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Abstract: HD-Zip proteins are unique to plants, and contain a homeodomain closely linked to a 
leucine zipper motif, which are involved in dimerization and DNA binding.  Based on homology in 
the HD-Zip domain, gene structure and the presence of additional motifs, HD-Zips are divided into 
four families, HD-Zip I–IV.  Phylogenetic and bioinformatics analysis of HD-Zip genes using 
transcriptomic and genomic datasets from a wide range of plant species indicate that the HD-Zip 
protein class was already present in green algae.  Later, HD-Zips experienced multiple duplication 
events that promoted neo- and sub-functionalizations.  HD-Zip proteins are known to control key 
developmental and environmental responses, and a growing body of evidence indicates a strict link 
between members of the HD-Zip II and III families and the auxin machineries.  Interactions of 
HD-Zip proteins with other hormones such as brassinolide and cytokinin have also been described.  
However, it is striking that among the genes regulated by REV, a HD-Zip III protein playing a key 
role in apical development, are genes that mediate ABA signaling.  Furthermore, HAT1 and HAT3, 
two HD-Zip II proteins involved in key developmental processes, repress ABA biosynthesis and 
signaling, indicating an essential role of these factors in adjusting development to changing 
environment. 
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1. The HD-Zip class of proteins 
The homeodomain-leucine zipper (HD-Zip) class of proteins appears to be present exclusively in the 
plant kingdom, and is characterized by the presence of a homeodomain closely linked to a leucine 
zipper motif [1].  The Arabidopsis genome codes for 48 HD-Zip proteins that, on the basis of 
sequence homology in the HD-Zip domain, the presence of additional conserved motifs, and 
specific intron and exon positions, have been grouped into four families: HD-Zip I (17 members), 
HD-Zip II (10 members), HD-Zip III (5 members) and HD-Zip IV (16 members) [2-7].  

HD-Zip genes are evolutionary highly conserved and there is evidence that they were already 
present in green algae [8-11].  Later in evolution, the HD-Zip class experienced multiple 
duplication events that promoted neo- and sub-functionalizations for terrestrial life [11].   

Experimental work has demonstrated that the HD-Zip domain, but not the HD by itself, interacts 
with DNA [12], and it has been shown that a correct spatial relationship between the HD and the 
leucine zipper motif is crucial for DNA binding [12].  Binding-site selection analysis and 
subsequent chromatin immunoprecipitation sequencing experiments have determined that the 
HD-Zip proteins recognize pseudo-palindromic DNA elements [3, 12-14].  HD-Zip I proteins 
interact with the CAAT(A/T)ATTG motif [12, 15, 16] whereas HD-Zip II proteins preferentially bind 
the CAAT(C/G)ATTG motif [12, 13].  Binding-site selection analysis identified 
GTAAT(G/C)ATTAC as the sequence preferentially recognized by HD-Zip III proteins  [3]; 
however, more recent genome-wide binding site experiments suggest that the AT(G/C)AT central 
core is sufficient for DNA binding [14].  For HD-Zip IV proteins, the CATT(A/T)AATG motif was 
shown to be required for DNA-binding [13], and found in the promoters of true target genes [17-19].  
Interestingly, the identified cis-elements are very similar, particularly the HD-Zip II and III binding 
sites which share the same core sequence [AAT(G/C)ATT] [3, 12], thus suggesting that members of 
the different families of HD-Zip proteins may regulate common target genes [20, 21]. 

Beside the homeodomain-leucine zipper motif, HD-Zip I proteins have no other established 
functional domain; conversely, most of the HD-Zip II transcription factors contain an LxLxL type of 
ERF-associated amphiphilic repression (EAR) motif [7, 22] (Figure 1), and there is evidence that they 
function as negative regulators of gene expression [7,20, 23-25].  Furthermore, it was recently 
shown that HOMEOBOX ARABIDOPSIS THALIANA (HAT) 1 and HAT22 interact with the 
TOPLESS (TPL) co-repressor protein [26].   HD-Zip III and HD-Zip IV proteins, in addition to the 
HD-Zip domain, possess a steroidogenic acute regulatory protein-related lipid-transfer (START) 
domain motif with putative lipid-binding capability and a Small body size–mothers against 
decapentaplegic homolog 4 (Smad4) activation domain (SAD) [27, 28] (Figure 1).  Finally, HD-Zips 
III, and not HD-Zips IV, share a MEKHLA domain (Figure 1).  A region within this domain shows 
sequence similarity to the PAS (Per-Arnt-Sim)-domain which has been shown to act as intracellular 
sensor of light, oxygen or redox-potentials [28].  It has been shown that this domain is involved in 
the dimerization of HD-Zip III proteins with DORNROSCHEN (DRN) and DORNROSCHEN-like 
(DNRL) transcription factors [29].    

