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Abstract: 
The ongoing growth of international occurrence of depression and its ability to 
co-occur with other serious medical disorders such as heart disease, cancer, 
diabetes, and Parkinson’s disease is a current public health problem. Inhibitor of 
DNA-Binding/Differentiation (ID) proteins are part of a group of transcriptional 
factors that have been seen to be involved in neurocognitive disorders and 
therefore, may have influence on depressive disorders. Previously, it has been 
established that environmental estrogenic endocrine disruptors (EEDs) such as 
polychlorinated biphenyls (PCBs) & bisphenol A (BPA) have played an important 
role in the impact of depressive disorders. Hence, based on many studies, we 
consider the impact of these environmental pollutants on the group of ID 
proteins. Improved understanding of how the interaction of ID proteins by EED 
exposure can influence depressive disorders will contribute essential evidence 
that can further benefit our public health community with innovative knowledge to 
prevent these types of mental illnesses.  
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1.  Introduction 

Depression, is a shared but serious mood disorder. It can cause severe 
symptoms that affect how you think, feel, and handle daily activities such as 
working, eating, or sleeping. Depression is one of the most common mental 
disorders in the United States [1-2]. An estimated 16.2 million adults in the United 
States have at minimum one depressive episode, which signifies 6.7% of all U.S. 
adults. Furthermore, depressive episodes are greater among adult females 
(8.5%) when compared to males (4.8%) [1-2]. Depression can occur at any age 
but often starts in adulthood. There are numerous forms of depression and may 
cultivate under distinctive conditions such as persistent depressive disorder, 
psychotic depression, postpartum depression, bipolar disorder, and seasonal 
affective disorder [1-2]. Today, there are many factors that can onset the 
development of depression. Currently, there is a prerequisite to identify how 
environmental pollutants such as estrogenic endocrine disruptors (EEDs) 
contribute to depressive disorder predisposition.  
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Estrogen, which belongs to a group of hormones, has been previously 
demonstrated to have numerous purposes including regulation of endocrine 
development and growth alongside metabolism [3]. Additionally, estrogen has 
been seen to affect depressive outcomes [4-6]. Because of this, depression may 
be predisposed to EED exposure. These categories of pollutants have the 
capability to alter hormone production or function. The group includes 
phytoestrogens, heavy metals and anthropogenic chemicals such as 
polychlorinated biphenyls (PCBs), bisphenol A (BPA), arsenic, phthalates, and 
DES (Diethylstilbestrol) [7-11]. Data has demonstrated links between EED 
exposure and depression [12-17]. Based on findings that demonstrate a family of 
transcriptional proteins, Inhibitor of DNA-Binding/Differentiation or ID proteins has 
been connected with depression [18-22], we will also highlight how exposure to 
environmental EEDs may potentiate depression outcomes via ID proteins. 
Overall, the goal of this review is to make links between ID proteins to EED 
interactions thus leading to altered results in depression. Additional research in 
these competences may reveal novel or more valuable modalities and aid to 
deliver methodologies for prevention of this disorder. 

