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Abstract: Over the past decade, our knowledge of the γ-ray sky has been
revolutionized by ground- and space-based observatories by detecting photons up to
several hundreds of tera-electron volt (TeV) energies. A major population of the γ-ray
bright objects are active galactic nuclei (AGN) with their relativistic jets pointed along
our line-of-sight. Gamma-ray emission is also detected from nearby mis-aligned
AGN such as radio galaxies. While the TeV-detected radio galaxies (TeVRad) only
form a small fraction of the γ-ray detected AGN, their multi-wavelength study offers
a unique opportunity to probe and pinpoint the high-energy emission processes and
sites. Even in the absence of substantial Doppler beaming TeVRad are extremely
bright objects in the TeV sky (luminosities detected up to 1045 erg s−1), and exhibit
flux variations on timescales shorter than the event-horizon scales (flux doubling
timescale less than 5 minutes). Thanks to the recent advancement in the imaging
capabilities of high-resolution radio interferometry (millimeter very long baseline
interferometry, mm-VLBI), one can probe the scales down to less than 10 gravitational
radii in TeVRad, making it possible not only to test jet launching models but also to
pinpoint the high-energy emission sites and to unravel the emission mechanisms.
This review provides an overview of the high-energy observations of TeVRad with
a focus on the emitting sites and radiation processes. Some recent approaches
in simulations are also sketched. Observations by the near-future facilities like
Cherenkov Telescope Array, short millimeter-VLBI, and high-energy polarimetry
instruments will be crucial for discriminating the competing high-energy emission
models.
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1. Introduction

An exciting discovery enabled by space- and ground-based high-energy
observations is the detection of γ-rays from over 3,000 extragalactic sources. Active
galactic nuclei (AGN, powered by accretion onto a few million to several billion solar
mass black holes) form a major population of the γ-ray sky. AGN often produce
collimated outflows, called relativistic jets (see Fig. 1), whose beams of radiation
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Figure 1. Sketch representing the mis-aligned radio emitting bipolar jets of a radio
galaxy (not to scale). Jets typically extend up to a few hundreds of kilo-parsec to
mega-parsec scales.

pierce through the Universe and reach us from the past, offering a unique opportunity
to study the Universe when it was an order of magnitude younger than today. Despite
the intensive study of AGN, the location and origin of their γ-rays remains a mystery.
Some studies imply the emission region is located close to the central black hole [1–5];
while there are counterexamples which argue for γ-rays coming from farther out in
the jet [6–8]. Extremely bright γ-ray flashes in AGN on time scales of minutes to hours
have attracted the attention of the entire astronomical community, as this suggests
that the particles that produce γ-rays can be accelerated with enormous efficiency
in tiny regions within more extended sources. The question of what powers γ-ray
AGN flares is ultimately related to the energy dissipation mechanism at work in their
relativistic jets.

AGN jets are among the largest and most efficient particle accelerators in the
Universe. However, where and how these particles produce high-energy radiation
is still an open question. What are the particle acceleration processes, which type of
particles are the primary energy drivers, and what are the high-energy interaction
processes are key puzzles in high-energy astrophysics.

AGN having their jets pointed along our line-of-sight, called blazars, are the
majority of the sources detected by the high-energy ground- and space-based
telescopes. This goes along with the substantial Doppler boosting of their intrinsic
emission. The radiation is beamed in our direction making these sources appear to be
extremely bright and detectable even at larger redshifts. Blazars come in two flavors:
BL Lacertae objects (BL Lacs) and flat spectrum radio quasars (FSRQs). In spite of the
dissimilarity of their optical spectra – FSRQs show strong broad emission lines, while
BL Lacs have only weak or no emission lines in their optical spectra – they share the
same peculiar continuum properties (strong variability and high polarization). Most
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of the radiation we observe from these blazars is dominated by emission from the
jet; however characteristic signatures of emission from the immediate vicinity of the
central black hole (accretion disk or corona) have been also observed especially in
FSRQs.

The radio to optical emission (and X-rays in some cases) from blazars is mostly
synchrotron radiation from the jet, produced by relativistic electrons interacting
with the jet’s magnetic field. High-energy emission, which often dominates the
spectral energy distribution (SED), is from inverse-Compton scattering of thermal
photons (from the accretion disk, the broad-line region, or the molecular torus) and/or
non-thermal photons (synchrotron emission from the jet) by the jet’s relativistic
electrons in case of leptonic models [1,9–12]. Gamma-ray emission could also be
produced via photo-hadron interactions or by proton or charged µ/π synchrotron
emission and subsequent cascades in the framework of hadronic models [9,12,13].
Detailed investigations of multi-wavelength flux and spectral variability of individual
sources including cross-band (radio, optical, X-ray, γ-ray, and polarization), relative
timing analysis of outbursts, and/or very long baseline interferometry (VLBI)
component ejection/kinematics suggest that high-energy emission especially γ rays
are associated with the compact regions of relativistic jets energized by the central SMBHs
[e.g., 1,2,6,14–21]. However, many critical details of particle acceleration mechanisms
and radiation processes are still unknown.

