

## Article

# Partial Isolation Type Saddle-Finfet(Pi-Finfet) for Sub-30 Nm DRAM Cell Transistors

Young Kwon KIM<sup>1</sup>, Jin Sung LEE<sup>1</sup>, Geon KIM<sup>1</sup>, Taesik PARK<sup>2,\*</sup>, Hui Jung KIM<sup>3</sup>, Young Pyo CHO<sup>4</sup>, Young June PARK<sup>3</sup>, and Myoung Jin LEE<sup>1,\*</sup>

<sup>1</sup> School of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757, Korea; yyong13@naver.com (Y.K.K.); lsc5176@naver.co (J.S.L.); rjsdlchd@naver.com (G.K.)

<sup>2</sup> Department of Electrical and Control Engineering, Mokpo National University, Jeollanam-do 534-729, Korea

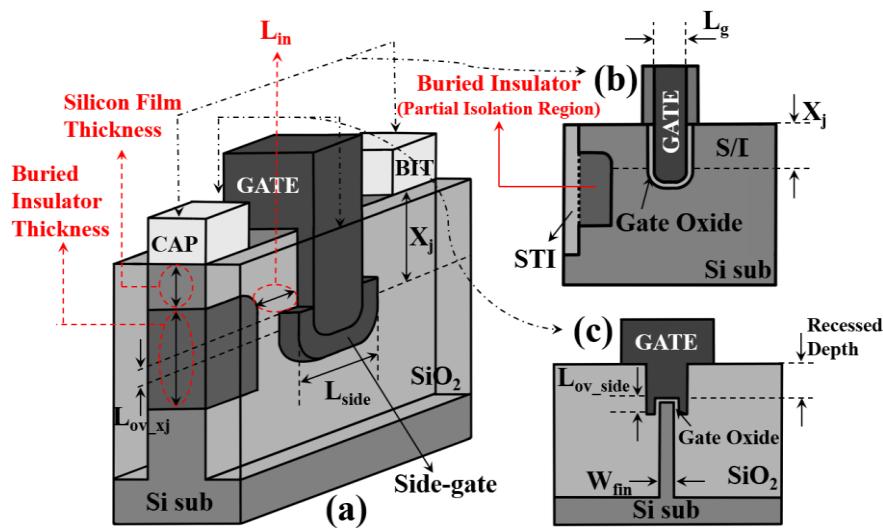
<sup>3</sup> School of Electrical Engineering, Seoul National University, Seoul 151-742, Korea; khj95@snu.ac.kr (H.J.K.); ypark@snu.ac.kr (Y.J.P.)

<sup>4</sup> The KEPCO Research Institute, Daejeon 305-760, Korea; yp.zo@kepcoco.co.kr

\* Correspondence: tspark@mokpo.ac.kr (T.P.); mjlee@jnu.ac.kr (M.J.L.); Tel.: +82-62-530-1810 (M.J.L.)

**Abstract:** In this paper, we proposed a novel saddle type FinFET (S-FinFET) to effectively solve problems occurring under the capacitor node of dynamic random-access memory (DRAM) cell and showed how its structure was superior to conventional S-FinFETs in terms of short channel effect (SCE), subthreshold slope (SS), and gate-induced drain leakage (GIDL). The proposed FinFET exhibited 4 times lower  $I_{off}$  than modified S-FinFET called RFinFET with more improved DIBL characteristics while minimizing  $I_{on}$  reduction compared to RFinFET. Our results also confirmed that the proposed device showed improved DIBL and  $I_{off}$  characteristics as gate channel length decreased.

**Keywords:** gate-induced drain leakage (GIDL), drain-induced barrier lowering (DIBL), recessed channel array transistor (RCAT), on-current ( $I_{on}$ ), off-current ( $I_{off}$ ), subthreshold slope (SS), threshold voltage ( $V_{th}$ ), saddle FinFET (S-FinFET), Potential Drop Width (PDW), Shallow Trench Isolation (STI).

