
Review 1 

A Trajectory-Based Method to Explore Reaction 2 

Mechanisms 3 

Saulo A. Vázquez 1, Xose L. Otero 2 and Emilio Martinez-Nunez 1,* 4 
1 Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de 5 

Compostela, 15782, Santiago de Compostela, Spain; saulo.vazquez@usc.es, emilio.nunez@usc.es 6 
2 Unidade de Bioestadística, Facultade de Medicina, Universidade de Santiago de Compostela, 15782, 7 

Santiago de Compostela, Spain; xoseluis.otero@usc.es 8 
* Correspondence: emilio.nunez@usc.es; Tel.: +34-881814216 9 
 10 

Abstract: The tsscds method, recently developed in our group, discovers chemical reaction 11 
mechanisms with minimal human intervention. It employs accelerated molecular dynamics, 12 
spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction 13 
paths and to solve the kinetics at the experimental conditions. In the present review, its application 14 
to solve mechanistic/kinetics problems in different research areas will be presented. Examples will 15 
be given of reactions involved in photodissociation dynamics, mass spectrometry, combustion 16 
chemistry and organometallic catalysis. Some planned improvements will also be described.  17 

Keywords: automated algorithm; molecular dynamics; graph theory; statistical rate theory; kinetics 18 
simulations. 19 

 20 

1. Introduction 21 
Theoretical studies of reaction mechanisms can greatly benefit nowadays by leveraging the 22 

surge of automated methods developed in the last few years [1-58]. The idea of these new 23 
computational protocols is to substitute human intervention by less error-prone and less tedious 24 
automated algorithms. The automated methodologies range from chemical heuristics to the use of 25 
artificial forces to boost chemical reactions.  26 

Our group has contributed with the development of a method called tsscds [43-47], which is 27 
based on accelerated molecular dynamics (MD), as are some others [29, 30]. In our trajectories, the 28 
bonds of the molecule(s) are broken/formed thanks to large amounts of energy placed in each normal 29 
mode/atom of the system [45]. The distinctive feature of tsscds compared to others is the primary 30 
target of the post-processing analysis: the search for transition states (TS) rather than minima. 31 
Additionally, having determined the TS of a given process, its rate can easily be determined using 32 
transition state theory (TST) [59-62]. Thus, finding the relevant TSs on a given potential energy 33 
surface (PES), as our method does, is a subject of fundamental importance in chemistry. 34 

In tsscds, after completion of a trajectory, an algorithm named bond breaking/formation search 35 
(BBFS) [45] is employed to select good TS guess structures, which are then optimized using 36 
Eigenvector Following (EF) [63]. In particular, the adjacency matrix, which indicates whether pairs 37 
of atoms form a bond, is monitored along each trajectory to identify the atoms/bonds involved in all 38 
chemical reactions taking place. Then, for each of the selected candidates, a partial optimization is 39 
firstly carried out by freezing the atoms involved in the reaction. The partially-optimized structure is 40 
subsequently subjected to TS optimization using the EF algorithm. The resulting TSs are then 41 
connected with the minima using intrinsic reaction coordinate (IRC) calculations [64]. Finally, tsscds 42 
also features a Kinetic Monte Carlo [65] module that provides the desired kinetic information using 43 
the network of TSs and minima. The source code can be downloaded from: 44 
http://forge.cesga.es/wiki/g/tsscds/HomePage. 45 
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The method has been successfully employed to study reactions involved in combustion [66, 67], 46 
photolysis [68-70], mass spectrometry [71] and organometallic catalysis [43]. The aim of this review 47 
is to go over several examples where tsscds is employed to either discover new mechanisms and/or 48 
to explain the experiments. For detailed comparisons among different methods for exploring reaction 49 
space, the reader is referred to two recent reviews [58, 72]. Additionally, in the last section, some 50 
planned improvements to enhance the efficiency/efficacy or to expand the scope of tsscds will be 51 
described.  52 

2. Method  53 
The method tsscds has been recently put forward by one of the authors as an automated tool to 54 

discover reaction mechanisms [44, 45]. The basic idea behind tsscds is to run accelerated MD 55 
simulations with the aim to break/form bonds within a few hundred femtoseconds. The simulations 56 
are called “accelerated” because the molecules experience breakage or formation of new bonds very 57 
rapidly thanks to large amounts of vibrational energy placed in each normal mode of the system. In 58 
particular, a range of vibrational energies of 20-50 kcal/mol per normal mode is initially employed. 59 
However, this range is automatically adjusted to attain at least 60% reactive trajectories in the MD 60 
simulations. Although the default option is to excite all vibrational modes of the system (using 61 
microcanonical normal mode sampling [73]), the user can decide to heat only one part of the system 62 
selecting a few normal modes to be initially excited. The latter option can be particularly useful for 63 
large systems.  64 

The trajectory results are then analyzed with a post-processing algorithm (named BBFS), which 65 
identifies geometries with partly formed/broken bonds. Those structures serve as TS candidates in 66 
subsequent transition state optimizations. As detailed below, BBFS is based on the adjacency matrix, 67 
a Graph Theory object that has been employed in other successful automated methods like the one 68 
developed by Zimmerman [16]. Similar ideas have also been recently employed to analyze changes 69 
in conformations occurring in MD simulations [74]. 70 

Once the TSs are optimized, a reaction network is constructed by computing the intrinsic 71 
reaction coordinates (IRCs) [64] connecting TSs with intermediates [64]. The method employs two 72 
levels of theory: semi-empirical and ab initio/DFT. The semi-empirical calculations are performed to 73 
run the MD simulations and to obtain approximate TSs structures, while a higher level of theory is 74 
used to re-optimize the TSs and run IRC calculations. Two different electronic structure programs 75 
are employed: MOPAC2016 [75] and Gaussian09 [76] for the semi-empirical and ab initio/DFT 76 
calculations, respectively.  77 

Unlike other automated methods like GRRM [42], our methodology has been employed so far 78 
to study only the ground electronic state. This is in part due to the fact that, currently, the potential 79 
energy and gradients can only be calculated at the semiempirical level of theory. The following is a 80 
description of the graph-theoretic tools and kinetic models employed in our method. 81 

2.1. Graph Theory 82 
A number of graph theoretic tools are employed at various stages of the procedure to find 83 

transition states (TS), screen their structures and construct a reaction network. Specifically, the time 84 
dependence of the adjacency matrix 푨 is employed to discriminate TS-like geometries along the 85 
trajectories. The elements of this matrix are defined as: 86 

푎 = 1	if	푟 < 푟ref

0		otherwise
		               (1) 87 

with 푟  being the distance between atoms 푖 and 푗, and 푟ref a reference value that sets the upper 88 
limit for the bond length between the pair; in practice 푟ref is taken 20% greater than the sum of the 89 
covalent radii of 푖 and 푗 [45]. Thus, for an 푁 −atom system, 푨 is a 푁 ×푁 symmetric matrix with 90 
zeros on its diagonal.  91 

Additionally, a weighted adjacency matrix 푨  is also employed in tsscds, whose off-diagonal 92 
elements are defined as: 93 
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푎 =
/ ref

/ ref
               (2) 94 

Values of 6 and 12 have been employed in previous work for 푛 and 푚, respectively [44]. Matrix 푨풘 95 
contains information on the 3D geometry of the molecule,[77] and its eigenvalues and eigenvectors 96 
can be employed to construct the so-called SPRINT coordinates [77]. An important property of these 97 
coordinates is their invariance with respect to translation, rotation and permutation of atoms, which 98 
makes them good molecular descriptors in trajectory-based methods. SPRINT coordinates are 99 
employed in tsscds to remove redundant structures.  100 

Another matrix employed to determine the number of fragments in the system is the Laplacian, 101 
which is defined as: 102 

푳( ) = 푫 −푨( )                (3) 103 
where 푫 is the so-called degree matrix [44], whose elements are defined as:  104 

푑 = deg(푣 ) if	푖 = 푗
0		otherwise

		              (4) 105 

where the degree deg(푣 ) of an atom counts the number of contacts. The superscript (푤) on 푳 and 106 
푨 indicates that the corresponding matrix can either be weighted or not. For a non-weighted graph, 107 
the lowest eigenvalue of the Laplacian 휆  is always zero, and the total number of zero eigenvalues 108 
determines the number of fragments of the system. For a weighted graph, an upper threshold for 휆  109 
is employed to identify fragmented structures [44]. The smallest non-zero eigenvalue is called the 110 
spectral gap, which is a measure of the degree of fragmentation of the structure. Thus, a small value 111 
of the spectral gap is associated with structures presenting non-covalent bonds (like van der Waals 112 
complexes), which are usually of no interest in chemical dynamics and kinetics.  113 

The invariance of the SPRINT coordinates upon atom permutation is very important for the 114 
analyses of trajectories, where scrambling of atoms is frequent, as stated above. However, since the 115 
identity of each atom is absent in the adjacency matrix, SPRINT coordinates are identical for two 116 
structures where two non-equivalent atoms swap positions. For that reason, another type of 117 
molecular descriptor, based on a modified (weighted or not) adjacency matrix, is employed in tsscds. 118 
This new matrix, denoted as 푨( ), contains the atomic numbers 푍  of the atoms on the diagonal: 119 

푎 ,
( ) =

푎( )	if	푖 ≠ 푗

1 + 		if 푖 = 푗
		              (5) 120 

The expression for the diagonal elements is chosen to provide values comparable to the off-121 
diagonal ones. Most importantly, the eigenvalues of this new matrix are only invariant with respect 122 
to the permutation of like atoms, and it is widely employed in tsscds. 123 

