

Full title: RVFV infection in goats by different routes of inoculation**Short title: RVFV infection in goats**

Andrea L Kroeker¹, Valerie Smid¹, Carissa Embury-Hyatt¹, Estella Moffat¹, Brad Collignon¹, Oliver Lung^{1,2}, Robbin Lindsay^{3,4}, Hana Weingart^{1,5}

1 – Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada

2 – University of Manitoba, Biological Sciences, Winnipeg, Manitoba, Canada

3 – Public Health Agency of Canada, Winnipeg, Manitoba, Canada

4 – University of Manitoba, Entomology, Winnipeg, Manitoba, Canada

5 – University of Manitoba, Medical Microbiology, Winnipeg, Manitoba, Canada

Corresponding author:

Andrea.Kroeker@canada.ca

Hana.Weingartl@canada.ca

16 **Abstract**

17

18 Rift Valley Fever virus (RVFV) is a zoonotic arbovirus of the *Phenuiviridae* family.
19 Infection causes abortions in pregnant animals, high mortality in neonate animals and
20 mild to severe symptoms in both people and animals. There is currently an ongoing
21 effort to produce safe and efficacious veterinary vaccines against RVFV in livestock
22 to protect against both primary infection in animals and zoonotic infections in people.
23 To test the efficacy of these vaccines it is essential to have a reliable challenge model in
24 relevant target species, including ruminants. We evaluated two goats breeds (Nubian
25 and LaMancha), three routes of inoculation (intranasal, mosquito-primed
26 subcutaneous and subcutaneous) using an infectious dose of 10^7 pfu/ml, a virus
27 strain from the 2006-07 Kenyan/Sudan outbreak and compared the effect of using
28 virus stocks produced in either mammalian or mosquito cells. Our results
29 demonstrated that Nubian goats achieved the highest levels and longer duration of
30 viremia. In the Nubian goats, all three routes of inoculation were equally efficient at
31 producing clinical signs, consistent viremia (peak viremia: 1.2×10^3 - 1.0×10^5 pfu/ml
32 serum), nasal and oral shedding of viral RNA (1.5×10^1 – 8×10^6 genome copies/swab),
33 a systemic infection of tissues, and robust antibody responses. The Nubian goat
34 breed and a needle-free intranasal inoculation technique could both be utilized in
35 future vaccine and challenge studies.

36 **Keywords:** Rift Valley Fever virus; arbovirus; caprine; challenge model; animal vaccine;
37 zoonosis;

38 **Introduction**

39

40 Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne virus that causes acute
41 infections in ruminants such as goats, cattle, sheep and camels. Large outbreaks of
42 RVFV have mainly occurred in Sub-Saharan Africa. However, an outbreak outside of
43 the African continent, such as in the Arabian Peninsula in 2001, an imported case in
44 China (Liu 2017), serological evidence in Turkey (Gür et al., 2017), and climate
45 changes (Bett et al., 2017) have raised concerns about the potential spread of the
46 virus to Europe, Asia and the Americas (Balkhy and Memish 2003; Bird 2009;
47 Chevalier 2010; Pepin and Tordo 2010).

48

49 RVFV outbreaks in livestock are thought to be primarily transmitted by infected
50 mosquitos. Studies have shown that RVFV epidemics typically follow periods of
51 heavy rainfall conducive to large mosquito populations (Davies, Linthicum, & James,
52 1985; Hassan, Ahlm, Sang, & Evander, 2011; Leedale, Jones, Caminade, & Morse,
53 2016; Redding, Tiedt, Lo Iacono, Bett, & Jones, 2017) as well as the trade and
54 importation of infected animals into susceptible regions (Napp et al., 2018). In Africa,
55 RVFV is mainly transmitted by the *Aedes aegypti* mosquito, however, a growing
56 number of studies have made it clear that other mosquito species present in Asia,
57 Europe and North/South America are experimentally competent as RVFV vectors
58 (Brustolin et al., 2017; Ndiaye et al., 2016; Turell et al., 2015). Therefore, if RVFV
59 were to be introduced into other continents and their endemic mosquito populations, it
60 could cause widespread epidemics and could seriously impact the health of human
61 populations and economically important livestock herds.

62 RVFV infections in livestock are characterized by abortion storms in pregnant
63 ruminants and high rates of mortality in young sheep, goats and cattle (Cotzer 1977
64 and 1982; Pepin and Tordo 2010). In contrast, human infections are thought to occur
65 either through mosquito bites or via zoonotic aerosol transmission (Swanepoel and
66 Coetzer, 1994). For example, the 1977-78 outbreak in Egypt was identified as a
67 mosquito-transmitted outbreak while the 2009-2011 outbreak in South Africa was

68 primarily an aerosol-transmitted epidemic (Archer et al., 2013; Métras et al., 2012;
69 Monaco et al., 2013) in which veterinarians and livestock workers who were in close
70 contact with infected animals were most at risk (Nicholas, Jacobsen, & Waters, 2014).
71 Human infection can result in subclinical to severe illness that in some cases can
72 progress to retinal vasculitis, resulting in blindness, encephalitis and fatal hepatitis
73 with hemorrhagic fever (Ikegami & Makino, 2011). Although reported human case
74 fatality rates are generally low, higher fatality rates (20%–40%) were observed in the
75 Kenyan outbreak of 2007-08 (Nguku et al., 2010) and in Mauritania in 2012 (Sow et
76 al., 2014). Therefore, vaccination of livestock against RVFV is an important
77 consideration for both livestock and their associated workers.

78
79 There is currently an ongoing effort to produce safe and efficacious vaccines against
80 RVFV in livestock (Dungu et al., 2010; Indran & Ikegami, 2012; Kortekaas et al.,
81 2012; Mansfield et al., 2015; Morrill et al., 2013; Pittman et al., 2016; Soi et al., 2010;
82 Warimwe et al., 2013) as well as reliable challenge models for testing these vaccines.
83 Several groups have developed challenge models for RVFV in cattle (Wilson et al.,
84 2016) and sheep (Faburay et al., 2016; Weingartl, Miller, Nfon, & Wilson, 2014), and
85 we recently published a challenge model in 4-month old goats (Nfon, Marszal, Zhang,
86 & Weingartl, 2012; Weingartl et al., 2014). These initial studies have identified
87 important factors of pathogenesis such as infectious dose and the use of insect-
88 derived virus compared to mammalian-derived virus (Weingartl et al., 2014).
89 However, several interesting studies have also demonstrated that mosquito saliva
90 can modulate RVFV infection in mice (Le Coupanec et al., 2013) and that aerosol
91 exposure to RVFV led to different disease kinetics and outcomes in mice (Reed et al.,
92 2013) and NHPs (Hartman et al., 2014; Smith et al., 2012). Furthermore, RVFV has
93 been shown to be highly dependent on the viral strain, animal species, breed and
94 age. Therefore, our goal in this study was to explore how some these factors affected
95 the pathogenicity of our goat model and whether they could be utilized in future
96 vaccine efficacy trials.

97

98

99 **Materials & Methods**

100

101 Ethics statement

102 All animal experiments were carried out in the enhanced biosafety level 3 (BSL3) facility
103 at the National Centre for Foreign Animal Disease (NCFAD) in Winnipeg, Manitoba. All
104 protocols for animal use were approved under the animal document use number C-17-
105 002 at the Canadian Science Centre for Human and Animal Health (CSCHAH) in
106 Winnipeg, Manitoba by the Animal Care Committee. Care was taken to minimise animal
107 suffering and to follow the Canadian Council on Animal Care guidelines for animal
108 manipulations.

109

110 Cells

111 Mosquito C6/36 cells (ATCC, USA) were grown and infected in 1:1 EMEM and ESF-921
112 (Expression Systems, USA) supplemented with 10% fetal bovine serum (FBS, Hyclone)
113 and 1% L-glutamine and maintained at 28°C without CO₂. Mammalian Vero E6 (VE6)
114 cells were grown and infected in DMEM (Gibco) supplemented with 10% FBS and
115 maintained at 37°C with 95% relative humidity and 5% CO₂.