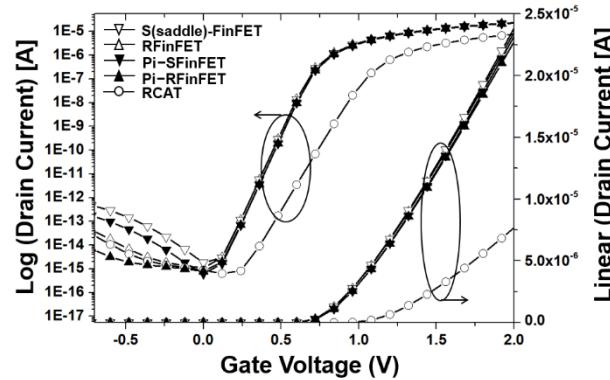

## 1. Introduction

With decreasing dynamic random-access memory (DRAM) cell size, recessed channel array transistor (RCAT) has been proposed to overcome short channel effect (SCE) of conventional MOSFETs with planar channel. Although recessed channel of RCAT has improved SCE, RCAT suffers from low driving current and  $V_{th}$  sensitivity due to the shape of the bottom corner of the recessed channel [1]. To solve these problems, saddle FinFET (S-FinFET) has been proposed with a tri-gate that wraps both the recessed channel surface and the side surface [2]. S-FinFET not only exhibits excellent short channel effect characteristics, but also maintains excellent subthreshold swing (SS), high  $I_{on}$ , and nearly constant  $V_{th}$ . However, S-FinFET has higher gate-induced drain leakage (GIDL) than RCAT because the overlap region between the gate and the drain region is wider in S-FinFET. Although modified S-FinFET called RFinFET has emerged to reduce leakage by GIDL, RFinFET still needs to operate in sub-30nm cell size [3, 4]. Minimizing  $I_{off}$  in DRAM applications is a critical issue to achieve long refresh time. If this problem is not addressed, conventional S-FinFETs including S-FinFET and RFinFET will experience significant drawbacks in the application of DRAM technology. In this paper, we proposed a new device with a partial isolation region under the storage node of conventional S-FinFET. This device structure can be fabricated by using an isotropic dry etching technique for the buried insulator under the cell transistor [5, 6]. We analyzed characteristics of this proposed device and compared them with those of conventional S-FinFETs of the same size. We also showed optimized parameters of the buried insulator using a three-dimensional (3D) device

simulator [7]. The device described in this paper has reliable S/D doping concentration with a Gaussian profile. The simulator is well tuned to predict DRAM cell transistor leakage distribution [8, 9].