HD-Zip proteins are known to control key developmental and environmental responses [21, 
30-32].  Here we report recent advances on the understanding of the interactions between HD-Zip 
transcription factors and hormone signaling networks. 
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Figure 1.  Schematic representation of the protein domains possess by each HD-Zip family.  ATHB1, ATHB2, 

ATHB8, and GLABRA2 were chosen as representative members of the HD-Zip I, II, III and IV families, 

respectively.  N-term, N-terminus consensus; HD, Homeodomain; Zip, Leucine zipper; START, steroidogenic 

acute regulatory protein-related lipid transfer domain; SAD, Small body size–mothers against decapentaplegic 

homolog 4 (Smad4) activation domain; MEKHLA, named after the identification of the highly conserved amino 

acids Met, Glu, Lys, His, Leu, Ala. 

   

2. HD-Zips I 
Sequence comparison and phylogenetic analysis indicated that members of the HD-Zip I protein 
family can be classified into six different clades, I to VI, and that the presence and the position of 
conserved sequences may be related to specific function(s) [4, 33].  Genome-wide expression 
studies revealed that several Arabidopsis HD-Zip I genes show transcriptional changes in response 
to treatments with abscisic acid (ABA) [4], and there is evidence that members of clades I and II of 
the HD-Zip I family have roles related to drought stress and ABA-signaling in different plant 
species [34-40].  For example, ARABIDOPSIS THALIANA HOMEOBOX (ATHB) 7 and ATHB12 
(belonging to the clade I) [33] are both strongly induced by water-deficit and ABA.  Chromatin 
immunoprecipitation and gene expression analyses have demonstrated that ATHB7 and ATHB12 
positively regulate the expression of five genes encoding clade A protein phosphatases type 2C 
(PP2C), acting as central negative regulators of ABA signaling [41-43].   Furthermore, it has also 
been shown that ATHB7 and ATHB12 act to repress the transcription of two members of the 
PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL) gene family, encoding the ABA receptors 
[44-46].  Together the data indicate that ATHB7 and ATHB12 function as negative regulators of the 
ABA response in Arabidopsis [47].   Evidences exists that HOMEOBOX (HB) 6 (a.k.a ATHB6, clade 
II) may also act as a negative regulator of ABA signaling [48].  
    The HELIANTHUS ANNUUS HOMEOBOX4 (HAHB4) gene, encoding a protein homologous to 
ATHB7 and ATHB12, is also regulated by ABA and drought, as well as by methyl-jasmonic acid 
(MeJa) or ethylene (ET) or biotic stresses [49, 50].  The ectopic expression of HAHB4 in Arabidopsis 
negatively affects the synthesis of ET and resulted in plants more resistant to drought [49].  In 
addition, functional analysis of transgenic Arabidopsis and maize plants constitutively expressing 
HAHB4 suggested that this HD-Zip I protein acts as an integrator of MeJa and ET pathways [50].  

It is worth to mention that in some plants there is evidence that ABA synthesis and signaling it is 
relevant to fully activate defence responses against insect herbivores and, in general, hormonal 
interactions are important to regulate plant responses to abiotic stresses and growth-defense 
tradeoffs [51].  Of interest is the finding that the ATHB13 (clade V) gene, positively regulated by 
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low temperature, drought, and salinity, can confer cold, drought and broad-spectrum disease 
resistance when overexpressed [38, 52, 53]. The results point to a role of some HD-Zip I proteins as 
integrators of internal and external signals in the regulation of abiotic and biotic stresses.  

