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Abstract: Riemann’s method is one of the definitive ways of solving Cauchy’s problem for a second

order linear hyperbolic partial differential equation in two variables. The first review of Riemann’s

method was published by E. T. Copson in 1958. This study extends that work. Firstly, three

solution methods were overlooked in Copson’s original paper. Secondly, several new approaches

for finding Riemann functions have been developed since 1958. Those techniques are included here

and placed in the context of Copson’s original study. There are also numerous equivalences between

Riemann functions that have not previously been identified in the literature. Those links are clarified

here by showing that many known Riemann functions are often equivalent due to the governing

equation admitting a symmetry algebra isomorphic to SL(2, R). Alternatively, the equation admits

a Lie-Bäcklund symmetry algebra. Combining the results from several methods, a new class of

Riemann functions is then derived which admits no symmetries whatsoever.
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1. Introduction

The interest in Riemann’s method is long-standing. The reason is that once the Riemann

function is determined, the governing equation can be solved for Cauchy data on any other

non-characteristic curve. The value of such a property means that Riemann’s method continues

to draw the attention of investigators today. Some applications include solving electromagnetic

problems exhibiting rotational symmetry [1], finding existence criteria for the eigenvalues of the

solution of focal point problems [2], solving for the solution of transient plane waves [3] and the

inverse problem of scattering theory [4]-[12]. More recently, Riemann’s method has been applied

to the solution of coupled Korteweg-de Vries equations [13], to boundary value problems for the

non-homogeneous wave equation [14]-[18], to the solution of the non-linear Schrödinger equation

[19]-[20] and modelling hyperbolic quasi-linear equations [21]-[23].

Copson [24] wrote the first review of Riemann’s method in 1958. In total, he listed six different

techniques to solve for the Riemann function. However, three other approaches were missed by

Copson. They are included here for completeness. Since 1958, another four methodologies have

emerged for finding Rieman functions. Often the resulting Riemann functions are not new but rather

a reduction of some more general Riemann function or obtainable from another Riemann function by

a change of variables. This fact is frequently overlooked in the literature. Here the new methods

are outlined to extend Copson’s review and the equivalences are clarified. One finding is that

the Riemann functions are equivalent because the governing equation admits a symmetry algebra

isomorphic to SL(2, R). Alternatively, the equation admits a Lie-Bäcklund symmetry algebra. By

combining several of the solution techniques, a new class of Riemann functions is then obtained that

admits no symmetries whatsoever.
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Figure 1. The Initial Curve

Consider the partial differential equation (PDE) in characteristic variables

L[U] = Urs + a(r, s)Ur + b(r, s)Us + c(r, s)U = 0. (1)

The aim is to represent a solution U at a point P0 in terms of the initial data, which are the values of

U and one outgoing derivative of U on the initial curve C. Thus both Ur = c1 and Us = c2, where c1

and c2 are constants, are known on C from such data as shown in Figure 1. Take the adjoint

L∗[V] = Vrs − (aV)r − (bV)s + cV, (2)

and define V = R(r, s, r0, s0) such that

L∗[R] = 0, (3)

∂

∂r
R(r, s, r0, s0) = b(r, s0)R(r, s, r0, s0), on s = s0, (4)

∂

∂s
R(r, s, r0, s0) = a(r0, s)R(r, s, r0, s0), on r = r0, (5)

R(r0, s0, r0, s0) = 1. (6)

R(r, s, r0, s0) is called the Riemann function. It is the solution of the characteristic boundary value

problem for the adjoint equation denoted by (3)–(6). R(r, s, r0, s0) will hold for arbitrary initial values

given along an arbitrary noncharacteristic curve C. The Cauchy problem then has a unique solution

given by

U(ro, s0) =
1

2

(

[UR]A + [UR]B
)

+
1

2

∫

AB

(

RUs − URs

)

dr +
(

RUr − URr

)

ds. (7)

An equivalent formulation to that just given can also be obtained by using the canonical variables

r = y + x, s = y − x. (8)

With this change of variables, (1) becomes

Uyy − Uxx + a′(x, y)Uy − b′(x, y)Ux + c′(x, y)U = 0, (9)

where a′ = 2(a + b), b′ = 2(b − a), c′ = 4c. The Riemann function, R(x, y, x0, y0), must now satisfy

L∗[R] = Ryy − Rxx − (a′R)y + (b′R)x + c′R = 0, (10)

Rx + Ry =
1

2
(a′ + b′)R on y − y0 = x − x0, (11)

Rx − Ry = −1

2
(a′ − b′)R on y − y0 = −(x − x0), (12)

R(x0, y0, x0, y0) = 1. (13)

In the literature, both the characteristic (1) and the canonical form (9) are used.
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2. Copson’s Review

Copson [24] published the first review of Riemann’s method in 1958. In all, Copson listed six

different methods for finding the Riemann function. They were:

1. Riemann’s original method [25], which was based on the fact that the Riemann function does

not depend in any way on the curve carrying the Cauchy data. Solving the Cauchy problem

by some other means for a special curve (eg. a straight line) then yields the Riemann function

by a comparison of the two solutions. Riemann only gave explicit formulae for the Riemann

function in the two cases which interested him from gas dynamics. The most famous of these is

the Euler-Poisson-Darboux equation (EPD)

Uyy − Uxx −
m(1 − m)

x2
U = 0, (14)

which has Riemann function

R(x, y, x0, y0) = 2F1(m, 1 − m; 1; z0), (15)

where

z0 =
(y − y0)

2 − (x − x0)
2

4xx0
(16)

and 2F1 is the hypergeometric function (see the appendix for details of all the hypergeomtric

functions used in this article). Equation (15) was derived via a Fourier cosine transform.
2. Hadamard [26] showed that the coefficient of the logarithmic term in his elementary solution is

the Riemann function for the adjoint equation.
3. For separable equations, Copson found that it is straightforward to construct an integral

equation whose unique solution is the Riemann function.
4. Chaundy [27] - [32] was able to construct the Riemann function for a number of equations by

the use of symbolic operators and power series. Of particular note was

Urs +

[

m1(1 − m1)

(r + s)2
− m2(1 − m2)

(r − s)2
+

m3(1 − m3)

(1 − rs)2
− m4(1 − m4)

(1 + rs)2

]

U = 0, (17)

for which the Riemann function is given by

R(r, s, r0, s0) = FB (m1, m2, m3, m4, 1 − m1, 1 − m2, 1 − m3, 1 − m4, 1, z1, z2, z3, z4) (18)

where FB is a Lauricella hypergeometric function of four variables [33] and

z1 = − (r − r0)(s − s0)

(r + s)(r0 + s0)
, z2 =

(r − r0)(s − s0)

(r − s)(r0 − s0)
, (19)

z3 = − (r − r0)(s − s0)

(1 − rs)(1 − r0s0)
, z4 =

(r − r0)(s − s0)

(1 + rs)(1 + r0s0)
. (20)

5. Mackie [24] constructed complex integral solutions of certain equations. An appropriate choice

of contour results in the Riemann function.

6. Titchmarsh [36] gave a direct solution for the Riemann function of the equation of damped

waves by means of a complex Fourier integral.

Equations (14) and (17) have been singled out here as they occur repeatedly in the literature. Equation

(14) is a subcase of (17) in canonical variables, where m2 = m3 = m4 = 0. In fact in 1958, (17) was the

most general self-adjoint equation for which the Riemann function was known.
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2.1. Self Adjoint Riemann Functions

In 1979, a summary of all the known self-adjoint Riemann functions was published by Lanckau

[37]. For an arbitrary equation,

Urs + C(r, s)U = 0, (21)

the cases he listed were:

1. C(r, s) = C0, which has Riemann function

R(r, s, r0, s0) = J0 (2
√

z5) , (22)

where Co is an arbitrary constant, J0 is the modified Bessel function of zero order and

z5 = C0(r − r0)(s − s0). (23)

2. C(r, s) = m(1 − m)(r + s)−2, which has Riemann function

R(r, s, r0, s0) = P−m (1 − 2z1) , (24)

and P−m is the Legendre function of order −m, with z1 given by (19). This characteristic form is

also equivalent to the canonical representation (14) and (15) of the EPD equation.
3. C(r, s) = −C0 + m(1 − m)(r + s)−2, which has Riemann function,

R(r, s, r0, s0) = Ξ2 (m, 1 − m, 1, z5, z1) , (25)

where Ξ2 is a hypergeometric function of two variables [34] and z5 and z1 are given by (23) and

(19) respectively.