2.2. Kinetics simulations 124 
The kinetics module of tsscds calculates rate constants for all the elementary steps and solves 125 

the set of first-order differential equations that describe the time evolution of all species (usually 126 
known as chemical master equation).  127 

The rate constants can either be obtained as a function of temperature or energy. In the former 128 
case, transition state theory is employed [59-62]:  129 

푘(푇) = 휎 푒
‡

              (6) 130 

where 휎 is the reaction path degeneracy, 푇 is the temperature, ℎ is Planck’s constant, Δ퐺‡ is the 131 
free energy of activation, 푝  is 1 bar and Δ푛 = 1 (0) for bimolecular (unimolecular) reactions. The 132 
reaction path degeneracy is calculated as 휎 = , where 푚 and 푚  are the number of optical 133 
isomers of the reactant and transition states, respectively [78]. 134 

By contrast, the microcanonical rate constants are computed according to RRKM theory [78]: 135 
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푘(퐸) = 휎 ( )
( )

                (7) 136 

where 푊 (퐸) is the sum of states at the TS, 휌(퐸) is the density of states at the reactant, and 퐸 is 137 
the excitation energy of the system. The sums and densities of states are evaluated by direct count of 138 
the harmonic vibrational states using the Beyer-Swinehart algorithm. Once all state-to-state rates are 139 
determined, the chemical master equation is solved using Kinetic Monte Carlo simulations [65]. 140 

3. Overview of the applications of tsscds  141 
The tsscds methodology has been employed in our lab to elucidate reaction mechanisms 142 

involved in photodissociation dynamics, mass spectrometry, combustion and organometallic 143 
catalysis, and in this section, several examples of each type are reviewed. 144 

3.1. Photodissociation dynamics 145 
The dissociation of molecules can be promoted by using a laser source, which is known as 146 

photodissociation. Although many photodissociations take place in excited states, important 147 
mechanisms may occur in the ground electronic state following internal conversion. One of the 148 
quantities of interest is the product yield, which is usually determined in the experiments. The 149 
understanding of the dissociation channels in organic compounds has greatly benefited from the 150 
interplay between photolysis experiments and computational studies [70, 79-92].  151 

In this section, we summarize the results obtained with our automated method for systems that 152 
have also been studied in photodissociation experiments, highlighting the most important 153 
conclusions. In particular, the dissociation channels of formaldehyde, formic acid, vinyl cyanide, 154 
acrolein, acryloyl chloride and methyl cyanoformate were studied with our tsscds methodology.  155 

Formaldehyde was employed as a benchmark system to test tsscds. The system had been 156 
previously studied with other automated methods like the scaled hypersphere search [33] and the 157 
global reaction route mapping (GRRM) [35]. The results obtained with all algorithms are comparable, 158 
and the kinetically-relevant stationary points are found using any procedure. 159 

The study of the dissociation channels of formic acid (CO2H2) with tsscds revealed the existence 160 
of a new TS for the water-gas shift reaction (WGSR: CO + H2O CO2 + H2) [45]. By contrast, GRRM 161 
predicted three consecutive steps for the shortest path of the WGSR [35]. The discovery of the new 162 
TS is a consequence of the highly non-IRC [93] nature of the trajectories employed in tsscds [45]; in 163 
other words, IRC jumps are not uncommon events [94]. This exemplifies one of the advantages of 164 
using trajectory-based methods to discover new reactions: we are not restricted to unimolecular 165 
reactions and the only constrain to discover new processes is the molecular formula of the system. 166 
Additionally, the large amounts of vibrational energy put in the normal modes enhances 167 
configurational space sampling in tsscds, which permits the exploration of all types of reactions. 168 

Our automated computational study on the dissociation of vinyl cyanide (VCN) [70] provides a 169 
HCN/HNC branching ratio in nearly perfect agreement with experiments for an excitation energy of 170 
148 kcal/mol [95]. Besides the traditional 3-center and 4-center elimination mechanisms found in 171 
many HX eliminations from CH2=CHX systems, a new HCN elimination pathway involving three 172 
TSs was discovered in the tsscds study. The new mechanism involves three TSs and two 173 
intermediates and is shown in Figure 1.  174 
 175 
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 176 
Figure 1. New HCN elimination mechanism from VCN obtained with tsscds. The numbers are 177 
relative energies (including the zero-point vibrational energy) with respect to VCN, calculated at the 178 
CCSD(T)/6-311++G(3df,3pd)//CCSD/6-311+G(2d,2p) level of theory with the vibrational frequencies 179 
obtained using CCSD/6-311+G(2d,2p) numerical Hessians. 180 

Although alternative routes for HX elimination were also found for other ethylene analogues, 181 
those pathways involved high-energy TSs and were not competitive with the conventional 3-center 182 
and 4-center channels. This was the first time a new HX elimination channel competes with the well-183 
known 3-center and 4-center processes in the dissociation of CH2=CHX species.  184 

Figure 2 shows the product yields as a function of excitation energy obtained in our kinetic 185 
simulations from VCN. As seen in the figure, at low excitation energies (<150 kcal/mol) the new 186 
channel (red) is more important than the 4-center channel (green) and accounts for half of the HCN 187 
eliminations when the excitation energy is 110 kcal/mol.  188 

 189 
Figure 2. Kinetic simulation results of the different HCN elimination channels from VCN. 190 

The tsscds methodology was also employed to study the dissociation of acrolein (ACRL, C3H4O), 191 
which comprises many different fragmentation channels involving more than 250 transition states 192 
and 66 minima [44]. This system was studied with an enhanced procedure (now fully integrated in 193 
the method) consisting in the initialization of the MD simulations from multiple minima. In this new 194 
procedure the method works in an iterative manner. In the first iteration all MD simulations start 195 
from a starting structure, but once some TSs and intermediates are located, subsequent iterations 196 
utilize not only the starting equilibrium structure but also the newly generated intermediates to 197 
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initialize the MD simulations. Compare to a single-minimum initialization, the use of multiple 198 
minima to start the dynamics ensures a better sampling of the PES of the system.  199 

 200 
Figure 3. Minima obtained by tsscds for the C3H4O system. The structures are arranged in ascending 201 
order of their relative energies (shown at the bottom of each structure), which are obtained at the 202 
CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level of theory. Conformers are not included in the 203 
figure and only the lowest lying of each family is displayed. 204 

The potential energy surface of the C3H4O system is very complex and the 32 equilibrium 205 
structures (not including conformers) shown in Figure 3 were found with tsscds, with ACRL being 206 
the global minimum. To exemplify the importance of automated reaction discovery methods, we 207 
compare our results with those obtained by Chin et al. [96], who manually located equilibrium 208 
structures and TSs. Using the same levels of theory as in our study, Chin et al. only found 6 of the 66 209 
minima obtained with tsscds. Most importantly, the relative product abundances obtained with 210 
tsscds at 148 kcal/mol (the energy corresponding to the experimental wavelength of 193 nm) are much 211 
closer to the experimental results than the computational results of Chin et al., as seen in Table 1. 212 

Table 1. Relative product abundances obtained by different computational studies and experiment in 213 
the photodissociation of ACRL at 193 nm. 214 

Channel Chin et al. [96] tsscds Exp [97] 
H2O 0.01 0.03 0.07 

CH2O 0.65 0.20 0.07 
H2 0.09 0.19 0.00 
CO 1.00 1.00 1.00 

H2+CO+HCCH 6.82 1.49 1.10 
 215 
Another system that attracted our attention was acryloyl chloride (AC). Overall, around 700 216 

stationary points were found using our tsscds strategy. Of all possible dissociation channels from AC, 217 
experiments focus on the HCl dissociations. The use of our automated procedure led to the discovery 218 
of the three new HCl dissociation TSs [69] displayed in Figure 4; the figure also shows the AC 219 
equilibrium structure. The highest-energy TSs (TS2 and TS3) correspond to three-body dissociations 220 
leading to acetylene, carbon monoxide and hydrogen chloride, and they only become important at 221 
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high excitation energies. By contrast, HCl elimination over TS1 is predominant at the experimental 222 
conditions (148 kcal/mol) [98], showing again that tsscds is capable of finding competitive pathways.  223 

 224 
Figure 4. Structure of AC minimum and the three new TSs found with tsscds for the HCl elimination 225 
from AC. Numbers are relative energies in kcal/mol (including the zero-point vibrational energy) 226 
with respect to AC, calculated at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(2d,2p) level of 227 
theory. 228 

Finally, with the aim of exploring possible sources of HCN and HNC in astrophysical 229 
environments, the dissociation channels of methyl cyanoformate (MCF) were probed with tsscds, 230 
excited state calculations and photolysis experiments [68]. In particular, time-resolved infrared 231 
spectroscopy measurements indicate that both HCN and HNC are formed after the 193-nm 232 
photolysis of MCF [68]. The excited state calculations suggest that most of the dissociations take place 233 
in the S2 excited state leading to CH3O + NCCO via a Norrish type I reaction, in agreement with 234 
experiment. However, our calculations are also consistent with cascading internal conversion from 235 
S2 to produce vibrationally excited ground state MCF.  236 

 237 
Figure 5. Relevant HCN and HNC pathways in the ground-state PES of methyl cyanoformate for an 238 
excitation energy of 148 kcal/mol. Relative energies (in kcal mol1) include ZPE contributions and 239 
were obtained by CCSD(T)/6-311++G(3df,3pd)//MP2/6-311+G(2d,2p) calculations. 240 

