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Abstract- A study of Bianchi Type I cosmological model is undertaken in the framework of creation of particles. To 

accommodate the creation of new particles, the universe is regarded as an Open thermodynamical system. The energy 

conservation equation is modified with the incorporation of a creation pressure in the energy momentum tensor. Exact 

solutions of the field equations are obtained (i) for a particular choice of the particle creation function and (ii) by considering 

the deceleration parameter to be constant. In the first model the behavior of the solution at late times is investigated. The 

physical aspects of the model have also been discussed. In the case of the second model we have restricted our analysis to the 

power law behaviour for the average scale factor. This leads to a particular form for the particle creation function. The 

behavior of the solution is investigated and the physical aspects of the model have also been discussed for the matter 

dominated era. 

 

Keywords: Cosmology - Bianchi Type I - Particle creation - Open thermodynamic system –Constant Deceleration Parameter 

– Accelerated expansion – Late time acceleration 
 

1. Introduction 

Anisotropic cosmological models play an important 

role in understanding the behaviour of the universe 

in its early stages of evolution. Cosmological 

observations support the existence of an anisotropic 

phase that approaches an isotropic one [1]. It is well 

known that the exact solutions of General Theory of 

Relativity for homogeneous space time belong to 

either Bianchi type or Kantowaski-Sachs space time. 

Bianchi type I cosmological models have been 

studied by a number of authors in different contexts 

[2-4]. Krori and Mukherjee [5] studied the evolution 

of Bianchi cosmologies with bulk viscosity and 

particle creation. Bhanja et al. [6] presented an 

anisotropic model of the universe with constant 

energy per particle. They considered a decaying 

cosmological constant and particle production in an 

adiabatic process as the sources for the entropy.  

 

Since the discovery of the late-time accelerated 

expansion of the Universe [7, 8] various 

explanations are being provided to satisfactorily 

explain the phenomenon. Dark  energy  is  

considered by  many  to  be  the  cause  of the  

observed   late-time acceleration of the  universe. 

This dark energy dominates over matter and has a 

repulsive effect. Several candidates of dark energy 

are found in the literature. The most favoured 

candidate of dark energy, from the different 

cosmological observations, is the cosmological 

constant Λ [9, 10]. Although explanations for the 

accelerated expansion in terms of scalar fields like 

quintessence [11], K-essence [12], phantom fields 

[13] and Chaplygin gas [14] are available, a number 

of models involving the cosmological term  Λ, 

especially time-varying Λ have also been proposed  

[15-21]. 

 

The classical evolution equations are purely 

adiabatic and reversible; consequently, they cannot 

provide by themselves an explanation for the origin 

of cosmological entropy which might have been 

generated through irreversible processes during the 

cosmic expansion. Prigogine et al. [22, 23] have 

investigated the role of irreversible processes in 

creation of matter out of gravitational energy in the 

context of General Relativity. It was shown by 

Prigogine and Ge´he´niau [24] and Prigogine and 

Glansdorff [25] that thermodynamics of open 

systems when applied to cosmology, leads to a 

reinterpretation in Einstein’s equations of the matter-

energy stress tensor [22]. Here the universe starts 

from a random vacuum fluctuation and the cosmic 

expansion is driven by the creation of matter 

particles. The effect of creation of new particles is 

equivalent to adding a supplementary negative 

pressure term to the thermodynamic pressure and 

this drives the expansion.  

 

The results of Prigogine, Ge´he´niau, Gunzig and 

Nardone [22, 23] were further discussed and 

generalized by Calva˜o, Lima and Waga [26] 

through a covariant formulation allowing specific 

entropy variation as usually expected for non-

equilibrium processes in fluids. Sudharsan and Johri 

[27] investigated the effect of bulk viscosity on the 

evolution of the FRW models in the context of open 

thermodynamic systems. The effect of bulk viscosity 

with a time varying bulk viscous coefficient in the 

framework of irreversible thermodynamics for 

homogeneous and isotropic space-times has been 

considered by Desikan [28]. By choosing 

appropriate functions for the particle creation rates 

these models lead to non-singular beginnings and 

inflationary behavior. In the framework of the FRW 

isotropic geometry Lima, Germano and Abramo 
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[29] and Abramo and Lima [30] have considered 

inflationary cosmological models with matter 

creation. In these papers the authors obtained the 

conditions for inflation; they proposed a minimally 

modified hot big-bang model and examined the 

dynamical properties of a flat, inflationary universe 

with matter creation. Lima [31] analysed the 

problem of the compatibility of the continuous 

creation of photons and the present black-body 

nature of the cosmic microwave radiation. Using 

thermodynamic and semiclassical considerations, he 

derived a new Planckian type distribution for 

cosmologies with matter creation. The proposed 

spectrum is preserved during the evolution of the 

Universe and is compatible with the present spectral 

shape of the cosmic microwave background.  