4. C(r, s) = m(1 − m)(r + s)−2 − n(1 − n)(r − s)−2, which has Riemann function

R(r, s, r0, s0) = F3 (m, n, 1 − m, 1 − n, 1, z1, z2) , (26)

and F3 is a hypergeometric function of two variables [34], with z1, z2 given by (19). The

representation of its Riemann function in terms of F3 was first obtained by Henrici [35].
5. C(r, s) = C0 + m(1 − m)(r + s)−2 − n(1 − n)(r − s)−2, which has Riemann function

R(r, s, r0, s0) = FB (m, n, 1 − m, 1 − n, 1, z5, z1, z2) , (27)

where FB is a Lauricella hypergeometric function [34] of three variables z5, z1 and z2, which are

given by (23) and (19).

Each of the above cases is easily obtained from Chaundy’s equation (17). Consider case four. If

m3 = m4 = 0 in (17), the corresponding terms in the multiple power series (18) are replaced by unity.

Consequently, (17) reduces automatically to the equation given in case four and (18) becomes (26).

Likewise, for case two. Cases one and three require a confluence. Starting with an equation in the

form of case two, make the change of variables

r − s =
ǫ2

c0
+ (r′ − s′).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2018                   doi:10.20944/preprints201810.0717.v1

Peer-reviewed version available at Mathematics 2018, 6, 316; doi:10.3390/math6120316

http://dx.doi.org/10.20944/preprints201810.0717.v1
http://dx.doi.org/10.3390/math6120316


Mathematics 2018, 5, x 5 of 30

Taking the limit as ǫ → ∞ yields the equation from case one, with the corresponding Riemann

function (22). A similar argument shows that case three is obtainable from case four. For case five,

start with equation (17) and set m4 = 0. Make the change of variables

r = ǫr′

s = ǫs′

m3(1 − m3) = ǫ−2C0.

and let ǫ → 0 to obtain the equation from case five.

The one equation listed by Lanckau, which has not previously been linked to Chaundy’s

equation and its contractions, is

C(r, s) =
4

∑
k=1

qk(1 + qk) f−2
k (r, s),

with

fk(r, s) = akrs + bkr + cks + dk,

where qk, ak, bk, ck, dk are constants subject to the conditions that

akdk − bkck = 1, for all k, (28)

and

aldk − blck + akdl − bkcl = 0, for all k and l 6= k. (29)

This equation was originally published by Püngel [38,39].

Neither Püngel, nor Lanckau, made any connection from this case to Chaundy’s equation (17).

However, standard calculations show that Püngel’s equation is Möbius equivalent to Chaundy via

r̄ =
α1r + β1

γ1r + δ1
, s̄ =

α2s + β2

γ2s + δ2
.

Equation (28) acts as a normalization constraint while (29) restricts the parameters to Chaundy.

Püngel’s case is indicative of the historic difficulty of demonstrating equivalences between Riemann

functions.

3. Method’s Not Included by Copson

The six approaches listed by Copson [24] were all that were known to him. Likewise the

equations listed in section (2.1) were the only cases he was aware of, apart from trivial changes

of the dependent or independent variables. However, another three methods were not included

by Copson. In 1937, Courant and Hilbert [40] derived the Riemann function for the Telegrapher’s

equation via Lie-Point symmetries; although this was only really made clear in a 1962 translation of

their benchmark text “Methoden Der Mathematischen Physik II". Their approach represents the first

use of symmetry groups for Riemann’s method. Cohn [42] developed an iterative technique to obtain

the Riemann function. Also Olevskiı̆ [45], derived an addition theorem for the Riemann function of

an equation based on the Riemann functions of two simpler separable equations.

3.1. The Telegrapher’s Equation

In the original German text, Courant and Hilbert referred to their method as “der Symmetrie der

Differentialgleichung den ansatz". But what this in fact means is a little obscure. In 1937, the process
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of similarity reduction, instigated by Lie [41], was still embryonic. To understand what was intended,

the expanded 1962 translation is more instructive. Take the Telegrapher’s equation

L[U] = Urs + C0U = 0, (30)

with constant C0. Courant and Hilbert’s argument is then the following. Since the operator L has

constant coefficients, R(r, s, r0, s0) depends only on the relative position of the points (r, s) and (r0, s0).

Moreover, letting (r0, s0) be the origin, we observe that if

V(r, s) = R(r, s, 0, 0)

satisfies conditions (3) to (6) imposed on the Riemann function, then

W(r, s) = V(αr, α−1s)

also satisfies them. Clearly L∗[V(r, s)] = 0 implies L∗[W] = 0 so that (3) is satisfied. Condition (4)

means (since a = b = 0) that V = R remains constant along the coordinate axes. If V has this property,

then W has it also; and finally V(0, 0) = 1 implies W(0, 0) = 1. Since these conditions determine

Riemann’s function uniquely, it follows that W(r, s) = V(r, s) is a function of rs. For general (r0, s0),

the Riemann function then has the form

R(r, s, r0, s0) = f (z),

where

z = (r − r0)(s − s0).

The equation L∗[R] = 0 then yields the equation z f
′′
+ f

′
+ C0 f = 0 for f which, if we set λ =

√
4C0z,

becomes Bessel’s equation

d2 f

dλ2
+

1

λ

d f

dλ
+ f = 0,

which has solution

f = J0(λ).

Consequently the Riemann function is

V(r, s, r0, s0) = J0

(

√

4C0(r − r0)(s − s0)

)

.

Clearly what Courant and Hilbert had in mind was that the PDE for the Riemann function

and the associated boundary conditions are invariant under a three-parameter Lie transformation

group. The details of their argument reflect the emerging nature of symmetry groups as a method

of solution in this area. More systematic use of symmetry groups to find Riemann functions have

subsequently been developed by Bluman [48], Daggit [50], Ibragimov [51] and Iwasaki [67], which

will all be explored in section 4.

3.2. Successive Iterations and the Banach Fixed Point Principle

In 1946, Cohn [42] considered equations of the form

Urs + H(r + s)U = 0, (31)
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where H is an arbitrary function of its argument to be determined. Cohn sought to prove the existence

of R(r, s, r0, s0) by iteration. Hence, he rewrote (31) and condition (6) as the single equation

R(r, s, r0, s0) = 1 −
∫ ∫

B[r,s]
R(r1, s1, r0, s0)H(r1 + s1)dr1ds1, (32)

where B[r, s] is the rectangle formed by the horizontal and vertical lines through (r, s) and (r0, s0).

By continual recursive substitution of the right hand side of (32) into itself, he obtained the formal

iterated series

R(r, s, r0, s0) = 1 −
∫ ∫

B[r,s]
H(r1 + s1)dr1ds1

+
∫ ∫

B[r,s]
H(r1 + s1)dr1ds1

∫ ∫

B[r1,s1]
H(r2 + s2)dr2ds2 − . . . (33)

The series (33) for R begins with the terms 1 − ∆ + . . . where

∆ =
∫ ∫

B[r,s]
H(r1 + s1)dr1ds1.

This iterative process is also known as the Banach fixed point principle [43]. Now ∆ equals zero,

whenever r = r0 or s = s0, thus R(r, s, r0, s0) is also a constant for these values of r or s. This led Cohn

to try a Riemann function of the form

R(r, s, r0, s0) = R(∆, r0, s0). (34)

Substituting (34) into (31) and (6), one finds that

∆r∆s

H

d2R

d∆2
+

dR

d∆
+ R = 0,

R(0, r0, s0) = 1.

Expanding H(r+ s) = H(ω) as a power series in ω, the coefficients of the series must vanish, yielding

the non-linear ordinary differential equation for H

d

dω

[

1

H

d2H

dω2
− 3

2H2

(

dH

dω

)2
]

= 0,

which has solution

H(ω) =
−λ(λ + 1)µ2

sinh2 µ(ω + ν)
, (35)

and λ, µ, ν are real valued constants. After a few further calculations, Cohn found that the Riemann

function for (31), where H is given by (35), is

R(r, s, r0, s0) = 2F1(−λ, 1 + λ; 1; Φ), (36)

and

Φ = − sinh µ(r − r0) sinh µ(s − s0)

sinh µ(r + s + ν) sinh µ(r0 + s0 + ν)
. (37)
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The form of H immediately suggests a few simpler limiting cases. For example, take λ → λeµν

and rename λ →
√

λ/µ, µ → −µ/2, then if ν → ∞ we obtain H(r + s) = −λeµ(r+s). Applying the

limiting process of confluence, the Riemann function is then

R(r, s, r0, s0) = J0

(

2

µ

√

λ(eµr0 − eµr)(eµs − eµs0)

)

. (38)

Similarly, letting µ → 0, the Telegrapher’s equation (30), is recovered.

Apparently unaware of the work of Cohn, in 1986, Vaz et al. [44] proved an existence and

uniqueness theorem for the iterative process (33). They considered the more general problem

Urs − f (r, s)U = 0, (39)

where

U(r, s0) = σ(r),

U(r0, s) = τ(s),

U(r0, s0) = σ(r0) = τ(s0).