Mis-aligned or non-blazar AGN such as radio galaxies or Narrow line Seyfert 1
galaxies, although representing a small fraction (<2%) of the γ-ray detected sources,
have emerged as an interesting class of γ-ray emitting AGN. Radio galaxies are
a particularly interesting class of objects to understand several aspects of AGN
physics and high-energy emission, i.e. how the relativistic outflows are launched and
driven, what drives the particle acceleration, how and where high-energy emission is
produced in jets. Several of these key questions can be addressed via studying the
TeV-emitting radio galaxies (TeVRad hereafter). This review paper summarizes the
key observations of TeVRad, with an overview about the possible particle acceleration
processes and emission mechanisms, and concentrates on the jet structure and
multi-wavelength variability rather than spectral modeling, which is a separate
topic. The interested reader is referred to the review article by Rieger and Levinson
[22].

2. Observations of the TeV emitting radio galaxies

Among the more than 30 radio galaxies observed by the Fermi/Large
Area Telescope (LAT) reported in the LAT 8-year Point Source List (FL8Y :
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/), six have also been detected
at TeV energies (see Table 1). Most of these sources are relatively nearby; the closest is
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Table 1. Radio galaxies detected at TeV energies

Source Type Redshift (Distance in Mpc) MBH (M�) LVHE (erg s−1)

Centaurus A FR1 0.00183 (3.7) [23] 5×107 [24] 1040

M87 FR1 0.0044 (16) [25] 6×109 [26] 1041

3C 84 FR1 0.0177 (71) [27] (3-8)×108 [28,29] 1045

IC 310 FR1 0.0189 (80) [30] (1-7)×108 [24,31] 1044

3C 264 FR1 0.0217 (95) [32] 2.6×108 [33] 6× 1043

PKS 0625-35 FR1/BL Lac 0.05488 (220) [34] 3× 109 [24] 5×1041

Centaurus A at a distance of 3.7 mega-parsec, while PKS 0625-351 at 220 mega-parsec
distance is the farthest TeV-detected radio galaxy. Except from M87 and PKS 0625-35,
with a black hole mass of a few 109 M�, the TeVRad have black hole masses of
the order of a few 108 M�, which is smaller than the average black hole mass of
beamed radio galaxies a.k.a. blazars [36]. In fact, the closet TeVRad, Centaurus A,
hosts an even smaller black hole, (MBH ∼5×107 M�). The radio morphology of these
sources resemble blazars when viewed at larger angles. The beaming effects are fairly
moderate in TeVRad [apparent speed less than a few times the speed of light 37–39].

The detection of the nearest TeVRad, Centaurus A core, at TeV energies was
first reported by H.E.S.S. using more than 100 hours of observations taken during
2004-2006 [40]. The source has been later detected also at GeV energies by the
Fermi/LAT [41]. Fermi/LAT also discovered the spatial extension in the source,
detecting γ-rays from both the core and from the extended giant lobes [41]. The
combined GeV-TeV spectrum of the source shows a clear excess at TeV energies and
cannot be fitted via a single zone emission model [42]. Moreover, the origin of the
extended γ-ray emission still remains an open question, although several models
were proposed, i.e. inverse-Compton scattering of relic radiation from the cosmic
microwave background and the infrared-to-optical extragalactic background light
[41].

At a distance of ∼16 Mpc, M87 was the first TeV detected radio galaxy [43]. M87
is the brightest galaxy in the Virgo cluster. The source has been detected on several
occasions both in flaring and quiescent states [44–46]. The fastest variability timescale
observed in the source is ∼1 day [46]. Long-term variability on a few week timescales
has also been reported for the source especially during quiescent states [45,47].

The Fermi telescope has detected 3C 84 since the beginning of its operation
[48]. Fermi observations suggest that the GeV photon flux of the source has been
continuously rising since then (see Section 4 for details). In 2009, the source was also
detected at TeV energies [49,50]. In the end of 2016 and early 2017, the source has

1 The source class for PKS 0625-35 is still under debate. The large-scale morphology of the source
looks like that of radio galaxies, while its optical spectrum indicates a BL Lac classification [35].
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been through a dramatic flaring activity. During this epoch, the MAGIC telescopes
detected the brightest flare ever observed in the source [Lγ−ray ∼ 1045 erg s−1, 51]
with a flux doubling timescale of ∼10 hours.

The radio galaxy IC 310 was first detected at TeV energies in 2009-2010 by the
MAGIC telescope [52]. Variations on days to months timescales were observed in the
source during this period. In November 12-13, 2012, a dramatic flare was observed
in the source. During this exceptional variability phase, the observed flux doubling
timescale of the observed TeV flares was as short as 5 minutes. This is the fastest
variability timescale observed in a radio galaxy up to now [31]. This extreme flare is
quite challenging to be explained within the framework of any existing theoretical
mechanism (see Section 6 for details).

At a distance of 95 Mpc, 3C 264 is rather a new member in the family. Nearly 12
hours of VERITAS observations of the source between February 09, 2018 and March
16, 2018 confirms its detection at ∼5σ level [53]. TeV emission above 250 GeV from
PKS 0625-35 was first reported in 2012 by H.E.S.S. [54]. Fermi observations of the
source report variations on monthly timescales [55]. However, no variation has been
seen seen at TeV energies. The source belongs to the category of low excitation line
radio-loud AGN [56]. Radio observations find superluminal motion in the jet with
apparent speeds up to ∼3 c [57]. The evidence of a one-sided jet and superluminal
motion suggests the source to be more like a blazar.

