

1 *Review*

2 **A Trajectory-Based Method to Explore Reactions** 3 **Mechanisms**

4 **Saulo A. Vázquez¹, Xose L. Otero² and Emilio Martínez-Núñez^{1,*}**

5 ¹ Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de
6 Compostela, 15782, Santiago de Compostela, Spain; saulo.vazquez@usc.es, emilio.nunez@usc.es

7 ² Unidade de Bioestadística, Facultade de Medicina, Universidade de Santiago de Compostela, 15782,
8 Santiago de Compostela, Spain; xoseluis.oter@usc.es

9 * Correspondence: emilio.nunez@usc.es; Tel.: +34-881814216

10

11 **Abstract:** The method tsscds, recently developed in our group, discovers chemical reaction
12 mechanisms with minimal human intervention. It employs accelerated molecular dynamics,
13 spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction
14 paths and to solve the kinetics at the experimental conditions. In the present review, its application
15 to solve mechanistic/kinetics problems in different research areas will be presented. Examples will
16 be given of reactions involved in photodissociation dynamics, mass spectrometry, combustion
17 chemistry and organometallic catalysis. The source code can be downloaded from:
18 <http://forge.cesga.es/wiki/g/tsscds/HomePage>

19 **Keywords:** automated algorithm; molecular dynamics; graph theory; statistical rate theory; kinetics
20 simulations.

21

22 **1. Introduction**

23 Theoretical studies of reaction mechanisms can greatly benefit nowadays by leveraging the
24 surge of automated methods developed in the last few years [1-58]. The idea of these new
25 computational protocols is to substitute human intervention by less error-prone and less tedious
26 automated algorithms. The methodologies range from chemical heuristics to the use of artificial
27 forces to boost chemical reactions, and the reader is referred to two very recent reviews on methods
28 for exploring reaction space for details [58, 59].

29 Our group has contributed with the development of a method called tsscds [43-47], which is
30 based on accelerated molecular dynamics (MD), as are some others [29, 30]. In our trajectories, the
31 bonds of the molecule(s) are broken/formed thanks to huge amounts of energy placed in each normal
32 mode/atom of the system [45]. The distinctive feature of tsscds compared to others is the primary
33 target of the post-processing analysis: the search for transition states (TS) rather than minima.

34 In tsscds, after completion of a trajectory, an algorithm named bond breaking/formation search
35 (BBFS) [45] is employed to select good TS guess structures, which are then optimized using
36 Eigenvector Following (EF) [60]. In particular, the adjacency matrix, which indicates whether pairs
37 of atoms form a bond, is monitored along each trajectory to identify the atoms/bonds involved in all
38 chemical reactions taking place. Then, for each of the selected candidates, a partial optimization is
39 firstly carried out by freezing the atoms involved in the reaction. The partially-optimized structure is
40 subsequently subjected to TS optimization using the EF algorithm. The resulting TSs are then
41 connected with the minima using intrinsic reaction coordinate (IRC) calculations [61]. Finally, tsscds
42 also features a Kinetic Monte Carlo [62] module that provides the desired kinetic information using
43 the network of TSs and minima.

44 The method has been successfully employed to study reactions involved in combustion [63, 64],
45 photolysis [65-67], mass spectrometry [68] and organometallic catalysis [43]. In this review, several
46 examples will be presented where tsscds is employed to either discover new mechanisms and/or to

47 explain the experiments. In the last section of this review, some planned improvements to enhance
48 its efficiency/efficacy will be described.

49 **2. Overview of the applications of tsscds**

50 The tsscds methodology has been employed in our lab to elucidate reaction mechanisms
51 involved in photodissociation dynamics, mass spectrometry, combustion and organometallic
52 catalysis, and in this section, several examples of each type are reviewed.

