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Abstract: The method tsscds, recently developed in our group, discovers chemical reaction 11 
mechanisms with minimal human intervention. It employs accelerated molecular dynamics, 12 
spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction 13 
paths and to solve the kinetics at the experimental conditions. In the present review, its application 14 
to solve mechanistic/kinetics problems in different research areas will be presented. Examples will 15 
be given of reactions involved in photodissociation dynamics, mass spectrometry, combustion 16 
chemistry and organometallic catalysis. The source code can be downloaded from: 17 
http://forge.cesga.es/wiki/g/tsscds/HomePage 18 

Keywords: automated algorithm; molecular dynamics; graph theory; statistical rate theory; kinetics 19 
simulations. 20 

 21 

1. Introduction 22 
Theoretical studies of reaction mechanisms can greatly benefit nowadays by leveraging the 23 

surge of automated methods developed in the last few years [1-58]. The idea of these new 24 
computational protocols is to substitute human intervention by less error-prone and less tedious 25 
automated algorithms. The methodologies range from chemical heuristics to the use of artificial 26 
forces to boost chemical reactions, and the reader is referred to two very recent reviews on methods 27 
for exploring reaction space for details [58, 59]. 28 

Our group has contributed with the development of a method called tsscds [43-47], which is 29 
based on accelerated molecular dynamics (MD), as are some others [29, 30]. In our trajectories, the 30 
bonds of the molecule(s) are broken/formed thanks to huge amounts of energy placed in each normal 31 
mode/atom of the system [45]. The distinctive feature of tsscds compared to others is the primary 32 
target of the post-processing analysis: the search for transition states (TS) rather than minima. 33 

In tsscds, after completion of a trajectory, an algorithm named bond breaking/formation search 34 
(BBFS) [45] is employed to select good TS guess structures, which are then optimized using 35 
Eigenvector Following (EF) [60]. In particular, the adjacency matrix, which indicates whether pairs 36 
of atoms form a bond, is monitored along each trajectory to identify the atoms/bonds involved in all 37 
chemical reactions taking place. Then, for each of the selected candidates, a partial optimization is 38 
firstly carried out by freezing the atoms involved in the reaction. The partially-optimized structure is 39 
subsequently subjected to TS optimization using the EF algorithm. The resulting TSs are then 40 
connected with the minima using intrinsic reaction coordinate (IRC) calculations [61]. Finally, tsscds 41 
also features a Kinetic Monte Carlo [62] module that provides the desired kinetic information using 42 
the network of TSs and minima.  43 

The method has been successfully employed to study reactions involved in combustion [63, 64], 44 
photolysis [65-67], mass spectrometry [68] and organometallic catalysis [43]. In this review, several 45 
examples will be presented where tsscds is employed to either discover new mechanisms and/or to 46 
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explain the experiments. In the last section of this review, some planned improvements to enhance 47 
its efficiency/efficacy will be described.   48 

2. Overview of the applications of tsscds  49 
The tsscds methodology has been employed in our lab to elucidate reaction mechanisms 50 

involved in photodissociation dynamics, mass spectrometry, combustion and organometallic 51 
catalysis, and in this section, several examples of each type are reviewed. 52 

2.1. Photodissociation dynamics 53 
The dissociation of molecules can be promoted by using a laser source, which is known as 54 

photodissociation. Although many photodissociations take place in excited states, important 55 
mechanisms may occur in the ground electronic state following internal conversion. One of the 56 
quantities of interest is the product yield, which is usually determined in the experiments. The 57 
understanding of the dissociation channels in organic compounds has greatly benefited from the 58 
interplay between photolysis experiments and computational studies [67, 69-82].  59 

In this section, we summarize the results obtained with our automated method for systems that 60 
have also been studied in photodissociation experiments, highlighting the most important 61 
conclusions. In particular, the dissociation channels of formaldehyde, formic acid, vinyl cyanide, 62 
acrolein, acryloyl chloride and methyl cyanoformate were studied with our tsscds methodology.  63 