 

Johri and Desikan [32] extended the hypothesis of 

Prigogine, Ge´he´niau, Gunzig and Nardone [22,23] 

of creation of matter out of gravitational energy to 

Brans–Dicke type cosmological models. By 

incorporating the creation pressure in the energy-

momentum tensor, they obtained exact solutions of 

the field equations of Brans–Dicke theory by 

assuming a power law dependence of the scalar field 

on the scale factor. The resulting models have 

constant deceleration parameter. Singh and Beesham 

[33], Singh et al. [34] studied cosmological models 

having bulk viscosity and particle creation within 

the frame work of Brans-Dicke theory. Singh et al. 

[35] have also studied the effect of particle 

production in higher derivative theory. 

 

Harko and Mak [36] have analyzed the effects of 

particle creation in inflationary cosmology in the 

context of the thermodynamics of open systems and 

obtained a generalization of the elementary 

reheating theory. Brevik and Stokkan [37] explored 

the question whether the viscosity / irreversible 

matter creation concepts describe the same physical 

process and came to the conclusion that they do not. 

Gunzig, Maartens and Nesteruk [38] developed a 

thermodynamically consistent cosmology with a 

phenomenological model of quantum creation of 

radiation due to vacuum decay considering a particle 

creation rate proportional to the total energy density. 

Zimdahl and Pavo´n [39], Zimdahl, Pavo´n and Jou 

[40], Zimdahl and Pavo´n [41] and Zimdahl and 

Pavo´n [42] proposed an alternative 

phenomenological view on matter creation processes 

in the early Universe and their influence on the 

dynamics of the space-time. In this approach in 

addition to the familiar relations for viscous 

cosmologies they added an explicit balance law for 

the particle number to the equations describing the 

dynamics of the early universe. 

 

Bianchi type space- times play a vital role in 

understanding the early stages of evolution of the 

universe. In particular, the simplest of anisotropic 

models are Bianchi type-I homogeneous models 

whose spatial sections are flat, but the expansion or 

contraction rates are direction dependent. Many 

researchers [43-48] have investigated Bianchi type-I 

models with different points of view to understand 

the possible effects of anisotropy in the early 

Universe on present day observations. Harko and 

Mak [49] also studied the effect of matter creation 

on the evolution and dynamics of an anisotropic 

Bianchi type I space-time in the framework of open 

thermodynamic systems theory. They obtained the 

general solution in parametric form for a 

cosmological fluid obeying a Zel’dovich type 

equation of state ( p ) and with particle creation 

rate proportional to the square of the mean Hubble 

function and to the energy density of matter, 

respectively.  

 

Singh and Kale [50] investigated the role of particle 

creation and bulk viscosity on the evolution of 

homogeneous and anisotropic model of the universe 

represented by Bianchi type I space time metric. 

They considered particle creation and bulk viscosity 

as separated irreversible processes. In order to 

discuss physical and geometrical behaviour of the 

model, they obtained a new set of exact solutions of 

Einstein’s field equation in non-causal, truncated 

and full causal theories. 

. 

Motivated by the above mentioned studies, in this 

paper, we attempt to apply the concept of creation of 

matter as a possible mechanism to explain the 

accelerated expansion of the universe in the context 

of Bianchi type I anisotropic model of the universe. 

The modified field equations in the presence of 

particle creation are given in section 2. We see that 

the number of equations is less than the number of 

unknowns. Hence, we have looked at two different 

additional assumptions in order to make the system 

of equations well defined and enable us to obtain 

unique solutions. The first of the additional 

assumptions considered is with respect to the 

particle creation function N(t). In the second model, 

the deceleration parameter is taken to be a constant. 