53 *2.1. Photodissociation dynamics*

54 The dissociation of molecules can be promoted by using a laser source, which is known as
55 photodissociation. Although many photodissociations take place in excited states, important
56 mechanisms may occur in the ground electronic state following internal conversion. One of the
57 quantities of interest is the product yield, which is usually determined in the experiments. The
58 understanding of the dissociation channels in organic compounds has greatly benefited from the
59 interplay between photolysis experiments and computational studies [67, 69-82].

60 In this section, we summarize the results obtained with our automated method for systems that
61 have also been studied in photodissociation experiments, highlighting the most important
62 conclusions. In particular, the dissociation channels of formaldehyde, formic acid, vinyl cyanide,
63 acrolein, acryloyl chloride and methyl cyanoformate were studied with our tsscds methodology.

64 Formaldehyde was employed as a benchmark system to test tsscds. The system had been
65 previously studied with other automated methods like the scaled hypersphere search [33] and the
66 global reaction route mapping (GRRM) [35]. The results obtained with all algorithms are comparable,
67 and the kinetically-relevant stationary points are found using any procedure.

68 The study of the dissociation channels of formic acid (CO_2H_2) revealed the existence of a new TS
69 for the water-gas shift reaction (WGSR: $\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$) [45]. By contrast, GRRM predicted a
70 shortest path for the WGSR with three TSs [35]. The discovery of the new TS is a consequence of the
71 highly non-IRC [83] nature of the trajectories employed in tsscds [45]; in other words, IRC jumps are
72 not an uncommon event [84]. The huge amounts of vibrational energy put in the normal modes
73 enhances configurational space sampling in tsscds.

74
75 **Figure 1.** Kinetic simulation results of the different HCN elimination channels from VC.

76 Our automated computational study on the dissociation of vinyl cyanide (VC) [67] provides a
77 HCN/HNC branching ratio in nearly perfect agreement with the experimental one for an excitation
78 energy of 148 kcal/mol [85]. Moreover, a new HCN elimination pathway from VC involving three
79 TSs was discovered. In contrast to similar HX (with X being a halogen) elimination pathways from
80 other ethylene analogues, where 3-center and 4-center mechanisms dominate, the new HCN
81 elimination channel (red in Figure 1) is more important than the 4-center channel (green in Figure 1)
82 and accounts for half of the HCN eliminations from VC at low excitation energies.

Figure 2. Minima obtained by tsscds for the $\text{C}_3\text{H}_4\text{O}$ system. The structures are arranged in ascending order of their relative energies (shown at the bottom of each structure), which are obtained at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p) level of theory. Conformers are not included in the figure and only the lowest lying of each family is displayed.

The tsscds methodology was also employed to study the dissociation of acrolein (ACRL, $\text{C}_3\text{H}_4\text{O}$), which comprises many different fragmentation channels involving more than 250 transition states and 66 minima [44]. This system was studied with an enhanced procedure (now fully integrated in the method) consisting in the initialization of the MD simulations from multiple minima. The complexity of the system is exemplified by the 32 equilibrium structures (not including conformers) found with tsscds and shown in Figure 2, of which ACRL is the global minimum. To highlight the importance of automated reaction discovery methods, Chin et al. [86] carried out a computational study for the same system using the same levels of theory, and found only 6 of the 66 minima obtained with tsscds. Most importantly, the relative product abundances obtained with tsscds at 148 kcal/mol (the energy corresponding to the experimental wavelength of 193 nm) are much closer to the experimental results than the previous computational results as seen in Table 1.

Table 1. Relative product abundances obtained by different computational studies and experiment in the photodissociation of ACRL at 193 nm.