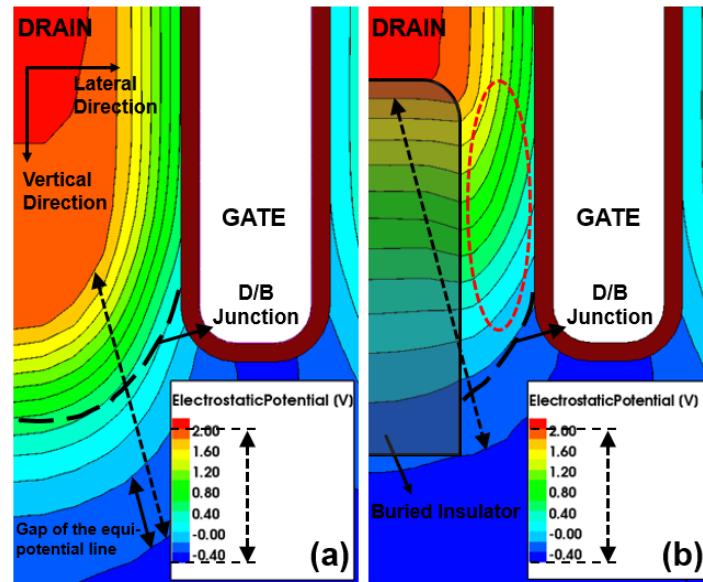
## 2. Device Structure

The partial isolation type S-FinFET (Pi-FinFET) is a structure with a buried insulator at a certain depth from the storage node of a conventional S-FinFET. Figure 1a shows a 3-D schematic of a Pi-FinFET. Silicon film thickness, buried insulator thickness, and  $L_{in}$  shown in Figure 1a are defined as the distance from the contact surface of the storage node to the buried insulator, the thickness of the buried insulator in the direction perpendicular to the channel, and the distance from the side gate oxide to the buried insulator, respectively.  $L_g$ ,  $L_{side}$ ,  $L_{ov\_xj}$ , and  $L_{ov\_side}$  represent gate channel length, the length of the side-gate in the direction parallel to the channel, the overlapped length of the side-gate and S/D doping region shown in Figure 1a, and the side-channel width shown in Figure 1c, respectively. When  $L_{side}$  and  $L_{ov\_xj}$  are increased, the width of the overlap region of the gate and the S/D region will also increase. The  $n^+$  poly gate with a gate work function of 4.2eV was applied.  $L_g$ ,  $L_{side}$ ,  $L_{ov\_side}$  and the recessed depth are 30 nm, 42 nm, 10nm and 100nm respectively. RFinFET is the modified S-FinFET with a structure in which the overlap region between the side-gate and the S/D region is removed [3]. Therefore, Pi-FinFETs proposed in this paper can be divided into Pi-SFinFET and Pi-RFinFET depending on the presence or absence of the overlap region between the side-gate and the S/D region. Namely, in this paper, the  $L_{ov\_xj}$  of Pi-RFinFET is 0nm and that of Pi-SFinFET is 70nm.




**Figure 1.** (a) 3-D schematic view of Pi-FinFET. (b) Cross-sectional view across the gate. (c) Cross-sectional view of the thin body. The gate wraps three surfaces of the recessed channel, similar to a FinFET. The buried insulator material is used with  $\text{SiO}_2$  below the storage node. The buried insulator is penetrated from the STI region. The  $X_j$  of the source/drain (S/D) is located 112nm from the top surface of the S/D region with a Gaussian profile. The peak concentration of the S/D Gaussian doping profile is  $1.5 \cdot 10^{20} \text{ cm}^{-3}$  and the uniform body doping concentration is  $5 \cdot 10^{17} \text{ cm}^{-3}$ .

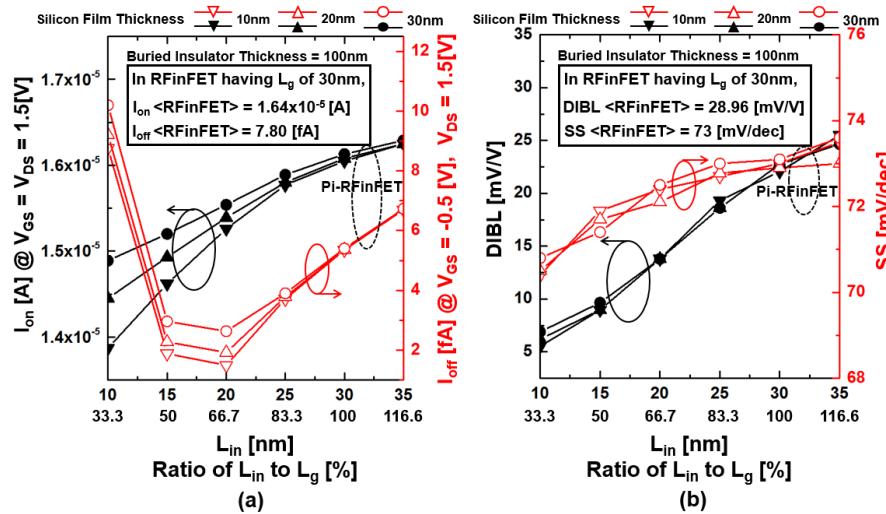
## 3. Results And Discussion


Log and linear  $I_D - V_{GS}$  curves shown in Figure 2 are result of comparing conventional S-FinFETs and RCAT with the Pi-FinFETs proposed in this paper. Silicon film thickness, buried insulator thickness, and  $L_{in}$  of Pi-FinFET was set to be 20 nm, 100 nm, and 20 nm, respectively. As shown in Figure 2, the four saddle type FinFETs have significantly lower SS and higher  $I_{on}$  than RCAT. Pi-SFinFET has about 3 times smaller  $I_{off}$  than S-FinFET while Pi-RFinFET has about 4 times smaller  $I_{off}$

than RFinFET at  $V_{GS}$  of -0.5V. To understand physical characteristics of  $I_{off}$  reduction for Pi-FinFET, device simulations have been performed using TCAD tool [7, 8].