Formaldehyde was employed as a benchmark system to test tsscds. The system had been 64 
previously studied with other automated methods like the scaled hypersphere search [33] and the 65 
global reaction route mapping (GRRM) [35]. The results obtained with all algorithms are comparable, 66 
and the kinetically-relevant stationary points are found using any procedure.   67 

The study of the dissociation channels of formic acid (CO2H2) revealed the existence of a new TS 68 
for the water-gas shift reaction (WGSR: CO + H2O CO2 + H2) [45]. By contrast, GRRM predicted a 69 
shortest path for the WGSR with three TSs [35]. The discovery of the new TS is a consequence of the 70 
highly non-IRC [83] nature of the trajectories employed in tsscds [45]; in other words, IRC jumps are 71 
not an uncommon event [84]. The huge amounts of vibrational energy put in the normal modes 72 
enhances configurational space sampling in tsscds.  73 

 74 
Figure 1. Kinetic simulation results of the different HCN elimination channels from VC. 75 

Our automated computational study on the dissociation of vinyl cyanide (VC) [67] provides a 76 
HCN/HNC branching ratio in nearly perfect agreement with the experimental one for an excitation 77 
energy of 148 kcal/mol [85]. Moreover, a new HCN elimination pathway from VC involving three 78 
TSs was discovered. In contrast to similar HX (with X being a halogen) elimination pathways from 79 
other ethylene analogues, where 3-center and 4-center mechanisms dominate, the new HCN 80 
elimination channel (red in Figure 1) is more important than the 4-center channel (green in Figure 1) 81 
and accounts for half of the HCN eliminations from VC at low excitation energies.  82 
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 83 
Figure 2. Minima obtained by tsscds for the C3H4O system. The structures are arranged in ascending 84 
order of their relative energies (shown at the bottom of each structure), which are obtained at the 85 
CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level of theory. Conformers are not included in the 86 
figure and only the lowest lying of each family is displayed. 87 

The tsscds methodology was also employed to study the dissociation of acrolein (ACRL, C3H4O), 88 
which comprises many different fragmentation channels involving more than 250 transition states 89 
and 66 minima [44]. This system was studied with an enhanced procedure (now fully integrated in 90 
the method) consisting in the initialization of the MD simulations from multiple minima. The 91 
complexity of the system is exemplified by the 32 equilibrium structures (not including conformers) 92 
found with tsscds and shown in Figure 2, of which ACRL is the global minimum. To highlight the 93 
importance of automated reaction discovery methods, Chin et al. [86] carried out a computational 94 
study for the same system using the same levels of theory, and found only 6 of the 66 minima obtained 95 
with tsscds. Most importantly, the relative product abundances obtained with tsscds at 148 kcal/mol 96 
(the energy corresponding to the experimental wavelength of 193 nm) are much closer to the 97 
experimental results than the previous computational results as seen in Table 1. 98 

Table 1. Relative product abundances obtained by different computational studies and experiment 99 
in the photodissociation of ACRL at 193 nm. 100 

Channel Chin et al. [86] tsscds Exp [87] 
H2O 0.01 0.03 0.07 

CH2O 0.65 0.20 0.07 
H2 0.09 0.19 0.00 
CO 1.00 1.00 1.00 

H2+CO+HCCH 6.82 1.49 1.10 
 101 

Another system studied by tsscds was acryloyl chloride (AC). Overall, around 700 stationary 102 
points were found using our strategy. Of all dissociation channels, experiments pay some attention 103 
to the HCl dissociations from AC. The use of our automated procedure led to the discovery of the 104 
three new HCl dissociation TSs [66] displayed in Figure 3; the figure also shows the AC equilibrium 105 
structure. The highest-energy TSs (TS2 and TS3) correspond to three-body dissociations leading to 106 
acetylene, carbon monoxide and hydrogen chloride, and they only become important at high 107 
excitation energies. By contrast, HCl elimination over TS1 is predominant at the experimental 108 
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conditions (148 kcal/mol) [88]. Complementary quasi-classical trajectories carried out in the same 109 
study [66] predict bimodal HCl rotational distributions (in good agreement with experiment), and 110 
significant (10%) non-IRC dynamics in one of the HCl elimination channels.  111 