Reformulate equation (39) in terms of the linear Volterra integral equation

U(r, s) = g(r, s) +
∫

B[r,s]
f (α, β)U(α, β)dαdβ (40)

for which g(r, s) = σ(r) + τ(s)− σ(r0) and B[r, s] = [r0, r]× [s0, s], as defined by Cohn. Writing the

solution of (40) as

U(r, s) = lim
k

{

g(r, s) +
∫

B[r,s]

f (α1, β1)g(α1, β1) + . . .

}

=
∫

B[r,s]

. . .
∫

B[rk−1,sk−1]

f (α1, β1) . . . f (αk, βk)g(αk, βk)dαkdβk . . . dα1dβ1 (41)

the existence and uniqueness of (41) was then proven. Cohn chose a specific functional form for

f (r, s). In principle, the approach can be applied to more general functions - hence the usefulness of

the theorem. Vaz et al. subsequently used (41) to derive the Riemann function for the Telegrapher’s

equation (30).

3.3. Olevskiı̆’s Addition Formula

Copson’s method three from his review paper [24] proposed a way to derive Riemann functions

that extends Riemann’s own contribution to the field. It relies on the separability of the governing

equation. However, it turns out that an addition formula, which encompasses Copson’s approach,

was already in the Russian literature in 1952 [45]. This was not noted until 1977, in an erratum [47] to

Papadakis and Wood’s paper [46], which rederived Olevskiı̆’s result.

In Olevskiı̆’s notation, the Riemann function, Rρ1−ρ2 , of the equation

Uyy − Uxx + (ρ1(y)− ρ2(x))U = 0, (42)

is

Rρ1−ρ2(x, y, x0, y0) = Rρ2(x, y, x0, y0) +
∫ x−x0

y−y0

Rρ2(x, t, x0, 0)
∂

∂t
Rρ1(t, y, 0, y0)dt. (43)
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Rρ1 and Rρ2 are the Riemann functions for

Uyy − Uxx + ρ1(y)U = 0

and

Uyy − Uxx − ρ2(x)U = 0.

Alternatively, integrating by parts yields the equivalent formula

Rρ1−ρ2(x, y, x0, y0) = Rρ1(x, y, x0, y0) +
∫ y−y0

x−x0

Rρ1(t, y, 0, y0)
∂

∂t
Rρ2(x, t, x0, 0)dt. (44)

Olevskiı̆ obtained this result in part by using the method of successive approximations, which mirrors

Cohn’s approach in Section (3.2), but there are not many details in the paper. Mostly, Olevskiı̆ limits

himself to showing that (43) satisifes (42) and the conditions (11)–(13).

To apply this addition formula efficiently, the following identity, which was first employed by

Chaundy [30], can be useful. Within the region of uniform convergence of the infinite series that

define the indicated functions, we have

FB(a1, . . . , ap, a′1, . . . , a′q, b1, . . . , bp, b′1, . . . , b′q, 1, x1, . . . , xp, x′1, . . . , x′q)

= FB(a1, . . . , ap; b1, . . . , bp; 1; x1, . . . , xp)

+
∫ 1

0
FB(a1, . . . , ap; b1, . . . , bp; 1; (1− t)x1, . . . , (1 − t)xp)

× d

dt
FB(a′1, . . . , a′q; b1, . . . , b′q; tx′1, . . . , tx′q)dt. (45)

Olevskiı̆ included three specific examples in his paper, illustrating the use of the addition

formula. We shall consider one of those examples here. Firstly, Olevskiı̆ stated that the Riemann

function for

Uyy − Uxx +
m(1 − m)

sin2 y
U = 0, (46)

was

R(x, y, x0, y0) = 2F1(m, 1 − m; 1; z7), (47)

where

z7 =
cos(y − y0)− cos(x − x0)

2 sin y sin y0
. (48)

No derivation for this Riemann function was given. In particular, it is not on the list of self-adjoint

equations (21) from section (2.1). Nevertheless, interchanging the roles of x and y and letting m → n

yields

Uyy − Uxx −
n(1 − n)

sin2 x
U = 0, (49)

with the associated Riemann function,

R(x, y, x0, y0) = 2F1(n, 1 − n; 1; z8), (50)

and

z8 =
cos(x − x0)− cos(y − y0)

2 sin x sin x0
. (51)
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Hence applying (44), the Riemann function of

Uyy − Uxx +

[

m(1 − m)

sin2 y
− n(1 − n)

sin2 x

]

U = 0 (52)

is

R(x, y, x0, y0) = 2F1(m, 1− m, 1, z7) +
∫ y−y0

x−x0
2F1(m, 1 − m, 1, u1(t))

∂

∂t
2F1(n, 1 − n, 1, v1(t))dt, (53)

where

u1(t) =
cos(y − y0)− cos(t)

2 sin y sin y0
, v1(t) =

cos(x − x0)− cos(t)

2 sin x sin x0
.

Now make the change of variables

t′ =
cos(x − x0)− cos(t)

cos(x − x0)− cos(y − y0)

so that (53) becomes

R(x, y, x0, y0) = 2F1(m, 1 − m, 1, z7) +
∫ 1

0
2F1(m, 1 − m, 1, (1− t′)z7)

∂

∂t′ 2F1(n, 1 − n, 1, z8t′)dt′.

Using (45), this is recognised to be

R(x, y, x0, y0) = F3(m, 1 − m, n, 1 − n; 1; z7, z8), (54)

where z7 and z8 are defined by (48) and (51).

Equations (46) and (52) are in fact subcases of (17). This will be explored further in sections (4.1)

and (4.5). Again, this shows the historic difficulty in identifying equivalences in the literature.

4. Developments Since 1958

Several new constructive techniques have been proposed since the publication of Copson’s paper.

The resulting Riemann functions are often equivalent, under a change of variables, although that fact

has often been missed in the literature. The aim here is to outline the solution methods and clarify the

equivalences. A key finding is that the equivalence can be defined in terms of the governing equation

admitting a symmetry algebra isomorphic to SL(2, R) or to a Lie-Bäcklund symmetry algebra.

4.1. Lie Point Symmetries

As stated in section (3.1), the use of symmetry groups to find Riemann functions dates to 1937.

However, a modern treatment of the technique did not emerge until 1967, in the Ph.D. thesis of

Bluman [48,49]. Subsequently, the approach has become an active area of investigation [50]-[54].

Bluman’s method gave a completely algorithmic way of applying Lie point symmetries to Riemann’s

method and thus further developed the technique pioneered by Courant and Hilbert.

Bluman’s treatment employed the (now) well-understood infinitesimal representation for

deriving symmetry reductions. Employing the definitions and terminology of Olver [55], let

v =
p

∑
i=1

ξ i(x, u)
∂

∂xi
+

q

∑
α=1

φα(x, u)
∂

∂uα
, (55)
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where

x = (x1, x2, x3, . . . , xp) ≡ (x, y, z, . . .),

u = (u1, u2, . . . , uq) ≡ (u, ux, uy, uz, . . .),

be a vector field defined on an open subset, M ⊂ X × U, of the space of independent and dependent

variables. The n-th prolongation of v is the vector field,

Pr(n)v = v +
q

∑
α=1

∑
J

φJ
α(x, u(n))

∂

∂uα
J

, (56)

defined on the corresponding jet space, M(n) ⊂ X × U(n), with the second summation being over all

unordered multi-indices J = (j1, . . . , jk) and 1 ≤ jk ≤ p, 1 ≤ k ≤ n. The coefficient functions φ
J
α of

Pr(n)v are given by the following formula:

φJ
α(x, u(n)) = Dj

(

φα −
p

∑
i=1

ξ iuα
i

)

+
p

∑
i=1

ξ iuα
J,i. (57)

The total differential, Dj, is given by

Dj =
∂

∂xi
+

q

∑
α=1

∑
J

uα
J,i

∂

∂uα
J

.

We also have that

uα
i =

∂uα

∂xi
, uα

J,i =
∂uα

J

∂xi
=

∂k+1uα

∂xi∂x j1 ...∂x jk
.

Now suppose that

∆(x, u(n)) = 0

is an n-th order system of differential equations of maximal rank defined over M ⊂ X × U. If G is a

local group of transformations acting on M, and

Pr(n)v[∆(x, u(n))] = 0, whenever ∆(x, u(n)) = 0, (58)

for every infinitesimal generator v of G, then G is a symmetry group of the system.

Taking these definitions, Bluman analysed the EPD equation written as

Uyy − Uxx −
2m

x
Ux = 0, (59)

which is slightly different to (14)1.

1 Any equation Uyy − Uxx − f (x)Ux = 0, where f (x) is an arbitrary function, may be put into self-adjoint form by the

transformation U = e−
1
2

∫ x f (t)dtV(x, y) to obtain Vyy − Vxx +
1
2

(

f ′ + 1
2 f 2
)

V = 0. Hence, the change of variable U =

x−mV(x, y) will convert (59) to (14).
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Bluman’s idea was to follow the 1962 lead of Mackie [56] and find the Green’s function of (59).