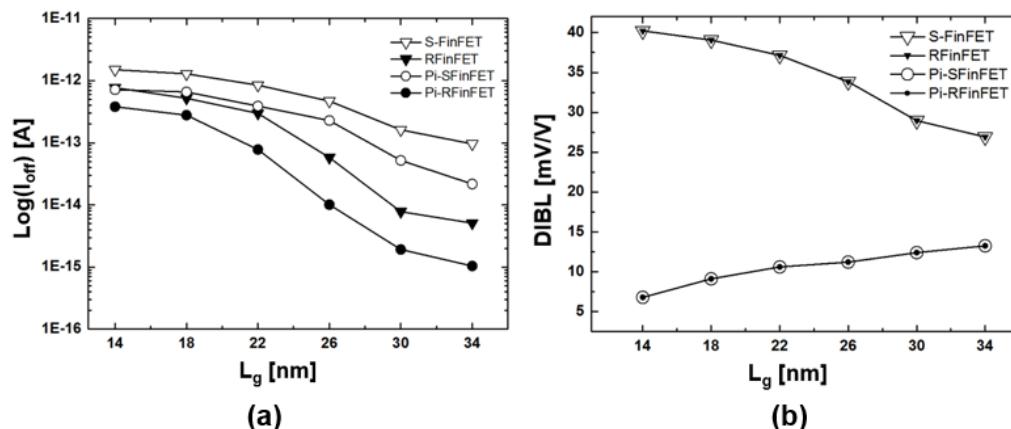


**Figure 2.**  $I_{DS}$ - $V_{GS}$  characteristic for S-FinFET, RFinFET, Pi-FinFETs and RCAT at  $V_{DS}=1.5V$ .

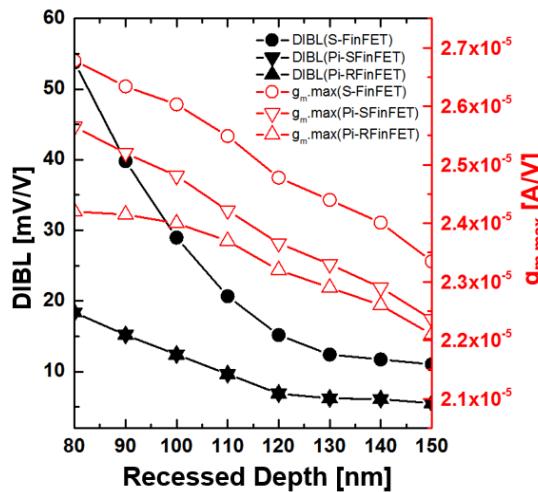

Figure 3 shows simulated potential contour near the drain region of conventional S-FinFET and Pi-FinFET at  $V_{DS}$  of 1.5V and  $V_{GS}$  of -0.5V. We defined the gap of equi-potential lines as the potential drop width (PDW). In particular, dotted arrows in Figures 3a and 3b indicate PDW from 1.8V to -0.4V. As shown in Figure 3(a), the conventional S-FinFET has intensive and narrow PDW from 1.8V to -0.4V near the drain/body (D/B) junction. On the other hand, PDW is mostly limited by the buried insulator of Pi-FinFET as shown in Figure 3b. Namely, the rather constant electric field in the buried insulator of Pi-FinFET induces a wider PDW near the drain region [10]. The dotted red ellipse in Figure 3b shows that the PDW is wider in the silicon layer compared to the conventional S-FinFET. In other words, Pi-FinFET can reduce the electric field affecting GIDL in the silicon layer between the gate and the drain region. Also, the penetration of the electric field from the drain to the source affecting DIBL is minimized in Pi-FinFET.



