auckland, New Zealand) by re-aligning with the references. Finally, graphical circular gene maps for each of the species were constructed using OGDraw v1.2 [64]. The fully annotated chloroplast genomes were submitted to GenBank (Accession numbers are shown in Table 1).
4.3 Chloroplast genome comparisons

In order to discover any significant interspecific and intergeneric variations among the newly generated chloroplast genome sequences of Nymphaeaceae, comparison analyses were carried out focusing on various characters of the genomes including sizes and gene content. The variations observed in chloroplast genome sizes are largely attributed to the contraction or expansion of the Inverted regions. The four IR/SC borders of each of the chloroplast genomes of 12 species of Nymphaeaceae (five newly generated chloroplast genomes in this study and seven previous published chloroplast genomes: GenBank accession NC_008788, KU234277, KU189255, NC_024542, NC_031826, KY284156, and KY001813), and their adjacent genes were compared. Further, we used Mauve genome alignment software [46] to conduct a multiple genome alignment analysis aiming at detecting any rearrangements or inversions within the chloroplast genomes of the 12 species of Nymphaeaceae.

4.4 Codon usage, RNA editing and repetitive sequences analyses

The annotations errors in Nymphaea jameisoniana, as highlighted by Gruenstaeudl et al. [18] were corrected and genes ycf15, ycf68 and the two open reading frames (orf42 and orf56) were excluded from these analyses. Nymphaea alba had two GenBank accessions; KU234277 and NC006050, we randomly picked KU234277 for these analyses. The frequency of synonymous codon usage, also referred to as codon usage bias (CUB) was determined for all exons of 79 protein coding genes in 12 species of Nymphaeaceae using MEGA ver.7 software [65]. The values of relative synonymous codon usage (RSCU) [66] were compared. Potential RNA editing positions in protein coding genes of each chloroplast genome, were predicted using Predictive RNA Editor for Plants (PREP) [67]. PREP uses 35 protein genes as reference to predict C to U
editing events. The cut off value was set at 0.8. MIcroSAtellite identification tool (MISA) [68] was used to search for simple sequence repeats (SSRs). The minimal repeat numbers were set at 10 for mono-, 5 for di-, 4 for tri, and 3 for tetra, penta- and hexa-nucleotide repeat motifs. We used REPuter [69] to establish the size and location of direct, inverted, compliment and reverse repeat units in each of the chloroplast genomes of Nymphaeaceae. The lower limit of repeat size was set at 30 bp with repeat identity of 90% and a hamming distance of 3.

4.5 Phylogenetic analyses

All currently available complete chloroplast genome sequences of Nymphaeaceae, which represented four genera, were retrieved from GenBank (Table S1). Five new genomes were reported in this study including a first one for the genus *Euryale*. Chloroplast genome sequences of two genera of Cabombaceae, two species of Schisandraceae, two representatives of the monotypic Hydatellaceae family and the monotypic genus *Amborella* were also obtained (Table S1). Several phylogenetic analyses using *Amborella* or Hydatellaceae as outgroup were conducted to determine the effects of outgroup selection on the taxonomic relationships within Nymphaeaceae and Cabombaceae.

Sixty-six protein coding genes, common in all genome sequences, were extracted and aligned using Muscle program [70]. The aligned sequences were concatenated and topologies were constructed using maximum likelihood (ML) and Bayesian Inference conducted in RAxML v.8.2.9 [71] and MrBayes v.3.2.5 [72]. The best fitting nucleotide substitution models based on the Akaike information criterion were realized using jModeltest v.2.1.7 [73]. The ML analyses were conducted using GTR + G + I substitution model with 1000 bootstrap replicates. A heuristic search of 10 independent replicates was carried out for the ML analyses. The BI analysis was done using the GTR + G model and based on the Markov chain Monte Carlo (MCMC) algorithm.
one million generations with four independent heated chains with sampling after every 1000 generations. Convergence was attained and operation stopped when the average standard deviation of split frequencies remained below 0.01. The initial 25% of all sampled trees were discarded as burn in, while the remaining (75%) were used to construct a majority-rule consensus tree with posterior probabilities.