Section 3 deals with the solutions of the field 

equations for the first model. Section 4 presents the 

solutions and discussions for the second model. 

2. Modified Einstein’s Field Equations with 

Creation of Matter 

Let us consider the universe as an open 

thermodynamic system with N particles. Suppose a 

random vacuum fluctuation induces a transformation 

of gravitational energy into matter energy, creating 

additional number of dN particles. This gives rise 

to a negative pressure cp . Hence, the effective 

energy-momentum tensor of the cosmic fluid in the 

presence of creation of matter includes the creation 

pressure term cp and is given by  

 abcbacab gppuuppT )()(
~

          (1) 
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where  ρ and  p are  the  energy  density and  

pressure,  respectively, au  is the  fluid-four velocity  

and abg  is the metric  tensor. Accordingly, the 

modified Einstein gravitational field equations are 

given by 

                         abab TGG
~

8                          (2) 

The line element of a Bianchi type I space-time,  

which generalizes the flat FRW metric to the 

anisotropic case is given by 

                     
222 ))(( i

i dxtRdtds               (3) 

where 3,2,1),( itRi  are the  scale factors. 

The field equations (2) with the above metric and 

the barotropic equation of state   

                            11,  p                  (4) 
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Equations (5-8)  lead to the continuity equation 
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with  

V

V

N

N
V

dV

dN

N

p
pc 





)1(

)(



        (10) 

Letting 321 RRRV  (volume scale factor), 

equation (10) reduces to 

1

3

3

2

2

1

1)1(













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R

R

R

R

R

R

N

N
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
           (11) 

Equation (11) can be rewritten as 
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N
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3

1
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
       (12) 

where 

3

3

2

2

1

13
R

R

R

R

R

R
H


 . 

The cosmological models based on the above 

equations are more general, because they involve 

three cosmological parameters )(),( tpt  

and )(tN ; however, there are only four independent 

equations (5-8) in five unknowns viz., )(tRi , 

3,2,1i , )(t and )(tN . As such the system 

does not seem to have a unique solution. To obtain a 

determinate solution we require one additional 

assumption. Hence, we have considered two 

different assumptions:  

 

i. In the particle creation scenario, the 

universe may start expanding with random 

fluctuations which may lead to different 

regions of the universe evolving in entirely 

different ways depending upon the mode of 

particle creation in those regions. In this 

sense, )(tN may be regarded as an initial 

condition in such models. In the particle 

creation scenario, the entire behavior of the 

model including its expansion, 

deceleration/acceleration, entropy content 

etc., depends essentially upon the 

functional form of the particle creation 

function )(tN  i.e., the total number of 

particles as a function of time. Hence, by 

choosing the particle creation 

function )(tN , ab initio, the system of 

equations (5-8) would become well-defined 

and unique solutions can be obtained. 

ii. In the second model the additional 

assumption is with respect to the average 

scale factor in terms of the deceleration 

parameter. We have considered the 

deceleration parameter to be a constant, that 

is 

  







2)(R

RR
q                   (13) 

where   is a constant and the average 

scale factor R is given by 
3/1

321 )( RRRR  . Equation (13) can be 

rewritten as 

                      0

2



















R

R

R

R
                   (14) 

On integration, equation (14) yields the 

exact solution 

             














1

1)(
)(

0

0

)1(
1





tH
eR

CtD
tR          (15) 

where ,C  ,D  0R  and 0H  are constants 

of integration. In this paper we restrict our 
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discussion to the power law expansion 

given by (15a). Using the expression for the 

average scale factor given by (15a) we 

obtain the expression for the particle 

creation function )(tN , energy density 

function and the particle creation pressure. 

We study the behaviour of the model for 

accelerated and decelerated expansions of 

the universe. 

3. Non-singular Inflationary Model with 

Expansion Driven by Creation of Matter 

In this section we discuss the cosmological model 

obtained for a particular choice of the particle 

creation fundtion. 

In any open thermodynamical system, since volume 

is an extensive property, i.e., NV  , we have 
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determined by
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 , we see that 

equation (11) reduces to 
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Using (17) in (9), we get  
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Adding (20), (21) and (22) leads to 
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Using (19) in (25) and simplifying we get           
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where K is a constant. 