Together with the effects on stresses described above, the overexpression of HD-Zip I proteins 
very often resulted also in alterations of the shape and growth of the plant, including cotyledon, leaf 
and supporting organs [53-55], suggesting a role of some HD-Zip I proteins in specific growth 
and/or developmental pathways.  It is worth to mention that at least ATHB12 and some ABA 
signaling components are regulated by KANADI1  (KAN1) [56], a factor controlling organ polarity, 
including the patterning of leaf primordia in Arabidopsis [57].  In addition, the Medicago truncatula 
HB1, highly related to ATHB7 and ATHB12, represents an example of a cross-talk between ABA and 
auxin in the regulation of organ development.  The MtHB1 gene is strongly regulated by salt, 
osmotic and ABA stresses.  There is evidence that HB1 controls the emergence of lateral roots likely 
by repressing the auxin-regulated LOB-Binding Domain 1 (LBD1) gene [58], a member of a family of 
plant-specific transcription factors involved in lateral organ development [59].  

In the post-embryonic development, HB5 (clade II) behaves as a growth-promoting transcription 
factor of the hypocotyl.  In particular, it promotes the gibberellin acid (GA)-mediated expansion of 
the epidermal and cortex cells by a positive direct modulation of EXPANSIN3 (EXP3) gene 
expression [60].  ATHB1 (Clade III) is a direct target of PHYTOCHROME INTERACTING FACTOR 
1 (PIF1) and plays a role in hypocotyl growth under short-day regime likely through a positive 
regulation of genes involved in cell elongation [61].  Interestingly, ATHB1 expression is positively 
regulated by ethylene in Arabidopsis [G.M. unpublished data; [62], known to regulate the 
elongation of the hypocotyl in low light and shade [63],  whereas the tomato ortholog HB1 directly 
regulates the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE (ACO) gene 
encoding a key enzyme in ethylene biosynthesis [64].  

Very recent work implicated three related HD-Zip I proteins belonging to clade VI  [33] in the 
control of shoot branching [65].  Indeed, it was found that TEOSINTE BRANCHED1, CYCLOIDEA, 
PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the 
transcription of the HB21, HB40 and HB53 genes, all belonging to clade VI.  These HD-Zip I 
proteins are necessary and sufficient to enhance the expression of 9-CIS-EPOXICAROTENOID 
DIOXIGENASE 3 (NCED3), a key ABA biosynthesis gene, and for ABA accumulation inside axillary 
buds in conditions of Low Red/Far-Red (R/FR) ratio light or short photoperiod. This, in turn, causes 
suppression of bud development.  Relevantly, the BRC1/HB21/40/53 regulatory module appears to 
be conserved in monocot and dicot species [65]. 

Besides the multiple links found between HD-Zip I proteins and ABA, evidence of a direct 
interaction between HD-Zips I and auxin also exists [66].  Auxin has a central role during 
embryogenesis and post-embryonic development.  The transcriptional auxin response is controlled 
by AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID 
(AUX/IAA) proteins.  AUX/IAAs function as repressors by forming dimers with ARFs, and their 
degradation releases the inhibition on ARF transcription factors [67, 68]. BODENLOS (BDL)/IAA12 
and its interacting ARF partner MONOPTEROS (MP)/ARF5 play a key role during the early stages 
of embryo development.  Both a dominant mutant of (BDL)/IAA12 and a loss-of-function mutant of 
MP/ARF5 lack a seedling root and display cotyledon defects [69-72].  Interestingly, it was found 
that the HB5 protein (clade II) directly negatively regulates BDL/IAA12 expression.  
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Overexpression of HB5 during embryogenesis transcriptionally suppresses the expression of 
BDL/IAA12 and rescues the rootless phenotype of the bdl/iaa12 dominant mutant.  Together the 
data lead to the hypothesis that HB5 may contribute to spatially restrict BDL/IAA12 expression 
during embryogenesis [66].  Evidence that HB6, a close homolog of HB5, may act redundantly with 
HB5 in the negative regulation of BDL/IAA12 have also been provided [66].   

Finally, the cross-talk between ethylene and auxin in the control of root elongation mediated by 
ATHB52 has been recently uncovered.  It is very well established  that root elongation is inhibited 
by ethylene in Arabidopsis and other species through the action of auxin [73-76].  The ATHB52 
gene is positively regulated by ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor of the 
ethylene signal transduction pathway. A molecular and genetic analysis has shown that ATHB52 
binds the promoters of PIN FORMED2 (PIN2), coding for a polar auxin carrier, and of WAVY ROOT 
GROWTH1 (WAG1) and WAG2, encoding PIN polarity regulators. The positive modulation by 
ethylene of the PIN2/WAG1/WAG2 module exerted through ATHB52 could affect the local polar 
auxin transport in the root tip resulting in the inhibition of primary root elongation [77]. 