 112 
Figure 3. Structure of AC minimum and the three new TSs found with tsscds for the HCl elimination 113 
from AC. Numbers are relative energies in kcal/mol (including the zero-point vibrational energy) 114 
with respect to AC, calculated at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(2d,2p) level of 115 
theory. 116 

Finally, with the aim of exploring possible sources of HCN and HNC in astrophysical 117 
environments, the dissociation channels of methyl cyanoformate (MCF) were probed with tsscds, 118 
excited state calculations and photolysis experiments [65]. In particular, time-resolved infrared 119 
spectroscopy measurements indicate that both HCN and HNC are formed after the 193-nm 120 
photolysis of MCF [65]. The calculations suggest that most of the dissociations take place in the S2 121 
excited state leading to CH3O + NCCO via a Norrish type I reaction, in agreement with experiment. 122 
However, the calculations are also consistent with cascading internal conversion from S2 to produce 123 
vibrationally excited ground state MCF.  124 

When tsscds is employed to study the dissociation channels in the ground state, several HNC 125 
and HCN mechanisms are found, and Figure 4 shows the two kinetically-relevant ones at 148 126 
kcal/mol. Our kinetic simulations predict a HNC/HCN branching ratio of 0.01, which is in 127 
semiquantitative agreement with that determined in the experiments (0.07). The work provides 128 
further insights into the intriguing observation of overabundance of HNC in astrophysical 129 
environments.  130 

 131 
Figure 4. Relevant HCN and HNC pathways in the ground-state PES of methyl cyanoformate for an 132 
excitation energy of 148 kcal/mol. Relative energies (in kcal mol1) include ZPE contributions and 133 
were obtained by CCSD(T)/6-311++G(3df,3pd)//MP2/6-311+G(2d,2p) calculations. 134 

 135 
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2.2. Mass spectrometry 136 

The prediction of mass spectra remains much of a challenge for the community of computational 137 
chemists. The common computational approaches employed for such endeavor include statistical 138 
rate theory calculations, MD simulations and electronic structure calculations [89-98]. Our automated 139 
method is very useful in this regard and can easily be coupled with MD simulations of collisions to 140 
generate theoretically-based mass spectra as described below. 141 

In particular, our method was employed to reproduce mass spectrometry (MS) experiments of 142 
protonated uracil, [uracil]H+. Our computational results indicate that the decomposition of [uracil]H+ 143 
involves more than one thousand stationary points and 751 elementary reactions [68]. Branching 144 
ratios for the different fragmentation channels can be automatically obtained from tsscds. However, 145 
these fractions are a function of the ion’s internal energy and cannot be compared with MS 146 
experiments, where the collision energy in the center-of-mass framework (ܧ௖௢௠) is employed instead. 147 
For that reason our tsscds results were combined with collisional dynamics simulations [68]. The 148 
resulting product abundances are compared in Figure 5 with the experimental ones (solid lines). As 149 
seen in the figure, for the predominant dissociation channels, the computationally-predicted product 150 
abundances are in qualitative agreement with experiment. Discrepancies with experiment can be 151 
attributed to the possible existence of well-known non-statistical behavior in many collision-induced 152 
dissociations, which cannot be captured with our statistical model.  153 

 154 
Figure 5. Experimental (exp) and calculated (comp) intensities of precursor and fragment ions 155 
produced in the fragmentation of protonated uracil.  156 

2.3. Combustion chemistry 157 
Very recently, Fenard et al. developed a detailed kinetic model of the low-temperature oxidation 158 

of tetrahydrofuran [64]. The model reproduces ignition delay times obtained in a rapid-compression 159 
machine and in a shock tube, as well as numerous product mole fractions measured in a jet-stirred 160 
reactor. The reaction pathways involved in these processes were probed with our automated software 161 
tsscds [64]. 162 