To study the dissociation of vibrationally excited MCF molecules in the S0 electronic state, tsscds 241 
was employed. Our approach assumes that, after the internal conversion process, intramolecular 242 
vibrational redistribution is fast enough to ensure RRKM behavior. With the tsscds procedure several 243 
HNC and HCN mechanisms are found, and Figure 5 shows the kinetically-relevant ones at 148 244 
kcal/mol. The kinetic simulations predict a HNC/HCN branching ratio of 0.01, which is in 245 
semiquantitative agreement with that determined in the experiments (0.07). The work provides 246 
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further insights into the intriguing observation of overabundance of HNC in astrophysical 247 
environments.  248 

3.2. Mass spectrometry 249 
The prediction of mass spectra remains much of a challenge for the community of computational 250 

chemists. The common computational approaches employed for such endeavor include statistical 251 
rate theory calculations, MD simulations and electronic structure calculations [99-113]. Our 252 
automated method is very useful in this regard and can easily be coupled with MD simulations of 253 
collisions to generate theoretically-based mass spectra as described below. 254 

In particular, tsscds was employed to simulate mass spectrometry (MS) experiments of 255 
protonated uracil, [uracil]H+. Our computational results indicate that the decomposition of [uracil]H+ 256 
involves more than one thousand stationary points and 751 elementary reactions [71]. Branching 257 
ratios for the different fragmentation channels can be automatically obtained from tsscds. However, 258 
these fractions are a function of the ion’s internal energy and cannot be directly compared with MS 259 
experiments, where the collision energy in the center-of-mass framework (퐸 ) is employed instead. 260 
For that reason the tsscds results were combined with collisional dynamics simulations [71], which 261 
provide the fraction of 퐸  transferred to the ion’s internal energy. 262 

The resulting computationally-predicted product abundances (dashed lines) are compared in 263 
Figure 6 with the experimental ones (solid lines). As seen in the figure, for the predominant 264 
dissociation channels, the computationally-predicted product abundances are in qualitative 265 
agreement with experiment, and formation of HNCO (black), NH3 (red), H2O (green) and HNCOH+ 266 
(blue) are the major channels. Discrepancies with experiment can be attributed to the possible 267 
existence of well-known non-statistical behavior in many collision-induced dissociations [100, 114], 268 
which cannot be captured with our statistical model.  269 

 270 
Figure 6. Experimental (exp) and calculated (comp) intensities of precursor and fragment ions 271 
produced in the fragmentation of protonated uracil.  272 

3.3. Combustion chemistry 273 

Modeling the combustion reactions of oxygenated fuels is of great interest due to their potential 274 
use as alternatives to conventional petroleum-based fuels. To investigate combustion mechanisms, it 275 
is important to use kinetic models and perform computer simulations as a complement to 276 
experimental determinations, due to the tremendous complexity of these chemical processes. In 277 
general, different approximations are employed in combustion simulations to handle the complicated 278 
mechanisms. One of these simplifications consist of considering only the lowest energy rotamers of 279 
the involved species, which can lead to large errors in the calculation of rate coefficients.  280 

In a recent paper, our group analyzed the influence of multiple conformers and paths in the 281 
evaluation of rate constants and relative abundances of products formed in the thermal 282 

4 5 6
1E-5

1E-3

0.1

10  Precursor ion (exp)
 Precursor ion (comp)
 HNCO loss (exp)
 HNCO loss (comp)
 NH3 loss (exp)
 NH3 loss (comp)
 H2O loss (exp)
 H2O loss (comp)

 HNCOH+ loss (exp)
 HNCOH+ loss (comp)

 

 P
er

ce
nt

ag
e

Ecom/eV

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 9 of 21 

 

decomposition of 1-propanol radicals using different methodologies including tsscds [66]. 283 
Specifically, the most relevant pathways reported in the literature [115-121] are obtained with tsscds, 284 
except for the barrierless dissociation leading to propene + OH, since the present version of tsscds 285 
cannot handle this type of reactions. Of significance, an important number of reactant and TS 286 
conformers, not described in the previous studies, are obtained with tsscds.  287 

A conformational reaction channel (CRC) was defined in our study [66] as the group of all the 288 
paths that connect the conformers of a given reactant with the corresponding TS conformers. The 289 
influence of these conformers on the rate constants and branchings ratios was investigated in detail 290 
[66]. To study such influence, the output of tsscds (families of CRCs) was fed into a computer program 291 
to treat torsional anharmonicity named Q2DTOR (also developed in our group) [122]. The results 292 
obtained with tsscds and Q2DTOR were finally employed to calculate variational transition state 293 
theory (VTST) [123-125] rate constants for all the CRCs. The multipath (MP) approach within VTST 294 
was employed [125-129], where the rate constant of a given CRC is calculated using contributions 295 
from all the conformers and paths. For comparison purposes the simplest one-well (1W) approach is 296 
also considered; in the 1W method only the most stable conformers of reactant and TS are considered. 297 
As seen in Figure 7, the product abundances obtained in the temperature range 1000-2000 K are 298 
greatly influenced by the selected approach (MP vs 1W), particularly for the major products: ethene 299 
+ CH2OH and formaldehyde + ethyl radical [66]. Our results show the importance of using automated 300 
codes for discovering reaction mechanisms and sampling potential energy surfaces.  301 

 302 
Figure 7. Branching ratios obtained in the kinetics simulations starting from one of the isomers of 1-303 
propanol (only the two major mechanisms are shown). The solid and dashed lines correspond to the 304 
MP and 1W results, respectively. 305 

Very recently, Fenard et al. developed a detailed kinetic model of the low-temperature oxidation 306 
of tetrahydrofuran (THF) based on theoretically-calculated rate constants [67]. The reaction pathways 307 
involved in these processes were probed with our automated software tsscds [67] using CBS-QB3 as 308 
the choice for the high-level of electronic structure. The rate constants were determined using TST 309 
with a tunneling correction using an Eckart potential. 310 

The predictions from the model developed by Fenard et al. are overall in good agreement with 311 
the different experimental measurements. Namely, it reproduces ignition delay times obtained in a 312 
rapid-compression machine and in a shock tube, as well as numerous product mole fractions 313 
measured in a jet-stirred reactor.  314 

3.4. Organometallic catalysis 315 
Computational studies of organometallic catalysis are becoming increasingly more important 316 

because they can help elucidate reaction mechanisms, characterize catalytic intermediates, 317 
supplement experimental studies, and also because of their predictive power [124, 130-133]. 318 
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However, the traditional workflow of most computational studies consists of using chemical 319 
intuition in the design of reaction routes and construction of guess TS structures. In recent years the 320 
appearance of powerful automated computational methods to study homogenous catalysis [27, 43, 321 
134-136] very much eased the tedious work of manual searches.  322 

To exemplify the use of tsscds in organometallic catalysis, the cobalt-catalyzed 323 
hydroformylation of ethylene was chosen [43]. Very briefly, the first step in our computational study 324 
was to generate all combinations of the catalyst Co(CO)3 with any of the starting materials (CO, H2 325 
and ethylene), which in this case amounts to eight. Each of these combinations has fewer atoms than 326 
the overall system and they were named sub-systems in our original paper [43]. Standard tsscds is 327 
then run in each sub-system to build the reaction networks. Finally, the full reaction network is 328 
obtained after merging the individual results for each sub-system.  329 

Figure 8 shows the tsscds-calculated free energy profile for the formation of propanal (C3H6O), 330 
which is the predominant channel; the level of theory employed was B3LYP/6-31G(d,p). As pointed 331 
out in the original paper, this is not the best electronic structure method for this system and it was 332 
only selected for comparison purposes. Additionally, we simulated the reactivity in the gas phase 333 
because, for this system, solvent effects are unimportant [43, 133]. 334 

The mechanism shown in Figure 8 was obtained in an automated manner, and agrees with the 335 
one predict by Heck and Breslow in the 1960s [137] and with more recent mechanistic studies [133]. 336 
This is a very interesting result as we needed to make no assumptions in our automated calculations. 337 
Additionally, our method predicts that hydrogenation of ethylene is a side reaction that can be 338 
predominant under low CO partial pressures. 339 

 340 
Figure 8. Free energy profile for the Co-catalyzed hydroformylation of ethylene obtained in our tsscds 341 
study using DFT calculations [133].  342 

With the full reaction network constructed, the kinetics simulation module of tsscds can provide 343 
a rate law for the hydroformylation reaction when a range of different initial conditions for each 344 
species is employed. The kinetics calculations consist of transition state theory calculations [59-62] for 345 
the thermal rate constants at 423 K, and subsequent Monte Carlo simulations using different initial 346 
conditions of the reactants. Table 2 shows the orders of the catalyst and starting materials for the 347 
hydroformylation reaction obtained experimentally [138], with tsscds [43], using a kinetic model 348 
based on highly-accurate electronic structure calculations by Harvey and co-workers [133], and 349 
obtained from another automated method by Habershon [27].  350 

As seen in Table 2, tsscds agrees rather well with experiment and with the results obtained by 351 
Harvey and co-workers [133]. Moreover, tsscds agrees much better with experiment than the other 352 
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automated method does [27] (last column of Table 2), despite the fact that both employ the same 353 
alkene, initial conditions for the kinetics, and level of theory for the electronic structure calculations. 354 

Table 2. Orders of the hydroformylation reaction with respect to the catalyst and starting materials. 355 

Species Exp [138] tsscds [43] Harvey [133] Habershon [27] 
H2 0.6 0.4 0.5 1 
CO <0 <0 <0 <0 

catalyst 0.8 0.5 0.5 1 
alkene 1 1 1 0.55 

4. Improvements 356 
In this section we describe some improvements we plan to implement in the near future. They 357 

include: the use of Spectral Graph Theory, implementation of knowledge-based methods, 358 
implementation of rare event acceleration MD simulations, interface with other electronic structure 359 
codes, reparametrization of semiempirical methods, and the study of condensed phase reactions. 360 