We conducted further phylogenetic analyses, based on two different data partitions under ML and BI strategies. In the first phylogenetic analysis, we used jModeltest. v.2.1.7 [73] to infer the best-fitting substitution model for each of the 66 genes used. In this approach, each of the 66 genes was analyzed as a single partition. In the second analysis, the greedy search algorithm executed in PartitionFinder2 [74] was used to determine the best model among the GTR, GTR+G, GTR+I+G models based on the corrected selection criterion; Aikake Information Criterion (AICc).

5. Conclusion

Five newly sequenced complete chloroplast genomes of Nymphaeaceae, including the first one in the genus *Euryale*, were reported. Comparative genomics revealed highly conserved patterns in relation to genome structure, nucleotide composition and relative synonymous codon usage. However, minor variations were evident particularly in the contraction/expansion of the Inverted Repeat regions and in RNA editing events, majority of which appeared to be genus specific implying that each genus could have been subjected to unique evolutionary events. This study affirms the potential of chloroplast phylogenomics to solve taxonomic relationships within genera of Nymphaeaceae. By increasing the number of taxon and analyzing the validities of outgroups, a monophyletic Nymphaeaceae was attained and the phylogenetic position of *Nuphar* was ascertained with strong statistical support.
Acknowledgements

We thank Lua H.K., Ang W.F. and Bazilah M.I. from Singapore Botanic Gardens Herbarium for collecting and sending the samples of *Barclaya kunstleri* and Josphat K. Saina for their assistance in data analyses.

Author Contributions: Jin-Ming Chen and Qing-Feng Wang designed the experiment; Ding-Xuan He, Andrew W. Gichira, Zhi-Zhong Li, John M. Nzei and You-Hao Guo assembled sequences and revised the manuscript; Ding-Xuan He and Andrew W. Gichira performed the experiments, analyzed the data and wrote the paper; Jin-Ming Chen and Zhi-Zhong Li collected the plant materials. All authors have read and approved the final version of the manuscript.

Funding:

This work were Supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB31010000), the National Natural Science Foundation of China (No. 31570220) and Wuhan Botanical Garden (CAS) (No. Y655261W03).

Conflict of Interest

The authors declare that there is no conflict of interest.

Abbreviations

IR Inverted repeat
SSC Small single copy
LSC Large single copy
SSR Simple sequence repeat
PCGS Protein coding genes
References

Supplemental files

Fig. S1. UPGMA dendrogram of species of Nymphaeaceae, Cabombaceae and Hydatellaceae constructed based on the events of RNA editing in the transcripts of 19 common protein coding genes.

Fig. S2. Phylogenetic relationships of species of Nymphaeales based on (a) partitioned and (b) unpartitioned data scheme of 66 protein coding genes. *Amborella trichopoda* was used as an outgroup. The numbers indicate ML bootstrap support (100) and BI posterior probabilities (1.0) values. The * symbol indicates maximum support.

Table S1. Details of taxa used in phylogenetic analyses.

Table S2. Details of codon usage and relative synonymous codon usage values of chloroplast genomes of 12 species of Nymphaeaceae.

Table S3. Details of RNA editing events, including genes whose transcripts were affected in each genome and the number of editing sites in each gene transcript.

Table S4. Details of short and long repetitive sequences discovered in each of the chloroplast genomes of 12 species of Nymphaeaceae.
Table 1. Characteristics of chloroplast genomes of five species of Nymphaeaceae