 
1. Inhibitor of DNA Binding/Differentiation 
1.1 Background 

ID proteins consist of four genes (ID1, ID2, ID3, ID4) that make up a 
group of transcriptional regulators. The ID family shares a widespread amino acid 
sequencing homology within their helix-loop-helix (HLH) domain [23-24]. ID 
proteins act as transcriptional regulators by dimerizing with basic HLH 
transcription factors such as E12, E47, and HEB [25-26]. Furthermore, they are 
involved in the modulation of various biological processes such as cell cycle 
control, angiogenesis or apoptosis, cell differentiation and proliferation, 
metastasis, and senescence [27-28]. ID proteins play an essential role in nervous 
tissue biology and remain constant through the nervous tissue development [29-
31]. Depression may co-exist with other neurocognitive disorders where nervous 
tissue development is an important factor such as Parkinson’s disease, 
dementia, and Alzheimer’s [32-33]. Reactive oxygen species (ROS) has 
demonstrated to induce ID protein-facilitated dysregulation and cell proliferation 
in both in vivo and in vitro settings [34-36]. Additionally, it was shown by Das et al 
that exposure of 17-β estradiol (E2) with estrogenic endocrine disruptors (EEDs) 
such as polychlorinated biphenyl 153 (PCB153) to vascular endothelial cells 
(ECs) proliferate ROS [37]. Since ID proteins such as ID3 are redox-sensitive, it 
acts as an essential factor of the ROS-stimulated proliferation of ECs and E2 to 
PCB153 [37-39]. Depression, which is categorized as a mood disorder is 
triggered when neurotransmitters, that are chemical messengers that help the 
brain communicate with parts of the body, are out of equilibrium. Low levels of 
neurotransmitters may play a role in why some individuals are more predisposed 
to depression including dopamine, norepinephrine, & serotonin [1]. It has been 
shown that these neurotransmitters have been interconnected with various levels 
of ROS [40-43]. As levels of ROS increase, human tissue becomes affected at a 
molecular level over duration of time. Since ID proteins are demonstrated to be 
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redox sensitive, we predict environmental toxicants such as EEDs may enhance 
ROS-stimulated levels of ID proteins, thus causing the onset of depressive 
dysfunction. 

 
1.2 Inhibitor of DNA Binding/Differentiation and Depressive Disorders 

 
      There has been evidence demonstrating the role of ID proteins in 

depressive disorders. Disruptions in behavioral and circadian rhythm-
connected physiological processes are regularly seen in depressed patients. 
Nonetheless, contribution of the circadian system in depressive 
pathophysiology is incompletely comprehended. Savalli et al demonstrated 
that stress-stimulated anhendonic behavior in mice is connected with agitated 
diurnal oscillation of expression of genes: Rev-erbα, ROR-β, ROR-γ, CRY2, 
PER1, CLOCK, and ID2 in the mouse basolateral amygdala. The aberrant 
control of diurnal rhythmicity connected to depression may directly result from 
the mental illness itself and thus establish an animal model for additional 
exploration [20].  

Epigenetic markers were previously used to determine various rating 
of depression in maltreated children. Weder et al performed a genome-wide 
methylation study in 94 maltreated and 96 healthy non-traumatized children 
with saliva-resultant DNA. Results showed that methylation in 3 genes were 
considered significant predictors of depression including Tubulin 
Polymerization Promoting Protein (TPPP), DNA-Binding Protein Inhibitor-3 
(ID3), and Glutamate NMDA Receptor (GRIN1). These are biologically 
applicable with TPPP involved in neural circuitry growth, ID3 involved in 
response to stress, and GRIN1 involved in neural pliability suggesting 
epigenetic changes in these genes particularly with the combination of 
maltreatment may present risk for depression in children [21].  
   Furthermore, Motalvo-Ortiz et al validated the epigenetic changes 
of genes GRIN1, ID3, and TPPP. Secondary analysis was conducted using 
gene expression data obtained from medial prefrontal cortex (mPFC) tissue of 
mice that undergone a model of maternal neglect including early weaning 
(MSEW) and maternal separation. Depression-like phenotype data from using 
elevated plus maze (EPM), forced swimming tests (FST), and elevated plus 
maze (EPM) were also available. Results revealed gene expression of ID3, 
TPPP, and GRIN1 in the mPFC to indicate behavioral alterations in the FST 
and EPM, thus further supporting the role of these genes in the depressive 
phenotypes following early life stress [22].  
    