Mackie showed that the relationship between the Riemann and Green’s functions can be written as

R(x, y, x0, y0) =

{

−2G(x0, y0, x, y) if (x, y) lies inside P0AB

0 if (x, y) lies outside P0AB
(60)

where P0AB was defined in Figure 1.

So given the vector field,

v = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ α(x, y)U

∂

∂U
,

the symmetry group of (59) is found by taking

Pr(2)v[Uyy − Uxx −
2m

x
Ux − δ(x − x0)δ(y − y0)] = 0

to obtain a system of seven determining equations for the infinitesimals ξ, η and α. Solving these

equations produces a four-dimensional symmetry group. The presence of the delta functions (and

therefore of their derivatives) gives rise to the extra condition ξ(x0, y0) = η(x0, y0) = 0. Applying

this condition, Bluman obtained the specific group

ξ = − x

m
(y − y0),

η =
(x2

0 − x2)− (y − y0)
2

2m
,

α = (y − y0).

Hence

dU

(y − y0)U
= − mdx

x(y − y0)
=

2mdy

(x2
0 − x2)− (y − y0)2

.

The similarity variables are defined by the integrals

dx

dy
=

2x(y − y0)

(y − y0)2 + (x2 − x2
0)

,

dU

U
= −mdx

x
,

which give

U(x, y) = x−mV(z), (61)

z = x − (y − y0)
2

x
+

x2
0

x
,

with V(z) an arbitrary function of z. Substituting (61) into (59), Bluman found that

(z2 − 4x2
0)V

′′ + 2zV′ + m(1 − m)V = 0. (62)

Letting ψ = (2x0 − z)/(4x0), (62) becomes the hypergeometric equation

ψ(1 − ψ)
d2V

dψ2
+ (1 − 2ψ)

dV

dψ
− m(1 − m)V = 0.
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The solution displaying the desired properties, (3)–(6), is V(ψ) = A2F1(m, 1 − m; 1; ψ), where A is

a normalization constant to be determined. Putting this all together and using (60), the Riemann

function for (59) is then

R(x, y, x0, y0) =

(

x

x0

)m

2F1

(

m, 1 − m; 1;
(y − y0)

2 − (x − x0)
2

4xx0

)

. (63)

In 1970, Daggit [50] also employed symmetry groups in an effort to find Riemann functions. His

idea was to obtain conditions on the coefficients a, b and c of (1) which allow a similarity reduction

to the Riemann function. Daggit found three distinct cases in which the Riemann function could be

found. Kokinasidi [52] also presented similar results to those given by Daggit. Extending Daggit’s

results, Wood [57] defined any Riemann function

R(r, s, r0, s0) = M(r, s, r0, s0) f (G(r, s, r0, s0), r0, s0),

where M and G are functions, to be a simple Riemann function when (i) the equation is almost

self-adjoint, (ii) the ODE for f has coefficients depending on G, and (iii) the characteristic conditions

for the Riemann function become initial conditions for f 2. All the results of Daggit [50], Riemann [25]

in section (1) and Cohn [42] from Section (3.2) are simple Riemann functions. Wood concluded that,

for self-adjoint equations, all the simple Riemann functions had been found by these three authors.

Geddes and Mackie [59] arrived at essentially the same conclusion when they found Cohn’s method

[42] does not produce any new results even if one seeks a Riemann function R(z; r0, s0) where R

satisfies an ODE.

In other words, the equations

Urs + U = 0, (64)

Urs −
m(1 − m)

(r − s)2
U = 0, (65)

Urs −
m(1 − m)

sinh2(r − s)
U = 0, (66)

Urs −
m(1 − m)

sin2(r − s)
U = 0, (67)

Urs +
m(1 − m)

cosh2(r − s)
U = 0, (68)

are essentially the only possibilities. The first three are the Telegrapher’s equation, the EPD equation

and Cohn’s equation. The fourth equation is (46) from section (3.3) that was cited, without derivation,

by Olevskiı̆. The last one appears to be new.

Wood’s statement that these are the only possible cases needs clarifying. In [60], Bluman showed

how to construct invertible point transformations, which map a given PDE into another PDE, in the

sense that any solution of the given PDE is mapped into a solution of the target PDE. In general such a

mapping need not be a group transformation. Although, if the mapping from a given PDE to a target

PDE is one-to-one (invertible) then the transformation must establish a one-to-one correspondence

between the infinitesimal generators of the given PDE and the target PDE. More precisely, it is

necessary that any given Lie algebra of infinitesimal generators of the given PDE be isomorphic to a

2 Wood’s assumed form of the solution, when taken in light of the fact that he is essentially discussing similarity solutions,
can be thought of as a first step towards the direct method of symmetry calculation derived by Clarkson and Kruskal [58]
in 1989.
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Lie algebra of infinitesimal generators of the target PDE. Recall that a Lie algebra Lx with basis set

{X1, X2, . . . , Xn} will be isomorphic to the Lie algebra Lz with basis set {Z1, Z2, . . . , Zn} if

[Zα, Zβ] = C
γ
αβZγ (69)

and

[Xα, Xβ] = C
γ
αβXγ, (70)

where

[Xα, Xβ] = XαXβ − XβXα (71)

is the usual commutator and the structure constants {C
γ
αβ} are the same for Lx and Lz. A few

calculations show that the symmetry algebras of (65) - (68) satisfy (69) - (71) and (64) is obtained

via a confluence. In effect, (64) - (68) form an equivalence class.

In 1991, Ibragimov [51], unaware of the research of Daggit et al., published a unifying result

connecting all previous symmetry group studies for Riemann’s method. Again, Ibragimov looked at

predicting the form of the Riemann function based on the coefficients a, b and c of (1). The idea is that

any linear hyperbolic PDE can be classified based on the size of the group that it admits. Ovsiannikov

[61] showed that (1) admits a four-dimensional Lie algebra, if and only if, the invariants (Ovsiannikov

invariants)

p =
k

h
, q =

ln |h|rs

h
, (72)

are constants (if h = 0 then swap k and h). When p or q (or both of them) is not constant then the

symmetry algebra is two dimensional. Here h and k are Laplace invariants of (1)

h = ar + ab − c, k = bs + ab − c.

When p and q are constant and q 6= 0, one obtains case one as found by Daggit. Whereas Daggit’s

cases two and three correspond to q = 0.

As calculated by Bluman, the symmetry algebra of the EPD equation is four dimensional.

Furthermore, the symmetry algebra of the EPD equation is isomorphic to SL(2, R) [51]. Using

standard results from Lie theory [62], the symmetries exponentiate to a local Lie representation of

the group SL(2, R) by operators T(G), where

T(G)U(t, r) =
[

(α + γt)2 − γ2r2
]−1/2

U

[

(δt + β)(α + γt)− γδr2

(α + γt)2 − γ2r2
,

r

(α + γt)2 − γ2r2

]

and

G =

(

α β

γ δ

)

∈ SL(2, R).

Using this fact, one can show that the fundamental solution can be represented in terms of the

hypergeometric function. In effect, all the Riemann functions given in this section are encompassed

by this result.

In 2015, Andrey et al. [54] studied the equation

Urs −
1

2r
Us + sU = 0, (73)
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for which the Riemann function was obtained via a symmetry reduction as

R(r, s, r0, s0) =

√

r0

r
J0

(

√

2(r − r0)(s2 − s2
0)
)

. (74)

Applying (72) shows that p = 1 and q = 0. Hence, (73) falls into case two of Daggit and it admits

a four dimensional symmetry algebra. Equation (73) is simply a confluent form of the EPD equation

(14), under a transformation of variables.

In 2003, an interesting qualitative property linked to (72) was published in [53]. There it was

shown that if k = 0 and q is a non-zero constant in (72), then (1) can be written as

Urs +
1

2
Ur −

2

q

1

r + s
Ut −

1

q

1

r + s
U = 0, (75)

which can be factorized to give

(

∂

∂r
− 2

q

1

r + s

)(

∂

∂s
+

1

2

)

U = 0. (76)

The Riemann function is then easily obtained from the factorization.

4.2. Laplace Transform for a Klein-Gordon Equation with a Non-Constant Coefficient

The first paper exploring the application of Laplace transforms to Riemann’s method was due to

Scott [63]. In 1977, Wahlberg [64] also used the technique to find the Riemann function for

Uyy − Uxx + (1 + δx)U = 0. (77)

To solve (77), first make the change of variables,

r =
1

2
λ1/3 [(x0 + t0 − (x + t)] , s =

1

2
λ1/3 [(x − t)− (x0 − t0)] . (78)

Equation (77) then reduces to

∂2W

∂r∂s
+ (σ + s − r)W = 0, (79)

W = 1 when rs = 0, (80)

where σ = λ−2/3(1 + λx0).