 
3. HD-Zips II 
The HD-Zip II protein family contains 10 members which can be divided into four clades (-) [7].  
Remarkably, all the HD-Zip II and  (HAT3, ATHB4) genes are 
rapidly induced by changes in the R/FR ratio light that promote shade avoidance in the 
Angiosperms [7, 78] and several evidence exist that HD-Zip II  and  proteins act as positive 
regulators of this response [7, 23, 25, 79-83].  By contrast, HD-Zip II  and  genes display distinct 
responses to plant hormones.  For example, HAT2 is induced by auxin [25] whereas HAT3, and not 
the other and genes, is up-regulated in the tip of roots treated with cytokinins (CKs) (Figure 2).   
 

 

Figure 2. HAT3, and not ATHB2, HAT1, HAT2 and ATHB4, is positively regulated by cytokinins in the root tip.  

RT-qPCR analyses of SHORT HYPOCOTYL 2 (SHY2)/IAA3 (SHY2, positive control) [84], ATHB2, HAT1, HAT2, 

ATHB4 and HAT3 in Col-0.  Seedlings were grown for 5 days in a light/ dark cycle (16/8 h), and then treated 

with transzeatin (5 m) for the indicated times.  The graph shows the relative expression levels of SHY2, 

ATHB2, HAT1, HAT2, ATHB4 and HAT3. Each value is the mean of three biological replicates normalized to 

EF1α expression (±SD). Statistical significance was assessed as previously described [83].  *P<0.01.  
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Interestingly, several evidence demonstrate that, besides their function in shade avoidance, HD-Zip 
II  and  transcription factors play a crucial role in embryo apical development and essential 
developmental processes in sunlight, including shoot apical meristem (SAM) activity, organ 
polarity and gynoecium development [20, 30, 85-88] (Figure 3).   

A number of links have been established between HD-Zip II and proteins and auxin.  Plants 
with elevated levels of ATHB2 displays a constitutive shade avoidance response, and it was shown 
that ATHB2-induced elongation of the hypocotyl depends on the auxin transport system, as it is 
abolished by auxin transport inhibitors [23].  Furthermore, the lateral root phenotype observed in 
ATHB2 overexpressing seedlings is rescued by IAA [23].  Finally, it was found that both auxin 
synthesis and transport are affected in hat3 athb4 and hat3 athb4 athb2 mutant embryos [20, 30].  The 
enhanced cotyledon phenotype of hat3 athb4 hat1 with respect to hat3 athb4 strongly suggests that 
HAT1 works redundantly with HAT3 and ATHB4 in the control of auxin synthesis and transport 
during embryogenesis (Figure 3). 

Interestingly, HAT1 has also been linked to brassinosteroid (BR) signaling pathway.  BRs signal 
through plasma membrane-localized receptor and other components to modulate the BES1/BZR1 
(BRI1-EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT1) family of transcription factors that 
regulate thousands of target genes [89-94].  Relevantly, it was recently found through chromatin 
immunoprecipitation (ChIP) experiments that HAT1 is a direct target of BES1  [95].  HAT1 
functions redundantly with its close homolog HAT3, as the double loss-of-function mutant hat1 hat3 
displayed a reduced BR response stronger that of the hat1 and hat3 single mutants.  Expression 
levels of several BR-repressed genes are increased in hat1 hat3 double mutant and reduced in HAT1 
overexpressing lines, thus strongly suggesting that HAT1 functions to repress the expression of a 
subset of BR target genes.  Consistently, it was found that HAT1 binds to DNA elements in 
BR-repressed gene promoters and functions as a BES1 corepressor [95].  Furthermore, it was shown 
that HAT1 can be phosphorylated and stabilized by GSK3 (GLYCOGEN SYNTHASE KINASE 
3)-like kinase BIN2 (BRASSINOSTEROID-INSENSITIVE 2), a negative regulator of the BR pathway 
[95-98].  