    1.3     Inhibitor of DNA Binding/Differentiation and Environmental Pollutants 

   It was previously determined how ID3 may contribute to 
multifaceted ailments via metabolic distresses through environmental 
influence [18]. Additionally, ID3 also influences metabolic health & obesity in 
response to environmental stressors [44]. ID proteins have been seen linked 
to various types of EEDs such as PCBs, BPA, arsenic, and phthalates. 
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Mechanisms reliable for initiating micro-vascular damage continue to be 
inadequately definite, while aspects such as oxidative stress induced by 
environmental toxicants have been suggested. Association in development of 
proliferative vascular lesions via increased neovascularization has been 
brought to attentiveness. Data has previously demonstrated how ROS via 
PCBs may contribute to neo-vascular phenotype progression with the 
objective of demonstrating the role of environmental toxicants in endothelial 
dysfunction with a focus on ID3. PCB-stimulated ROS intermediated neo-
vascular phenotype furthermore depended on Pyk2 (Protein-tyrosine kinase 
2) and ID3. Also, PCB153 treatment expanded endothelial spheroids' 
measurement with conditions that work on behalf of stem cell spheroid clonal 
selection. Higher ID3 protein expression matched with a greater quantity of 
oxidative DNA injury marker 8-OHdG in blood vessels. Overall, this shows the 
conceivable function of ID3 in regulating micro-vascular lesion growth and 
vascular endothelial cell survival driven by environmental toxicants such as 
PCB153 [37-38]. Another study investigated how exposure to BPA stimulated 
reproductive anomalies in adult male testis. Adult C57/BI6 males were 
exposed to sesame oil, BPA, or diethylstilbestrol (DES) as a positive control 
from gestational days 10 to 16 and observed. Adult mRNA levels of genes 
associated with sexual maturation and differentiation, ID2 and GATA4, were 
lower only in testes exposed to DES. At the molecular level, DES exposure 
via in utero, not BPA, leads to decreased mRNA gene expression connected 
with Sertoli cell differentiation [45]. 

   Arsenic has also been seen to be involved with ID proteins. Arsenic 
exposure is known to be a risk factor for various cancers. Tsai et al aimed to 
investigate the contribution of ID1 and connected signaling molecules in 
arsenic-mediated angiogenesis. The initial screening led to low arsenic 
contractions showing cellular responses including angiogenic activity and 
enhanced endothelial cell viability alongside increased ID1 expression. 
Stimulated arsenic angiogenesis was suppressed in the ID1-knocked down 
cells compared to control cells. Additionally, angiogenic action and arsenic-
stimulated expression of ID1 showed mediated by PI3K/Akt, nitric oxide 
synthase (NOS), and NF-κB signaling. As a result, the data shows that ID1 
regulates angiogenesis supported by arsenic and ID1 may be an anti-
angiogenesis target for cancer associated with arsenic [46]. Furthermore, it 
was found that treatment with stress-stimulated metalloid arsenite, a chemical 
compound containing an arsenic oxoanion, led to accumulation of GFP-
tagged ID3 in the cytoplasm. Spaced N-terminal cysteine residues of ID3 
interacted with arsenic derivate phenylarsine oxide (PAO) and showed 
importance for arsenite-produced cytoplasmic accumulation, which suggests 
that arsenite induces CRM1-dependent nuclear export of ID3 via binding to N-
terminal cysteines. Overall, this indicates that ID3 may be involved in the 
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biological activities of arsenite [47].  

  Arsenic trioxide (ATO), an important oxide of arsenic is a main 
precursor to other arsenic compounds. It has shown to strongly induce 
differentiation and apoptosis in acute promyleocytic leukemia, alongside cell 
cycle arrest in most solid tumors. Zhang et al screened signaling pathways 
that are involved in antitumor mechanisms and molecules that contribute in 
the antitumor effects of ATO. Results demonstrated that after verification at 
the transcriptional and translational levels in 4 various cancer cells, ID2 was 
identified as an ATO anti-tumor-connected protein. Furthermore, silencing of 
ID2 may enhance ATO-stimulated cell proliferation inhibition in cancer cells 
[48]. Phthalates, which are also considered EEDs, are widely used in the 
production of plastic products and other consumer goods. In a study done by 
Yao et al, mono-(2-ethylhexyl) phthalate (MEHP) stimulates matrix 
metalloproteinase 2 (MMP2) expression in testicular embryonal carcinoma 
NT2/D1 cells however, has no important result on MMP9 expression. 
Additionally, MEHP treatment caused certain genes including GJA1 (Gap 
junction protein-alpha 1), VCL (vinculin), and ID1 (inhibitor of DNA-binding 
protein-1) to down-regulate, while CLDN6 (claudin-6) and CTNNB1 (beta 1-
catenin) were up-regulated. Results showed that Yao et al provide insights 
into mechanisms that may account for modulating progression of cancer 
following exposure to phthalates [49].  