Channel	Chin et al. [86]	tsscds	Exp [87]
H_2O	0.01	0.03	0.07
CH_2O	0.65	0.20	0.07
H_2	0.09	0.19	0.00
CO	1.00	1.00	1.00
$\text{H}_2+\text{CO}+\text{HCCH}$	6.82	1.49	1.10

Another system studied by tsscds was acryloyl chloride (AC). Overall, around 700 stationary points were found using our strategy. Of all dissociation channels, experiments pay some attention to the HCl dissociations from AC. The use of our automated procedure led to the discovery of the three new HCl dissociation TSs [66] displayed in Figure 3; the figure also shows the AC equilibrium structure. The highest-energy TSs (TS2 and TS3) correspond to three-body dissociations leading to acetylene, carbon monoxide and hydrogen chloride, and they only become important at high excitation energies. By contrast, HCl elimination over TS1 is predominant at the experimental

109 conditions (148 kcal/mol) [88]. Complementary quasi-classical trajectories carried out in the same
 110 study [66] predict bimodal HCl rotational distributions (in good agreement with experiment), and
 111 significant (~10%) non-IRC dynamics in one of the HCl elimination channels.

112
 113
 114
 115
 116

Figure 3. Structure of AC minimum and the three new TSs found with tsscds for the HCl elimination from AC. Numbers are relative energies in kcal/mol (including the zero-point vibrational energy) with respect to AC, calculated at the CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(2d,2p) level of theory.

117 Finally, with the aim of exploring possible sources of HCN and HNC in astrophysical
 118 environments, the dissociation channels of methyl cyanoformate (MCF) were probed with tsscds,
 119 excited state calculations and photolysis experiments [65]. In particular, time-resolved infrared
 120 spectroscopy measurements indicate that both HCN and HNC are formed after the 193-nm
 121 photolysis of MCF [65]. The calculations suggest that most of the dissociations take place in the S₂
 122 excited state leading to CH₂O + NCCO via a Norrish type I reaction, in agreement with experiment.
 123 However, the calculations are also consistent with cascading internal conversion from S₂ to produce
 124 vibrationally excited ground state MCF.

125 When tsscds is employed to study the dissociation channels in the ground state, several HNC
 126 and HCN mechanisms are found, and Figure 4 shows the two kinetically-relevant ones at 148
 127 kcal/mol. Our kinetic simulations predict a HNC/HCN branching ratio of 0.01, which is in
 128 semiquantitative agreement with that determined in the experiments (~0.07). The work provides
 129 further insights into the intriguing observation of overabundance of HNC in astrophysical
 130 environments.

131
 132
 133
 134

Figure 4. Relevant HCN and HNC pathways in the ground-state PES of methyl cyanoformate for an excitation energy of 148 kcal/mol. Relative energies (in kcal mol⁻¹) include ZPE contributions and were obtained by CCSD(T)/6-311++G(3df,3pd)//MP2/6-311+G(2d,2p) calculations.

135

136 2.2. *Mass spectrometry*

137 The prediction of mass spectra remains much of a challenge for the community of computational
 138 chemists. The common computational approaches employed for such endeavor include statistical
 139 rate theory calculations, MD simulations and electronic structure calculations [89-98]. Our automated
 140 method is very useful in this regard and can easily be coupled with MD simulations of collisions to
 141 generate theoretically-based mass spectra as described below.

142 In particular, our method was employed to reproduce mass spectrometry (MS) experiments of
 143 protonated uracil, $[\text{uracil}]\text{H}^+$. Our computational results indicate that the decomposition of $[\text{uracil}]\text{H}^+$
 144 involves more than one thousand stationary points and 751 elementary reactions [68]. Branching
 145 ratios for the different fragmentation channels can be automatically obtained from tsscds. However,
 146 these fractions are a function of the ion's internal energy and cannot be compared with MS
 147 experiments, where the collision energy in the center-of-mass framework (E_{com}) is employed instead.
 148 For that reason our tsscds results were combined with collisional dynamics simulations [68]. The
 149 resulting product abundances are compared in Figure 5 with the experimental ones (solid lines). As
 150 seen in the figure, for the predominant dissociation channels, the computationally-predicted product
 151 abundances are in qualitative agreement with experiment. Discrepancies with experiment can be
 152 attributed to the possible existence of well-known non-statistical behavior in many collision-induced
 153 dissociations, which cannot be captured with our statistical model.