**Figure 3.** Potential contour indicating equi-potential line distribution near the drain region at  $V_{DS} = 1.5V$ ,  $V_{GS} = -0.5V$ . (a) Conventional S-FinFET, (b) Pi-FinFET. Dotted arrows indicate potential drop width (PDW) from 1.8V to -0.4V while dotted red ellipse shows wider PDW compared to conventional S-FinFET.


Figure 4a shows that  $I_{off}$  and  $I_{on}$  are decreased when  $L_{in}$  is decreased. If  $L_{in}$  is very close to 15 nm or less, lateral direction PDW of the silicon layer induced by the buried insulator will become narrow because deep penetration of the buried insulator limits the lateral direction PDW in a narrow silicon

layer between gate and drain region. As a result, it induces abnormal  $I_{off}$  increase and  $I_{on}$  decrease as shown in Figure 4a. Therefore, in order to maintain a relatively high  $I_{on}$  while maintaining a low  $I_{off}$ , it is desirable to define  $L_{in}$  in the range from 15 to 25 nm in which  $L_{in}$  corresponds to the range from 50% to 83.3% of  $L_g$ , respectively. As shown in Figure 4a, when  $L_{in}$  is 20 nm,  $I_{off}$  is minimized. As shown in Figure 4b, SS characteristics are maintained at constant level according to silicon film thickness change. They tend to improve slightly when  $L_{in}$  is decreased while DIBL characteristics are consistently improved.




**Figure 4.** (a).  $I_{on}$ ,  $I_{off}$  and (b) DIBL, SS characteristics of Pi-RFinFET according to  $L_{in}$  when  $L_g$  is 30nm. And electrical characteristics of RFInFET are displayed in the square box for comparison with Pi-RFinFET when  $L_g$  is 30nm.

Figure 5 shows  $I_{off}$  and DIBL characteristics according to  $L_g$ .  $L_{in}$  values in Figure 5 were set to maintain 60% of  $L_g$ . Pi-FinFETs consistently exhibited improved  $I_{off}$  and DIBL characteristics compared to conventional S-FinFETs regardless of  $L_g$ . Especially, Pi-FinFETs exhibited improved DIBL characteristics with opposite tendency compared to conventional S-FinFETs as  $L_g$  decreases as shown in Figure 5b. Figure 6 also show DIBL and  $g_{m,max}$  characteristics of Pi-FinFETs and S-FinFETs according to the recessed depth. As shown in Figure 6, as the recessed depth decreases, DIBL characteristics of S-FinFETs increases sharply, whereas DIBL of Pi-FinFETs is relatively constant because the PDW of Pi-FinFETs is wider. As the recessed depth decreases, the  $g_{m,max}$ , which represents the on-current characteristic, is improved. In other words, Pi-FinFETs have found that the recessed depth can be set more flexibly than conventional S-FinFETs.



**Figure 5.** (a)  $I_{off}$  ( $V_{GS} = -0.5V$ ,  $V_{DS}=1.5V$ ) and (b) DIBL ( $V_{DS,low}=0.05V$ ,  $V_{DS,high} = 1.5V$ ) dependence on  $L_g$  of conventional S-FinFETs and Pi-FinFETs.



**Figure 6.** DIBL ( $V_{DS,low}=0.05V$ ,  $V_{DS,high} = 1.5V$ ) and  $g_{m,max}$  characteristics of Pi-FinFETs and S-FinFET according to the recessed depth when  $L_g$  is 30nm.

#### 4. Conclusion

We proposed a new device with a partial isolation region under the storage node of the conventional saddle-FinFETs. This device can be classified as either Pi-SFinFET or Pi-RFinFET depending on the overlap area of the side gate and the S/D region. The proposed device not only maintains high DIBL characteristics regardless of the gate channel length, but also reduces the  $I_{off}$  by up to four times compared to the conventional saddle-FinFETs. It also minimizes  $I_{on}$  reductions. From the study, we concluded that Pi-FinFET is a promising candidate for sub 30nm DRAM technology.

**Author Contributions:** Conceptualization, Y.K.K.; Visualization, J.S.L. and G.K.; Resources, Y.P.C., H.J.K and Y.J.P.; Supervision, T.P. and M.J.L.