Note that from (72), p = 1 but q 6= const. Hence, (79) is not part of the equivalence class of

equations admitting a symmetry group isomorphic to SL(2, R) that was seen in section (4.1). By

extension, there is no invertible transformation from (79) to the EPD equation (14).

Equation (79) is then solved by Laplace transform. Write the transform of W(r, s) as

W̃(r, p) ≡
∫ ∞

0
e−psW(r, s)ds.

The transformed version of (79) is

p
∂W̃

∂r
− ∂W̃

∂p
+ (σ − r) W̃ = 0 (81)
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after applying the boundary condition (80). The solution to (81) is easily obtained as

W̃(r, p) = F

(

r +
1

2
p2

)

exp

[

(σ − r)p − 1

3
p3

]

. (82)

The function F is determined from the condition that W(0, s) = 1, or W̃(0, p) = 1/p, which yields

W̃(, r, p) =
1√

2r + P2
exp

[

(σ − r)p − 1

3
p3 − σ

√

2r + P2 +
1

3

(

2r + p2
)3/2

]

. (83)

Let p = ξ + iη, the solution to (79) and (80) is then formally given by

W(r, s) =
1

2πi

∫ ξ0+i∞

ξ0−i∞
W̃(r, p)dp, (84)

where W̃(r, p) was defined in (83).

Expressing (84) as a contour integral, Wahlberg showed that the Riemann function for (77) can

then be represented by

R(ξ, η, ξ0, η0) =
1

2πi

∫

Γ
exp

{[

1 +
δ

2
(ξ + ξ0)

]

z +
(ξ − ξ0)

2 − (η − η0)
2

4z
− δ2

12
z3

}

dz

z
, (85)

where Γ is defined by |z| = ρ, encircling the origin in the positive direction (since the integrand is

analytic everywhere except at z = 0, Γ can be taken to be any closed contour encircling the origin in

the positive direction).

Alternatively, expanding exp(−δ2z3/12) of the integrand as a power series then applying the

formula [65]

Jn(α) =
1

2πi

∫

Γ
z−n−1 exp

[

1

2
α

(

z − 1

z

)]

dz

for the Bessel function of order n, yields

R(x, y, x0, y0) =
∞

∑
n=0

Ωn

n!
J3n(∆), (86)

with

Ω =
δ2

96

(

(y − y0)
2 − (x − x0)

2

1 + δ
2 (x + x0)

)3/2

, (87)

∆ =

{[

1 +
δ

2
(x + x0)

]

[

(y − y0)
2 − (x − x0)

2
]

}1/2

. (88)

4.3. The Multiplication Formula

In 1981, Xin Hua Du [66] derived a multiplication theorem for Riemann functions. Returning

to the method of successive approximations, first used by Cohn [42] and Olevskiı̆ [45] as outlined in

section (3), Du wrote the Riemann function for the equation

Uyy − Uxx + A(x, y)U = 0 (89)
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as

RA(x, y, x0, y0) =
∞

∑
k=1

Gk(ξ, η; ξ0, η0) (90)

=
∞

∑
k=1

(

−1

4

)k−1 ∫ Q

Q0

∫ Qk−1

Q0

. . .
∫ Q1

Q0

k−1

∏
i=1

A(Qi)dQ1dQ2 . . . dQk−1,

where G1 = 1 and

∫ ξ

ξ0

∫ η

η0

A

(

p1 + q1

2
,

p1 − q1

2

)

dp1dq1 =
∫ Q

Q0

A(Q1)dQ1.

For simplicity write

RA = ∑ TK(A).

From this starting point, Du supposed that A(x, y) = ρ(x) in (89). In this way the corresponding

Riemann function (90) can be denoted by Rρ(x, y, x0, y0). Then the Riemann function, Rln ρ, for the

equation

Uyy − Uxx + (ln ρ(x))U = 0 (91)

is

Rln ρ(x, y, x0, y0) = [Rρ]
∗
ln ρ = ∑ Tk

(

ln
−(∂yy − ∂xx)Rρ

Rρ

)

. (92)

Conversely, if Rln ρ is given, then similarly we have

Rρ(x, y, x0, y0) = [Rln ρ]
ρ
∗ = ∑ Tk

(

e
−

(∂yy−∂xx)Rln ρ
Rln ρ

)

. (93)

Again for convenience, write [Rρ]∗ln ρ and [Rln ρ]
ρ
∗ as [Rρ]∗ and [Rln ρ]∗. We are now in a position

to state Du’s main result. If ρ1 = ρ1(x) and ρ2 = ρ2(y), then the Riemann function, Rρ1ρ2 , for the

equation

Uyy − Uxx + [ρ1(x)ρ2(y)]U = 0 (94)

can be given by

Rρ1ρ2(x, y, x0, y0) =
[(

(Rρ1+ρ2

)

◦
(

Rρ1 = [Rρ1 ]
∗, Rρ2 = [Rρ2 ]

∗)]
∗ , (95)

where ( ) ◦ ( ) represents a convolution. Furthermore Rρ1 and Rρ2 must possess the properties

Rρ1(x, y, x0, y0) = Rρ1(x, y − y0, x0, 0) = Rρ1(x, y0 − y, x0, 0), (96)

Rρ2(x, y, x0, y0) = Rρ2(x − x0, y, 0, y0) = Rρ2(x0 − x, y, 0, y0). (97)

The above notation for (91)–(95) is exactly that used by Du. However it is somewhat cryptic. So a

little explanation may be useful. What Du denotes by [ ]∗ in (95) is essentially the Riemann function

for

Uyy − Uxx + ln [ρ1(x)ρ2(y)]U = 0. (98)

This is built using Olevskiı̆’s addition formula (43) and the equations

Uyy − Uxx + ln ρ1(x)U = 0,

Uyy − Uxx + ln ρ2(y)U = 0,
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for which the required Riemann functions can be obtained from (92). Then applying (93) to (98) yields

the required Riemann function for (94).

4.4. Finite Groups and a Link to Appell’s F4

First, return to the equation

L[U] = Urs +

[

m(m − 1)

(r − s)2
− n(n − 1)

(r + s)2

]

U = 0. (99)

Recall that it was seen as case 4 of (21), where it was obtained as a reduction of Chaundy’s equation

(17). The Riemann function in characteristic variables was

R(r, s, r0, s0) = F3(n, 1 − n, m, 1 − m; 1; z1, z2),

where z1 and z2 are given by (19). Applying (72), it is straight forward to show that the Riemann

function for (99) cannot be obtained by means of point symmetries as the group is trivial. However,

Iwasaki [67] found in 1988 that, although a symmetry reduction will not yield the Riemann function,

a finite group isomorphic to Z2 × Z2 × Z2 acting on its Riemann function permitted him to reduce

(99) to Appell’s system F4.

As Iwasaki showed, the Riemann function R(r, s, r0, s0) is invariant under the transformations of

the independent variables of the form

1. (r, s, r0, s0) 7→ (λr, λs, λr0, λs0), λ constant,
2. (r, s, r0, s0) 7→ (1/r, 1/s, 1/r0, 1/s0),
3. (r, s, r0, s0) 7→ (s, r, s0, r0),
4. (r, s, r0, s0) 7→ (r0, s0, r, s).

Taking advantage of (1), define the new variables

X =
r

s0
, Y =

s

s0
, Z =

r0

s0
. (100)

The Riemann function must now satisfy

L(X,Y)[R] = 0, (101)

(X − Z)(Y − 1) = 0 implies R = 1. (102)

The group G generated by the transformations of (X, Y, Z) have the generators

X∗ : (X, Y, Z) 7→ (X, X/Z, X/Y),

Y∗ : (X, Y, Z) 7→ (Y/Z, Y, Y/X),

Z∗ : (X, Y, Z) 7→ (Z/Y, Z/X, Z).

As is easily seen, X∗, Y∗ and Z∗ are involutions and commutative with each other. Hence the group

G =< X∗, Y∗, Z∗
> is G ≈ Z2 ×Z2 ×Z2 and |G| = 8.

Iwasaki then sought an extension to the field K/k where K = C(X, Y, Z) and k = { f ∈
K; f is G-invariant}. With this in mind, he defined the new variables

pi = Xi + 1/Xi + Xk/Xj + Xj/Xk, (103)

qi = Xi/(XjXk) + (XjXk)/Xi + 2, (104)

si = Xi + 1/Xi − Xk/Xj − Xj/Xk, (105)
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where (i, j, k) runs over all permutations of (1, 2, 3) and X1 = X, X2 = Y and X3 = Z. Thus pi, qi ∈ k.