2. Relationship between Environmental Toxicants and Depressive Disorders 

   Estrogenic endocrine disruptor exposure has been previously 
demonstrated in various animal and population studies with a focus on 
depression. PCBs have been connected with depressive symptoms. Data 
was collected from 178 individuals on two measurement time points. PCBs 
were analyzed in plasma through human bio-monitoring and depressive 
symptoms were validated via questionnaire. Results demonstrated 
noteworthy mediation over time for dioxin-like, higher-chlorinated, and lower-
chlorinated PCBs. Positive connections between PCB exposures with 
depressive symptom severity was facilitated by the main dopamine (DA) 
metabolite homovanillic acid (HVA). Higher exposure was also linked with 
PCBs with lower concentration in urinary HVA. Overall, this indicates links 
with PCB exposure and higher depressive symptoms after one year is 
mediated by the DA metabolite HVA as a substitute for DA, which can help 
elucidate principal neurochemical mechanisms of PCB-related depressive 
symptoms [50].  Additionally, studies suggest that exposure to BPA may 
contribute to neurobehavioral problems in childhood, resultant of symptoms of 
anxiety and depression. Perera et al investigated the association of prenatal 
BPA, observing sex-focused differences in both depressive and anxiety 
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indications in children aged 10-12 years old. Important positive connections 
between symptoms of depression and anxiety and prenatal BPA were 
observed among boys but not girls aged 10-12 years old [51]. Similarly, BPA 
has also been addressed in animal studies investigating whether paternal 
BPA can affect emotions of male rats and their respected offspring. Eighteen 
adult rats (F0) received a BPA diet for 21 weeks and then mated with non-
exposed females to produce offspring (F1). Behaviors were evaluated in 
various tests including forced swimming test, elevated-plus maze, and open-
field test. Furthermore, their serum corticosterone was observed. Exposure to 
BPA stimulated higher anxiety behaviors in F0 rats. Paternal exposure led to 
higher anxiety behaviors in F1 females and aggravated depression behaviors 
in both sexes of F1 rats. This data suggests preconception paternal exposure 
to low dose BPA may stimulate transgenerational sex-focused deficiencies in 
adult rats [51]. 

   There also has been a relationship between arsenic and 
depression. A sample of 223 women was previously gathered from five public 
services in Chile. Data associated to arsenic exposure and urine samples for 
inorganic arsenic assessments were collected during women's second 
trimester pregnancy. Results revealed that the depression history, physical 
perception, number of children, age, and stressful maternity were associated 
with postpartum score. Furthermore the score was also associated with 
inorganic arsenic in women older than 25 years old [52]. Additionally, 
evidence indicates that subchronic exposure to arsenic causes cerebral 
neurodegeneration, which leads to disturbances associated to psychiatric 
disorders such as depression. Chang et al assessed the effects of subchronic 
arsenic exposure on the depression- and anxiety-like behaviors in both 
normal mice and chemically stimulated mouse model of depression via 
reserpine pretreatment. Results showed that arsenic exposure for 4 weeks 
increased anxiety-like behaviors on higher plus maze and open field test in 
normal mice and 8 weeks of exposure increased depression-like behaviors on 
forced swimming test and tail suspension test in reserpine pretreated mice. 
This reveals how subchronic exposure to arsenic induces anxiety-like 
behavior, while increasing depression-like behavior in the mouse model of 
depression [53]. 