Our automated method has also been employed to study the influence of conformers on the rate 163 
constants for the thermal decomposition of 1-propanol radicals [63]. The most relevant pathways 164 
reported in the literature[99-105] are obtained with tsscds, except for the barrierless dissociation 165 
leading to propene + OH, since the present version of tsscds cannot handle this type of reactions.  166 

Of significance, an important number of reactant and TS conformers, not described in the 167 
previous studies, are obtained with tsscds. A conformational reaction channel (CRC) was defined as 168 
the group of all the paths that connect the conformers of a given reactant with the corresponding TS 169 
conformers. The influence of these conformers on the rate constants and branchings ratios was 170 
investigated in detail [63]. To study such influence, the output of tsscds (families of CRCs) was fed 171 
into a computer program to treat torsional anharmonicity [106] and to another one for variational 172 
transition state theory (VTST) [107-109] calculations to compute rate constants for all the CRCs. The 173 
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multipath (MP) approach within VTST was employed [109-113], where the rate constant of a given 174 
CRC is calculated using contributions from all the conformers and paths. For comparison purposes 175 
the simplest one-well (1W) approach is also considered; in the 1W method only the most stable 176 
conformers of reactant and TS are considered. The product abundances obtained in the temperature 177 
range 1000-2000 K are greatly influenced by the selected approach (MP vs 1W), particularly for the 178 
major products: ethene + CH2OH and formaldehyde + ethyl radical [63]. Our results show the 179 
importance of using automated codes for discovering reaction mechanisms and sampling potential 180 
energy surfaces.  181 

2.4. Organometallic catalysis 182 
Computational studies of organometallic catalysis are becoming increasingly more important 183 

because they can help elucidate reaction mechanisms, characterize catalytic intermediates, 184 
supplement experimental studies, and also because of their predictive power [108, 114-117]. 185 

However, the traditional workflow of most computational studies consists of using chemical 186 
intuition in the design of reaction routes and construction of guess TS structures. In recent years the 187 
appearance of powerful automated computational methods to study homogenous catalysis [27, 43, 188 
118-120] very much eased the tedious work of manual searches.  189 

To exemplify the use of tsscds in organometallic catalysis, the cobalt-catalyzed 190 
hydroformylation of ethylene was chosen [43]. Very briefly, the first step in our computational study 191 
was to generate all combinations of the catalyst Co(CO)3 with any of the starting materials (CO, H2 192 
and ethylene), which in this case amounts to eight. Each of these combinations has fewer atoms than 193 
the overall system and they were named sub-systems in our original paper [43]. Standard tsscds is 194 
then run in each sub-system to build the reaction networks. Finally, the full reaction network is 195 
obtained after merging the individual results for each sub-system.  196 

Figure 6 shows the tsscds-calculated free energy profile for the formation of propanal (C3H6O), 197 
which is the predominant channel; the level of theory employed was B3LYP/6-31G(d,p). The 198 
mechanism shown in the figure for the hydroformylation was obtained in an automated manner, and 199 
agrees with the one predict by Heck and Breslow in the 1960s [121] and with more recent mechanistic 200 
studies [117]. This is a very interesting result as we needed to make no assumptions to obtain this 201 
result. Additionally, our method predicts that hydrogenation of ethylene is a side reaction that can 202 
be predominant under certain experimental conditions: low CO partial pressures. 203 

 204 
Figure 6. Free energy profile for the Co-catalyzed hydroformylation of ethylene obtained in our tsscds 205 
study using DFT calculations [117].  206 

With the full reaction network constructed, the kinetics simulation module of tsscds can provide 207 
a rate law for the hydroformylation reaction when a range of different initial conditions for each 208 
species is employed. Table 2 shows the orders of the catalyst and starting materials for the 209 
hydroformylation reaction obtained experimentally [122], using a kinetic model based on highly-210 
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accurate electronic structure calculations by Harvey and co-workers [117], and obtained from another 211 
automated method by Habershon [27].  212 