4.1. Use of Spectral Graph Theory to minimize the number of Hessian calculations 361 
In standard tsscds, every single structure obtained after the BBFS analysis is subjected to TS 362 

optimization [45]. As seen in Figure 9(a), for a trajectory 푖, BBFS selects 푚  TS candidates, which 363 
results in 푀 = ∑ 푚  optimizations, where 푛 is the total number of trajectories. On the one hand, 364 
these 푀 optimizations are the most CPU-time consuming step of the procedure as they involve 365 
Hessian calculations, while the integration of the trajectories only requires gradients. On the other 366 
hand, a number of those optimizations are repeated. This is so because trajectories visit more often 367 
those areas of the configurational space around the kinetically most relevant TSs, leading to multiple 368 
optimizations of those structures.  369 

 370 

 
(a) 

 
(b) 

Figure 9. (a) Original tsscds showcasing an example with 푛 different trajectories resulting in a total 371 
number of 푀 = ∑ 푚  optimizations. (b) Modified tsscds showcasing the same example as in panel 372 
(a) with 푛 different trajectories resulting in a total number of 푁 optimizations. 373 

The workflow of the enhanced procedure is shown in Figure 9(b). Briefly, instead of carrying 374 
out the optimizations for every single structure selected by the BBFS algorithm (as in the original 375 
implementation), the new procedure will run the MD simulations and store at once the 푀 structures 376 
for the analysis of all trajectory data. This analysis will consist of a pre-screening, a Spectral Graph 377 
Theory (SGT) step, and the final optimization step. 378 

Upon completion of the MD simulations, a pre-screening of the 푀 structures will be performed 379 
based on the eigenvalues of the Laplacian matrix [44]. As pointed out above, the lowest eigenvalues 380 
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of this matrix indicate the degree of fragmentation of the molecular system. We aim here to discard 381 
highly fragmented structures, i.e., TSs connecting van der Waals complexes, usually of negligible 382 
relevance in a kinetics study. In the SGT step the remaining points will be partitioned into 푁 groups 383 
according to the eigenvalues of a TS adjacency matrix, calculated as the average of the reactant and 384 
product adjacency matrices. Finally, we will select the closest point (geometry) to the centroid of each 385 
cluster for optimization. With this new scheme the gain in efficiency can easily be quantified as the 386 
reduction in the number of optimizations from 푀 to 푁. 387 

4.2. Implementation of knowledge-based mechanism generators 388 
A number of reaction discovery methods are based on the so-called chemical heuristics [23, 48-389 

50]. In these methods, molecules are typically represented as graphs, in pretty much the same way as 390 
in tsscds. Then, by applying transformations, based on encoded rules or principles inspired by 391 
organic chemistry, to the reactant molecule graph, reactions, products and intermediates can readily 392 
be obtained. Compared to MD-based methods, heuristic-based methods are less CPU-time 393 
demanding.  394 

Our idea will be to combine a heuristic-based bias in the MD simulations alongside with our 395 
BBFS algorithm to obtain TSs. In particular, having defined a set of encoded rules based on chemical 396 
knowledge, every single MD simulation will suffer a different bias, aimed to trigger a particular 397 
reaction mechanism. In this way, the problem of multiple optimizations of a given TS mentioned 398 
above would be minimized, if not completely avoided. The bias (analytical) potentials will be added 399 
on top of the semiempirical potential to steer the dynamics towards a particular intermediate or 400 
product. 401 

4.3. Implementation of rare-event acceleration MD methods 402 
One of the shortcomings of tsscds is the fact that chemical reactions are triggered by using very 403 

high energies in the MD simulations. While this approach was successfully employed to tackle 404 
different problems, it is biased towards the entropically favored reaction pathways. To alleviate this 405 
drawback of the method we propose to replace the current MD strategy by the rare-event acceleration 406 
method named Boxed Molecular Dynamics (BXD) [139]. BXD has its roots in work done by one of us 407 
and D. Shalashilin more than a decade ago [140]. It introduces several reflective barriers in the phase 408 
space of a MD trajectory along a particular collective variable. Those boundaries are employed to 409 
push the dynamics along the collective variable into regions of phase space which would be rarely 410 
sampled in an unbiased trajectory. However, the use of BXD constrains in configuration space suffers 411 
from the same “entropic” bias mentioned above.  412 

A generalization of BXD has been very recently put forward by Glowacki and co-workers [141]. 413 
They show that the BXD bias can also be introduced along the potential energy (E) of the system, 414 
which is referred to as BXDE. By scanning through potential energy “boxes”, the energetic 415 
“windows” at which different chemical reaction channels switch on or off can be identified. The 416 
software design of tsscds is highly modular, which means that interfacing it with BXDE only requires 417 
little effort, like the need of compatible input/output geometry formats in both codes and the use of 418 
extra keywords in tsscds.  419 

4.4. Interface with other electronic structure codes 420 
At present tsscds has been only interfaced with the MOPAC2016 [75]  and the G09 [76] 421 

electronic structure packages. The MD simulation employs gradients calculated at the semiempirical 422 
level of theory, and the optimization step is carried out at both the semiempirical level with 423 
MOPAC2016 and using higher levels (ab initio/DFT) with G09. Although we plan to reparametrize a 424 
semiempirical Hamiltonian for use in organometallic catalysis (see below), we do not want to be 425 
limited to this low-level electronic structure calculations. Therefore, we will use the ASE package[142] 426 
to interface tsscds with other electronic structure codes like NWCHEM [143] or ORCA [144]. 427 

 428 
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4.5. Reparametrization of semiempirical methods 429 

The application of the tsscds method relies on the use of semiempirical Hamiltonians for 430 
exploring potential energy surfaces. For this reason, it is important that the semiempirical method 431 
provides a reasonably accurate representation of the system under investigation. Although 432 
significant improvements in these methods have been made over the last years [145], there are still 433 
known limitations, which claim for further developments and more accurate parametrizations. Two 434 
important limitations concern the non-covalent interactions for large systems and ligand dissociation 435 
energies for transition metal complexes. In both cases, the performance of the semiempirical methods 436 
is, in general, quite poor. Our goal is therefore to improve the description of both non-covalent 437 
interactions and transition metal complexes in PM7. 438 

Regarding non-covalent interactions, we aim to develop an analytical correction for PM7. To this 439 
end, we will consider a set of small molecules, which are representative of the most important 440 
functional groups. All pairs of molecules will be considered to calculate interaction energies at three 441 
levels of theory: coupled-cluster (CC), DFT and PM7. For every pair, various orientations will be 442 
considered, each one emphasizing a different two-body interaction.  443 

Then, sums of two-body Buckingham potentials (supplemented with damping functions for the 444 
dispersion) will be fit to the CC, DFT and PM7 interaction energies using our genetic algorithm 445 
program GAFit [146]. Finally, the resulting potentials 푉fit,CC, 푉fit,DFT and 푉fit,PM7 will be employed to 446 
build corrections 푉X  to the PM7 interaction energies: 447 

푉X = 푉fit,X −푉fit,PM7               (8) 448 
where X is either CC or DFT. Whereas the 푉DFT  correction term will be employed to validate this 449 
methodology as explained below, the highly-accurate 푉CC  correction will be used once the 450 
validation succeeds. 451 

The correction will be added to the PM7 energy 푉PM7 so that the PM7 Hamiltonian corrected for 452 
non-covalent (푛푐) interactions would read: 453 

푉PM7,X = 푉PM7 + 푉X               (9) 454 

The strategy of using small representative molecules and sums of two-body functions was 455 
successfully employed in the development of intermolecular potentials for interactions of protonated 456 
peptides and silyl ions with perfluoroalkane self-assembled monolayers [147, 148]. Nevertheless, this 457 
strategy will be validated for the new functional groups by running DFT calculations for large 458 
systems. This will allow us to compare the DFT-calculated energies with those obtained with 459 
푉PM7,DFT. 460 

The semiempirical methods, and particularly PM6 and PM7, do not perform well for transition-461 
metal complexes [149]. Our strategy here will be to reoptimize the PM7 Hamiltonian as in previous 462 
studies of our group (e.g., see ref. [68]). We will select popular transition metals and ligand molecules 463 
used in organometallic catalysis, and will carry out high-level ab initio calculations for our own 464 
benchmark database. To gain flexibility in the parametrizations, we will consider the possibility of 465 
defining “atom types” for the ligand atoms, depending on the functional groups, in much the same 466 
way as that done for the parametrization of the hpCADD NDDO Hamiltonian [150].  467 

4.6. Study of condensed phase reactions 468 
Our method is not limited to gas phase reactions. Although currently it only handles reactions 469 

in the gas phase, its modular design allows for a smooth adaptation of tsscds to deal with condensed 470 
phase reactions. For instance, to study solvent effects, the easiest way would be to use an implicit 471 
model, which in practice would only entail adding the appropriate keywords to the templates 472 
employed for the different electronic structure programs. 473 

On the contrary, if one wants to use explicit solvent molecules, the MD module must be changed 474 
or substituted. At present, the MD module is a modified version of DRC routine in MOPAC2016, 475 
which includes different strategies for enhanced sampling, as detailed in the tutorial of tsscds [47]. 476 
To include solvent molecules in the MD simulations, one possibility would be to use CHARMM [151] 477 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 14 of 21 