3. Radio properties

3.1. Parent population

All TeVRad are Fanaroff and Riley type I (FR1) sources. Moreover, most
of the TeV-detected blazars (high-frequency peaked BL Lacs, HBL, in TeVcat:
http://tevcat.uchicago.edu/) belong to the parent population of FR1 sources. The
jetted AGN (also known as radio-loud AGN) are classified as FR1 and FR2 [59]
sources on the basis of their jet luminosity at 178 MHz radio frequency. It was
found that the sources with luminosity ≥5×1024 WHz−1Sr−1 belong to the FR2 class,
while the rest were classified as FR1 type [59]. The key difference between the two
populations is their radio morphology. FR2s are more powerful radio galaxies, and
their radio morphology is characterized by powerful edge-brightened double lobes
with prominent hot spots, while the FR1s are lower-power sources, which exhibit
rather diffuse edge-darkened lobes. Moreover, FR2s tend to be found in less dense
environments compared to FR1s. When seen at small inclinations, FR1 sources are
BL Lacs while FR2s are radio-loud quasars (an excellent discussion about AGN
unification can be found in Urry and Padovani [60]).

It was found that at a given radio power, FR1s have fainter nuclear X-ray and
ultra-violet (UV) emission [61,62] compared to FR2s, which indicates that FR1s
might have fainter accretion disks. For instance, the accretion rate for the brightest
TeVRad 3C 84 (LVHE = 1045ergs−1) is well below 10% [Eddington ratio ∼3×10−4,
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Figure 2. Multi-wavelength view of the M87 jet. From top to bottom: radio jet imaged
by Very Large Array (VLA), optical jet seen by the Hubble Space Telescope, and
X-ray image taken by the Chandra X-ray Observatory. The optical image (middle)
marks the position of various bright knots/stationary features observed in the jet.
(Credit: Marshall et al. [58], reproduced with permission c©AAS).

63]. The key question to answer is if this corresponds to different accretion modes
in the two classes of sources [64]. If yes, it would be interesting to assess how it
correlates to their observed TeV luminosity. Moreover FR1s may occupy less dense
environments, enabling lower γγ-pair production opacity for the TeV photons. In
dense environments, high-energy photons might get absorbed via a process called pair
production when they interact with lower-energy (optical/UV) photons by producing
electron-positron pairs.

3.2. Jet kinematics - speeds on parsec to kilo-parsec scales

The TeVRad M87 is the best studied radio galaxy because of its extremely bright
and spectacular jet extending up to several hundreds of kilo-parsecs. Figure 2 depicts
the kilo-parsec scale radio, optical, and X-ray images (from top to bottom) of the M87
jet. The high-resolution VLBI observations show very sub-luminal speeds (∼0.01 c) on
tens of parsec scales [38,65,66]. Later there is a sudden increase in the apparent speeds
at a distance of ∼100 parsecs just prior to the stationary feature HST-1. Superluminal
components with speeds up to 6c are detected after HST-1 (see Fig. 2), which is
followed by a smooth deceleration [38,67]. A similar velocity pattern has observed
in 3C 264. The sub-luminal apparent speeds (≤ 0.5 c) seemingly receive a kick at a
distance of ∼100 parsec where the jet has a stationary knot/feature. On kilo-parsec
scales apparent speeds up to 7 c have been observed in the source [39]. How exactly
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Kovalev et al. 2007: VLBA at 15 GHz

Reid et al. 1989: Gloabal VLBI at 1.6 GHz

Cheung et al. 2007: VLBA at 1.6 GHz

Biretta et al. 1999: HST

Biretta et al. 1995: VLA at 15 GHz

Meyer et al. 2013: HST

Ly et al. 2007; VLBA 43 GHz (area)

Walker et al. 2008: VLBA 43 GHz
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Figure 3. Velocity field measurements in the jet of M87 from parsec to kilo-parsec
scales. The stationary feature HST-1 is at a distance of ∼ 100 parsecs from the central
engine. The highest speeds are measured close to the position of HST-1. (Credit:
Asada et al. [65], reproduced with permission c©AAS).

these velocity fields develop and evolve along the jet is still an open issue. The
stationary features are thought to be the sites of recollimation shocks, which might
have an interesting role in accelerating the sub-luminal motion to super-luminal
speeds.

There has been no dramatic change noticed in the apparent speed of the moving
features in the other TeVRad as a function of distance from the central engine. For
instance, radio VLBI and X-ray observations suggest sub-luminal motion (speeds up
to 0.5 c) both in the parsec and kilo-parsec scale jet of Centaurus A [68–70]. Similarly
the observed speeds on parsec and kilo-parsec scales are sub-luminal (∼0.2 - 0.9 c)
in 3C 84 [8,71–73], suggesting a viewing angle ≥45◦. The one-sided blazar like jet
of IC 310 constrains the a viewing angle to be ≤38◦ implying a moderate beaming
[74]. VLBI observations measure an apparent speed of ∼0.9–3 c in the PKS 0625-35
jet, which constrains the viewing angle in the source to be ≤13◦ (Angioni et al. 2018,
submitted).

Structured and stratified velocity patterns have also been observed in the
parsec-scale jets of some of the TeVRad. For instance, a study by Mertens et al.
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Figure 4. Stacked high-resolution radio image of M87 at 86 GHz frequency (Credit:
Kim et al. [75], reproduced with permission c©ESO). The high-resolution radio
imaging technique allows a zoom up to a scale of ≤10 gravitational radii in the
source frame.