After further examination of the field, Iwasaki was led to try

r′ = p1/q3, s′ = p2/q3, t′ = q3. (106)

Substitution of (106) into (101) and (102) gives

{s3 M1 + r′s′t′M1 + 2M2 + 2M3}R = 0, (107)

where

M1 = L(r′,s′) = ∂r′∂s′ +
n(1 − n)

(r′ − s′)2
− m(1 − m)

(r′ + s′)2
,

M2 = (1 − r′2)∂2
r′ + (1 − s′2)∂2

s′ − 2r′s′∂2
r′s′ − 2r′∂r′ − 2s′∂s′ −

2n(1 − n)

(r′ − s′)2
− 2m(1 − m)

(r′ + s′)2
,

M3 = t′{(t′ − 4)∂t′(t
′∂t′ − r′∂r′ − s′∂s′ − 1) + 2∂t′ , }

and s3 is defined by (105). Since M1R and r′s′t′M1R + 2M2R + 2M3R are G-invariant and s3 is not an

element of k, (107) splits into two parts:

M1R = 0, M2R + M3R = 0. (108)

Iwasaki then proposed that if f (r′, s′, t′) is a solution of (108) (suppose that f makes sense at t′ = 0),

then f (r′, s′, 0) is also a solution of (108). Hence it is reasonable to expect that R(r, s, r0, s0) is a function

depending only on (r′, s′) and to consider a system of PDEs

M1U = M2U = 0, (109)

to which (108) reduces if this expectation is correct. Now from (102), s = 1 implies u = 1. If (109)

has a solution satisfying this condition then the assumption is correct and R will be given by such a

solution. Unfortunately such an expectation is probably specific to this example and may prevent the

possibility of building a general method based on Iwasaki’s work. In fact, it is reminiscent of the type

of inspired guess for which many classical Riemann function papers have been criticised.

In any event, the substitutions

p =

[

r′ − s′

2

]2

=

[

(r − s)(r0 − s0)

2(rs + r0s0)

]2

,

q =

[

r′ + s′

2

]2

=

[

(r + s)(r0 + s0)

2(rs + r0s0)

]2

,

u = pn/2qm/2v,

transform (109) into a system of partial differential equations associated with Appell’s

hypergeometric function F4(α, β, γ, γ′; p, q), where α etc., depend on m and n. Iwasaki then shows

that the general solution can be expressed as a linear combination of four contiguous F4 functions.

After further calculations, he concludes that the Riemann function for (99) is

R(r, s, r0, s0) =
3

∑
j=0

Cj(a, b)uj(p, q; n, m),
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where

u0 = u(p, q; n, m), C0 = C(n, m),

u1 = u(p, q; 1 − n, m), C1 = C(1 − n, m),

u2 = u(p, q; n, 1− m), C2 = C(n, 1 − m),

u3 = u(p, q; 1 − n, 1 − m), C3 = C(1 − n, 1 − m),

and

u(p, q; n, m) = pn/2qm/2F4

(

m + n

2
,

m + n + 1

2
, n +

1

2
, m +

1

2
; p, q

)

,

C(n, m) =
2−m−nΓ

(

1
2 − n

)

Γ
(

1
2 − m

)

πΓ (1 − m − n)
.

4.5. Lie-Bäcklund Symmetries

In 2004, Zeitsch [68,69] was able to establish a new equivalence class of Riemann functions by

extending the point symmetry ideas of section (4.1) to Lie-Bäcklund symmetries. The key result

was given in [68]. There it was shown that Chaundy’s equation (17) admitted a two-dimensional

generalized symmetry algebra. A straightforward calculation shows that (17) admits no non-trivial

point symmetries. Following [70], define the second-order operator

S = f1∂rr + f2∂ss + f3∂r + f4∂s + f5. (110)

We say that (110) is a Lie-Bäcklund symmetry operator for (17) provided

[S, L] = QL, (111)

where

L = ∂rs +

[

m1(1 − m1)

(r + s)2
− m2(1 − m2)

(r − s)2
+

m3(1 − m3)

(1 − rs)2
− m4(1 − m4)

(1 + rs)2

]

(112)

and

Q = h1∂r + h2∂s + h3 (113)

is a first-order differential operator (here Q may vary with S) and f1, . . . , h3 are arbitrary functions of

r and s.

Solving (111) and equating the coefficients of the derivatives to zero yields a two-dimensional

vector space of operators. The symmetries, S1 and S2, form a basis and have differential part

S1 = (r4 + 1)∂rr + (s4 + 1)∂ss + 2r3∂r + 2s3∂s, (114)

S2 = r2∂rr + s2∂ss + r∂r + s∂s. (115)

Following [70], for each inequivalent orbit, a separable coordinate system exists. Taking a linear

combination of (114) and (115), there are then four orbits, namely:

• S1 + 2qS2, q > 1.

• S1 + 2S2.
• S1 − 2S2.
• S1 + 2qS2, q < −1.

Analysing each case, Zeitsch then found:
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System 1: The separable coordinates are

r = b
sn [a(ξ + η)]

cn [a(ξ + η)]
, s = b

sn [a(ξ − η)]

cn [a(ξ − η)]
(116)

where 2q = (1 + b4)/b2, k2 = 1 − b4, 0 < b < 1 and k is the modulus of the Jacobian elliptic functions.

See [71] for more detail on the elliptic functions sn and cn as well as the other elliptic functions such

as dn . When (116) is substituted into (17), the following separable equation is obtained

Uξξ − Uηη +

{

a2

[

m1(1 − m1)

(

dn 2aξ

sn 2aξcn 2aξ
− k4 sn 2aηcn 2aη

dn 2aη

)

−m2(1 − m2)

(

dn 2aη

sn 2aηcn 2aη
− k4 sn 2aξcn 2aξ

dn 2aξ

)]

+4a2b2

[

m3(1 − m3)

(

dn 2aξ

(cn 2aξ − b2sn 2aξ)2
+

dn 2(aη)

(cn 2aη + b2sn 2aη)2
− 1

)

−m4(1 − m4)

(

dn 2aξ

(cn 2aξ + b2sn 2aξ)2
+

dn 2aη

(cn 2aη − b2sn 2aη)2
− 1

)]}

U = 0. (117)

The Riemann function for (117) is found by substituting (116) into (19), (20) and (18). Hence

R(ξ, η, ξ0, η0) = FB (m1, m2, m3, m4, 1 − m1, 1 − m2, 1 − m3, 1 − m4, 1, z11, z12, z13, z14) , (118)

where

z11 =

[

(sn aηcn aη0dn aξ0 − sn aη0cn aηdn aξ)2

− (sn aξcn aξ0dn aη0 − sn aξ0cn aξdn aη)2

]

(4sn aξ sn aξ0 cn aξ cn aξ0 dn aη dn aη0)
, (119)

z12 =

[

(sn aξcn aξ0dn aη0 − sn aξ0cn aξdn aη)2

− (sn aηcn aη0dn aξ0 − sn aη0cn aηdn aξ)2

]

(4sn aη sn aη0 cn aη cn aη0 dn aξ dn aξ0)
, (120)

z13 = b2

[

(sn aηcn aη0dn aξ0 − sn aη0cn aηdn aξ)2

− (sn aξcn aξ0dn aη0 − sn aξ0cn aξdn aη)2

]

[

(cn 2aξ − b2sn 2aξ)(cn 2aη + b2sn 2aη)
× (cn 2aξ0 − b2sn 2aξ0)(cn 2aη0 + b2sn 2aη0)

] , (121)

z14 = b2

[

(sn aξcn aξ0dn aη0 − sn aξ0cn aξdn aη)2

− (sn aηcn aη0dn aξ0 − sn aη0cn aηdn aξ)2

]

[

(cn 2aξ + b2sn 2aξ)(cn 2aη − b2sn 2aη)
× (cn 2aξ0 + b2sn 2aξ0)(cn 2aη0 − b2sn 2aη0)

] . (122)

System 2: For the symmetry S1 + 2S2 we find the separable coordinate system

r = tan

[

a
(ξ + η)

2

]

, s = tan

[

a
(ξ − η)

2

]

. (123)
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Substituting (123) into (17) yields

Uξξ − Uηη + a2

[

m1(1 − m1)

sin2 aξ
− m2(1 − m2)

sin2 aη
+

m3(1 − m3)

cos2 aξ
− m4(1 − m4)

cos2 aη

]

U = 0. (124)

The Riemann function for (124) is then

R(ξ, η, ξ0, η0) = FB (m1, m2, m3, m4, 1 − m1, 1 − m2, 1 − m3, 1 − m4, 1, z15, z16, z17, z18) , (125)

where

z15 =
cos a(ξ − ξ0)− cos a(η − η0)

2 sin aξ sin aξ0
, z16 =

cos a(η − η0)− cos a(ξ − ξ0)

2 sin aη sin aη0
, (126)

z17 =
cos a(ξ − ξ0)− cos a(η − η0)