116

117 Virus production and titration

118 VE6 cells were infected with a virus isolate from the 2006-2007 Kenyan outbreak
119 (Genbank #MH175203, MH175204, MH175205) at an MOI 0.1 and maintained in
120 DMEM with 10% FBS. Thereafter, virus was alternatively passaged between VE6 and
121 C636 cells twice (Moutailler et al., 2011). All passages were titrated on VE6 cells with a
122 plaque assay to determine virus concentration. The goats were then infected using
123 passage 7 C6/36-derived virus or passage 8 VE6-derived virus.

124

125 Genome sequencing

126 RNA was converted to cDNA using the Superscript IV First Strand Synthesis Module
127 (Invitrogen) according to the manufacturer's specifications except for the following
128 modifications: eight gene specific primers (10 µM; 0.25 µL each) were used to

129 selectively enrich for RVFV RNA, and a total of 10 μ L of RNA was added to the
130 reaction. Second strand synthesis was carried out using the NEBNext mRNA Second
131 Strand Synthesis Module (New England Biolabs) according to the manufacturer's
132 specifications. The double-stranded cDNA was purified using the QiAquick PCR
133 Purification Kit (QiAgen) according to the manufacturer's specifications and eluted in 20
134 μ L of nuclease-free water. A volume of 2 μ L of purified double-stranded cDNA from
135 each sample was quantified on the Qubit 3.0 fluorometer (ThermoFisher Scientific)
136 using the dsDNA High Sensitivity Kit (ThermoFisher Scientific). The samples were
137 diluted to 0.2 ng/ μ L in nuclease-free water and a total of 5 μ L of diluted material was
138 used as input to generate sequencing libraries using the Nextera XT Library Preparation
139 Kit (Illumina), then pooled with other libraries before sequencing on an Illumina MiSeq
140 platform using a V2 300-cycle (2 x 150 bp reads) cartridge (Illumina) and Micro flow cell
141 (Illumina).

142

143 *Sanger sequencing*

144 Sanger sequencing was used to sequence a short GC-rich area located in the
145 intergenic region of the S segment that had no MiSeq reads mapping to the reference
146 for all samples tested. Briefly, samples were amplified by singleplex PCR using the
147 SuperScript III One-Step RT-PCR System with Platinum Taq DNA Polymerase
148 (Invitrogen) and in-house designed primers (Forward: 5'-
149 CTAGAGGACTCCTTGTTGG-3', Reverse: 5'-CTTGAAAGCCTTGGACTG-3') to
150 generate a 505 bp amplicon spanning the intergenic region of the S segment. Thermal
151 cycling was performed for 30 minutes at 47°C for reverse transcription, 3 minutes at
152 94°C for initial denaturation, followed by 40 cycles of 15 seconds at 94°C, 30 seconds
153 47°C and 1 minute at 68°C and a final extension for 5 minutes at 68°C. Amplicons were
154 sequenced using BigDye Terminator v3.1 technology on an ABI 3130xl Genetic
155 Analyzer system (Applied Biosystems).

156

157 *Bioinformatic sequencing analysis*

158 Read quality of data from the MiSeq was first visualized in FastQC (v0.11.5), followed
159 by quality filtering and trimming using Trimmomatic (v0.36 with headcrop 20 and sliding

160 window 4:20) and de novo assembly using SPAdes assembler (v3.11.1 in metagenomic
161 mode with default settings). The resulting assembled contigs were then characterized
162 with blastn to determine their closest match within the nr/nt database. The closest full
163 length sequence match for each of the three viral gene segments was then used to
164 perform a reference assembly with the raw data (Geneious v9.1.5 on Low
165 Sensitivity/Fastest setting). Finally, for each sample MiSeq and Sanger sequencing data
166 were combined to generate a consensus sequence for each segment (Geneious
167 v9.1.5).

168

169 Goat inoculation

170 Twenty-nine healthy 4 month old Nubian or LaMancha goats were obtained from
171 breeders in Manitoba, Canada and allowed 7 days to acclimatize to BSL3+ containment
172 at NCFAD, during which they were monitored daily for any signs of disease. After
173 acclimatization, the goats were divided into groups of 2-4 and housed in separate
174 cubicles.

175

176 *Subcutaneous (Nubian and LaMancha)*

177 A group of Nubian and LaMancha goats were inoculated subcutaneously with 10^7 pfu
178 insect-derived RVFV. A group of controls were also inoculated subcutaneously with
179 PBS.

180

181 *Mosquito-primed subcutaneous (Nubian goats only)*

182 Naïve *Aedes aegyti* mosquitos were allowed to feed at a small surface area on the neck
183 for 20 minutes. This same surface area was then inoculated subcutaneously with 10^7
184 pfu insect-derived RVFV.

185

186 *Intranasal (Nubian and LaMancha goats)*

187 One group of Nubian and one group of LaMancha goats were each inoculated
188 intranasally with 10^7 pfu insect-derived RVFV. A second group of LaMancha goats was
189 inoculated intranasally with 10^7 pfu mammalian-derived RVFV.

190

191 Goat sampling

192 All goats were monitored for clinical symptoms and rectal temperatures daily. Blood for
193 serum isolation and oral and nasal swabs were collected prior to infection and daily for
194 the first 7 days post infection. Blood, oral and nasal swabs were also collected on days
195 14, 21, and 28 post infection. Serum samples and swabs were stored at -70°C.

196

197 Virus isolation by plaque assay

198 Serial dilutions of serum, nasal swabs and oral swabs were used to infect confluent
199 monolayers of VE6 cells for 1 hour. The virus was then removed and the cells were
200 overlayed with 1.75% carboxymethylcellulose (CMC). After 3 days the cells were
201 formalin-fixed and stained with 0.5% crystal violet (Sigma) to visualize and count
202 plaques.

203

204 RNA isolation and RT-PCR

205 RVFV RNA was extracted from serum using the TriPure Isolation Reagent (Roche)
206 according to the manufacturer's instructions. Purified RNA was stored at -70°C. We
207 detected viral RNA with a one-tube real-time polymerase chain reaction (RT-PCR) mix
208 (Rotor-Gene Dual Probe kit, Qiagen) (Espach, Romito, Nel, & Viljoen, 2002) as per
209 manufacturer's instructions and ran the samples on the Rotor Gene PCR machine with
210 the following conditions: 30 minutes at 50°C, 2 minutes at 95°C and 45 cycles of 15s at
211 95°C and 30s at 60°C. Primers (Invitrogen) and probe (Biosearch) targeted nucleotides
212 2912 to 3001 for the RVFV L gene segment (Bird, Bawiec, Ksiazek, Shoemaker, &
213 Nichol, 2007). All Ct values were plotted on a standard curve using a DNA plasmid
214 containing the targeted RVFV L gene segment (GenScript) and quantified.

215

216 In situ hybridization of RVFV-probe in tissues

217 Five-micron paraffin-embedded formalin fixed tissue sections were cut, air-dried, and
218 melted onto charged slides in a 60°C oven. The slides were then cleared and hydrated
219 in xylene and 100% ethanol, and then air-dried. The sections were quenched for 10
220 minutes in aqueous H₂O₂, boiled in target retrieval solution for 15 minutes, rinsed in
221 100% ethanol and air-dried again. A final treatment of protease plus enzyme for 15

222 minutes at 40°C was applied. Next, the probe (V-RVFV-ZH501-NP, from Advanced Cell
223 Diagnostics) was applied and incubated at 40°C for 2 hours. The hybridization
224 amplification steps (AMP 1-6) were applied to the slides for the recommended times
225 and temperatures as per the manual for the RNAscope® 2.5HD Detection Reagent –
226 Red kit (ACD). The signal was then visualized with Fast Red after which the slides
227 were counterstained with Gill's hematoxylin, dried, cleared and cover-slipped.