As seen in Table 2, tsscds agrees rather well with experiment and with the results obtained by 213 
Harvey and co-workers [117]. Moreover, tsscds agrees much better with experiment than the other 214 
automated method does [27] (last column of Table 2), despite the fact that both employ the same 215 
alkene, initial conditions for the kinetics, and level of theory for the electronic structure calculations. 216 

Table 2. Orders of the hydroformylation reaction with respect to the catalyst and starting materials. 217 

Species Exp [122] tsscds [43] Harvey [117] Habershon [27] 
H2 0.6 0.4 0.5 1 
CO <0 <0 <0 <0 

catalyst 0.8 0.5 0.5 1 
alkene 1 1 1 0.55 

 218 

3. Improvements 219 
In this section we describe some improvements we plan to implement in the near future. They 220 

include: the use of Spectral Graph Theory, implementation of knowledge-based methods, 221 
implementation of rare event acceleration MD simulations, interface with other electronic structure 222 
codes, and reparametrization of semiempirical methods. 223 

3.1. Use of Spectral Graph Theory to minimize the number of Hessian calculations 224 
In standard tsscds, every single structure obtained after the BBFS analysis is subjected to TS 225 

optimization [45]. As seen in Figure 7(a), for a trajectory ݅, BBFS selects ݉௜ TS candidates, which 226 
results in ܯ = ∑ ݉௜

௡
௜ୀଵ  optimizations, where ݊ is the total number of trajectories. On the one hand, 227 

these ܯ optimizations are the most CPU-time consuming step of the procedure as they involve 228 
Hessian calculations, while the integration of the trajectories only requires gradients. On the other 229 
hand, a number of those optimizations are repeated. This is so because trajectories visit more often 230 
those areas of the configurational space around the kinetically most relevant TSs, leading to multiple 231 
optimizations of those structures.  232 

The workflow of the enhanced procedure is shown in Figure 7(b). Briefly, instead of carrying 233 
out the optimizations for every single structure selected by the BBFS algorithm (as in the original 234 
implementation), the new procedure will run the MD simulations and store at once the ܯ structures 235 
for the analysis of all trajectory data. This analysis will consist of a pre-screening, a Spectral Graph 236 
Theory (SGT) step, and the final optimization step.  237 

 
(a) 

 
(b) 

Figure 7. (a) Original tsscds showcasing an example with ݊ different trajectories resulting in a total 238 
number of ܯ = ∑ ݉௜

௡
௜ୀଵ  optimizations. (b) Modified tsscds showcasing the same example as in panel 239 

(a) with ݊ different trajectories resulting in a total number of ܰ optimizations. 240 
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Upon completion of the MD simulations, a pre-screening of the ܯ structures will be performed 241 
based on the eigenvalues of the Laplacian matrix [44]. The lowest eigenvalues of this matrix indicate 242 
the degree of fragmentation of the molecular system. We aim here to discard highly fragmented 243 
structures, i.e., TSs connecting van der Waals complexes, usually of negligible relevance in a kinetics 244 
study. In the SGT step the remaining points will be partitioned into ܰ  groups according to the 245 
eigenvalues of a TS adjacency matrix, calculated as the average of the reactant and product adjacency 246 
matrices. Finally, we will select the closest point (geometry) to the centroid of each cluster for 247 
optimization. With this new scheme the gain in efficiency can easily be quantified as the reduction in 248 
the number of optimizations from ܯ to ܰ. 249 

3.2. Implementation of knowledge-based mechanism generators 250 

A number of reaction discovery methods are based on the so-called chemical heuristics [23, 48-251 
50]. In these methods, molecules are typically represented as graphs, in pretty much the same way as 252 
in tsscds. Then, by applying transformations, based on encoded rules or principles inspired by 253 
organic chemistry, to the reactant molecule graph, reactions, products and intermediates can readily 254 
be obtained. Compared to MD-based methods, heuristic-based methods are less CPU-time 255 
demanding.  256 