Furthermore, HAT1 was identified among the transcription factors interacting with the 
GIBBERELLIN INSENSITIVE (GAI) DELLA protein, a master negative regulator in gibberellin (GA) 
signaling [99, 100].  Further work is needed to establish the specific GA-response(s) in which HAT1 
is involved. 
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Figure 3.  HAT1 is redundant to HAT3 and ATHB4 in regulating cotyledon development. (A-C) In situ 

hybridization of Col-0 embryos with HAT1 probe. Heart (A), torpedo (B) and mature (C) embryos. (D, E) Col-0 

(D) and hat3-3 athb4-1 hat1-2 (E) seedlings (hat3-3 athb4-1 is described in [20]; hat1-2, line SALK_059835).  (F) 

The graph represents the percentage of seedlings displaying two radialized cotyledons in hat3-3 athb4-1 and 

hat3-3 athb4-1 hat1-2 mutants.  Error bars represent s.d.; *P<0.01, Student’s t-test.  Scale bars: A, B, 30 m; C, 

100 m; D, E, 1 mm. 

 
Recent work has demonstrated that HAT1, apart from its role in auxin-regulated cotyledon 

development (Figure 3), in BR-mediated growth responses [95], in GA signaling, and in viral 
defense response in a manner dependent on salicylic acid (SA) [101], it also negatively regulates, 
redundantly with HAT3, ABA-mediated drought responses through suppression of ABA 
biosynthesis and signaling [102].  The expression of both HAT1 and HAT3 is indeed repressed by 
ABA.  Evidence have been provided that HAT1 can bind to specific DNA sequences on the 
promoters of NCED3 and ABA DEFICIENT (ABA) 3, two key ABA biosynthesis genes, and 
negatively regulate their expression, thus resulting in a reduction of ABA synthesis.  In addition, it 
was observed that HAT1 overexpressing plants display reduced sensitivity to ABA and less 
tolerance to drought stress, whereas the double loss-of-function hat1 hat3 mutant show opposite 
phenotypes.  Finally, it was found that Sucrose non-fermenting 1-related protein kinase (SnRK) 2.3, 
a positive component of ABA signaling, physically interacts with and phosphorylates HAT1, 
decreasing its protein stability and binding activity [102]. 

Relevantly, at least other two HD-Zip II proteins, ATHB17 and HAT22/ABA INSENSITIVE 
GROWTH 1 (ABIG1), are linked to ABA [103, 104].  ATHB17 expression is induced by ABA, and 
evidence have been provided that athb17 loss-of-function mutants are ABA-insensitive and 
drought-sensitive whereas lines overexpressing ATHB17 display opposite phenotypes.  
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Interestingly, the effect of ATHB17 on seedling growth in the presence of ABA is stage-specific.  
Indeed, it is observed exclusively during the post-germination seedling establishment stage  [103].  
Recent work identified HAT22/ABIG1 as a transcription factor required for ABA-mediated growth 
inhibition, but not for seed dormancy and stomatal closure.  It has been proposed that drought acts 
through ABA to increase HAT22/ABIG1 transcription which, in turn, inhibits new shoot growth and 
promotes leaf senescence [104]. 
 
4. HD-Zips III 
The HD-Zip III family contains five members: ATHB8, CORONA (CNA), PHABULOSA (PHB), 
PHAVOLUTA (PHV), and REVOLUTA (REV).  It is well established that HD-Zip III proteins act as 
master regulators of embryonic apical fate [105], are required to maintain an active SAM and to 
establish lateral organ polarity [106-108], and are necessary for xylem formation and specification 
[109-114].  Recent work has also implicated HD-Zip III proteins in the regulation of the shade 
avoidance response [14, 21, 31]. 

The pattern of HD-Zip III expression largely coincides with that of auxin distribution [8, 9, 
115-119].   Furthermore, HD-Zip III genes are regulated at the post-transcriptional level by the 
microRNAs miR165/166, which negatively affect their expression through mRNA cleavage  [107, 
120].  Relevantly, REV directly positively regulates the HD-Zip II genes HAT3, ATHB4, ATHB2, and 
HAT2, and evidence exists that PHB and PHV are involved in the control of HAT3 expression [14, 
20].  It has been recently shown that REV physically interacts with HAT3 and ATHB4 to directly 
repress MIR165/166 expression in the adaxial side of the leaf [88]. 