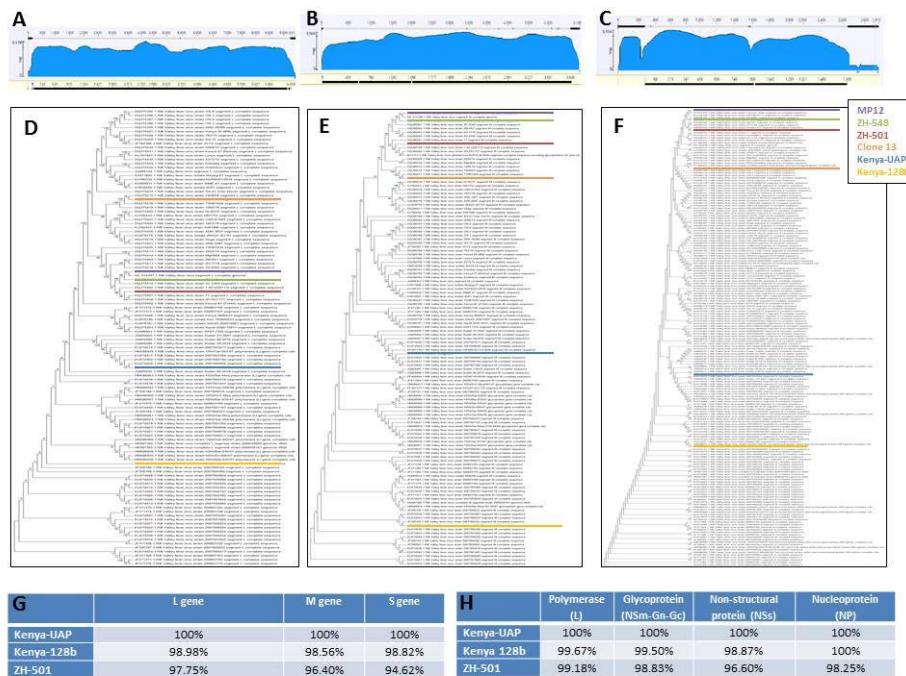
228

229 Neutralizing antibody detection (PRNT)

230 The presence of neutralizing antibodies to RVFV was determined by a plaque reduction
231 neutralization test (PRNT). Serial 2-fold dilutions of serum were prepared in PBS and
232 incubated with an equal volume of insect-derived RVFV for 1 hour at room temperature.
233 Thereafter, 75µl of the sera-virus mixture was adsorbed to confluent monolayers of
234 VeroE6 cells in 48-well plates in triplicate for 1 hour at 37°C, 5% CO₂ and 95% relative
235 humidity. A carboxymethylcellulose (CMC) overlay was then added to all wells and
236 plates were further incubated at 37°C, 5% CO₂ and 95% relative humidity. At 4 days
237 post infection the cells were fixed with 10% formalin, stained with 0.5% crystal violet and
238 plaques were counted. The reciprocal of the highest serum dilution that reduced
239 plaques by 80% CPE was read as the antibody-PRNT₈₀ titre for that sample.

240

241


242 **Results**

243

244 Phylogenetic analysis of a 2006-07 strain of the CFIA-Kenya-UAP RVFV strain

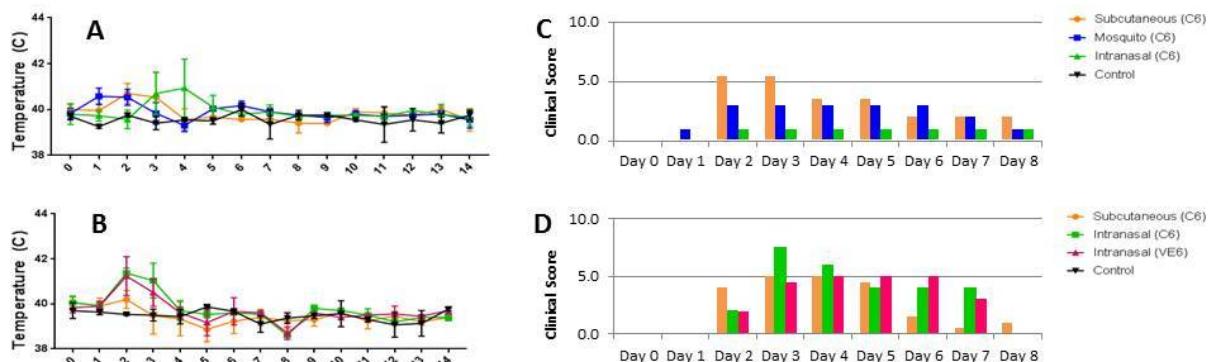
245 The RVFV strain used in this study was sequenced and compared to other published
246 RVFV sequences. Greater than 99% coverage of the reference ZH-501 strain and an
247 average read depth of 400-2000 reads per nucleotide was achieved (Figure 1 A-C). A
248 phylogenetic comparison demonstrated that the L, M and S segments all clustered with
249 other strains isolated during the 2006-07 outbreak from Sudan or Kenya (Figure 1 D-F,
250 respectively). We also directly compared sequences of our isolate to the Ken128b
251 strain used in another study (Faburay et al., 2015; Wilson et al., 2016) as well as the
252 commonly used ZH-501 strain. Our strain matched these with 96.6%-99.18% percent

253 identity at the amino acid level (Figure 1H) and with 94.6%-97.75% at the nucleotide
 254 level (Figure 1G).

255 Figure 1

256

257 Experimental Design


258 We compared three different routes of RVFV infection in the Nubian and LaMancha
 259 goat breeds (Table 1). Five groups were infected with virus derived from the C6/36
 260 (C6) mosquito cell line and one group was infected with virus grown in the Vero E6
 261 (VE6) mammalian cell line. The subcutaneous infection method is widely used in
 262 RVFV infection models (Nfon et al., 2014; Weingartl et al., 2014; Faburay et al., 2015;
 263 Wilson et al., 2016; Smith et al., 2012) and mimics a natural infection via a mosquito
 264 bite. This group allowed our 2007 RVFV strain to be compared to many other
 265 published studies. Our second route of inoculation consisted of a mosquito-primed
 266 subcutaneous infection. Several interesting studies in mice have demonstrated that
 267 mosquito saliva can modulate RVFV infection (Le Coupanec et al., 2013) as well as
 268 other arbovirus infections (Agarwal et al., 2016; Styler et al., 2011; Wichit, Ferraris,
 269 Choumet, & Missé, 2016) and we sought to evaluate this effect in a large animal

270 model. Thirdly, several groups were infected intranasally. A few studies have shown
 271 that aerosol exposure to RVFV could lead to different disease kinetics and outcomes
 272 in mice (Reed et al., 2013) and NHPs (Hartman et al., 2014; Smith et al., 2012).

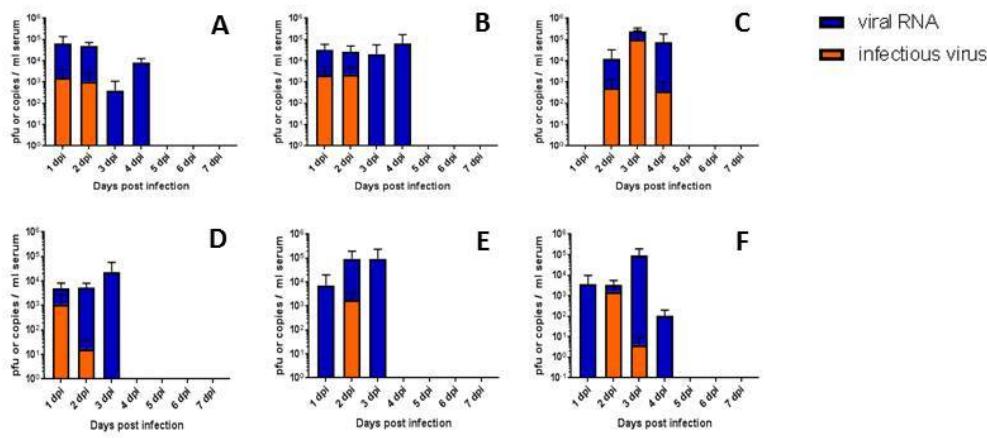
273

274 Clinical signs and Gross Pathology

275 Inoculation of both the Nubian and LaMancha goats with RVFV resulted in mild clinical
 276 signs in all of the groups during the first week of infection. In the Nubian goats the
 277 subcutaneous group reached the highest clinical score (2-5 out of 10), the mosquito-
 278 primed group was intermediate (1-3 out of 10) and the intranasal was the lowest (1 out
 279 of 10). The LaMancha goats had higher clinical scores overall with the intranasal
 280 groups reaching the highest scores (2-7 out of 10) and the subcutaneous exhibiting the
 281 lowest score (2-5 out of 10) (Figure 2C-D). The observed clinical signs included a mild
 282 fever (Figure 2A-B), clumped stool, diminished eating and mild depression.