Our idea will be to combine a heuristic-based bias in the MD simulations alongside with our 257 
BBFS algorithm to obtain TSs. In particular, having defined a set of encoded rules based on chemical 258 
knowledge, every single MD simulation will suffer a different bias, aimed to trigger a particular 259 
reaction mechanism. In this way, the problem of multiple optimizations of a given TS mentioned 260 
above would be minimized, if not completely avoided. The bias (analytical) potentials will be added 261 
on top of the semiempirical potential to steer the dynamics towards a particular intermediate or 262 
product. 263 

3.3. Implementation of rare-event acceleration MD methods 264 

One of the shortcomings of tsscds is the fact that chemical reactions are triggered by using very 265 
high energies in the MD simulations. While this approach was successfully employed to tackle 266 
different problems, it is biased towards the entropically favored reaction pathways. To alleviate this 267 
drawback of the method we propose to replace the current MD strategy by the rare-event acceleration 268 
method named Boxed Molecular Dynamics (BXD) [123]. BXD has its roots in work done by one of us 269 
and D. Shalashilin more than a decade ago [124]. It introduces several reflective barriers in the phase 270 
space of a MD trajectory along a particular collective variable. Those boundaries are employed to 271 
push the dynamics along the collective variable into regions of phase space which would be rarely 272 
sampled in an unbiased trajectory. However, the use of BXD constrains in configuration space suffers 273 
from the same “entropic” bias mentioned above.  274 

A generalization of BXD has been very recently put forward by D. R. Glowacki and co-workers 275 
[125]. They show that the BXD bias can also be introduced along the potential energy (E) of the 276 
system, which is referred to as BXDE. By scanning through potential energy “boxes”, the energetic 277 
“windows” at which different chemical reaction channels switch on or off can be identified. The 278 
software design of tsscds is highly modular, which means that interfacing it with BXDE only requires 279 
little effort, like the need of compatible input/output geometry formats in both codes and the use of 280 
extra keywords in tsscds.  281 

3.4. Interface with other electronic structure codes 282 
At present tsscds has been only interfaced with the MOPAC2016 [126] and the G09 [127] 283 

electronic structure packages. The MD simulation employs gradients calculated at the semiempirical 284 
level of theory, and the optimization step is carried out at both the semiempirical level with 285 
MOPAC2016 and using higher levels (ab initio/DFT) with G09. Although we plan to reparametrize a 286 
semiempirical Hamiltonian for use in organometallic catalysis (see below), we do not want to be 287 
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limited to this low-level electronic structure calculations. Therefore, we will use the ASE package[128] 288 
to interface tsscds with other electronic structure codes like NWCHEM [129] or ORCA [130]. 289 

3.5. Reparametrization of semiempirical methods 290 
The application of the tsscds method relies on the use of semiempirical Hamiltonians for 291 

exploring potential energy surfaces. For this reason, it is important that the semiempirical method 292 
provides a reasonably accurate representation of the system under investigation. Although 293 
significant improvements in these methods have been made over the last years [131], there are still 294 
known limitations, which claim for further developments and more accurate parametrizations. Two 295 
important limitations concern the non-covalent interactions for large systems and ligand dissociation 296 
energies for transition metal complexes. In both cases, the performance of the semiempirical methods 297 
is, in general, quite poor. Our goal is therefore to improve the description of both non-covalent 298 
interactions and transition metal complexes in PM7. 299 

Regarding non-covalent interactions, we aim to develop an analytical correction for PM7. To this 300 
end, we will consider a set of small molecules, which are representative of the most important 301 
functional groups. All pairs of molecules will be considered to calculate interaction energies at three 302 
levels of theory: coupled-cluster (CC), DFT and PM7. For every pair, various orientations will be 303 
considered, each one emphasizing a different two-body interaction.  304 