<table>
<thead>
<tr>
<th>Name of organism</th>
<th>Barclaya kunstleri</th>
<th>Euryale ferox Salisb.</th>
<th>Nuphar longifolia (Michx.) Sm.</th>
<th>Nuphar pumila (Timm) DC.</th>
<th>Nuphar shimadai Hayata</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenBank accession number</td>
<td>KY392762</td>
<td>KY392765</td>
<td>MH050795</td>
<td>MH050796</td>
<td>MH050797</td>
</tr>
<tr>
<td>Genome size (bp)</td>
<td>160051</td>
<td>159930</td>
<td>160858</td>
<td>160737</td>
<td>160645</td>
</tr>
<tr>
<td>LSC length (bp)</td>
<td>90026</td>
<td>89677</td>
<td>90375</td>
<td>90610</td>
<td>90551</td>
</tr>
<tr>
<td>SSC length (bp)</td>
<td>19325</td>
<td>20201</td>
<td>18811</td>
<td>18865</td>
<td>18830</td>
</tr>
<tr>
<td>IR length (bp)</td>
<td>25350</td>
<td>25026</td>
<td>25836</td>
<td>25631</td>
<td>25632</td>
</tr>
<tr>
<td>Number of genes</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Number of protein-coding genes (duplicated in IR)</td>
<td>79 (6)</td>
<td>79(6)</td>
<td>79(6)</td>
<td>79(6)</td>
<td>79 (6)</td>
</tr>
<tr>
<td>Number of tRNA genes (duplicated in IR)</td>
<td>30 (7)</td>
<td>30 (7)</td>
<td>30 (8)</td>
<td>30 (7)</td>
<td>30 (7)</td>
</tr>
<tr>
<td>Number of rRNA genes (duplicated in IR)</td>
<td>4 (4)</td>
<td>4(4)</td>
<td>4 (4)</td>
<td>4 (4)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Number of genes with one intron (two introns)</td>
<td>15 (3)</td>
<td>15 (3)</td>
<td>15 (3)</td>
<td>15 (3)</td>
<td>15 (3)</td>
</tr>
<tr>
<td>Proportion of coding to non-coding regions</td>
<td>0.68</td>
<td>0.68</td>
<td>0.69</td>
<td>0.68</td>
<td>0.69</td>
</tr>
<tr>
<td>Average gene density (genes/kb)</td>
<td>0.82</td>
<td>0.82</td>
<td>0.83</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>GC content (%)</td>
<td>39.1</td>
<td>39.1</td>
<td>39.1</td>
<td>39.1</td>
<td>39.1</td>
</tr>
<tr>
<td>Category</td>
<td>Gene Type</td>
<td>Gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-replication</td>
<td>Ribosomal RNA</td>
<td>rrn16 rrn23 rrn4.5 rrn5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer RNA</td>
<td>tRNA-A* tRNA-M-UGC*</td>
<td>tRNA-L-GAU* tRNA-M-CAU tRNA-R-ACG tRNA-S-UGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tRNA-C-CAU tRNA-G-CAU tRNA-K-CAU tRNA-N-CAU tRNA-W-CAU tRNA-T-CAU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCA GCC UUU* GUA CCA GGU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trnD-CAU trnG-CAU trnI-GAU* trnI-CAU trnM-CAU trnR-CAU tRNA-F-CAU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUC UCC* trnE-CAU trnH-CAU trnL-CAA tRNA-Y-CAU trnR-CAU tRNA-T-CAU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UUC GUG GAA CAU GGA UAC*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>trnF-CAU trnG-CAU trnL-CAU trnQ-CAU trnR-CAU trnV-CAU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small ribosomal units</td>
<td></td>
<td>rps11 rps12 rps14 rps15 rps16* rps18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rps19 rps2 rps3 rps4 rps7 rps8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large ribosomal units</td>
<td></td>
<td>rpl14 rpl16 rpl2* rpl12* rpl20 rpl22 rpl23 rpl32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rpl33 rpl36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA polymerase subunits</td>
<td></td>
<td>rpoA rpoB rpoCl* rpoC2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>translation initiation</td>
<td></td>
<td>infA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosynthesis genes</td>
<td>NADH dehydrogenase</td>
<td>ndhA* NdhB* ndhC ndhD ndhE ndhF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ndhG ndhH ndhI ndhJ ndhK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>photosystem I</td>
<td>psaA psaB psaC psaI psaJ ycf3** ycf4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>photosystem II</td>
<td>pshA pshB pshC pshD pshE pshF pshH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pshI pshJ pshK pshL pshM pshN pshT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cytochrome b/f complex</td>
<td>pshZ petA petB petD petG petL petN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP synthase</td>
<td></td>
<td>atpA atpB atpE atpF* atpH atpI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large subunit of rubisco</td>
<td></td>
<td>rbcL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other genes</td>
<td>Maturase</td>
<td>matK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protease</td>
<td>clpP**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetyl-CoA-carboxylase</td>
<td>accD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sub-unit</td>
<td>Envelope membrane</td>
<td>cemA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>protein</td>
<td>Component of TIC complex</td>
<td>ycf1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c-type cytochrome</td>
<td>ccsA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>hypothetical genes</td>
<td>ycf2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reading frames</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. List of genes encoded in each of the five chloroplast genomes of Nymphaeaceae
Table 3. List of protein coding genes affected by RNA editing in each of the 12 chloroplast genomes of Nymphaeaceae