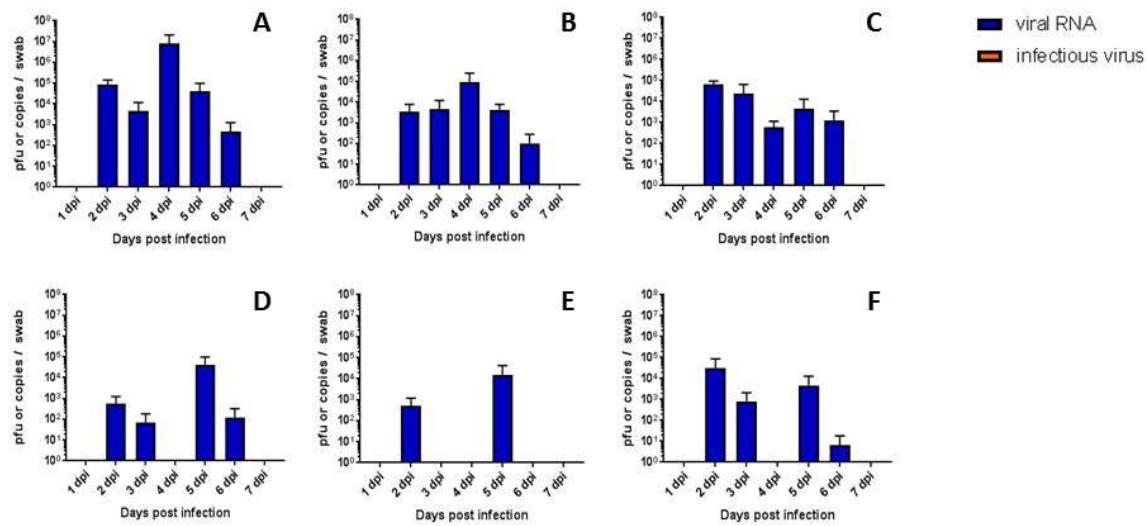
283 **Figure 2**

284


285 In the Nubian goats all signs generally resolved by 8-10 dpi. In the LaMancha goats
 286 most clinical signs improved at 8-10 dpi but did not resolve completely. However,
 287 ringworm was detected in all LaMancha goats at 14 dpi and likely contributed to the
 288 continued presence of mild clinical signs, primarily clumped stool. We postulated that
 289 the LaMancha goats had arrived with a latent ringworm infection which may have
 290 become apparent during the experiment. Finally, we performed autopsies and collected
 291 tissues at 1, 7, and 28 dpi. We did not detect any gross pathological changes at these
 292 time points.

293

294


295 Viremia, shedding and tissue viral load

296 All routes of inoculation in both Nubian and LaMancha goats led to infection and
 297 consistent viremia. In the Nubian goats, SQ and mosquito-primed-SQ inoculations
 298 produced peak titers of 10^3 pfu/ml while intranasally infected animals reached peak
 299 titers of 10^5 pfu/ml. All three inoculation routes produced viremia of similar duration with
 300 the virus detectable for 2-4 days by RT-PCR (Figure 3A-F, blue bars) and for 2 days by
 301 virus isolation (Figure 3A-F, orange bars). Interestingly, while subcutaneous and
 302 mosquito-primed-SQ injection led to viremia already on day 1 post infection, viremia in
 303 the intranasal group was delayed until day 2 or 3 post infection. In the LaMancha goats,
 304 a similar trend was seen with the mosquito-derived virus groups; however, virus
 305 duration tended to be a day shorter than in the Nubian goats (Figure 3D-F).

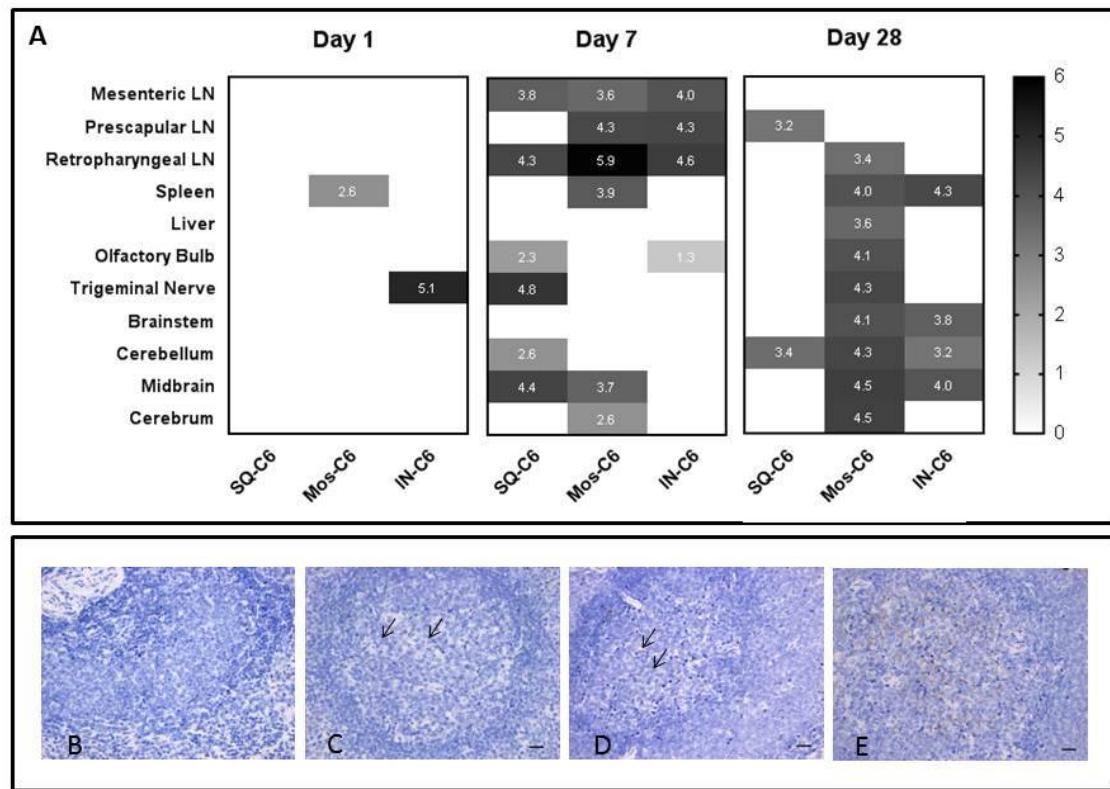
306 **Figure 3**

307

308 All of the Nubian goats had nasal (Figure 4A-C) and oral (Figure 4D-F) shedding of viral
 309 RNA (10^3 – 10^7 copies/swab) at 2-6 dpi; however no infectious virus was detected. In
 310 contrast, neither viral RNA nor infectious virus was found in nasal or oral swabs from
 311 any of the LaMancha goats.