The interconnection between HD-Zip III transcription factors and auxin began to be clarified 
especially through the molecular-genetic analysis of the vascular system [121].   REV directly 
positively regulates the auxin biosynthetic genes TRYPTOPHAN AMINOTRANSFERASE OF 
ARABIDOPSIS 1 (TAA1) and YUCCA5 (YUC5) [14, 122]  Furthermore, it has been demonstrated 
that genes implicated in auxin transport, including the influx carriers LIKE AUXIN RESISTANT 2 
(LAX2) and LAX3, and response are also direct targets of REV [119, 122, 123].  Interestingly, REV 
also up-regulates the expression of NAKED PINS IN YUC MUTANTS 1 (NPY1) and WAG1, encoding 
an AGC protein kinase highly homologous to PINOID (PID) [124].  NPY genes encode proteins 
with a Broad-Complex, Tramtrack, and Bric-a-brac (BTB)-Poxvirus and Zinc Finger (POZ) domain 
that together with AGC kinases determine the subcellular polar targeting of the PIN efflux carriers, 
thus establishing the direction of auxin transport [125-128]. 

A recent study reinforces the interconnection between HD-Zip III transcription factors and auxin 
signaling [129].  HD-Zip III proteins are known to determine xylem patterning in the Arabidopsis 
root [113], and it has been shown that PHB directly interacts with the promoter of both MP/ARF5, a 
transcription factor gene playing a major role in vascular development, and IAA20, encoding an 
IAA protein that is stable in the presence of auxin and able to interact with MP.  The double mutant 
of IAA20 and its closest homolog IAA30 forms ectopic protoxylem, whereas elevated levels of IAA30 
result in discontinuous protoxylem, analogous to a weak mp mutant.  It has therefore proposed a 
mechanism in which PHB stabilizes the auxin response within the xylem axis by activating both MP 
and its repressors IAA20 and IAA30 to ensure correct vascular patterning and differentiation of 
xylem cells [129]. 

Cross-talk between auxin and cytokinin (CK) is crucial during several developmental processes, 
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including vascular development.  A number of studies have indicated that ARABIDOPSIS 
HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), an inhibitory pseudophosphotransfer 
protein, is positively regulated by auxin and counteracts CK signaling, allowing protoxylem 
formation in the root.  Conversely, CK signaling negatively regulates the spatial domain of AHP6 
expression [130, 131].  Interestingly, it has been shown that PHB acts redundantly with other 
HD-Zip III transcription factors to repress AHP6 expression in a dose-dependent manner [113]. 

The interaction between HD-Zip III proteins and cytokinin network is further strengthened by 
the finding that PHB directly activates ISOPENTENYLTRANSFERASE 7 (IPT7), a gene coding for a 
rate-limiting component of the cytokinin biosynthesis pathway.  This in turn promotes cell 
differentiation and regulates root length.  It was also shown that CK represses both PHB and 
miR165 [132].  The authors referred to these interactions as an incoherent regulatory loop in which 
CK represses both its activator and a repressor of its activator, and proposed that this circuit might 
provide robustness against CK fluctuations [132]. 

A recent study on the mechanism underlying shoot regeneration in Arabidopsis provided an 
additional link between HD-Zip III transcription factors and CK signaling [133], somehow predicted 
also on the basis of protein-protein interaction studies between HD-Zip III and DNR/DNRL 
transcription factors [29, 134, 135] and the analysis of the regeneration capacity of a cna mutant 
encoded by the hoc locus [136].  

Four B-type ARABIDOPSIS RESPONSE REGULATOR (ARR) transcription factors, ARR1, ARR2, 
ARR10, and ARR12, have essential roles in shoot regeneration. Indeed, the shoot regenerative 
capacity is impaired in the arr1 arr10 arr12 mutant with respect to wild type [137-139].  The A-type 
ARRs play opposite roles in shoot regeneration, and it has been shown that overexpression of ARR7 
or ARR15 results in a marked reduction of the regeneration capacity [140].  Remarkably, it was 
found that ARR1, ARR2, ARR110 and ARR12 interact with PHB, PHV and REV HD-Zip III 
transcription factors, and that these complexes in turn activates WUSCHEL (WUS) expression [133]. 