 

or to adapt DRC. Finally, if the interest is a gas surface reactions, VENUS [152] would be the choice 478 
to run the MD simulations because the authors have vast experience using this program. 479 
Author Contributions: Writing-Review & Editing, S. A. V., X. L. O. and E.M.-N. 480 
Funding: This research was funded by “Consellería de Cultura, Educación e Ordenación Universitaria, Xunta 481 
de Galicia”, grant number ED431C 2017/17)”, and by “Ministerio de Economía y Competitividad of Spain”, grant 482 
number CTQ2014-58617-R. 483 
Acknowledgments: The authors thank “Centro de Supercomputación de Galicia (CESGA)” for the use of their 484 
computational facilities. 485 
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 486 
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision 487 
to publish the results. 488 
 489 
References 490 

1. Schlegel, H. B., Geometry optimization. Wiley Interdisciplinary Reviews: Computational Molecular 491 
Science 2011, 1, 790-809. 492 

2. Davis, H. L.; Wales, D. J.; Berry, R. S., Exploring potential energy surfaces with transition state 493 
calculations. J. Chem. Phys. 1990, 92, 4308-4319. 494 

3. Sun, J. Q.; Ruedenberg, K., Gradient Extremals and Steepest Descent Lines on Potential Energy 495 
Surfaces. J. Chem. Phys. 1993, 98, 9707-9714. 496 

4. Tsai, C. J.; Jordan, K. D., Use of an eigenmode method to locate the stationary points on the potential 497 
energy surfaces of selected argon and water clusters. J. Phys. Chem. 1993, 97, 11227-11237. 498 

5. Abashkin, Y.; Russo, N., Transition state structures and reaction profiles from constrained 499 
optimization procedure. Implementation in the framework of density functional theory. J. Chem. Phys. 500 
1994, 100, 4477-4483. 501 

6. Bondensgard, K.; Jensen, F., Gradient Extremal Bifurcation and Turning Points: an Application to the 502 
H2CO Potential Energy Surface. J. Chem. Phys. 1996, 104, 8025-8031. 503 

7. Doye, J. P. K.; Wales, D. J., Surveying a potential energy surface by eigenvector-following. Zeitschrift 504 
für Physik D Atoms, Molecules and Clusters 1997, 40, 194-197. 505 

8. Quapp, W.; Hirsch, M.; Imig, O.; Heidrich, D., Searching for Saddle Points of Potential Energy Surfaces 506 
by Following a Reduced Gradient. J. Comput. Chem. 1998, 19, 1087-1100. 507 

9. Černohorský, M.; Kettou, S.; Koča, J., VADER:  New Software for Exploring Interconversions on 508 
Potential Energy Surfaces. J. Chem. Inf. Comput. Sci. 1999, 39, 705-712. 509 

10. Westerberg, K. M.; Floudas, C. A., Locating all transition states and studying the reaction pathways of 510 
potential energy surfaces. J. Chem. Phys. 1999, 110, 9259-9295. 511 

11. Wales, D. J.; Doye, J. P.; Miller, M. A.; Mortenson, P. N.; Walsh, T. R., Energy Landscapes: From 512 
Clusters to Biomolecules. Adv. Chem. Phys. 2000, 115, 1-111. 513 

12. Irikura, K. K.; Johnson, R. D., Predicting unexpected chemical reactions by isopotential searching. J. 514 
Phys. Chem. A 2000, 104, 2191-2194. 515 

13. Müller, E. M.; Meijere, A. d.; Grubmüller, H., Predicting unimolecular chemical reactions: Chemical 516 
flooding. J. Chem. Phys. 2002, 116, 897-905. 517 

14. Dallos, M.; Lischka, H.; Ventura Do Monte, E.; Hirsch, M.; Quapp, W., Determination of Energy 518 
Minima and Saddle Points Using Multireference Configuration Interaction Methods in Combination 519 
with Reduced Gradient Following: The S0 surface of H2CO and the T1 and T2 surfaces of acetylene. J. 520 
Comput. Chem. 2002, 23, 576-583. 521 

15. Baker, J.; Wolinski, K., Isomerization of stilbene using enforced geometry optimization. J. Comput. 522 
Chem. 2011, 32, 43-53. 523 

16. Zimmerman, P. M., Automated discovery of chemically reasonable elementary reaction steps. J. 524 
Comput. Chem. 2013, 34, 1385-1392. 525 

17. Zimmerman, P. M., Growing string method with interpolation and optimization in internal 526 
coordinates: Method and examples. J. Chem. Phys. 2013, 138, 184102. 527 

18. Zimmerman, P., Reliable Transition State Searches Integrated with the Growing String Method. J. 528 
Chem. Theory Comput. 2013, 9, 3043-3050. 529 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 15 of 21 

 

19. Zimmerman, P. M., Single-ended transition state finding with the growing string method. J. Comput. 530 
Chem. 2015, 36, 601-611. 531 

20. Zimmerman, P. M., Navigating molecular space for reaction mechanisms: an efficient, automated 532 
procedure. Mol. Simul. 2015, 41, 43-54. 533 

21. Jafari, M.; Zimmerman, P. M., Reliable and efficient reaction path and transition state finding for 534 
surface reactions with the growing string method. J. Comput. Chem. 2017, 38, 645-658. 535 

22. Dewyer, A. L.; Zimmerman, P. M., Finding reaction mechanisms, intuitive or otherwise. Org. & 536 
Biomol. Chem. 2017, 15, 501-504. 537 

23. Rappoport, D.; Galvin, C. J.; Zubarev, D. Y.; Aspuru-Guzik, A., Complex Chemical Reaction Networks 538 
from Heuristics-Aided Quantum Chemistry. J. Chem. Theory Comput. 2014, 10, 897-907. 539 

24. Schaefer, B.; Mohr, S.; Amsler, M.; Goedecker, S., Minima hopping guided path search: An efficient 540 
method for finding complex chemical reaction pathways. J. Chem. Phys. 2014, 140, 214102. 541 

25. Wales, D. J., Perspective: Insight into reaction coordinates and dynamics from the potential energy 542 
landscape. J. Chem. Phys. 2015, 142, 130901. 543 

26. Habershon, S., Sampling reactive pathways with random walks in chemical space: Applications to 544 
molecular dissociation and catalysis. J. Chem. Phys. 2015, 143, 094106. 545 

27. Habershon, S., Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based 546 
Reaction Path Sampling. J. Chem. Theory Comput. 2016, 12, 1786-1798. 547 

28. Zhang, X.-J.; Liu, Z.-P., Reaction sampling and reactivity prediction using the stochastic surface 548 
walking method. Phys. Chem. Chem. Phys. 2015, 17, 2757-2769. 549 

29. Wang, L.-P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J., Automated Discovery and Refinement of 550 
Reactive Molecular Dynamics Pathways. J. Chem. Theory Comput. 2016, 12, 638-649. 551 

30. Wang, L.-P.; Titov, A.; McGibbon, R.; Liu, F.; Pande, V. S.; Martínez, T. J., Discovering chemistry with 552 
an ab initio nanoreactor. Nat. Chem. 2014, 6, 1044. 553 

31. Yang, M.; Zou, J.; Wang, G.; Li, S., Automatic Reaction Pathway Search via Combined Molecular 554 
Dynamics and Coordinate Driving Method. J. Phys. Chem. A 2017, 121, 1351-1361. 555 

32. Jacobson, L. D.; Bochevarov, A. D.; Watson, M. A.; Hughes, T. F.; Rinaldo, D.; Ehrlich, S.; Steinbrecher, 556 
T. B.; Vaitheeswaran, S.; Philipp, D. M.; Halls, M. D.; Friesner, R. A., Automated Transition State Search 557 
and Its Application to Diverse Types of Organic Reactions. J. Chem. Theory Comput. 2017, 13, 5780-558 
5797. 559 

33. Ohno, K.; Maeda, S., A Scaled Hypersphere Search Method for the Topography of Reaction Pathways 560 
on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277-282. 561 

34. Maeda, S.; Ohno, K., Global Mapping of Equilibrium and Transition Structures on Potential Energy 562 
Surfaces by the Scaled Hypersphere Search Method: Applications to ab Initio Surfaces of 563 
Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742-5753. 564 

35. Ohno, K.; Maeda, S., Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde, 565 
Formic Acid, and Their Metail-Substituted Analogues. J. Phys. Chem. A 2006, 110, 8933-8941. 566 

36. Ohno, K.; Maeda, S., Automated Exploration of Reaction Channels. Phys. Scr. 2008, 78, 058122. 567 
37. Maeda, S.; Morokuma, K., Communications: A systematic method for locating transition structures of 568 

A+B→X type reactions. J. Chem. Phys. 2010, 132, 241102. 569 
38. Maeda, S.; Morokuma, K., Finding Reaction Pathways of Type A + B → X: Toward Systematic 570 

Prediction of Reaction Mechanisms. J. Chem. Theory Comput. 2011, 7, 2335-2345. 571 
39. Maeda, S.; Ohno, K.; Morokuma, K., Systematic exploration of the mechanism of chemical reactions: 572 

the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys. Chem. 573 
Chem. Phys. 2013, 15, 3683-3701. 574 

40. Maeda, S.; Taketsugu, T.; Morokuma, K., Exploring transition state structures for intramolecular 575 
pathways by the artificial force induced reaction method. J. Comput. Chem. 2014, 35, 166-173. 576 

41. Maeda, S.; Harabuchi, Y.; Takagi, M.; Taketsugu, T.; Morokuma, K., Artificial Force Induced Reaction 577 
(AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. Chem. Rec. 2016, 16, 2232-578 
2248. 579 

42. Maeda, S.; Harabuchi, Y.; Takagi, M.; Saita, K.; Suzuki, K.; Ichino, T.; Sumiya, Y.; Sugiyama, K.; Ono, 580 
Y., Implementation and performance of the artificial force induced reaction method in the GRRM17 581 
program. J. Comput. Chem. 2017, DOI: 10.1002/jcc.25106. 582 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 16 of 21 