312 Figure 4

313


314 In the Nubian goats, all routes of inoculation also led to a systemic spread of the virus
 315 into the tissues. Although no infectious virus was isolated at our timepoints, viral RNA
 316 was detectable in the spleen, liver, lymph nodes and a variety of brain tissues. Our first
 317 timepoint consisted of 1 dpi to catch early localization of the virus *in vivo*. Indeed, we
 318 detected viral RNA in the trigeminal nerve in the intranasally infected group and in the
 319 spleen in the mosquito-primed-SQ group (Figure 5A). By 7 dpi, the mesenteric,
 320 prescapular and retropharyngeal lymph nodes were generally positive for viral RNA in
 321 all groups (Figure 5A) (10²-10⁶ copies/g tissue) and a few remained positive at 28 dpi
 322 (Figure 5A). The spleen was positive for the duration of the experiment in the mosquito-
 323 primed group (10²-10⁴ copies/g tissue), but only appeared by day 28 in the intranasal
 324 group (Figure 5A) and not at all in the subcutaneous group. In contrast, viral RNA was
 325 not detected in the liver except at day 28 for the mosquito-primed group (Figure 5A).
 326 Virus had begun to invade brain tissue in the subcutaneous and mosquito-primed
 327 groups by 7 dpi (Figure 5A), and in the intranasal group by 28 dpi. Notably, virus was
 328 particularly widespread throughout all the brain tissues tested in the mosquito-primed-
 329 SQ group at 28 dpi (Figure 5A). In contrast, neither viral RNA nor infectious virus was
 330 found in any tissues in the LaMancha goats at 1, 7 or 28 dpi (data not shown).

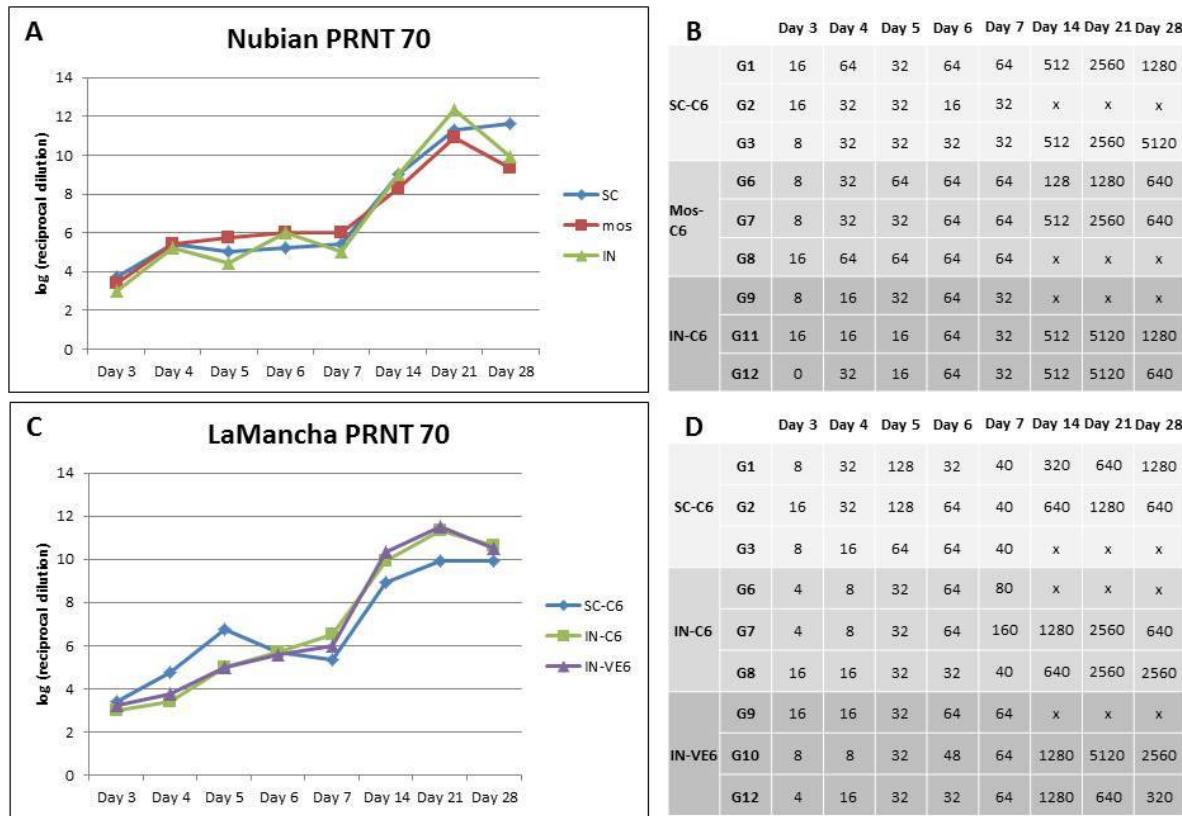
331

332 In-situ staining for RVFV

333 We also confirmed the presence of virus in some tissues using *in-situ hybridization*
 334 against the RVFV nucleoprotein (NP) sequence. For example, the spleen had positive
 335 staining at day 28 in all groups (Figure 5C-E) and at day 7 in the mosquito group (data
 336 not shown but similar to Figures 5C-D). In contrast, the SQ and IN groups had no
 337 staining at day 7 and none of the groups had staining at day 1 (Figure 5B is a
 338 representative image of negative staining in the spleen). Any positive staining was
 339 scattered only throughout the spleen follicles in the white pulp and ranged from weak
 340 (Figure 5C-D) to strong staining patterns (Figure 5E). Liver samples from all groups at
 341 day 28 and the trigeminal nerve from the intranasal group on day 1 were negative for
 342 virus staining.

343

344


345 Figure 5

346

347

348 Neutralizing antibodies

349 We detected neutralizing antibodies against RVFV in both Nubian (Figure 6A-B) and
 350 LaMancha (Figure 6C-D) goats starting at 3 days post infection. In both goat breeds, all
 351 groups displayed similar titers and kinetics with a peak at 21 days post infection and
 352 peak titers of 1/1280 to 1/5120.

353

354 Figure 6

355

356 **Discussion**

357

358 Robust challenge models for RVFV are an important prerequisite for testing novel
 359 therapeutics and vaccines and need further development for goats. We have previously
 360 established the necessary dose required for infection (Weingartl et al., 2014) and have
 361 demonstrated that mosquito-derived virus leads to more consistent viremia compared to
 362 mammalian-derived virus (Weingartl et al., 2014). In this follow-up study we investigated

363 whether other parameters affect the pathogenicity of RVFV in goats including different
364 breeds of goats, routes of infection and a new strain of RVFV.

365

366 Sequencing and phylogenetic analysis of the virus isolate CFIA-Kenya-UAP determined
367 that the virus clusters with other strains primarily isolated from Sudan, and that its origin
368 is distinct from the Kenyan-128b strain utilized by Faburay and Wilson *et. al.* as well as
369 other commonly used strains such as the Egyptian ZH-501 and ZH-548 strains.

370

371 Our previous experiments utilized Alpine-Boer goats infected with the RVFV ZH-501
372 strain. While infection produced consistent viremia and fever, it did not result in
373 observable clinical disease or significant gross pathology (Weingartl *et al.*, 2014). In
374 contrast, we found that the Kenyan strain used in this study induced mild to moderate
375 clinical symptoms in both the Nubian and LaMancha goats that lasted throughout the
376 acute infection phase (days 2-5 post infection). Notably, this was not likely due to
377 increased infectious virus production as peak viremia and duration in the LaMancha
378 goats were similar to what we saw in the Alpine-Boer goats. Of the three goat breeds
379 tested, Nubians infected intranasally with the Kenyan strain reached the highest peak
380 viremia titers (10^5 pfu/ml).

381

382 Viral spread to the tissues differed greatly between the goat breeds, with the LaMancha
383 completely lacking virus in any tissue tested at any time point, whereas many organs
384 tested positive for viral RNA in the Nubians at both 7 and 28 dpi. We first looked at a
385 variety of lymphoid tissues including the spleen which is well known to become
386 infected in sheep and cattle (Faburay *et al.*, 2016; Wilson *et al.*, 2016). We then
387 investigated other immune tissues including the mesenteric, prescapular and
388 retropharyngeal lymph nodes. Dendritic cells are thought to be the primary cells to be
389 infected by RVFV and once activated they travel to the lymph nodes. We
390 hypothesized that lymph nodes close to the site of infection might be preferentially
391 infected or contain higher amounts of virus. The prescapular lymph node was chosen
392 for its proximity to the subcutaneous injection site behind the shoulder blade, the
393 retropharyngeal lymph node for its proximity to the nasal and oral cavity, and the

394 mesenchymal lymph node as a site distant from either inoculation site. As viremia is
395 present already at 1 or 2 dpi, we chose an early time point to look at the lymph nodes.
396 While we did not find detectable virus in the lymph nodes at 1 dpi and could not
397 distinguish any kinetics, all of the lymph nodes were generally infected in all groups
398 by 7 dpi indicating systemic circulation of the virus.