3. Genomic Interactions between Inhibitor of DNA Binding/Differentiation, 
Environmental Toxicants, and Depression  

   To justify how the combination of ID proteins and environmental 
toxicants may contribute to depressive dysfunction at genomic levels, we 
integrated various publicly accessible tools in order to help enhance our 
general understanding. We first used Comparative Toxicogenomic Database 
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(CTD) [54] to support our understanding of gene interactions with ID proteins, 
various EEDs (including: PCBs, BPA, arsenic, and phthalates), and 
depressive disorders. Genes were curated for each of the categories resulting 
in a common gene list using a venn diagram [55]. Figures 1 & 2 reveal the 
interacting genes between ID proteins, EEDs, and depression disorders. 
Results displays the overlapping 437 interacting genes among EEDs and 14 
interacting genes between ID proteins, EEDs, and depression. Overlapping 
gene results are furthermore shown via Table 1. To add how significant these 
genes are, we used Kyoto Encyclopedia of Genes and Genomes Pathway to 
represent their genomic relation. We established that these 14 genes are 
represented in 33 molecular pathways [56]. The top 3 pathways are 
represented in Table 2 and it is revealed that each of these pathways have a 
role in depression and related ailments [57-61]. To validate that these 14 
genes do interact and create a network, STRING database was used to help 
provide protein-to-protein interaction [62-63]. As demonstrated in Figure 3, 
STRING delivers supplementary evidence that these genes create a genomic 
network, thus elucidating the role of ID proteins and EED exposure on 
depression via associated interacting-genes. 
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                           Figure 1. Venn diagram showing interacting genes between estrogenic endocrine disruptors (EEDs):  Polychlorinated biphenyls (PCBs; 7,849 genes), Bisphenol A (BPA; 20,873 genes), Arsenic (4,136 genes), and Phthalates (2,497 genes). Results show 437 overlapping genes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Venn diagram demonstrates interacting genets between overlapping estrogenic endocrine disruptors (EEDs; 437 genes), ID proteins (144 genes), and depression (32,056 genes). Results reveal 14 overlapping genes.  
                  Table 1. Overlapping 14 interacting EED-ID protein-depression genes displayed below.  

Gene Symbol Gene Name 
ATF3 Activating transcription factor 3 
CDK2 Cyclin dependent kinase 2  
ELOC Elongin C 
GATA4 GATA binding protein 4  
HSPA1A Heat shock protein family A (Hsp70) member 1A  
HSPA5 Heat shock protein family A (Hsp70) member 5 
HSPA8 Heat shock protein family A (Hsp70) member 8  
HSPA9 Heat shock protein family A (Hsp70) member 9  
ID1 Inhibitor of DNA binding 1, HLH protein 
ID2 Inhibitor of DNA binding 2, HLH protein  
ID3 Inhibitor of DNA binding 3, HLH protein 
MAPK1 Mitogen-activated protein kinase 1 
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MAPK3 Mitogen-activated protein kinase 3 
SREBF1 Sterol regulatory element binding transcription factor 1  

 

 

 Table 2. Top 3 pathways with 14 common overlapping genes with EEDs, ID proteins, and depression. 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Gene network demonstrates fully connected structure between overlapping ID protein, EED, and depression genes.  
4. Conclusion 
 Inhibitor of DNA-Binding/Differentiation proteins has presented to be 
connected with depression. Various studies have reported association between 
depression and EED exposure such as PCBs, BPA, arsenic, and phthalates. 
Based on evidence revealed in this review, we have shown that EED exposure 
may contribute to ID protein activation to modify molecular mechanisms, thus 
altering depressive dysfunction outcomes. Due to limited evidence caused by the 
novelty of this topic, it is essential to discuss limitation of this study by conducting 
further research to assess how exposure to EEDs and ID proteins play a function 
in depressive perturbations. Results from this will be beneficial in allowing 

Pathway Name Gene Count P-Value Genes
TGF-beta signaling pathway 5 9.34E-06 MAPK1, ID2, ID1, MAPK3, ID3
Signaling pathways regulating pluripotency of stem cells 5 7.04E-05 MAPK1, ID2, ID1, MAPK3, ID3
Estrogen signaling pathway 4 5.71E-04 MAPK1, MAPK3, HSPA1A, HSPA8
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various public health & neurological professionals to uncover innovative 
opportunities that can be potentially used for prevention and treatment of these 
types of disorders and beyond.  
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