[38] report a stratification in the M87 jet with a bright transverse velocity component.
The jet flow in the source has a slow, mildly relativistic layer, sheath, (apparent
velocity ∼0.5c) and a fast spine (apparent velocity ∼0.9c). The study also discovered
a significant difference in the apparent speeds observed in the northern (0.5 c) and
southern (0.2 c) limbs of the jet (the bright limbs in the source can be seen in Fig.
4). Likewise, limb brightening was discovered in the 3C 84 jet using the space-VLBI
observations [76]. Hints of differential motion were also observed in Centaurus A
[68].

3.3. Zooming into the event horizon scales

AGN jets are the most spectacular structures in the Universe and represent
the “extreme" and “largest" members of a wide family of jet-powered phenomena,
including γ-ray bursts (GRBs), X-ray binaries (XRBs), and young stellar objects (YSOs).
Over the past few decades, there has been remarkable progress in our understanding
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of AGN jet physics especially because of the development of high-resolution VLBI
(for more details refer to the recent review on millimeter-VLBI by Boccardi et al.
[77]. Millimeter-VLBI observations offer an angular resolution of a few tens of
micro-arcseconds, which allows a probe of the inner jet region on scales ≤50
gravitational radii (Rg).

Given its proximity and fairly bright jet at millimeter radio frequencies, M87 is
the best studied source using high-resolution VLBI [38,65,75,78,79]. Global millimeter
VLBI observations at 86 GHz radio frequency resolve a limb-brightened outflow down
to ∼15 Rg [75]. A high-resolution image of M87 taken at 86 GHz radio frequency is
illustrated in Fig. 4. The Event Horizon Telescope (EHT) observations at 230 GHz and
345 GHz frequencies constrain the size of the event horizon of the central black hole
to be less than 10 Rg [79,80]. These high-resolution images provided a unique tool to
test the different jet-launching models [78,79]

Another interesting study is made using the space-VLBI observations. The
space-VLBI observations of 3C 84 at 22 GHz radio frequency using the RadioAstron
mission probed the inner jet profile up to 100 Rg [76]. The study discovered a very
broad jet base with a transverse radius larger than about 250 Rg implying the jet to be
more likely launched from the accretion disk. More interestingly, GMVA observations
at 86 GHz radio frequency discovered a double-nuclear structure at the jet base (Oh
et al. 2018, in preparation).

High-resolution VLBI observations therefore offer an unparalleled opportunity
to probe and pinpoint the high-energy emitting sites in the immediate vicinity of
the central black hole. Moreover, high-resolution polarization imaging is a unique
technique to unravel the magnetic field topology on scales less than a few hundreds of
gravitational radii. The tiny magnetized regions in the extended jets are the potential
sites of high-energy emission [19,81,82].

4. TeV variability

Like blazars, TeVRad exhibit variability on multiple timescales i.e. sub-hour to
days timescale flares are accompanied by long-term outbursts. For instance, multiple
modes of flaring activity can be seen in the photon flux light of 3C 84 observed by the
Fermi/LAT. Figure 6 presents the rapid flares superimposed on top of the long-term
rising trend in the Fermi photon flux light curve (in blue). In the end of 2016, several
extremely bright and rapid flares were observed by Fermi/LAT. The fastest flares seen
by Fermi/LAT have flux doubling timescale of 9-12 hrs. In 2016-2017, the source was
also detected multiple times at TeV energies by the MAGIC telescope [51]. During
the course of this period, MAGIC detected the fastest and most luminous flare from
3C 84. An extremely bright (Lγ ' 1045 erg s−1) flare with a flux doubling timescale
of ∼10 hours was observed on January 01, 2017 [51]. Flux variations on multiple
timescales were also observed in IC 310 and M87.

Extremely short variability timescales in TeVRad have attracted the attention of
astrophysicists, as the observed timescales can reach down to the light crossing time
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Figure 5. TeV light curve of 3C 84 observed by the MAGIC telescope [51]. The fastest
flare observed around 01-01-2017 has a flux doubling timescale of ∼10 hr. Long-term
variations at γ-rays are shown in Fig. 6.

of the black hole event horizon, tBH = rg/c, where rg is the gravitational radius of the
black hole and c is the speed of light. For instance, the observed variability timescale
(tvar = 5 min) in IC 310 is much smaller than the event horizon light crossing timescale,
tBH = 25 min [31]. The fastest variability timescale observed in M87 (tvar ∼ 1 day)
is comparable with the event horizon light crossing timescale (tBH ∼ 60-90 min).
Variations on sub-horizon scales have also been observed in blazars [84]. However
in case of blazars, one can always argue that beaming effects make the observed
timescale appear shorter. This requires the Doppler factor to be greater than 50, which
has rarely been observed [37,73]. It is also important to note that the timescale of
the flux variations in blazars is also affected by time-dilation in the frame co-moving
with the jet. Since the Doppler factor, δ ' Γjet (Lorentz factor in the jet), the projection
effects (used to explain the ultra-fast variability in blazars) cancel out.

Understanding the physical processes responsible for the origin of the ultra-fast
TeV flares is a key challenge in high-energy astrophysics. Sub-horizon scale variations
and extremely luminous flares, especially in the absence of strong beaming effects,
require (i) emission regions of extremely high electromagnetic energy, (ii) efficient
particle acceleration mechanisms which could channel the electromagnetic energy
to particle energy, and (iii) less-dense photon environments so that the emitted TeV
photons do not get self-absorbed by γγ-pair production.
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Figure 6. Gamma-ray photon flux (blue) and radio 230 GHz (red) light curve
of the TeVRad 3C 84 at E=0.1-300 GeV. The γ-ray light curve is produced by
adaptive binning analysis method following Lott et al. [83] using the Fermi/LAT
data from August 2008 until September 2017 . The radio 230 GHz light curve is
from sub-millimeter array (SMA) AGN monitoring program (details are refereed to
Hodgson et al. [8]). Rapid flares superimposed on top of the long-term rising trend
can be seen both at γ-ray and radio frequencies.