399

400 Previous studies in calves, sheep, and non-human primates have found extensive
401 involvement of the liver in RVFV pathology including lesions and changes in blood
402 liver enzymes on days 3, 4, and 5 (Faburay et al., 2016; Rippy, Topper, Mebus, &
403 Morrill, 1992; Smith et al., 2012; Wilson et al., 2016). In contrast, we did not detect
404 significant viral loads in the liver in the Nubian or LaMancha goats at any time and
405 this was supported by a lack of *in-situ* staining in liver tissues. It is possible that tissue
406 tropism is different in the goats compared to sheep and cattle. Alternatively, we
407 propose that perhaps the liver is only infected during the acute phase of infection,
408 and any liver lesions or impairment may have been resolved in the goats by 7 dpi.

409

410 Interestingly, we detected substantial viral burden in different brain tissues in the Nubian
411 goats. For example, at 1 day post infection the trigeminal nerve was positive for viral
412 RNA in the intranasally-infected group. This time point is particularly notable in that it
413 detected neural infection prior to the presence of viremia. This would suggest that
414 neurons could be directly targeted during an intranasal exposure, rather than occurring
415 through viremia and a breakdown of the blood brain barrier. Unfortunately though, we
416 were unable to confirm the presence of virus in the trigeminal nerve with *in-situ* staining.
417 We also detected viral RNA in various brain tissues at 7 dpi in the subcutaneous and
418 mosquito-primed Nubian groups and in all groups by 28 dpi. The most consistently
419 infected brain tissues included the cerebellum, midbrain and brainstem. RVFV has been
420 detected in the brain in a few other studies. For example, in a mouse model of
421 aerosolized RVFV the authors found virus in the neuroepithelium of the olfactory bulb at
422 7 days post infection (Reed et al., 2013). In addition, the neurons of 21-day old calves at
423 9 days after subcutaneous infection were positive for RVFV (Rippy et al., 1992). *In vitro*
424 cultures of brain tissues from a variety of different ruminants have also been shown to

425 support robust RVFV replication (Gaudreault et al., 2015). Notably, our study is the first
426 indication of infected brain tissue in goats, the first to show positivity at such an early
427 timepoint post infection and the only study to have investigated different regions of the
428 brain.

429

430 In ruminants RVFV transmission appears to be primarily mosquito driven although
431 results from transmission experiments have been mixed. For example, a few studies
432 in sheep have demonstrated transmission through oral and respiratory routes
433 (Busquets et al., 2010; Easterday et al., 1962; Harrington et al., 1980; Yedloutschnig
434 et al., 1981). We hypothesized that the intranasal infection group might shed virus
435 and so we measured viral shedding in both nasal and oral swabs. Surprisingly, all
436 three routes of inoculation induced high and similar levels of shedding of viral RNA
437 throughout acute infection in the Nubian goats, while shedding was completely
438 absent in the LaMancha goats. This highlights a potential utility for nasal swabs in
439 diagnostic testing, however, shedding may be breed specific and requires further
440 investigations for reliability. We did not detect any infectious virus, suggesting that
441 under our laboratory conditions the risk of transmission from shedding is very low.
442 However, a few studies have demonstrated horizontal transmission from infectious
443 virus isolated from nasal and oral swabs in sheep (Busquets et al., 2010; Harrington
444 et al., 1980). Hence, further studies in the field with different breeds, species or viral
445 strains could be useful.

446

447 Both the Nubian and LaMancha goats produced low levels of neutralizing antibodies by
448 3 dpi, a sharp increase by 14 dpi and strong peak titers at 21 dpi. These kinetics are
449 similar to what we have seen with the Alpine-Boer goats infected with ZH-501 (Nfon et
450 al., 2014), and are similar to what we have seen in sheep challenged with ZH-501
451 (Weingartl et al., 2014). Peak levels of neutralizing antibodies were generally similar
452 between the LaMancha and Nubian goats, but were somewhat higher than similar
453 groups in the ZH-501 infected Boer goats (Nfon et al., 2012). In contrast to what we
454 have seen previously (Weingartl et al., 2014), no difference was seen between the
455 mammalian- and mosquito-derived virus groups in the LaMancha. Similarly, no

456 difference was seen between the subcutaneous and mosquito-primed groups in the
457 Nubian goats.

458

459

460 **Conclusion**

461

462 Overall, we have identified a novel goat breed that is useful for RVFV vaccine efficacy
463 testing and have demonstrated that a needle-free intranasal inoculation method
464 produces robust viremia in goats. In addition we have demonstrated the presence of
465 viral RNA in goat brain tissue up to 28 days post infection and a high degree of viral
466 RNA shedding after infection using both subcutaneous and intranasal routes.

467 Importantly, our data also suggests that airborne virus may cause direct invasion of
468 RVFV into the central nervous system. These findings highlight the impact that a
469 variety of different parameters have on RVFV infection in goats and could be utilized
470 in future vaccine and surveillance studies.

471

472

473

474 Acknowledgments

475 We graciously acknowledge the help of our dedicated animal care staff at NCFAD and
476 our lab manager Peter Marszal for his training and support through this project. We
477 would also like to thank the Canadian Safety and Security Program for funding this
478 research through the Biosafety Level 4 Zoonotic Disease Laboratory Network
479 (BSL4ZNET).

480

481 Author Contributions

482 Conceptualization, H.W.
483 Methodology, E.M., R.L.
484 Formal Analysis, A.K., C.E., B.C., O.L.
485 Investigation, A.K., V.S., O.L.
486 Resources, R.L.
487 Data Curation, A.K.
488 Writing – Original Draft Preparation, A.K.
489 Writing – Review & Editing, A.K., H.W.
490 Visualization, A.K.
491 Supervision, A.K. H.W.
492 Project Administration, A.K.
493 Funding Acquisition, H.W.

494

495

496 Conflicts of Interest

497 None

498

499 **References**

500 Agarwal, A., Joshi, G., Nagar, D. P., Sharma, A. K., Sukumaran, D., Pant, S. C., ...
501 Dash, P. K. (2016). Mosquito saliva induced cutaneous events augment
502 Chikungunya virus replication and disease progression. *Infection, Genetics and*
503 *Evolution*, 40, 126–135. <http://doi.org/10.1016/j.meegid.2016.02.033>

504 Archer, B. N., Thomas, J., Weyer, J., Cengimbo, A., Landoh, D. E., Jacobs, C., ...
505 Blumberg, L. (2013). Epidemiologic investigations into outbreaks of Rift Valley fever
506 in humans, South Africa, 2008–2011. *Emerging Infectious Diseases*, 19(12), 1918–
507 1925. <http://doi.org/10.3201/eid1912.121527>

508 Bett, B., Kiunga, P., Gachohi, J., Sindato, C., Mbotha, D., Robinson, T., ... Grace, D.
509 (2017). Effects of climate change on the occurrence and distribution of livestock
510 diseases. *Preventive Veterinary Medicine*, 137, 119–129.
511 <http://doi.org/10.1016/j.prevetmed.2016.11.019>

512 Bird, B. H., Bawiec, D. A., Ksiazek, T. G., Shoemaker, T. R., & Nichol, S. T. (2007).
513 Highly sensitive and broadly reactive quantitative reverse transcription-PCR assay
514 for high-throughput detection of Rift Valley fever virus. *Journal of Clinical*
515 *Microbiology*, 45(11), 3506–3513. <http://doi.org/10.1128/JCM.00936-07>

516 Brustolin, M., Talavera, S., NuÑez, A., Santamaría, C., Rivas, R., Pujol, N., ...
517 Busquets, N. (2017). Rift Valley fever virus and European mosquitoes: vector
518 competence of *Culex pipiens* and *Stegomyia albopicta* (= *Aedes albopictus*).
519 *Medical and Veterinary Entomology*, 31(4), 365–372.
520 <http://doi.org/10.1111/mve.12254>

521 Busquets, N., Xavier, F., Martín-Folgar, R., Lorenzo, G., Galindo-Cardiel, I., del Val, B.
522 P., ... Brun, A. (2010). Experimental infection of young adult European breed sheep
523 with Rift Valley fever virus field isolates. *Vector Borne and Zoonotic Diseases*
524 (*Larchmont, N.Y.*), 10(7), 689–96. <http://doi.org/10.1089/vbz.2009.0205>

525 Davies, F. G., Linthicum, K. J., & James, A. D. (1985). Rainfall and epizootic Rift Valley
526 fever. *Bulletin of the World Health Organization*, 63(5), 941–943.