2 cos aξ cos aξ0
, z18 =

cos a(η − η0)− cos a(ξ − ξ0)

2 cos aη cos aη0
. (127)

System 3: For the symmetry S1 − 2S2, we find the separable coordinate system

r = tanh

[

a
(ξ + η)

2

]

, s = tanh

[

a
(ξ − η)

2

]

. (128)

Substituting (128) into (17) yields

Uξξ − Uηη + a2

[

m1(1 − m1)

sinh2 aξ
− m2(1 − m2)

sinh2 aη
+

m3(1 − m3)

cosh2 aη
− m4(1 − m4)

cosh2 aξ

]

U = 0. (129)

The Riemann function for (129) is now

R(ξ, η, ξ0, η0) = FB (m1, m2, m3, m4, 1 − m1, 1 − m2, 1 − m3, 1 − m4, 1, z19, z20, z21, z22) (130)

and

z19 =
cosh a(η − η0)− cosh a(ξ − ξ0)

2 sinh aξ sinh aξ0
, z20 =

cosh a(ξ − ξ0)− cosh a(η − η0)

2 sinh aη sinh aη0
, (131)

z21 =
cosh a(η − η0)− cosh a(ξ − ξ0)

2 cosh aη cosh aη0
, z22 =

cosh a(ξ − ξ0)− cosh a(η − η0)

2 cosh aξ cosh aξ0
. (132)

System 4: For the symmetry S = S1 + 2qS2 where q < −1, the separable coordinate system is

r = b sn a(ξ + η), s = b sn a(ξ − η), (133)

where k = b2, 2q = −(1 + b4)/b2 and 0 < b < 1. As in system 1, a is arbitrary and k is the modulus

of the elliptic functions. Substituting (133) into (17) yields

Uξξ − Uηη +

{

a2

[

m1(1 − m1)

(

cn 2aξ dn 2aξ

sn 2aξ
− (1 − k2)2 sn 2aη

cn 2aη dn 2aη

)

− m2(1 − m2)

(

cn 2aη dn 2aη

sn 2aη
− (1 − k2)2 sn 2aξ

cn 2aξdn 2aξ

)]

+ 4a2b2

[

m3(1 − m3)

(

cn 2aξ dn 2aξ

(1 − b2sn 2aξ)2
+

cn 2aη dn 2aη

(1 + b2sn 2aη)2
− 1

)

− m4(1 − m4)

(

cn 2aξ dn 2aξ

(1 + b2sn 2aξ)2
+

cn 2aη dn 2aη

(1 − b2sn 2aη)2
− 1

)]}

U = 0. (134)
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The Riemann function for (134) is then

R(ξ, η, ξ0, η0) = FB (m1, m2, m3, m4, 1 − m1, 1 − m2, 1 − m3, 1 − m4, 1, z27, z28, z29, z30) , (135)

where

z27 =

[

(sn aη cn aξ dn aξ0 − sn aη0 cn aξ0 dn aξ)2

− (sn aξ cn aη dn aη0 − sn aξ0 cn aη0 dn aη)2

]

(4sn aξ sn aξ0 cn aη cn aη0 dn aη dn aη0)
, (136)

z28 =

[

(sn aξ cn aη dn aη0 − sn aξ0 cn aη0 dn aη)2

− (sn aη cn aξ dn aξ0 − sn aη0 cn aξ0 dn aξ)2

]

(4sn aη sn aη0 cn aξ cn aξ0 dn aξ dn aξ0)
, (137)

z29 = b2

[

(sn aη cn aξ dn aξ0 − sn aη0 cn aξ0 dn aξ)2

− (sn aξ cn aη dn aη0 − sn aξ0 cn aη0 dn aη)2

]

[

(1 − b2sn 2aξ)(1 + b2sn 2aη)
× (1 − b2sn 2aξ0)(1 + b2sn 2aη0)

] , (138)

z30 = b2

[

(sn aξ cn aη dn aη0 − sn aξ0 cn aη0 dn aη)2

− (sn aη cn aξ dn aξ0 − sn aη0 cn aξ0 dn aξ)2

]

[

(1 + b2sn 2aξ)(1 − b2sn 2aη)
× (1 + b2sn 2aξ0)(1 − b2sn 2aη0)

] . (139)

Returning to (124), setting m3 = m4 = 0, we recover (52). Hence (52) is in fact a sub-case of

Chaundy’s equation, obtainable via a Lie-Bäcklund symmetry. A quick calculation shows that (124)

only admits one first order symmetry. As such, the group is not isomorphic to SL(2, R). In this

way, a new equivalence class of Riemann functions has been established. Likewise, take (129) and

let m2 = m3 = 0. The Riemann function for this case was first given in [46] by using the techniques

from section (3.3). It is therefore also part of the equivalence class admitting the two-dimensional

generalized symmetry algebra (114)-(115).

5. New Riemann Functions

Based on the link between (124) and (52), seen at the end of section (4.5), the possibility now exists

to construct new Riemann functions, which do not fit into either the point symmetry equivalence

class, nor that defined by the generalized symmetries of (17). Taking separable equations and

applying them to (43) will result in equations for which there is no invertible transformation to a

known Riemann function as the group of the resulting equation will be trivial. Among the separable

equations from the previous sections, four possibilities for application to the addition formula arise

straight away. If we let a = λ1 and m1 = m3 = 0 in (124), a = λ2 and m2 = m3 = 0 in (129), as well as

(x, y) → (η, ξ) in (14) and (77), we obtain

Uξξ − Uηη − λ2
1

[

m2(1 − m2)

sin2 λ1η
+

m4(1 − m4)

cos2 λ1η

]

U = 0, (140)

Uξξ − Uηη + λ2
2

[

m1(1 − m1)

sinh2 λ2ξ
− m3(1 − m3)

cosh2 λ2ξ

]

U = 0, (141)

Uξξ − Uηη +
n(1 − n)

ξ2
U = 0, (142)

Uξξ − Uηη + (1 + δξ)U = 0. (143)
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The Riemann functions for the first three equations are respectively

R1(ξ, η, ξ0, η0) = F3 (m2, m4, 1 − m2, 1 − m4, 1, z16, z18) , (144)

R2(ξ, η, ξ0, η0) = F3 (m1, m3, 1 − m1, 1 − m3, 1, z19, z22) , (145)

R3(ξ, η, ξ0, η0) = 2F1 (n, 1 − n; 1; z0) , (146)

where z16 and z22 were given by (126) and (127). Similarly, z0, z19 and z22 were defined by (16),

(131) and (132) respectively. Note also that the roles of ξ and η are interchanged, as required.

Call R4(ξ, η, ξ0η0) the Riemann function for (143), which was defined by equations (86)-(88) (again

interchanging the roles of x and y with ξ and η as required).

Start by combining (140) and (141), which produces the equation

Uξξ − Uηη +

[

λ2
1

(

m2(1 − m2)

sin2 λ1η
+

m4(1 − m4)

cos2 λ1η

)

− λ2
2

(

m1(1 − m1)

sinh2 λ2ξ
− m3(1 − m3)

cosh2 λ2ξ

)]

U = 0. (147)

The Riemann function for (147) is then

R(ξ, η, ξ0, η0) = F3(m2, m4, 1 − m2, 1 − m4, 1, z33, z34)

+
∫ η−η0

ξ−ξ0

F3 (m2, m4, 1 − m2, 1 − m4, 1, u2(t), u3(t))×

∂

∂t
F3 (m1, m3, 1 − m1, 1 − m3, 1, v2(t), v3(t)) dt, (148)

where

u2(t) =
cos λ1(η − η0)− cos λ1t

2 sin λ1η sin λ1η0
, u3(t) =

cos λ1(η − η0)− cos λ1t

2 cos λ1η cos λ1η0
,

v2(t) =
cosh λ2t − cosh λ2(ξ − ξ0)

2 sinh λ2ξ sinh λ2ξ0
, v3(t) =

cosh λ2(ξ − ξ0)− cosh λ2t

2 cosh λ2ξ cosh λ2ξ0
.

The constants λ1 and λ2 were introduced trivially into (140) and (141). However, after applying

these two equations to the addition formula, the ratio λ1/λ2 becomes essential. In other words, it is

possible to transform away either λ1 or λ2, but it is no longer possible to eliminate both λ1 and λ2

from (147) via a change of variables. Effectively, a five parameter Riemann function has been obtained.

It is useful to write the equation as (147) though, which at first glance incorporates six parameters, as

the equation is then symmetric. This is now the most general self-adjoint equation for which the

Riemann function is known. It incorporates one more essential parameter than Chaundy’s equation

(17). It was first published in [68].