<table>
<thead>
<tr>
<th>Nuphar advena</th>
<th>Nuphar longifolia</th>
<th>Nuphar punila</th>
<th>Nuphar shimaudai</th>
<th>Nymphaea alba</th>
<th>Nymphaea ampla</th>
<th>Nymphaea jamesoniana</th>
<th>Nymphaea mexicana</th>
<th>Victoria cruziana</th>
<th>Euryale ferox</th>
<th>Barclaya kunstleri</th>
<th>Barclaya longifolia</th>
</tr>
</thead>
<tbody>
<tr>
<td>accD^3</td>
<td>accD^3</td>
<td>accD^3</td>
<td>accD^3</td>
<td>accD^2</td>
<td>accD^2</td>
<td>accD^2</td>
<td>accD^2</td>
<td>accD^2</td>
<td>accD^2</td>
<td>accD^4</td>
<td>accD^4</td>
</tr>
<tr>
<td>atpA</td>
<td>atpA</td>
<td>atpA</td>
<td>atpA</td>
<td>AtpA</td>
<td>-</td>
<td>atpA</td>
<td>atpA</td>
<td>atpA</td>
<td>atpA</td>
<td>atpA</td>
<td>atpA</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>ccsA^4</td>
<td>ccsA^4</td>
<td>ccsA^4</td>
<td>ccsA^4</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
<td>ccsA^3</td>
</tr>
<tr>
<td>clpP^2</td>
</tr>
<tr>
<td>matK^2</td>
<td>matK^2</td>
<td>matK^2</td>
<td>matK^2</td>
<td>matK^6</td>
<td>matK^6</td>
<td>matK^6</td>
<td>matK^6</td>
<td>matK^6</td>
<td>matK^6</td>
<td>matK^6</td>
<td>matK^6</td>
</tr>
<tr>
<td>ndhA^9</td>
<td>ndhA^9</td>
<td>ndhA^9</td>
<td>ndhA^7</td>
<td>ndhA^11</td>
<td>ndhA^10</td>
<td>ndhA^9</td>
<td>ndhA^9</td>
<td>ndhA^9</td>
<td>ndhA^10</td>
<td>ndhA^10</td>
<td>ndhA^10</td>
</tr>
<tr>
<td>ndhB^11</td>
<td>ndhB^11</td>
<td>ndhB^11</td>
<td>ndhB^8</td>
<td>ndhB^9</td>
<td>ndhB^9</td>
<td>ndhB^8</td>
<td>ndhB^9</td>
<td>ndhB^9</td>
<td>ndhB^10</td>
<td>ndhB^10</td>
<td>ndhB^10</td>
</tr>
<tr>
<td>ndhD^10</td>
<td>ndhD^10</td>
<td>ndhD^10</td>
<td>ndhD^9</td>
<td>ndhD^8</td>
<td>ndhD^6</td>
<td>ndhD^9</td>
<td>ndhD^9</td>
<td>ndhD^9</td>
<td>ndhD^7</td>
<td>ndhD^7</td>
<td>ndhD^7</td>
</tr>
<tr>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^7</td>
<td>ndhF^6</td>
<td>ndhF^6</td>
<td>ndhF^6</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>petG</td>
<td>petG</td>
<td>petG</td>
<td>petG</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pshE</td>
</tr>
<tr>
<td>pshF</td>
<td>pshF</td>
<td>pshF</td>
<td>pshF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pshL</td>
</tr>
<tr>
<td>rpl20</td>
</tr>
<tr>
<td>rpoB^8</td>
</tr>
<tr>
<td>rpoC1^3</td>
<td>rpoC1^3</td>
<td>rpoC1^3</td>
<td>rpoC1^3</td>
<td>rpoC1^4</td>
<td>rpoC1^4</td>
<td>rpoC1^4</td>
<td>rpoC1^4</td>
<td>rpoC1^4</td>
<td>rpoC1^6</td>
<td>rpoC1^6</td>
<td>rpoC1^6</td>
</tr>
<tr>
<td>rps2^1</td>
</tr>
<tr>
<td>rps8^1</td>
</tr>
<tr>
<td>rps14^2</td>
</tr>
<tr>
<td>rps16^1</td>
</tr>
<tr>
<td>ycf3^3</td>
</tr>
</tbody>
</table>

Note: the superscript number indicates the number of edited sites in each of the 19 protein coding genes common in all the genomes.