527 Dungu, B., Louw, I., Lubisi, A., Hunter, P., von Teichman, B. F., & Bouloy, M. (2010).
528 Evaluation of the efficacy and safety of the Rift Valley Fever Clone 13 vaccine in
529 sheep. *Vaccine*, 28(29), 4581–4587. <http://doi.org/10.1016/j.vaccine.2010.04.085>

530 EASTERDAY, B. C., McGAVRAN, M. H., ROONEY, J. R., & MURPHY, L. C. (1962).
531 The pathogenesis of Rift Valley fever in lambs. *American Journal of Veterinary
532 Research*, 23, 470–479.

533 Espach, A., Romito, M., Nel, L. H., & Viljoen, G. J. (2002). Development of a diagnostic
534 one-tube RT-PCR for the detection of Rift Valley fever virus. *Onderstepoort J Vet
535 Res*, 69(3), 247–252.

536 Faburay, B., Gaudreault, N. N., Liu, Q., Davis, A. S., Shivanna, V., Sunwoo, S. Y., ...
537 Richt, J. A. (2016). Development of a sheep challenge model for Rift Valley fever.
538 *Virology*, 489, 128–140. <http://doi.org/10.1016/j.virol.2015.12.003>

539 Gaudreault, N. N., Indran, S.V., Bryant, P.K., Richt, J.A., Wilson, W.C. (2015).
540 Comparison of Rift Valley fever virus replication in NOrth American livestock and
541 wildlife cell lines. *Frontiers in Microbiology*, 6:664. doi: 10.3389/fmicb.2015.00664

542 Gür, S., Kale, M., Erol, N., Yapıcı, O., Mamak, N., & Yavru, S. (2017). The first
543 serological evidence for Rift Valley fever infection in the camel, goitered gazelle
544 and Anatolian water buffaloes in Turkey. *Tropical Animal Health and Production*,
545 49(7), 1531–1535. <http://doi.org/10.1007/s11250-017-1359-8>

546 Harrington, D. G., Lupton, H. W., Crabbs, C. L., Peters, C. J., Reynolds, J. A., & Slone,
547 T. W. (1980). Evaluation of a formalin-inactivated Rift Valley fever vaccine in sheep.
548 *American Journal of Veterinary Research*, 41(10), 1559–1564.

549 Hartman, A. L., Powell, D. S., Bethel, L. M., Caroline, A. L., Schmid, R. J., Oury, T., &
550 Reed, D. S. (2014). Aerosolized Rift Valley Fever Virus Causes Fatal Encephalitis
551 in African Green Monkeys and Common Marmosets. *Journal of Virology*, 88(4),
552 2235–2245. <http://doi.org/10.1128/JVI.02341-13>

553 Hassan, O. A., Ahlm, C., Sang, R., & Evander, M. (2011). The 2007 Rift valley fever

554 outbreak in Sudan. *PLoS Neglected Tropical Diseases*.
555 <http://doi.org/10.1371/journal.pntd.0001229>

556 Ikegami, T., & Makino, S. (2011). The pathogenesis of rift valley fever. *Viruses*.
557 <http://doi.org/10.3390/v3050493>

558 Indran, S. V., & Ikegami, T. (2012). Novel approaches to develop Rift Valley fever
559 vaccines. *Frontiers in Cellular and Infection Microbiology*, 2.
560 <http://doi.org/10.3389/fcimb.2012.00131>

561 Kortekaas, J., Antonis, A. F. G., Kant, J., Vloet, R. P. M., Vogel, A., Oreshkova, N., ...
562 Moormann, R. J. M. (2012). Efficacy of three candidate Rift Valley fever vaccines in
563 sheep. *Vaccine*, 30(23), 3423–3429. <http://doi.org/10.1016/j.vaccine.2012.03.027>

564 Le Coupanec, A., Babin, D., Fiette, L., Jouvion, G., Ave, P., Misse, D., ... Choumet, V.
565 (2013). Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity.
566 *PLoS Neglected Tropical Diseases*, 7(6).
567 <http://doi.org/10.1371/journal.pntd.0002237>

568 Leedale, J., Jones, A. E., Caminade, C., & Morse, A. P. (2016). A dynamic, climate-
569 driven model of rift valley fever. *Geospatial Health*, 11(1S).
570 <http://doi.org/10.4081/gh.2016.394>

571 Mansfield, K. L., Banyard, A. C., McElhinney, L., Johnson, N., Horton, D. L., Hernández-
572 Triana, L. M., & Fooks, A. R. (2015). Rift Valley fever virus: A review of diagnosis
573 and vaccination, and implications for emergence in Europe. *Vaccine*.
574 <http://doi.org/10.1016/j.vaccine.2015.08.020>

575 Métras, R., Porphyre, T., Pfeiffer, D. U., Kemp, A., Thompson, P. N., Collins, L. M., &
576 White, R. G. (2012). Exploratory Space-Time Analyses of Rift Valley Fever in South
577 Africa in 2008-2011. *PLoS Neglected Tropical Diseases*, 6(8).
578 <http://doi.org/10.1371/journal.pntd.0001808>

579 Monaco, F., Pinoni, C., Cosseddu, G. M., Khaiseb, S., Calistri, P., Molini, U., ... Lelli, R.
580 (2013). Rift Valley fever in Namibia, 2010. *Emerging Infectious Diseases*, 19(12),

581 2025–2027. <http://doi.org/10.3201/eid1912.130593>

582 Morrill, J. C., Laughlin, R. C., Lokugamage, N., Wu, J., Pugh, R., Kanani, P., ... Peters,
583 C. J. (2013). Immunogenicity of a recombinant Rift Valley fever MP-12-NSm
584 deletion vaccine candidate in calves. *Vaccine*, 31(43), 4988–4994.
585 <http://doi.org/10.1016/j.vaccine.2013.08.003>

586 Moutailler, S., Roche, B., Thibierge, J. M., Caro, V., Rougeon, F., & Failloux, A. B.
587 (2011). Host alternation is necessary to maintain the genome stability of Rift Valley
588 fever virus. *PLoS Neglected Tropical Diseases*, 5(5).
589 <http://doi.org/10.1371/journal.pntd.0001156>

590 Napp, S., Chevalier, V., Busquets, N., Calistri, P., Casal, J., Attia, M., ... Bayomy, S.
591 (2018). Understanding the legal trade of cattle and camels and the derived risk of
592 Rift Valley Fever introduction into and transmission within Egypt. *PLoS Neglected
593 Tropical Diseases*, 12(1). <http://doi.org/10.1371/journal.pntd.0006143>

594 Ndiaye, E. H., Fall, G., Gaye, A., Bob, N. S., Talla, C., Diagne, C. T., ... Diallo, M.
595 (2016). Vector competence of *Aedes vexans* (Meigen), *Culex poicilipes* (Theobald)
596 and *Cx. quinquefasciatus* Say from Senegal for West and East African lineages of
597 Rift Valley fever virus. *Parasites and Vectors*, 9(1). <http://doi.org/10.1186/s13071-016-1383-y>

599 Nfon, C. K., Marszal, P., Zhang, S., & Weingartl, H. M. (2012). Innate immune response
600 to rift valley fever virus in goats. *PLoS Neglected Tropical Diseases*, 6(4).
601 <http://doi.org/10.1371/journal.pntd.0001623>

602 Nguku, P. M., Sharif, S. K., Mutonga, D., Amwayi, S., Omolo, J., Mohammed, O., ...
603 Breiman, R. F. (2010). An investigation of a major outbreak of rift valley fever in
604 Kenya: 2006–2007. *American Journal of Tropical Medicine and Hygiene*, 83(2
605 SUPPL.), 5–13. <http://doi.org/10.4269/ajtmh.2010.09-0288>

606 Nicholas, D. E., Jacobsen, K. H., & Waters, N. M. (2014). Risk factors associated with
607 human Rift Valley fever infection: systematic review and meta-analysis. *Tropical
608 Medicine & International Health : TM & IH*, 19(12).