The next obvious choice is to combine equations (142) with (140) and (141) to produce

Uξξ − Uηη +

[

m1(1 − m1)

ξ2
− m2(1 − m2)

sin2 η
− m4(1 − m4)

cos2 η

]

U = 0, (149)

Uξξ − Uηη +

[

m1(1 − m1)

ξ2
− m2(1 − m2)

sinh2 η
+

m3(1 − m3)

cosh2 η

]

U = 0. (150)

The Riemann function for (150) was first given in [46] by using the addition formula. However, both

(149) and (150) can be obtained as confluent reductions of (147). To see this, firstly let m3(1 − m3) = 0

in (147). Then if we take the limit as λ2 → 0, we obtain (149). In a completely analogous way, to

recover (150), start with (147), set m4(1 − m4) = 0, and again take the limit as λ1 → 0. The result is

(150) as desired.
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In order to obtain truly new Riemann functions, equations (140) to (142) need to be combined

with (143). Hence, for the equations

Uξξ − Uηη −
[

m2(1 − m2)

sin2 η
+

m4(1 − m4)

cos2 η
+ (1 + δξ)

]

U = 0, (151)

Uξξ − Uηη −
[

m2(1 − m2)

sinh2 η
− m3(1 − m3)

cosh2 η
+ (1 + δξ)

]

U = 0, (152)

Uξξ − Uηη −
[

m1(1 − m1)

η2
+ (1 + δξ)

]

U = 0, (153)

the Riemann functions are respectively

R(ξ, η, ξ0, η0) = R1(ξ, η, ξ0, η0) +
∫ η−η0

ξ−ξ0

R1(t, η, 0, η0)
∂

∂t
R4(ξ, t, ξ0, 0)dt,

R(ξ, η, ξ0, η0) = R2(ξ, η, ξ0, η0) +
∫ η−η0

ξ−ξ0

R2(t, η, 0, η0)
∂

∂t
R4(ξ, t, ξ0, 0)dt,

R(ξ, η, ξ0, η0) = R3(ξ, η, ξ0, η0) +
∫ η−η0

ξ−ξ0

R3(t, η, 0, η0)
∂

∂t
R4(ξ, t, ξ0, 0)dt,

where R1(ξ, η, ξ0, η0), R2(ξ, η, ξ0, η0) and R3(ξ, η, ξ0, η0) are given by (144)–(146). R4(ξ, η, ξ0, η0) is

defined by (86)–(88) and the roles of ξ and η are interchanged as required. The final possibility is to

use (143) twice. That is, to take the equation

Uξξ − Uηη − (δξ − ωη)U = 0. (154)

The Riemann function for (154) is given by

R(ξ, η, ξ0, η0) = R4(ξ, η, ξ0, η0) +
∫ η−η0

ξ−ξ0

R5(t, η, 0, η0)
∂

∂t
R4(ξ, t, ξ0, 0)dt,

where R4(ξ, η, ξ0, η0) remains unchanged. R5 is obtained by interchanging the roles of ξ and η in

(86)–(88). The Riemann function for (154) first appeared in [69] for the case where δ = ω. The full

equation has not been published before.

Equations (151) to (154) admit no point symmetries. Likewise, they have no non-trivial

Lie-Bäcklund symmetries. Hence, they fall outside the equivalence classes of Riemann functions

studied in sections (4.1) and (4.5). In this way, (151) to (154) represent a completely new class of

Riemann functions.

In principle, all the equations (140) to (143) are applicable to the multiplication formula (94).

However, no closed form Riemann function has been found using (94). This is left as an open problem

for the interested reader.

6. Conclusion

Extending the review undertaken by Copson in 1958, seven additional approaches to the original

six documented methods, have been detailed. Listing them chronologically, they are:

• Lie point symmetries.

• The method of successive approximations.
• The addition formula.
• Laplace transforms.
• The multiplication formula.

• Finite groups.
• Lie-Bäcklund symmetries.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2018                   doi:10.20944/preprints201810.0717.v1

Peer-reviewed version available at Mathematics 2018, 6, 316; doi:10.3390/math6120316

http://dx.doi.org/10.20944/preprints201810.0717.v1
http://dx.doi.org/10.3390/math6120316


Mathematics 2018, 5, x 26 of 30

Furthermore, the equivalences generated by point symmetries, where the governing equation admits

a symmetry algebra isomorphic to SL(2, R) have been clarified. This has now been complemented by

a new equivalence class of Riemann functions which is obtainable only from a generalized symmetry

and admits no non-trivial point symmetries. Hence, we have obtained a useful new diagnostic tool in

the hunt for equivalences amongst PDEs and their Riemann functions. By combining several of the

solution techniques, several new Riemann functions were then derived that admitted no symmetries

whatsoever.

To conclude, other papers have also been published since Copson’s review. For instance, the idea

of the complex Riemann function has been considered [38], [72]-[74]. It is largely based on the work

of Vekua [75]. Qualitative properties of the Riemann function have also been explored [76]-[78]. As

far as other qualitative properties go, only the “duality" property is known [40]. Higher dimensional

Riemann functions have also been explored by Zhegalov [79] and Koshcheeva [80].
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Appendix. Hypergeometric Functions

Here, the definitions and key properties of the hypergeometric functions seen in this paper are

included for reference. Greater detail can be found in [33] and [34]. The functions are included in the

order in which they appeared.

• 2F1(a, b; c; z)

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)nzn

(c)nn!
,

where

(a)n =
Γ(a + n)

Γ(a)
, (A1)

(a)0 = 1, (a)n = a(a + 1) . . . (a + n − 1), n = 1, 2, 3, . . .

This function is a particular solution of the equation

z(1 − z)
d2U

dz2
+ [c − (a + b + 1)z]

dU

dz
− abU = 0.

Of particular note is the relationship between the Legendre function and the hypergeometric

function

Pm(1 − 2z) = 2F1(m, 1 − m, 1, z).

• Ξ2(a, b, c, z1, z2)

Ξ2(a, b, c, z1, z2) = ∑
(a)m(b)n

(c)m+nm!n!
zm

1 zn
2 ,

where (a)m etc. are given by (A1). This function is the solution to the system of equations

z1(1 − z1)
∂2U

∂z2
1

+ z2
∂2U

∂z1∂z2
+ [c − (a + b + 1)z1]

∂U

∂z1
− abU = 0,

z2
∂2U

∂z2
2

+ z1
∂2U

∂z1∂z2
+ c

∂U

∂z2
− U = 0.

• F3(a, a′, b, b′, c, z1, z2)

F3(a, a′, b, b′, c, z1, z2) = ∑
(a)m(a′)n(b)m(b′)n

(c)m+nm!n!
zm

1 zn
2 ,

where (a)m etc. are given by (A1). This function is the solution to the system of equations

z1(1 − z1)
∂2U

∂z2
1

+ z2
∂2U

∂z1∂z2
+ [c − (a + b + 1)z1]

∂U

∂z1
− abU = 0,

z2(1 − z2)
∂2U

∂z2
2

+ z1
∂2U

∂z1∂z2
+
[

c − (a′ + b′ + 1)z2

] ∂U

∂z2
− a′b′U = 0.
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• FB(a1, . . . , an, b1, . . . , bn, c, z1, . . . , zn)

FB(a1, . . . , an, b1, . . . , bn, c, z1, . . . , zn) =

∑
(a1)m1 . . . (an)mn(b1)m1 . . . (bn)mn

(c)m1+...+mn m1! . . . mn!
z

m1
1 . . . zmn

n .

where (a1)m1 etc. are given by (A1). This function satisfies the system of equations

zj(1 − zj)
∂2U

∂z2
j

+ ∑
k 6=j

zk
∂2U

∂zj∂zk
+
[

c − (aj + bj + 1)zj

] ∂U

∂zj
− ajbjU = 0,

for i, j ≤ n.

• Jn(z)

Jn(z) =
∞

∑
r=0

(−1)nzn+2r

2r!(n + r)!
.

This function is a particular solution of the equation

d2U

dz2
+

1

z

dU

dz
+

(

1 − n2

z2

)

U = 0.

• F4(a, b, c, c′, z1, z2)

F4(a, b, c, c′, z1, z2) = ∑
(a)m+n(b)m+n

(c)m(c′)nm!n!
zm

1 zn
2 ,

where (a)m+n etc. are given by (A1). This function is the solution of the system of equations

z1(1 − z1)
∂2U

∂z2
1

− z2
2

∂2U

∂z2
2

− 2z1z2
∂2U

∂z1∂z2
+ [c − (a + b + a)z1]

∂U

∂z1

−(a + b + 1)z2
∂U

∂z2
− abU = 0,

z2(1 − z2)
∂2U

∂z2
2

− z2
1

∂2U

∂z2
1

− 2z1z2
∂2U

∂z1∂z2
+ [c − (a + b + a)z2]

∂U

∂z1

−(a + b + 1)z1
∂U

∂z1
− abU = 0.
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