Then, sums of two-body Buckingham potentials (supplemented with damping functions for the 305 
dispersion) will be fit to the CC, DFT and PM7 interaction energies using our genetic algorithm 306 
program GAFit [132]. Finally, the resulting potentials fܸit,CC, fܸit,DFT and fܸit,PM7 will be employed to 307 
build corrections Xܸ

௖௢௥௥  to the PM7 interaction energies: 308 

Xܸ
௖௢௥௥ = fܸit,X − fܸit,PM7               (1) 309 

where X is either CC or DFT. Whereas the DܸFT
௖௢௥௥  correction term will be employed to validate this 310 

methodology as explained below, the highly-accurate CܸC
௖௢௥௥  correction will be used once the 311 

validation succeeds. 312 
The correction will be added to the PM7 energy PܸM7 so that the PM7 Hamiltonian corrected for 313 

non-covalent (݊ܿ) interactions would read: 314 

PܸM7,X
௡௖ = PܸM7 + Xܸ

௖௢௥௥               (2) 315 

The strategy of using small representative molecules and sums of two-body functions was 316 
successfully employed in the development of intermolecular potentials for interactions of protonated 317 
peptides and silyl ions with perfluoroalkane self-assembled monolayers [133, 134]. Nevertheless, this 318 
strategy will be validated for the new functional groups by running DFT calculations for large 319 
systems. This will allow us to compare the DFT-calculated energies with those obtained with PܸM7,X

௡௖ . 320 
The semiempirical methods, and particularly PM6 and PM7, do not perform well for transition-321 

metal complexes [135]. Our strategy here will be to reoptimize the PM7 Hamiltonian as in previous 322 
studies of our group (e.g., see ref. [65]). We will select popular transition metals and ligand molecules 323 
used in organometallic catalysis, and will carry out high-level ab initio calculations for our own 324 
benchmark database. To gain flexibility in the parametrizations, we will consider the possibility of 325 
defining “atom types” for the ligand atoms, depending on the functional groups, in much the same 326 
way as that done for the parametrization of the hpCADD NDDO Hamiltonian [136].  327 

4. Materials and Methods  328 

4.1. Graph Theory 329 
Our algorithm to discover reaction mechanisms is based on the analysis of short-time high-330 

energy trajectories [43-45, 47, 126]. A number of graph theoretic tools are employed at various stages 331 
of the procedure to find transition states (TS), screen their structures and construct a reaction 332 
network. Specifically, the time dependence of the adjacency matrix ࡭ is employed to discriminate 333 
TS-like geometries along the trajectories. The elements of this matrix are defined as: 334 
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ܽ௜௝ = ൜1	if	ݎ௜௝ < ௜௝refݎ

0		otherwise
		               (3) 335 

with ݎ௜௝  being the distance between atoms ݅ and ݆, and ݎ௜௝ref a reference value that sets the upper 336 
limit for the bond length between the pair; in practice ݎ௜௝ref is taken 20% greater than the sum of the 337 
covalent radii of ݅ and ݆.[45] Thus, for an ܰ −atom system, ࡭ is a ܰ ×ܰ symmetric matrix with 338 
zeros on its diagonal.  339 

Additionally, a weighted adjacency matrix ࡭௪ is also employed in tsscds, whose off-diagonal 340 
elements are defined as: 341 

ܽ௜௝௪ =
ଵିቀ௥೔ೕ/௥೔ೕ

refቁ
೙

ଵିቀ௥೔ೕ/௥೔ೕ
refቁ

೘               (4) 342 

Values of 6 and 12 have been employed in previous work for ݊ and ݉, respectively.[44] Matrix 343 ࢝࡭ 
contains information on the 3D geometry of the molecule,[137] and its eigenvalues and eigenvectors 344 
can be employed to construct the so-called SPRINT coordinates.[137] An important property of these 345 
coordinates is their invariance with respect to translation, rotation and permutation of atoms, which 346 
makes them good molecular descriptors in trajectory-based methods. SPRINT coordinates are 347 
employed in tsscds to remove redundant structures.  348 