5. High-energy emitting sites

Locating the γ-ray emitting sites is a key challenge not only in case of radio
galaxies but also for blazars. When the emission region is closer to the central black
hole, there is higher proportion of electromagnetic energy available in the jet, making
it easy to account for the observed extremely bright γ-ray flashes. However if the
high-energy photons are produced too close to the black hole, the chances for them to
escape through the rich photon environments are low. Nevertheless, at least some
of these high-energy photons seem to survive even through dense environments.
Photons produced further down in the jet have higher chances of not being absorbed;
however accelerating particles to extreme high-energy is a quite challenge there (see
Section 6 for more details).

The sub-horizon scale emitting regions, detected in IC 310, 3C 84, and M87, could
either be very close to the black hole or further down in the jet. The TeV flare in IC 310
was interpreted as originating from the magnetospheric gap of the black hole (see
Section 6) as it is hard to achieve the high luminosity and rapid variability further
down in the jet. The rapid TeV flare in 3C 84 was also proposed to be produced in
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Figure 7. Cross-correlation analysis curve of the γ-ray and radio flux variations
observed in 3C 84 (see Fig. 6). The two peaks at −500 and +400 days (green arrows)
imply γ-rays flux variations leading and lagging those at radio. A detailed analysis
suggests the presence of multiple γ-ray emitting sites in the source [8].

the magnetospheric gap; however achieving the extremely high luminosity requires
an extremely fast rotating black hole and magnetic field higher than its equipartition
value [4]. However these studies lack a conclusive observational evidence for the
emission to be produced close to the black hole. Multi-frequency observations of M87
during an episode of extremely rapid flares provided an opportunity to study the TeV
emitting regions in great detail. Strong TeV flares in the source were accompanied
by an increase of the flux from the nucleus observed at 43 GHz radio frequency [5],
suggesting the emission region to be located within the radio core (≤50 gravitational
radii). The extreme compactness of the TeV emission region and the observed TeV-radio
connection in M87 conclusively infer that the VHE emission is indeed produced very close to
the black hole [5].

Hints of multiple γ-ray emitting regions have also been observed in TeVRad.
For instance, a study performed using the KVN (Korean VLBI Network) and γ-ray
observations indicate the presence of multiple γ-ray emitting regions in 3C 84 [8].
Figure 6 presents a comparison of the flux variations observed at γ-ray and 230 GHz
radio frequencies. The long-term rising trend is present in the flux variations seen both
at radio and γ-ray frequencies. However the rapid flares do not have a one-to-one
correspondence at the two frequencies. A formal cross-correlation analysis indicates
two prominent peaks at around −500 and +400 days, which implies that γ-rays
variations lead those at radio by−500 days and also lag behind by +400 days (see Fig.
7). A detailed investigation of the flux density variations in the spatially separated
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emission regions of the jet indicates the presence of multiple γ-ray emitting sites in
the source. The study reported that there are two active regions producing γ-rays in
the source, one very close to the black hole and another at a distance of ∼4 parsec in
the source frame.

Fermi has detected γ-rays both from the core and the extended lobes of the nearest
TeVRad Centaurus A [41]. The source has a spatial extension of About 9 degrees
across the sky, which corresponds to ∼600 kilo-parsec, and the γ-ray morphology
is quite similar to its radio jet morphology, which implies γ-rays coming from both
the central AGN core and extended kilo-parsec scale lobes. Given the detection of
extended γ-ray emission at GeV energies and the absence of TeV variability, the
extension of TeV emission cannot be discarded. It is important to note that Fermi/LAT
has detected extended GeV emission also from Fornax A. It might be interesting to
see for how many of these sources spatial extension can detected by using the future
Cherenkov Telescope Array.

6. Particle acceleration mechanisms

The observed extremely rapid variability and enormously high γ-ray luminosity
are clearly challenging to achieve in astrophysical jets as they require (i) particle
acceleration to extreme high energies in presence of strong radiative loss (ii) variation
on sub-horizon timescales, and (iii) conversion of large volumes of electromagnetic
energy with enormous efficiency. Several mechanisms have been proposed to address
the TeV challenge in astrophysical sources. Some recent ideas are summarized below.

The most common mechanism is relativistic shock i.e. the flow is accelerated to
supersonic speeds and strong shocks are formed in the relativistic outflow because of
(i) faster moving outflow runs into slower flow resulting in the formation of internal
shock, (ii) the outflow encounters an obstacle (perhaps a molecular cloud) on its
way, (iii) any other perturbation happening at the base of the jet could also form a
shock wave to form and propagate down the jet. Relativistic shocks [85] seem to be
effective in low-magnetization regimes and could explain the observed long-term
variability from AGN fairly well [1,19,81,82,86–88]. However, the luminous ultra-fast
TeV flares observed from a number of AGN [4,31,84,89] are difficult be explained via
the relativistic shock model especially in the absence of substantial Doppler beaming,
and therefore challenge our understanding of particle acceleration processes.