609 <http://doi.org/10.1111/tmi.12385>

610 Pittman, P. R., McClain, D., Quinn, X., Coonan, K. M., Mangiafico, J., Makuch, R. S., ...
611 Peters, C. J. (2016). Safety and immunogenicity of a mutagenized, live attenuated
612 Rift Valley fever vaccine, MP-12, in a Phase 1 dose escalation and route
613 comparison study in humans. *Vaccine*, 34(4), 424–429.
614 <http://doi.org/10.1016/j.vaccine.2015.12.030>

615 Redding, D. W., Tiedt, S., Lo Iacono, G., Bett, B., & Jones, K. E. (2017). Spatial,
616 seasonal and climatic predictive models of Rift Valley fever disease across Africa.
617 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1725),
618 20160165. <http://doi.org/10.1098/rstb.2016.0165>

619 Reed, C., Lin, K., Wilhelmsen, C., Friedrich, B., Nalca, A., Keeney, A., ... Smith, D. R.
620 (2013). Aerosol Exposure to Rift Valley Fever Virus Causes Earlier and More
621 Severe Neuropathology in the Murine Model, which Has Important Implications for
622 Therapeutic Development. *PLoS Neglected Tropical Diseases*, 7(4).
623 <http://doi.org/10.1371/journal.pntd.0002156>

624 Rippy, M. K., Topper, M. J., Mebus, C. A., & Morrill, J. C. (1992). Rift Valley Fever
625 Virus-induced Encephalomyelitis and Hepatitis in Calves. *Veterinary Pathology*,
626 29(6), 495–502. <http://doi.org/10.1177/030098589202900602>

627 Smith, D. R., Bird, B. H., Lewis, B., Johnston, S. C., McCarthy, S., Keeney, A., ...
628 Hensley, L. E. (2012). Development of a novel nonhuman primate model for Rift
629 Valley fever. *Journal of Virology*, 86(4), 2109–20. <http://doi.org/10.1128/JVI.06190-11>

631 Soi, R. K., Rurangirwa, F. R., McGuire, T. C., Rwambo, P. M., DeMartini, J. C., &
632 Crawford, T. B. (2010). Protection of sheep against Rift Valley fever virus and
633 sheep poxvirus with a recombinant capripoxvirus vaccine. *Clinical and Vaccine
634 Immunology*, 17(12), 1842–1849. <http://doi.org/10.1128/CVI.00220-10>

635 Sow, A., Faye, O., Ba, Y., Ba, H., Diallo, D., Faye, O., ... Sall, A. A. (2014). Rift valley
636 fever outbreak, Southern Mauritania, 2012. *Emerging Infectious Diseases*, 20(2),

637 296–299. <http://doi.org/10.3201/eid2002.131000>

638 Styer, L. M., Lim, P.-Y., Louie, K. L., Albright, R. G., Kramer, L. D., & Bernard, K. A.
639 (2011). Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice.
640 *Journal of Virology*, 85(4), 1517–1527. <http://doi.org/10.1128/JVI.01112-10>

641 Turell, M. J., Britch, S. C., Aldridge, R. L., Xue, R. De, Smith, M. L., Cohnstaedt, L. W.,
642 & Linthicum, K. J. (2015). Potential for *Psorophora columbiae* and *Psorophora*
643 *ciliata* Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus. *Journal*
644 *of Medical Entomology*, 52(5), 1111–1116. <http://doi.org/10.1093/jme/tjv093>

645 Warimwe, G. M., Lorenzo, G., Lopez-Gil, E., Reyes-Sandoval, A., Cottingham, M. G.,
646 Spencer, A. J., ... Gilbert, S. C. (2013). Immunogenicity and efficacy of a
647 chimpanzee adenovirus-vectored Rift Valley Fever vaccine in mice. *Virology*
648 *Journal*, 10. <http://doi.org/10.1186/1743-422X-10-349>

649 Weingartl, H. M., Miller, M., Nfon, C., & Wilson, W. C. (2014). Development of a rift
650 valley fever virus viremia challenge model in sheep and goats. *Vaccine*, 32(20),
651 2337–2344. <http://doi.org/10.1016/j.vaccine.2014.02.066>

652 Wichit, S., Ferraris, P., Choumet, V., & Missé, D. (2016). The effects of mosquito saliva
653 on dengue virus infectivity in humans. *Current Opinion in Virology*.
654 <http://doi.org/10.1016/j.coviro.2016.10.001>

655 Wilson, W. C., Davis, A. S., Gaudreault, N. N., Faburay, B., Trujillo, J. D., Shivanna, V.,
656 ... Richt, J. A. (2016). Experimental infection of calves by two genetically-distinct
657 strains of rift valley fever virus. *Viruses*, 8(5). <http://doi.org/10.3390/v8050145>

658 Yedloutschnig RJ, Dardiri AH, W. J. (1981). Rift Valley Fever Infection in sheep by
659 contact exposure. *Contr. Epidem. Biostatist*, 3, 53–59.

660

661

662

663 **Table 1 – Experimental groups**

Group	Route of infection	Cells used to grow virus stock	Dose
Nubian goats			
A	Subcutaneous	Mosquito cells	10^7 pfu/ml
B	Mosquito-primed subcutaneous	Mosquito cells	10^7 pfu/ml
C	Intranasal	Mosquito cells	10^7 pfu/ml
LaMancha goats			
D	Subcutaneous	Mosquito cells	10^7 pfu/ml
E	Intranasal	Mosquito cells	10^7 pfu/ml
F	Intranasal	Mammalian cells	10^7 pfu/ml

664

665

666 **Figure Legends**

667

668 Figure 1 - Sequence of RVFV strain Kenya-AUP.

669 (A-C) The amount of the total genome that was sequenced, with the height of the
670 curve indicated the number of reads achieved and the length representing the
671 basepairs of the gene. (D-F) A phylogenetic analysis of the three RVFV genome
672 segments L, M, and S, respectively. A nucleotide (G) and amino acid (H)
673 alignment of the three RVFV genome segments, L, M and S, respectively.

674

675 Figure 2 – Clinical signs

676 (A-B) Rectal temperatures were taken and recorded daily. (C-D) Each goat was
677 examined daily for signs of illness and given a clinical score between 1 and 10.

678

679 Figure 3 - Viremia

680 Quantification of RVFV viremia in the Nubian (A-C) and LaMancha (D-F) goats
681 after infection with RVFV by different routes of infection. Blue bars indicate the
682 presence of viral RNA as measured by RT-PCR. Orange bars indicate the
683 presence of infectious virus as measured by plaque assay.

684

685 Figure 3 – Oral and nasal shedding

686 Quantification of RVFV in oral (A-C) and nasal (D-F) swabs in the Nubian goats.
687 Blue bars indicate the presence of viral RNA as measured by RT-PCR. Orange
688 bars indicate the presence of infectious virus as measured by plaque assay.

689

690 Figure 4 – Viral load in tissues

691 (A) Quantification of RVFV in tissues in the Nubian goats at 1 dpi, 7 dpi and 28
692 dpi. (B-E) In-situ hybridization staining of spleen tissues from day 7 SQ, day 28
693 SQ, day 28 mosquito and day 28 IN, respectively. Arrows indicate individual dots
694 in the slides where weak staining is present.

695

696 Figure 5 – Neutralizing antibody response

697 Quantification of neutralizing antibodies against RVFV in serum. The titers are
698 given as a reciprocal dilution for the Nubian (A-B) and LaMancha (C-D) goats.