Another matrix employed to determine the number of fragments in the system is the Laplacian, 349 
which is defined as: 350 

(௪)ࡸ = ࡰ  351 (5)                (௪)࡭−
where ࡰ is the so-called degree matrix,[44] whose elements are defined as:  352 

݀௜௝ = ൜deg(ݒ௜) if	݅ = ݆
0		otherwise

		              (6) 353 

where the degree deg(ݒ௜) of an atom counts the number of contacts. The superscript (ݓ) on ࡸ and 354 
 indicates that the corresponding matrix can either be weighted or not. For a non-weighted graph, 355 ࡭
the lowest eigenvalue of the Laplacian ߣଵ is always zero, and the total number of zero eigenvalues 356 
determines the number of fragments of the system. For a weighted graph, an upper threshold for ߣଵ௪ 357 
is employed to identify fragmented structures.[44] The smallest non-zero eigenvalue is called the 358 
spectral gap (sg), which is a measure of the degree of fragmentation of the structure. Thus, a small 359 
value of sg is associated with structures presenting non-covalent bonds (like van der Waals 360 
complexes), which are usually of no interest in chemical dynamics and kinetics.  361 

The invariance of the SPRINT coordinates upon atom permutation is very important for the 362 
analyses of trajectories, where scrambling of atoms is frequent, as stated above. However, since the 363 
identity of each atom is absent in the adjacency matrix, SPRINT coordinates are identical for two 364 
structures where two non-equivalent atoms swap positions. For that reason, another type of 365 
molecular descriptor, based on a modified (weighted or not) adjacency matrix, is employed in tsscds. 366 
This new matrix, denoted as ࡭௓

(௪), contains the atomic numbers ܼ௜ of the atoms on the diagonal: 367 

ܽ௓,௜௝
(௪) = ൝

ܽ௜௝
(௪)	if	݅ ≠ ݆

1 + ௓೔
ଵ଴
		if ݅ = ݆

		              (7) 368 

The expression for the diagonal elements is chosen to provide values comparable to the off-369 
diagonal ones. Most importantly, the eigenvalues of this new matrix are only invariant with respect 370 
to the permutation of like atoms, and it is widely employed in tsscds. 371 

4.2. Kinetics simulations 372 
The kinetics module of tsscds calculates rate constants and solves the kinetics. The rate constants 373 

can either be obtained as a function of temperature or energy. In the former case, transition state 374 
theory is employed:  375 

݇(ܶ) = ߪ ௞ಳ்
௛
ቀோ்
௣బ
ቁ
୼௡
݁ି

౴ಸ‡

ೃ೅              (8) 376 
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where ߪ is the reaction path degeneracy, ܶ is the temperature, ℎ is Planck’s constant, Δܩ‡  is the 377 
free energy of activation, ݌଴ is 1 bar and Δ݊ = 1 (0) for bimolecular (unimolecular) reactions. The 378 
reaction path degeneracy is calculated as ߪ = ௠೅ೄ

௠
, where ݉ and ்݉ௌ  are the number of optical 379 

isomers of the reactant and transition states, respectively [138]. 380 
By contrast, the microcanonical rate constants are computed according to RRKM theory [138]: 381 

(ܧ)݇ = ௐ೅ೄ(ா)ߪ
௛ఘ(ா)

                (9) 382 

where ்ܹௌ(ܧ) is the sum of states at the TS, (ܧ)ߩ is the density of states at the reactant, and ܧ is 383 
the excitation energy of the system. The sums and densities of states are evaluated by direct count of 384 
the harmonic vibrational states using the Beyer-Swinehart algorithm. 385 

Once all state-to-state rates are determined, the kinetics are solved using Kinetic Monte Carlo 386 
simulations [62]. 387 
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