**Funding:** This research was supported in part by the Korea Electric Power Corporation (Grant number: R17XA05-78), in part by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (Gant number: 2018R1A2B6008216), in part by the R&D Special Zone Development Project (Technology Transfer Business Project: 17GJI003) funded by the Ministry of Science, and the ICT & INNOPOLIS Foundation.

**Conflicts of Interest:** The authors declare no conflict of interest.

#### References

1. L.J. Y. Kim, H. J. Oh, D. S. Lee, D. H. Kim, S. E. Kim, G. W. Ha, H. J. Kim, N. J. Kang, J. M. Park, Y. S. Hwang, D. I. Kim, B. J. Park, M. Huh, B. H. Lee, S. B. Kim, M. H. Cho, M. Y. Jung, Y. I. Kim, C. Jin, D. W. Shin, M. S. Shim, C. S. Lee, W. S. Lee, J. C. Park, G. Y. Jin, Y. J. Park, and K. Kim, S-RCAT (sphere-shaped-recesschannel-array transistor) technology for 70 nm DRAM feature size and beyond, *VLSI Symp*, 2005, 34–35.
2. S. W. Chung, S. D. Lee, S. A. Jang, M. S. Yoo, K. O. Kim, C. O. Chung, S. Y. Cho, H. J. Cho, L. H. Lee, S. H. Hwang, J. S. Kim, B. H. Lee, H. G. Yoon, H. S. Park, S. J. Baek, Y. S. Cho, N. J. Kwak, H. C. Sohn, S. C. Moon, K. D. Yoo, J. G. Jeong, J. W. Kim, S. J. Hong, and S. W. Park, Highly scalable saddle-fin (S-Fin) transistor for sub 50 nm DRAM technology, *VLSI Symp*, 2006, 147–148.
3. M. J. Lee, S. H. Jin, C. K. Baek, S. M. Hong, S. Y. Park, H. H. Park, S. D. Lee, S. W. Chung, J. G. Jeong, et al, A Proposal on an Optimized Device Structure With Experimental Studies on Recent Devices for the DRAM Cell Transistor, *IEEE Trans. electron devices*, 2007, 54, 3325-3335.
4. S. W. Ryu, K. Min, J. Shin, H. Kwon, D. Nam, T. Oh, T. S. Jang, M. Yoo, Y. Kim, S. Hong, Overcoming the reliability limitation in the ultimately scaled DRAM Using Silicon Migration Technique by Hydrogen Annealing, *2017 IEEE International*, 2017, 21.6.1-4.
5. Lee, Myoung Jin, Jun Hee Cho, Sang Don Lee, Jin Hong Ahn, Jin Woong Kim, Sung Wook Park, Y.j. Park, and Hong Shick Min, Partial SOI Type Isolation for Improvement of DRAM Cell Transistor Characteristics, *IEEE Elec. Device Letters*, 2005, 26, 332-334.

6. Young Kwon Kim, Jin Sung Lee, Geon Kim, Taesik Park, Hui Jung Kim, Young Pyo Cho, Young June Park, and Myoung Jin Lee, The optimized Partial Insulator Isolation MOSFET(PiFET), *Journal of Semiconductor Technology and Science*, **2017**, 17, 729-732.
7. TCAD Sentaurus Manual, sysnopsis®, version D-2013.03.
8. G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, A New Recombination Model for Device Simulation Including Tunneling, *IEEE trans. electron devices*, **1992**, 39, 331-338.
9. S. Jin, M. J. Lee, J.-H. Yi, J. H. Choi, D. G. Kang, I.-Y. Chung, Y. J. Park, and H. S. Min, A new direct evaluation method to obtain the data retention time distribution of DRAM, *IEEE Trans. Electron Devices*, **2006**, 53, 2344-2350.
10. Esan Jang, Sunhae Shin, Jae Won Jung and Kyung Rok Kim, Gate induced drain leakage reduction with analysis of gate fringing field effect on high- $\kappa$ /metal gate CMOS technology, *Japanese Journal of Applied Physics*, **2015**, 54, 06FG10-1-4.