Beside the evidence of molecular interactions between HD-Zip III proteins and key components 
of the auxin and cytokinin networks, strikingly, it has been recently reported that REV positively 
directly regulates the expression of the gene encoding the ABA receptor protein PYL6 [123, 124] .  
Remarkably, PYL6 is oppositely directly regulated by KAN1, a key determinant of abaxial cell fate 
in the leaf [57, 124, 141].  Furthermore, microarray data revealed that the expression of REV, PHB 
and PHV significantly decreases upon ABA application, as a consequence of ectopic induction of 
miR165 expression [21, 123].  It has been therefore proposed that the connection between ABA 
perception and signaling and HD-Zip III transcription factors may be required to adapt leaf 
development to alterations in water availability [21, 123]. 

Finally, it is worth to mention that recent work has revealed that the expression of miR165/166 is 
regulated by a complex hormonal cross-talk during root development in Arabidopsis [142]. 
 
HD-Zips IV 
Many of the HD-Zip IV genes were shown to be specifically or preferentially expressed in the 
epidermis of developing embryos and/or other plant organs [143].  It is worth to mention that the 
epidermis plays a critical role also in plant defence against pathogens and in protection from 
environmental stresses [143, 144]. 

GLABRA2 (GL2), the first identified member of the HD-Zip IV protein family, promotes 
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trichome differentiation [145], and suppresses root hair formation in the root epidermis [19, 146].  
In particular, GL2 controls cell fate determination of N-cells (non-hair cells; atrichoblast) [147], 
through a negative regulation of the phospholipase D zeta 1 (PLDz1) [18], and of several basic 
helix-loop-helix (bHLH) transcription factors including ROOT HAIR DEFECTIVE 6 (RDH6) 
involved in root hair initiation [146].  There is strong evidence that BRs are required to maintain 
position-dependent cell fate specification in root epidermis.  Indeed, BRs are required for normal 
expression levels and patterns of WEREWOLF (WER) and GL2, master regulators of epidermal 
patterning.  Loss of BR signaling results in loss of H cells, likely as a consequence of reduced 
expression of CAPRICE (CPC), a direct downstream target of WER [148]. 

Recent work has also established a link between HD-Zip IV proteins and GA signaling [149].  It 
was indeed shown that DELLA proteins interact directly with MERISTEM LAYER 1 (ATML1) and 
its paralogue, two HD-Zip IV proteins required for epidermis specification and binding to the L1 
box present in the promoters of epidermis-specific genes [17, 150].  Silencing of both ATML1 and 
PDF2 inhibits epidermis-specific gene expression and delays germination [149].  Evidence were 
provided that, upon seed imbibition, increased GA levels reduce DELLA protein levels, thus 
releasing ATML1/PDF2 to activate epidermis-specific expression and promote seed germination 
[149].  

Apart from their role in development, interactions between HD-Zip IV transcription factors and 
environmental responses have also been reported [151].  For example, HOMEODOMAIN GLABRA 
11 (HDG11) was identified via activation tagging as a gene involved in drought tolerance.  The 
mutant has higher levels of ABA than the wild type, and displays enhanced root growth with more 
lateral roots and reduced stomatal density.  Overexpression of HDG11 also conferred drought 
tolerance associated with augmented lateral roots and reduced leaf stomatal density in both 
Arabidopsis and tobacco [152].  Higher level of ABA and improved drought tolerance have been 
observed also in cotton, poplar and rice transgenic plants overexpressing HDG11 [151, 153].  It has 
been suggested that HDG11 positively regulates the expression of cell wall loosening protein genes, 
including EXP5, resulting in a well-developed root system [154]. 

Intriguingly, HDG11 acts as a maternal regulator of zygote asymmetry through a direct 
activation of the WUSCHEL RELATED HOMEOBOX 8 (WOX8) gene whose product leads to 
asymmetric division of the zygote [155].  