Magnetic reconnection, a process by which magnetic energy is transferred to
particle heat, bulk energy and non-thermal energy, is proposed to be an effective
mechanism for energy dissipation [90–94] in magnetically dominated relativistic
outflows. During magnetic reconnection, opposite polarity magnetic field lines
exchange partners at “X-points" leading to breaking of flux freezing and change
in magnetic field topology, which results in an explosive release of energy. For
instance, solar flares seem to be powered by magnetic reconnection. However
this picture is far too complex in case of relativistic outflows. Nevertheless, there
has been great advancement in simulations to understand the relativistic magnetic
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Figure 8. Radiative signatures of relativistic magnetic reconnection by an integrated
modeling relying on first-principle particle-in-cell (PIC) kinetic simulation (Credit:
Haocheng Zhang [90]). Top panel: γ-ray light curve in units of light crossing time
scale. Bottom panel: reconnection layer in the unit of ion skin depth.

reconnection. The particle-in-cell (PIC) magnetic reconnection simulations suggest
that ultra-relativistic plasmoids generated by magnetic reconnection [91,92] can power
the ultra-fast flares observed from TeV AGN. An example γ-ray light curve (top) and
snapshot of relativistic magnetic reconnection (bottom) by an integrated modeling
relying on first-principle PIC kinetic simulation and an advanced polarized radiation
transfer simulation from Zhang et al. [90] are illustrated in Fig. 8. The study reports
that plasmoid coalescences in the magnetic reconnection layer can produce highly
variable multi-wavelength light curves, and also can explain polarization degree and
polarization angle variations.

A magnetospheric gap model was invoked to explain the sub-horizon scale
flux variations in TeVRad [4,31,95,96]. It has been proposed that a rotating black hole
embedded in a strong magnetic filed (of the order of 104 - 105 G) will induce an electric
field, E, corresponding to a voltage drop across its event horizon, which facilitates
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an efficient electromagnetic extraction of the rotational energy of the black hole (for
more details, see the review by Rieger [96]), and could be an efficient mechanism to
power the TeV flares in AGN. The maximum extractable energy (Lmagnetosphere) from
the black hole however depends on the details of the gap configuration. For instance,
Lmagnetosphere scales as the height of the magnetospheric gap (h) i.e. i.e. Lmagnetosphere
∼ LBZ(h/rg)β, where LBZ is the maximum power from a fast rotating black hole
[97] and β depends on the gap setup. The size of the gap can be constrained by the
observed TeV variations (c.δt ≤ rg), which further reduces the maximum Lmagnetosphere
[details are refereed to 96,98]. Another important aspect of this model is the absorption
of the emitted TeV photons by the thermal photon environment of the black hole. In
order for the TeV photons to survive through the accretion disk environment, the
magnetospheric gap model requires an under-luminous or radiatively inefficient
accretion flow to avoid γγ-pair production. This enforces accretion rates to be
below 1% of the Eddington scale. Putting this in the context of current observations,
the model could explain the observed TeV flares in M87 fairly well; however the
minute-scale TeV flare in IC 310 seems less likely to have a magnetospheric gap origin.
The observed TeV luminosity in 3C 84 is also hard to match in the framework of the
magnetospheric gap model unless the magnetic field threading the accretion disk is a
factor of 1000 greater than its equipartition value.

Magnetoluminescence [99,100] has been recently proposed to explain the observed
TeV flares from astrophysical sources. The basic idea is that rotating at the center of
an AGN leads to writhing of magnetic flux ropes resulting in tangled and knotted
magnetic field lines. The tightly wound magnetic flux ropes especially in the inner
jet are highly dynamically unstable. The tangled/knotted flux lines when opened
up or untangled could produce rapid γ-ray flares. It has been suggested that this
phenomenon includes an implosion rather than explosion [100]. As a consequence,
particles could be accelerated to significantly higher energies as the dissipating and
cooling volume could be re-energized by the medium external to it. Electromagnetic
detonation [100] is proposed as an alternative possibility, which might accelerate
particles at the transition of high-magnetized outflow into low-magnetized outflow
and energy-flux. Particles are subjected to unbalanced electric field at the transition
and get accelerated (positive and negative charged particles are accelerated in
opposite direction) to produced γ-rays. In comparison to magnetic reconnection
which require the magnetic flux to channel into a small volume, electromagnetic
detonation will have a larger volume for the conversion of electromagnetic energy
into particle energy.

7. Future directions

Pinpointing the sub-horizon scale γ-ray emitting sites in kilo-parsec to
mega-parsec scales AGN jets is a key challenge in high-energy astrophysics. A
coordinated multi-wavelength and multi-messenger effort is needed to better
understand it. The TeV emitting radio galaxies (TeVRad) are a particularly interesting
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class of AGN to unravel the mystery of the origin of γ-ray emission. Some important
considerations are:

• TeVRad are nearby AGN. The farthest detected TeVRad is at a distance of
220 Mpc. Using the millimeter-VLBI observations, one can probe regions in
the immediate vicinity of the central black hole i.e. down to a scale of less than
50 gravitational radii in the source frame (for more details about the imaging
capabilities of the current and near-future high-resolution VLBI observations,
check Boccardi et al. [77]). The mm-VLBI observations will provide an ultimate
opportunity to probe the compact regions closer to the black hole, which
are the potential sites of high-energy emission. High-resolution polarization
imaging will probe the magnetic field strength and configuration of these
compact emission regions, which is an essential piece of information in order to
understand the high-energy acceleration processes.
• Being seen off-axis, TeVRad offer a unique opportunity to transversely resolve

the jet. Using high-resolution VLBI one can transversely resolve the fine scale
jet structure and can probe their flux intensity and polarization variations.
VLBI astrometry observations could provide the exact location of the core.
Having that, one could combine the high-resolution VLBI imaging and
multi-wavelength observations to exactly pinpoint the location of γ-ray emitting
sites.
• There have been great advances in the theory and simulation front. Several

details about plasma physics under extreme conditions can be better understood
via simulations i.e. radiative signatures of relativistic magnetic reconnection
[90–94], formation of jets and expulsion of magnetic flux from the central black
hole [101–103], high-energy polarization signatures of shocks and reconnection
[90,104,105]. A comparison of predictions from simulations with measurements
will be crucial to understand the physical processes happening around black
holes.
• Cherenkov Telescope Array [106] with its sensitivity better than the existing

GeV/TeV instruments and spatial resolution of the order of a couple of
arc-minutes at TeV energies will provide observations up to 300 TeV. CTA
will detect many more misaligned AGN and will also help us in separating
nuclear and off-nuclear components especially for nearby sources. Having the
potential to probe deeper into the spectral and variability characteristics of AGN,
CTA will eventually revolutionize our understanding of the TeV sky.
• The question of what powers γ-ray AGN flares is ultimately related to the energy

dissipation mechanism at work. High-energy polarization observations will
deliver an ultimate test for probing the energetic particle-acceleration processes
and emission mechanisms: (i) leptonic versus hadronic models and (ii) shocks
versus magnetic reconnection. High-energy polarimetry missions are on their
way to unravel how the most efficient particle accelerators in the Universe work.
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For instance, the All-sky Medium Energy Gamma-ray Observatory (AMEGO:
https://asd.gsfc.nasa.gov/amego/) will offer MeV polarization observations
of the γ-ray bright AGN. The Imaging X-ray Polarimetry Explorer (IXPE:
https://wwwastro.msfc.nasa.gov/ixpe/index.html) will observe polarization
signatures from X-ray bright AGN.
• The recent observations of coincidence of a high-energy neutrino event with a

flaring AGN, TXS 0506+056, indicates AGN as potential sources of high-energy
neutrinos [107]. Multi-wavelength and multi-messenger observations of similar
events will test if AGN jets are powerful sources of extra-galactic neutrinos and
put constraints on lepto-hadronic models.

Given the flood of high quality data from the current and upcoming missions and
great advances in theory/simulation, it is an exciting time for astronomers. There
are several major discoveries to be made.
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Khangulyan, D.; Khélifi, B.; Keogh, D.; Kluźniak, W.; Kneiske, T.; Komin, N.; Kosack, K.; Lamanna, G.;
Latham, I.J.; Lenain, J.P.; Lohse, T.; Marandon, V.; Martin, J.M.; Martineau-Huynh, O.; Marcowith, A.;
Maurin, D.; McComb, T.J.L.; Medina, M.C.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2018                   doi:10.20944/preprints201811.0030.v1

Peer-reviewed version available at Galaxies 2019, 7, 23; doi:10.3390/galaxies7010023

http://xxx.lanl.gov/abs/1412.4936
http://xxx.lanl.gov/abs/1606.01246
http://xxx.lanl.gov/abs/0903.5451
http://xxx.lanl.gov/abs/astro-ph/0310256
http://xxx.lanl.gov/abs/astro-ph/0304190
http://xxx.lanl.gov/abs/1603.03882
http://xxx.lanl.gov/abs/1608.05063
http://dx.doi.org/10.20944/preprints201811.0030.v1
http://dx.doi.org/10.3390/galaxies7010023


21 of 28

M.; Nedbal, D.; Nekrassov, D.; Niemiec, J.; Nolan, S.J.; Ohm, S.; Olive, J.F.; de Oña Wilhelmi, E.; Orford,
K.J.; Ostrowski, M.; Panter, M.; Arribas, M.P.; Pedaletti, G.; Pelletier, G.; Petrucci, P.O.; Pita, S.; Pühlhofer,
G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B.C.; Raue, M.; Rayner, S.M.; Renaud, M.; Rieger,
F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C.B.; Ruppel, J.; Sahakian, V.;
Santangelo, A.; Schlickeiser, R.; Schöck, F.M.; Schröder, R.; Schwanke, U.; Schwarzburg, S.; Schwemmer,
S.; Shalchi, A.; Sikora, M.; Skilton, J.L.; Sol, H.; Spangler, D.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.;
Superina, G.; Szostek, A.; Tam, P.H.; Tavernet, J.P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik,
C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J.P.; Vincent, P.; Vink, J.; Vivier, M.; Völk, H.J.; Volpe, F.;
Wagner, S.J.; Ward, M.; Zdziarski, A.A.; Zech, A. Discovery of Very High Energy γ-Ray Emission from
Centaurus a with H.E.S.S. ApJL 2009, 695, L40–L44, [arXiv:astro-ph.CO/0903.1582].

41. Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.;
Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.;
Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Buson, S.; Caliandro, G.A.;
Cameron, R.A.; Caraveo, P.A.; Casandjian, J.M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.;
Cheung, C.C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Colafrancesco, S.; Cominsky, L.R.;
Conrad, J.; Costamante, L.; Cutini, S.; Davis, D.S.; Dermer, C.D.; de Angelis, A.; de Palma, F.; Digel,
S.W.; do Couto e Silva, E.; Drell, P.S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S.J.;
Finke, J.; Focke, W.B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels,
N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.;
Godfrey, G.; Grenier, I.A.; Grove, J.E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A.K.; Hayashida,
M.; Hays, E.; Hughes, R.E.; Jackson, M.S.; Jóhannesson G..; Johnson, S.; Johnson, T.J.; Johnson, W.N.;
Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M.L.; Kuss, M.; Lande,
J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M.N.; Lubrano, P.;
Madejski, G.M.; Makeev, A.; Mazziotta, M.N.; McConville, W.; McEnery, J.E.; Meurer, C.; Michelson,
P.F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A.A.; Monte, C.; Monzani, M.E.; Morselli, A.; Moskalenko,
I.V.; Murgia, S.; Nolan, P.L.; Norris, J.P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J.F.;
Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T.A.; Rainò, S.; Rando,
R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L.S.; Rodriguez,
A.Y.; Romani, R.W.; Roth, M.; Ryde, F.; Sadrozinski, H.F.W.; Sambruna, R.; Sanchez, D.; Sander, A.; Saz
Parkinson, P.M.; Scargle, J.D.; Sgrò, C.; Siskind, J.; Smith, D.A.; Smith, P.D.; Spandre, G.; Spinelli, P.;
Starck, J.L.; Stawarz, L.; Strickman, M.S.; Suson, D.J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.;
Thayer, J.B.; Thayer, J.G.; Thompson, D.J.; Tibaldo, L.; Torres, D.F.; Tosti, G.; Tramacere, A.; Uchiyama,
T. L., Y.U.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A.P.; Wallace, E.; Wang, P.; Winer, B.L.; Wood,
K.S.; Ylinen, T.; Ziegler, M.; Hardcastle, M.J.; Kazanas, D.; Fermi LAT Collaboration. Fermi Gamma-Ray
Imaging of a Radio Galaxy. Science 2010, 328, 725, [arXiv:astro-ph.HE/1006.3986].

42. Sahakyan, N.; Yang, R.; Aharonian, F.A.; Rieger, F.M. Evidence for a Second Component in the
High-energy Core Emission from Centaurus A? ApJL 2013, 770, L6, [arXiv:astro-ph.HE/1302.7173].

43. Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.G.; Bojahr, H.; Bolz, O.; Coarasa,
T.; Contreras, J.L.; Cortina, J.; Denninghoff, S.; Fonseca, M.V.; Girma, M.; Götting, N.; Heinzelmann, G.;
Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kohnle, A.;
Konopelko, A.; Kornmeyer, H.; Kranich, D.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.;
Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona-Wilhelmi, E.; Panter, M.; Plyasheshnikov, A.; Pühlhofer, G.;
de los Reyes, R.; Rhode, W.; Ripken, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.;
Sobzynska, D.; Stamm, W.; Tluczykont, M.; Vitale, V.; Völk, H.J.; Wiedner, C.A.; Wittek, W. Is the giant
radio galaxy M 87 a TeV gamma-ray emitter? A&A 2003, 403, L1–L5, [astro-ph/0302155].

44. Acciari, V.A.; Aliu, E.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.M.; Buckley,
J.H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Chow, Y.C.; Ciupik, L.; Cogan, P.; Cui, W.;
Dickherber, R.; Duke, C.; Finley, J.P.; Finnegan, G.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.;
Gall, D.; Gillanders, G.H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.;
Hui, C.M.; Humensky, T.B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko,
A.; Krawczynski, H.; Krennrich, F.; Lang, M.J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.;
McCutcheon, M.; Millis, J.; Moriarty, P.; Ong, R.A.; Otte, A.N.; Pandel, D.; Perkins, J.S.; Pichel, A.; Pohl,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 November 2018                   doi:10.20944/preprints201811.0030.v1

Peer-reviewed version available at Galaxies 2019, 7, 23; doi:10.3390/galaxies7010023

http://xxx.lanl.gov/abs/0903.1582
http://xxx.lanl.gov/abs/1006.3986
http://xxx.lanl.gov/abs/1302.7173
http://xxx.lanl.gov/abs/astro-ph/0302155
http://dx.doi.org/10.20944/preprints201811.0030.v1
http://dx.doi.org/10.3390/galaxies7010023


22 of 28

M.; Quinn, J.; Ragan, K.; Reyes, L.C.; Reynolds, P.T.; Roache, E.; Rose, H.J.; Rovero, A.C.; Schroedter,
M.; Sembroski, G.H.; Senturk, G.D.; Smith, A.W.; Steele, D.; Swordy, S.P.; Theiling, M.; Thibadeau, S.;
Varlotta, A.; Vincent, S.; Wagner, R.G.; Wakely, S.P.; Ward, J.E.; Weekes, T.C.; Weinstein, A.; Weisgarber,
T.; Williams, D.A.; Wissel, S.; Wood, M.; Zitzer, B.; Harris, D.E.; Massaro, F. Veritas 2008-2009 Monitoring
of the Variable Gamma-ray Source M 87. ApJ 2010, 716, 819–824, [1005.0367].
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52. Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.;
Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R.K.; Boller, A.;
Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.;
Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J.L.; Cortina, J.; Cossio, L.;
Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; De Maria, M.; De Sabata, F.;
Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.;
Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fonseca, M.V.; Font, L.; García López, R.J.; Garczarczyk,
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