On integrating (27) we get 
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Adding (19) and (20) and simplifying leads to  
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The above equation can be rewritten as 
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where 1C is the constant of integration. For large 

times t , we see that the second term in (30) 

becomes very insignificant and it reduces to  
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Similarly, we get 
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Using the solutions for the scale factors given by 

(32), (33) and (34), we find the physical quantities 

of interest, the expansion scalar  , shear scalar 
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On integrating, 
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we determine the total number of particles as 
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where )0(N is the initial number of particles in the 

universe. 

4. Exact Solutions with Constant Deceleration 

Parameter 

In this section we discuss the cosmological model 

obtained by considering the deceleration parameter 

to be a constant. 

Considering expression (15a) for the average scale 

factor, we get  
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Using (4) and (12) in (42) we get 
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(39-41) in (43) and simplying we obtain  

                                                                                                                      

)1(11

)1(81113
,








 aaH

N

N
                        (44) 

Equation (44) on integration yields 

                    
aRNN 0                                      (45) 

Using (44) in (9) and simplifying yields                                                                                                                                                                                                                                                     

R

R
a


)1)(3( 




                                           (46) 

On integrating equation (46), we have                                                                           
)1)(3(

0

  aR                                              (47) 

Using (15a) in (47) and (45) we get 

)1(11

)11214(2
,)()( 10

1












kDtCt

k

)1(

0 )()( 
a

CtDNtN  

In these models the expansion is driven by the 

creation of particles. Also, from the above 

expression for )(tN , we see that if 0a , 

N would remain constant throughout the evolution 

of the universe.  

In an open thermodynamic system we have                                              

N

N

S

S 
  and hence, 0a . From (44) we see that                                      

                    
8

115 



                                   (48) 
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From the expression for a in (44), we note that the 

universe would undergo power law expansion 

( )0)1(   if                                                                                                               

                    
)1(11

1113
0








 a                             (49) 

 

Also, for values of a in the range 

)1(11

1113

)1(11

115
0

















 a  

the expansion driven by creation would be 

accelerating, i.e. 0 . The expansion would be 

decelerating, i.e. 0 for values of a in the range 

)1(11

115
0








 a  

In the matter dominated era, where we have 0  , 

the universe would undergo accelerated expansion 

for values of a  in the range 

11

13

11

5
 a  

The following table gives the values of the 

deceleration parameter for a few values of a . 

a    

6/11 -1/8 

7/11 -2/8 

8/11 -3/8 

9/11 -4/8 

10/11 -5/8 

1 -6/8 

12/11 -7/8 

The following graph shows the relation between the 

deceleration parameter and ‘a’ in the matter 

dominated era.  

 

Figure 1: Relation between 'a' and deceleration 

parameter for matter dominated era 

 

From Figure 1, we note that the expansion would be 

accelerating as seen from the negative values for the 

deceleration parameter. Figure 2 depicts the growth 

of the total number of particles )(tN  for 4 different 

values of ‘a’. 

 

Figure 2: Behaviour of N(t) for a=6/11, 9/11, 1, 12/11 
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In Figures 3-5, we graphically depict the behaviour 

of the directional scale factors for 3 different values 

of the deceleration parameter. 

 

Figure 3: Behaviour of scale factors for 

deceleration parameter = -1/8 

 

Figure 4: Behaviour of scale factors for 

deceleration parameter = -1/2 

 

Figure 5: Behaviour of scale factors for 

deceleration parameter = -7/8 

CONCLUSION 

In this paper we have obtained solutions of the field 

equations of Bianchi type I anisotropic model of the 

universe in the presence of creation of matter. We 

have considered the universe as an open 

thermodynamic system. This gives rise to a 

negative pressure cp  that drives the expansion of 

the universe.  

 

For a particular choice of the particle creation 

function we have shown that the universe 

undergoes inflationary (exponential) expansion at 

late times. Due to inflationary expansion, the shear 

and anisotropy parameter become zero. The 

deceleration parameter takes the value -1 and the 

universe undergoes accelerated expansion. 

 

We have also obtained the solution by considering 

the deceleration parameter to be a constant. The 

analysis shows that there is a wide variety of 

models with accelerated and decelerated 

expansions. We note that different choices for the 

three directional scale factors would lead to more 

interesting analysis.   
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