 
6. Conclusions 
A fundamental question in plant biology is how plants integrate environmental signals with 
intrinsic developmental programs and how coordinate the growth of different organs depending on 
resource availability.  Over recent years remarkable progress has been made, and the molecular 
mechanisms controlling these processes are being elucidated.  The functional analysis of the 
HD-Zip proteins revealed that they are part of complex networks involved in the integration of 
external signals through the regulation of hormonal pathways involved in the control of 
fundamental developmental processes. Although many factors belonging to each HD-Zip family are 
implicated in specific processes, it is interesting to note that the simple overexpression of ATHB2 
(and other members of the HD-Zip II family) and HDG11 is sufficient to generate plants looking for 
optimal light and water for growth, respectively.  This could be explained by the existence of 
organ- and/or tissue-specific hubs that stimulated by external and/or internal (hormonal) signals 
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converge to coherently adjust the development and growth to a specific environmental signal.  
These hubs may have been generated during evolution through multiple duplication events that 
have promoted neo and sub-functionalization of factors operating on specific pathways. The 
identification of these hubs it has the potential to lead to a more unified vision of the development 
and growth of the plant according to environmental stresses that could be applied for the 
improvement of the cultivated plants. 
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Abbreviations 

ABA   Abscisic acid  

ABA   ABA DEFICIENT  

ABIG1  ABA INSENSITIVE GROWTH 1  

ACCO  1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE  

AHP6  HISTIDINE PHOSPHOTRANSFER PROTEIN 6  

AUX/IAA  AUXIN/INDOLE-3-ACETIC ACID  

ARF   AUXIN RESPONSE FACTOR  

ARR   ARABIDOPSIS RESPONSE REGULATOR  

ATHB  ARABIDOPSIS THALIANA HOMEOBOX 

ATML1  MERISTEM LAYER 1 

BDL   BODENLOS  

BES1/BZR1  BRI1-EMS SUPPRESSOR 1/BRASSINAZOLE RESISTANT1 

PHB   PHABULOSA  

PHV   PHAVOLUTA  

b-HLH  basic Helix-Loop-Helix  

BIN2   BRASSINOSTEROID-INSENSITIVE 2 

BR   Brassinosteroid  

BRC1  BRANCHED1   

ChIP   Chromatin Immunoprecipitation 
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CK   Cytokinin  

CNA   CORONA 

CPC   CAPRICE   

DRN   DORNROSCHEN  

DNRL  DORNROSCHEN-like  

EAR   ERF-Associated Amphiphilic Repression 

EIN3   ETHYLENE-INSENSITIVE 3  

EXP3  EXPANSIN 3  

ET   Ethylene  

HAHB4  HELIANTHUS ANNUUS HOMEOBOX 4  

HB   HOMEOBOX 

HAT1  HOMEOBOX ARABIDOPSIS THALIANA 1 

HDG11  HOMEODOMAIN GLABRA 11  

HD-Zip  Homeodomain-leucine zipper  

IPT7   ISOPENTENYLTRANSFERASE 7  

GA   Gibberellin Acid  

GAI   GIBBERELLIN INSENSITIVE 

GL2   GLABRA2 

GSK3   GLYCOGEN SYNTHASE KINASE 3 

KAN1  KANADI 1   

LAX2  LIKE AUXIN RESISTANT 2  

LBD1  LOB-Binding Domain 1  

MeJa   Methyl-Jasmonic acid  

MP   MONOPTEROS 

NCED3  9-CIS-EPOXICAROTENOID DIOXIGENASE 3  

NPY1  NAKED PINS IN YUC MUTANTS 1  

PDF2  PLANT DEFENSIN 2  

PID   PINOID  

PIF1   PHYTOCHROME INTERACTING FACTOR 1  

PIN2   PIN FORMED2  

PLDz1  Phospholipase D zeta 1 

POZ   Broad-Complex, Tramtrack, and Bric-a-brac (BTB)-Poxvirus and Zinc Finger  

PP2C  Protein Phosphatases type 2C  

PYL   PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE  

RDH6  ROOT HAIR DEFECTIVE 6  

R/FR   Red/Far-Red  

REV   REVOLUTA  

SAD Small body size–mothers against decapentaplegic homolog 4 (Smad4) activation domain  

SAM Shoot Apical Meristem  

SHY2  SHORT HYPOCOTYL 2  

SnRK  Sucrose non-fermenting 1-related protein kinase  

START  Steroidogenic acute regulatory protein-related lipid-transfer  
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TAA1  TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1  

TCP   TEOSINTE BRANCHED1, CYCLOIDEA, PCF  

TPL   TOPLESS  

WAG1  WAVY ROOT GROWTH 1  

WER   WEREWOLF  

WOX8  WUSCHEL RELATED HOMEOBOX 8 

WUS   WUSCHEL 

YUC5  YUCCA5  
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