 

43. Varela, J. A.; Vazquez, S. A.; Martinez-Nunez, E., An automated method to find reaction mechanisms 583 
and solve the kinetics in organometallic catalysis. Chem. Sci. 2017, 8, 3843-3851. 584 

44. Martínez-Núñez, E., An automated transition state search using classical trajectories initialized at 585 
multiple minima. Phys. Chem. Chem. Phys. 2015, 17, 14912-14921. 586 

45. Martínez-Núñez, E., An automated method to find transition states using chemical dynamics 587 
simulations. J. Comput. Chem. 2015, 36, 222-234. 588 

46. Rodríguez, A.; Rodríguez-Fernández, R.; A. Vázquez, S.; L. Barnes, G.; J. P. Stewart, J.; Martínez-589 
Núñez, E., tsscds2018: A code for automated discovery of chemical reaction mechanisms and solving 590 
the kinetics. Journal of Computational Chemistry 2018, 39, 1922-1930. 591 

47. Rodríguez, A.; Rodriguez-Fernandez, R.; Vazquez, S. A.; Barnes, G. L.; Stewart, J. J. P.; Martinez-592 
Nunez, E. tsscds2018, http://forge.cesga.es/wiki/g/tsscds/HomePage. 593 

48. Broadbelt, L. J.; Stark, S. M.; Klein, M. T., Computer Generated Pyrolysis Modeling: On-the-Fly 594 
Generation of Species, Reactions, and Rates. Ind. Eng. Chem. Res. 1994, 33, 790-799. 595 

49. Matheu, D. M.; Dean, A. M.; Grenda, J. M.; Green, W. H., Mechanism Generation with Integrated 596 
Pressure Dependence:  A New Model for Methane Pyrolysis. J. Phys. Chem. A 2003, 107, 8552-8565. 597 

50. Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H., Reaction Mechanism Generator: Automatic 598 
construction of chemical kinetic mechanisms. Comput. Phys. Commun. 2016, 203, 212-225. 599 

51. Bhoorasingh, P. L.; West, R. H., Transition state geometry prediction using molecular group 600 
contributions. Phys. Chem. Chem. Phys. 2015, 17, 32173-32182. 601 

52. Bhoorasingh, P. L.; Slakman, B. L.; Seyedzadeh Khanshan, F.; Cain, J. Y.; West, R. H., Automated 602 
Transition State Theory Calculations for High-Throughput Kinetics. J. Phys. Chem. A 2017, 121, 6896-603 
6904. 604 

53. Suleimanov, Y. V.; Green, W. H., Automated Discovery of Elementary Chemical Reaction Steps Using 605 
Freezing String and Berny Optimization Methods. J. Chem. Theory Comput. 2015, 11, 4248-4259. 606 

54. Bergeler, M.; Simm, G. N.; Proppe, J.; Reiher, M., Heuristics-Guided Exploration of Reaction 607 
Mechanisms. J. Chem. Theory Comput. 2015, 11, 5712-5722. 608 

55. Proppe, J.; Husch, T.; Simm, G. N.; Reiher, M., Uncertainty quantification for quantum chemical 609 
models of complex reaction networks. Faraday Discuss. 2016, 195, 497-520. 610 

56. Simm, G. N.; Reiher, M., Context-Driven Exploration of Complex Chemical Reaction Networks. J. 611 
Chem. Theor. Comput. 2017, 13, 6108-6119. 612 

57. Simm, G. N.; Reiher, M., Error-Controlled Exploration of Chemical Reaction Networks with Gaussian 613 
Processes. J. Chem. Theor. Comput. 2018, 14, 5238-5248. 614 

58. Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M., Methods for exploring reaction space in molecular 615 
systems. WIREs Comput Mol Sci 2018, 8:e1354, doi: 10.1002/wcms.1354. 616 

59. Eyring, H., The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935, 3, 107-115. 617 
60. Wigner, E., The transition state method. Trans. Faraday Soc. 1938, 34, 29-41. 618 
61. Keck, J. C., Variational Theory of Reaction Rates. Adv. Chem. Phys. 1967, 13, 85-121. 619 
62. Pechukas, P., Dynamics of Molecular Collisions. Plenum: New York, 1976. 620 
63. Baker, J., An algorithm for the location of transition states. J. Comput. Chem. 1986, 7, 385-395. 621 
64. Fukui, K., The Path of Chemical Reactions-The IRC Approach. Acc. Chem. Res. 1981, 14, 363. 622 
65. Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled 623 

chemical reactions. J. Comput. Phys. 1976, 22, 403-434. 624 
66. Ferro-Costas, D.; Martínez-Núñez, E.; Rodríguez-Otero, J.; Cabaleiro-Lago, E.; Estévez, C. M.; 625 

Fernández, B.; Fernández-Ramos, A.; Vázquez, S. A., Influence of Multiple Conformations and Paths 626 
on Rate Constants and Product Branching Ratios. Thermal Decomposition of 1-Propanol Radicals. J. 627 
Phys. Chem. A 2018, 122, 4790-4800. 628 

67. Fenard, Y.; Gil, A.; Vanhove, G.; Carstensen, H.-H.; Van Geem, K. M.; Westmoreland, P. R.; Herbinet, 629 
O.; Battin-Leclerc, F., A model of tetrahydrofuran low-temperature oxidation based on theoretically 630 
calculated rate constants. Combustion and Flame 2018, 191, 252-269. 631 

68. Wilhelm, M. J.; Martínez-Núñez, E.; González-Vázquez, J.; Vázquez, S. A.; Smith, J. M.; Dai, H.-L., Is 632 
Photolytic Production a Viable Source of HCN and HNC in Astrophysical Environments? A 633 
Laboratory-based Feasibility Study of Methyl Cyanoformate. The Astrophysical Journal 2017, 849, 15. 634 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 17 of 21 

 

69. Perez-Soto, R.; Vazquez, S. A.; Martinez-Nunez, E., Photodissociation of acryloyl chloride at 193 nm: 635 
interpretation of the product energy distributions, and new elimination pathways. Phys. Chem. Chem. 636 
Phys. 2016, 18, 5019-5026. 637 

70. Vazquez, S. A.; Martinez-Nunez, E., HCN elimination from vinyl cyanide: product energy 638 
partitioning, the role of hydrogen-deuterium exchange reactions and a new pathway. Phys. Chem. 639 
Chem. Phys. 2015, 17, 6948-6955. 640 

71. Rossich Molina, E.; Salpin, J.-Y.; Spezia, R.; Martinez-Nunez, E., On the gas phase fragmentation of 641 
protonated uracil: a statistical perspective. Phys. Chem. Chem. Phys. 2016, 18, 14980-14990. 642 

72. Simm, G. N.; Vaucher, A. C.; Reiher, M., Exploration of Reaction Pathways and Chemical 643 
Transformation Networks. J. Phys. Chem. A 2018, doi: 10.1021/acs.jpca.8b10007. 644 

73. Hase, W. L.; Buckowski, D. G., Monte carlo sampling of a microcanonical ensemble of classical 645 
harmonic oscillators. Chemical Physics Letters 1980, 74, 284-287. 646 

74. Bougueroua, S.; Spezia, R.; Pezzotti, S.; Vial, S.; Quessette, F.; Barth, D.; Gaigeot, M.-P., Graph theory 647 
for automatic structural recognition in molecular dynamics simulations. J. Chem. Phys. 2018, 149, 648 
184102. 649 

75. Stewart, J. J. P. MOPAC2016, Stewart Computational Chemistry: Colorado Springs, CO, USA, 650 
HTTP://OpenMOPAC.net, 2016. 651 

76. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, 652 
G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al; Gaussian 09 revision A.02; Gaussian Inc.: 653 
Wallingford CT, 2009. 654 

77. Pietrucci, F.; Andreoni, W., Graph Theory Meets Ab Initio Molecule Dynamics: Atomic Structures and 655 
Transformations at the Nanoscale. Phys. Rev. Lett. 2011, 107, 085504. 656 

78. Smith, G.; Gilbert, R. G., Theory of unimolecular and recombination reactions. Blackwell Scientific 657 
Publications: Oxford, 1990. 658 

79. Tarrazo-Antelo, T.; Martinez-Nunez, E.; Vazquez, S. A., Ab initio and RRKM study of the elimination 659 
of HF and HCl from chlorofluoroethylene. Chem. Phys. Lett. 2007, 435, 176-181. 660 

80. Martínez-Núñez, E.; Vázquez, S., Rotational distributions of HBr in the photodissociation of vinyl 661 
bromide at 193 nm: An investigation by direct quasiclassical trajectory calculations. Chem. Phys. Lett. 662 
2006, 425, 22. 663 

81. Martínez-Núñez, E.; Vázquez, S., Quasiclassical trajectory calculations on the photodissociation of C 664 
F2 CHCl at 193 nm: Product energy distributions for the HF and HCl eliminations. J. Chem. Phys. 2005, 665 
122, 1. 666 

82. Martínez-Núñez, E.; Vázquez, S. A.; Aoiz, F. J.; Bañares, L.; Castillo, J. F., Further investigation of the 667 
HCl elimination in the photodissociation of vinyl chloride at 193 nm: A direct MP2/6-31G(d,p) 668 
trajectory study. Chem. Phys. Lett. 2004, 386, 225. 669 

83. Martínez-Núñez, E.; Vázquez, S., Rovibrational distributions of HF in the photodissociation of vinyl 670 
fluoride at 193 nm: A direct MP2 quasiclassical trajectory study. J. Chem. Phys. 2004, 121, 5179. 671 

84. Martínez-Núñez, E.; Fernández-Ramos, A.; Vázquez, S. A.; JavierAoiz, F.; Bañares, L., A Direct 672 
Classical Trajectory Study of HCl Elimination from the 193 nm Photodissociation of Vinyl Chloride. J. 673 
Phys. Chem. A 2003, 107, 7611. 674 

85. Gonzalez-Vazquez, J.; Martinez-Nunez, E.; Fernandez-Ramos, A.; Vazquez, S. A., Dissociation of 675 
difluoroethylenes. II. Direct Classical Trajectory Study of the HF elimination from 1,2-676 
difluoroethylene. J. Phys. Chem. A 2003, 107, 1398-1404. 677 

86. Gonzalez-Vazquez, J.; Fernandez-Ramos, A.; Martinez-Nunez, E.; Vazquez, S. A., Dissociation of 678 
difluoroethylenes. I. Global potential energy surface, RRKM, and VTST calculations. J. Phys. Chem. A 679 
2003, 107, 1389-1397. 680 

87. Martínez-Núñez, E.; Estévez, C. M.; Flores, J. R.; Vázquez, S. A., Product energy distributions for the 681 
four-center HF elimination from 1,1-difluoroethylene. a direct dynamics study. Chem. Phys. Lett. 2001, 682 
348, 81. 683 

88. Martínez-Núñez, E.; Vázquez, S. A., Three-center vs. four-center HF elimination from vinyl fluoride: 684 
A direct dynamics study. Chem. Phys. Lett. 2000, 332, 583. 685 

89. Homayoon, Z.; Vázquez, S. A.; Rodríguez-Fernández, R.; Martínez-Núñez, E., Ab initio and RRKM 686 
study of the HCN/HNC elimination channels from vinyl cyanide. J. Phys. Chem. A 2011, 115, 979-985. 687 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 18 of 21 

 

90. Martinez-Nunez, E.; Vazquez, S. A.; Borges, I.; Rocha, A. B.; Estevez, C. M.; Castillo, J. F.; Aoiz, F. J., 688 
On the conformational memory in the photodissociation of formic acid. The Journal of Physical 689 
Chemistry A 2005, 109, 2836-2839. 690 

91. Martinez-Nunez, E.; Vazquez, S.; Granucci, G.; Persico, M.; Estevez, C. M., Photodissociation of formic 691 
acid: A trajectory surface hopping study. Chemical Physics Letters 2005, 412, 35-40. 692 

92. Chang, C. M.; Huang, Y. H.; Liu, S. Y.; Lee, Y. P.; Pombar-Perez, M.; Martinez-Nunez, E.; Vazquez, S. 693 
A., Internal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-694 
resolved Fourier-transform spectroscopy and quasiclassical trajectories. Journal of Chemical Physics 695 
2008, 129. 696 

93. Spezia, R.; Martínez-Nuñez, E.; Vazquez, S.; Hase, W. L., Theoretical and computational studies of 697 
non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at 698 
interfaces. Philosophical Transactions of the Royal Society A: Mathematical,    699 
 Physical and Engineering Sciences 2017, 375, 20170035. 700 

94. Tsutsumi, T.; Harabuchi, Y.; Ono, Y.; Maeda, S.; Taketsugu, T., Analyses of trajectory on-the-fly based 701 
on the global reaction route map. Phys. Chem. Chem. Phys. 2018, 20, 1364-1372. 702 

95. Wilhelm, M. J.; Nikow, M.; Letendre, L.; Dai, H.-L., J. Chem. Phys. 2009, 130, 044307. 703 
96. Chin, C.-H.; Lee, S.-H., J. Chem. Phys. 2011, 134, 044309. 704 
97. Chaudhuri, C.; Lee, S.-H., Phys. Chem. Chem. Phys. 2011, 13, 7312. 705 
98. Lee, P.-W.; Scrape, P. G.; Butler, L. J.; Lee, Y.-P., Two HCl-Elimination Channels and Two CO-706 

Formation Channels Detected with Time-Resolved Infrared Emission upon Photolysis of Acryloyl 707 
Chloride [CH2CHC(O)Cl] at 193 nm. J. Phys. Chem. A 2015, 119, 7293-7304. 708 

99. Bauer, C. A.; Grimme, S., How to Compute Electron Ionization Mass Spectra from First Principles. J. 709 
Phys. Chem. A 2016, 120, 3755-3766. 710 

100. Macaluso, V.; Homayoon, Z.; Spezia, R.; Hase, W. L., Threshold for shattering fragmentation in 711 
collision-induced dissociation of the doubly protonated tripeptide TIK(H+)2. Phys. Chem. Chem. Phys. 712 
2018, 20, 19744-19749. 713 

101. Martin-Somer, A.; Martens, J.; Grzetic, J.; Hase, W. L.; Oomens, J.; Spezia, R., Unimolecular 714 
Fragmentation of Deprotonated Diproline [Pro2-H]− Studied by Chemical Dynamics Simulations and 715 
IRMPD Spectroscopy. J. Phys. Chem. A 2018, 122, 2612-2625. 716 

102. Homayoon, Z.; Macaluso, V.; Martin-Somer, A.; Muniz, M. C. N. B.; Borges, I.; Hase, W. L.; Spezia, R., 717 
Chemical dynamics simulations of CID of peptide ions: comparisons between TIK(H+)2 and TLK(H+)2 718 
fragmentation dynamics, and with thermal simulations. Phys. Chem. Chem. Phys. 2018, 20, 3614-3629. 719 

103. Martin-Somer, A.; Spezia, R.; Yáñez, M., Gas-phase reactivity of [Ca(formamide)]2+ complex: an 720 
example of different dynamical behaviours. Phil. Trans. R. Soc. A 2017, 375, 20160196. 721 

104. Molina, E. R.; Eizaguirre, A.; Haldys, V.; Urban, D.; Doisneau, G.; Bourdreux, Y.; Beau, J.-M.; Salpin, 722 
J.-Y.; Spezia, R., Characterization of Protonated Model Disaccharides from Tandem Mass Spectrometry 723 
and Chemical Dynamics Simulations. ChemPhysChem 2017, 18, 2812-2823. 724 

105. Lee, G.; Park, E.; Chung, H.; Jeanvoine, Y.; Song, K.; Spezia, R., Gas phase fragmentation mechanisms 725 
of protonated testosterone as revealed by chemical dynamics simulations. Int. J. Mass Spectrom. 2016, 726 
407, 40-50. 727 

106. Spezia, R.; Lee, S. B.; Cho, A.; Song, K., Collision-induced dissociation mechanisms of protonated 728 
penta- and octa-glycine as revealed by chemical dynamics simulations. Int. J. Mass Spectrom. 2015, 729 
392, 125-138. 730 

107. Spezia, R.; Martens, J.; Oomens, J.; Song, K., Collision-induced dissociation pathways of protonated 731 
Gly2NH2 and Gly3NH2 in the short time-scale limit by chemical dynamics and ion spectroscopy. Int. 732 
J. Mass Spectrom. 2015, 388, 40-52. 733 

108. Song, K.; Spezia, R., Theoretical Mass Spectrometry, Tracing Ions with Classical Trajectories. De 734 
Gruyter: Berlin, Boston, 2018. 735 

109. Pratihar, S.; Barnes, G. L.; Laskin, J.; Hase, W. L., Dynamics of Protonated Peptide Ion Collisions with 736 
Organic Surfaces: Consonance of Simulation and Experiment. J. Phys. Chem. Lett. 2016, 7, 3142-3150. 737 

110. Pratihar, S.; Barnes, G. L.; Hase, W. L., Chemical dynamics simulations of energy transfer, surface-738 
induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with 739 
organic surfaces. Chem. Soc. Rev. 2016, 45, 3595-3608. 740 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 19 of 21 

 

111. Barnes, G. L.; Young, K.; Yang, L.; Hase, W. L., Fragmentation and reactivity in collisions of protonated 741 
diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces. J. 742 
Chem. Phys. 2011, 134, 094106. 743 

112. Park, K.; Deb, B.; Song, K.; Hase, W. L., Importance of Shattering Fragmentation in the Surface-Induced 744 
Dissociation of Protonated Octaglycine. JASMS 2009, 20, 939-948. 745 

113. Barnes, G. L.; Hase, W. L., Energy Transfer, Unfolding, and Fragmentation Dynamics in Collisions of 746 
N-Protonated Octaglycine with an H-SAM Surface. J. Am. Chem. Soc. 2009, 131, 17185-17193. 747 

114. Martínez-Núñez, E.; Fernández-Ramos, A.; Vázquez, S. A.; Marques, J. M. C.; Xue, M.; Hase, W. L., 748 
Quasiclassical dynamics simulation of the collision-induced dissociation of Cr (CO)6 + with Xe. J. 749 
Chem. Phys. 2005, 123, 154311. 750 

115. Zador, J.; Jasper, A. W.; Miller, J. A., The reaction between propene and hydroxyl. Phys. Chem. Chem. 751 
Phys. 2009, 11, 11040-11053. 752 

116. Zhou, C.-W.; Li, Z.-R.; Li, X.-Y., Kinetics and Mechanism for Formation of Enols in Reaction of 753 
Hydroxide Radical with Propene. J. Phys. Chem. A 2009, 113, 2372-2382. 754 

117. Huynh, L. K.; Zhang, H. R.; Zhang, S.; Eddings, E.; Sarofim, A.; Law, M. E.; Westmoreland, P. R.; 755 
Truong, T. N., Kinetics of Enol Formation from Reaction of OH with Propene. J. Phys. Chem. A 2009, 756 
113, 3177-3185. 757 

118. El-Nahas, A. M.; Uchimaru, T.; Sugie, M.; Tokuhashi, K.; Sekiya, A., Relative reactivity and 758 
regioselectivity of halogen-substituted ethenes and propene toward addition of an OH radical or O 759 
(3P) atom: An ab initio study. THEOCHEM 2006, 770, 59-65. 760 

119. Szori, M.; Fittschen, C.; Csizmadia, I. G.; Viskolcz, B., Allylic H-Abstraction Mechanism:  The Potential 761 
Energy Surface of the Reaction of Propene with OH Radical. J. Chem. Theor. Comput. 2006, 2, 1575-762 
1586. 763 

120. Díaz-Acosta, I.; Alvarez-Idaboy, J. R.; Vivier-Bunge, A., Mechanism of the OH–propene–O2 reaction: 764 
An ab initio study. Int. J. Chem. Kinet. 1999, 31, 29-36. 765 

121. Alvarez–Idaboy, J. R.; Díaz–Acosta, I.; Vivier–Bunge, A., Energetics of mechanism of OH-propene 766 
reaction at low pressures in inert atmosphere. J. Comput. Chem. 1998, 19, 811-819. 767 

122. Ferro-Costas, D.; Cordeiro, M. N. D. S.; Truhlar, D. G.; Fernández-Ramos, A., Q2DTor: A program to 768 
treat torsional anharmonicity through coupled pair torsions in flexible molecules. Computer Physics 769 
Communications 2018, 232, 190-205. 770 

123. Truhlar, D. G.; Isaacson, A. D.; Garret, G. C., Theory of Chemical Reaction Dynamics. Baer, M., Ed. 771 
CRC: Boca Raton, FL, 1985; Vol. 4, p 65. 772 

124. Schwarz, H., Chemistry with Methane: Concepts Rather than Recipes. Angew. Chem. Int. Ed. 2011, 50, 773 
10096-10115. 774 

125. Bao, J. L.; Truhlar, D. G., Variational transition state theory: theoretical framework and recent 775 
developments. Chem. Soc. Rev. 2017, 46, 7548-7596. 776 

126. Yu, T.; Zheng, J.; Truhlar, D. G., Multi-structural variational transition state theory. Kinetics of the 1,4-777 
hydrogen shift isomerization of the pentyl radical with torsional anharmonicity. Chem. Sci. 2011, 2, 778 
2199-2213. 779 

127. Bao, J. L.; Meana-Pañeda, R.; Truhlar, D. G., Multi-path variational transition state theory for chiral 780 
molecules: the site-dependent kinetics for abstraction of hydrogen from 2-butanol by hydroperoxyl 781 
radical, analysis of hydrogen bonding in the transition state, and dramatic temperature dependence of 782 
the activation energy. Chemical Science 2015, 6, 5866-5881. 783 

128. Yu, T.; Zheng, J.; Truhlar, D. G., Multipath Variational Transition State Theory: Rate Constant of the 784 
1,4-Hydrogen Shift Isomerization of the 2-Cyclohexylethyl Radical. J. Phys. Chem. A 2012, 116, 297-785 
308. 786 

129. Meana-Pañeda, R.; Fernández-Ramos, A., Accounting for conformational flexibility and torsional 787 
anharmonicity in the H + CH3CH2OH hydrogen abstraction reactions: A multi-path variational 788 
transition state theory study. The Journal of Chemical Physics 2014, 140, 174303. 789 

130. Sperger, T.; Sanhueza, I. A.; Schoenebeck, F., Computation and Experiment: A Powerful Combination 790 
to Understand and Predict Reactivities. Acc. Chem. Res. 2016, 49, 1311-1319. 791 

131. Peng, Q.; Paton, R. S., Catalytic Control in Cyclizations: From Computational Mechanistic 792 
Understanding to Selectivity Prediction. Acc. Chem. Res. 2016, 49, 1042-1051. 793 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 20 of 21 

 

132. Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F., Computational Studies of Synthetically 794 
Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of 795 
Commonly Employed DFT Methods and Mechanistic Insights. Chem. Rev. 2015, 115, 9532-9586. 796 

133. Rush, L. E.; Pringle, P. G.; Harvey, J. N., Computational Kinetics of Cobalt-Catalyzed Alkene 797 
Hydroformylation. Angew. Chem. Int. Ed. 2014, 53, 8672-8676. 798 

134. Maeda, S.; Morokuma, K., Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path 799 
Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation. J. Chem. Theor. Comput. 800 
2012, 8, 380-385. 801 

135. Kim, Y.; Choi, S.; Kim, W. Y., Efficient Basin-Hopping Sampling of Reaction Intermediates through 802 
Molecular Fragmentation and Graph Theory. J. Chem. Theory Comput., Article ASAP. 803 

136. Kim, Y.; Kim, J. W.; Kim, Z.; Kim, W. Y., Efficient prediction of reaction paths through molecular graph 804 
and reaction network analysis. Chem. Sci. 2018, 9, 825-835. 805 

137. Heck, R. F.; Breslow, D. S., The Reaction of Cobalt Hydrotetracarbonyl with Olefins. J. Am. Chem. Soc. 806 
1961, 83, 4023-4027. 807 

138. Gholap, R. V.; Kut, O. M.; Bourne, J. R., Hydroformylation of propylene using an unmodified cobalt 808 
carbonyl catalyst: a kinetic study. Ind. Eng. Chem. Res. 1992, 31, 1597-1601. 809 

139. Booth, J.; Vazquez, S.; Martínez-Núñez, E.; Marks, A.; Rodgers, J.; Glowacki, D. R.; Shalashilin, D. V., 810 
Recent Applications of Boxed Molecular Dynamics: a Simple Multiscale Technique for Atomistic 811 
Simulations. Phil. Trans. R. Soc. A 2014, 372, 20130384. 812 

140. Martínez-Núñez, E.; Shalashilin, D. V., Acceleration of classical mechanics by phase space constraints. 813 
J. Chem. Theor. Comput. 2006, 2, 912. 814 

141. Shannon, R. J.; Amabilino, S.; O’Connor, M.; Shalishilin, D. V.; Glowacki, D. R., Adaptively 815 
Accelerating Reactive Molecular Dynamics Using Boxed Molecular Dynamics in Energy Space. J. 816 
Chem. Theor. Comput. 2018, 14, 4541-4552. 817 

142. Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, 818 
M. N.; Hammer, B.; Hargus, C.; Hermes, E. D.; Jennings, P. C.; Jensen, P. B.; Kermode, J.; Kitchin, J. R.; 819 
Kolsbjerg, E. L.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.; Maronsson, J. B.; Maxson, T.; Olsen, T.; Pastewka, 820 
L.; Peterson, A.; Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.; Vegge, T.; 821 
Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W., The atomic simulation environment—a Python 822 
library for working with atoms. Journal of Physics: Condensed Matter 2017, 29, 273002. 823 

143. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; 824 
Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A., NWChem: A comprehensive and scalable open-825 
source solution for large scale molecular simulations. Comput. Phys. Commun. 2010, 181, 1477-1489. 826 

144. Neese, F., The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78. 827 
145. Christensen, A. S.; Kubař, T.; Cui, Q.; Elstner, M., Semiempirical Quantum Mechanical Methods for 828 

Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews 2016, 116, 829 
5301-5337. 830 

146. Rodríguez-Fernández, R.; Pereira, F. B.; Marques, J. M. C.; Martínez-Núñez, E.; Vázquez, S. A., GAFit: 831 
A general-purpose, user-friendly program for fitting potential energy surfaces. Computer Physics 832 
Communications 2017, 217, 89-98. 833 

147. Nogueira, J. J.; Sánchez-Coronilla, A.; Marques, J. M. C.; Hase, W. L.; Martínez-Núñez, E.; Vázquez, S. 834 
A., Intermolecular potentials for simulations of collisions of SiNCS+ and (CH3)2SiNCS+ ions with 835 
fluorinated self-assembled monolayers. Chemical Physics 2012, 399, 193-204. 836 

148. Pratihar, S.; Kohale, S. C.; Vázquez, S. A.; Hase, W. L., Intermolecular Potential for Binding of 837 
Protonated Peptide Ions with Perfluorinated Hydrocarbon Surfaces. The Journal of Physical Chemistry 838 
B 2014, 118, 5577-5588. 839 

149. arXiv:1806.06147 [physics.chem-ph]. arXiv:1806.06147 [physics.chem-ph]. 840 
150. Thomas, H. B.; Hennemann, M.; Kibies, P.; Hoffgaard, F.; Güssregen, S.; Hessler, G.; Kast, S. M.; Clark, 841 

T., The hpCADD NDDO Hamiltonian: Parametrization. Journal of Chemical Information and 842 
Modeling 2017, 57, 1907-1922. 843 

151. Brooks, B. R.; Brooks, C. L., 3rd; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; 844 
Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, 845 
S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. 846 
W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; 847 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156


 21 of 21 

 

York, D. M.; Karplus, M., CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009, 848 
30, 1545-1614. 849 

152. Hase, W. L.; Bolton, K.; Sainte Claire, P. d.; Duchovic, R. J.; Hu, X.; Komornicki, A.; Li, G.; Lim, K. F.; 850 
Lu, D.-H.; Peslherbe, G. H. et al.; Venus05; a general chemical dynamics computer program; 2004. 851 

 852 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2018                   doi:10.20944/preprints201810.0653.v3

Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156Peer-reviewed version available at Molecules 2018, 23, 3156; doi:10.3390/molecules23123156

http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.20944/preprints201810.0653.v3
http://doi.org/10.3390/molecules23123156
http://dx.doi.org/10.3390/molecules23123156