154

155 **Figure 5.** Experimental (exp) and calculated (comp) intensities of precursor and fragment ions
 156 produced in the fragmentation of protonated uracil.

157 2.3. *Combustion chemistry*

158 Very recently, Fenard et al. developed a detailed kinetic model of the low-temperature oxidation
 159 of tetrahydrofuran [64]. The model reproduces ignition delay times obtained in a rapid-compression
 160 machine and in a shock tube, as well as numerous product mole fractions measured in a jet-stirred
 161 reactor. The reaction pathways involved in these processes were probed with our automated software
 162 tsscds [64].

163 Our automated method has also been employed to study the influence of conformers on the rate
 164 constants for the thermal decomposition of 1-propanol radicals [63]. The most relevant pathways
 165 reported in the literature[99-105] are obtained with tsscds, except for the barrierless dissociation
 166 leading to propene + OH, since the present version of tsscds cannot handle this type of reactions.

167 Of significance, an important number of reactant and TS conformers, not described in the
 168 previous studies, are obtained with tsscds. A conformational reaction channel (CRC) was defined as
 169 the group of all the paths that connect the conformers of a given reactant with the corresponding TS
 170 conformers. The influence of these conformers on the rate constants and branchings ratios was
 171 investigated in detail [63]. To study such influence, the output of tsscds (families of CRCs) was fed
 172 into a computer program to treat torsional anharmonicity [106] and to another one for variational
 173 transition state theory (VTST) [107-109] calculations to compute rate constants for all the CRCs. The

174 multipath (MP) approach within VTST was employed [109-113], where the rate constant of a given
 175 CRC is calculated using contributions from all the conformers and paths. For comparison purposes
 176 the simplest one-well (1W) approach is also considered; in the 1W method only the most stable
 177 conformers of reactant and TS are considered. The product abundances obtained in the temperature
 178 range 1000-2000 K are greatly influenced by the selected approach (MP vs 1W), particularly for the
 179 major products: ethene + CH₃OH and formaldehyde + ethyl radical [63]. Our results show the
 180 importance of using automated codes for discovering reaction mechanisms and sampling potential
 181 energy surfaces.

182 *2.4. Organometallic catalysis*

183 Computational studies of organometallic catalysis are becoming increasingly more important
 184 because they can help elucidate reaction mechanisms, characterize catalytic intermediates,
 185 supplement experimental studies, and also because of their predictive power [108, 114-117].

186 However, the traditional workflow of most computational studies consists of using chemical
 187 intuition in the design of reaction routes and construction of guess TS structures. In recent years the
 188 appearance of powerful automated computational methods to study homogenous catalysis [27, 43,
 189 118-120] very much eased the tedious work of manual searches.

190 To exemplify the use of tsscds in organometallic catalysis, the cobalt-catalyzed
 191 hydroformylation of ethylene was chosen [43]. Very briefly, the first step in our computational study
 192 was to generate all combinations of the catalyst Co(CO)₃ with any of the starting materials (CO, H₂
 193 and ethylene), which in this case amounts to eight. Each of these combinations has fewer atoms than
 194 the overall system and they were named sub-systems in our original paper [43]. Standard tsscds is
 195 then run in each sub-system to build the reaction networks. Finally, the full reaction network is
 196 obtained after merging the individual results for each sub-system.

197 Figure 6 shows the tsscds-calculated free energy profile for the formation of propanal (C₃H₆O),
 198 which is the predominant channel; the level of theory employed was B3LYP/6-31G(d,p). The
 199 mechanism shown in the figure for the hydroformylation was obtained in an automated manner, and
 200 agrees with the one predict by Heck and Breslow in the 1960s [121] and with more recent mechanistic
 201 studies [117]. This is a very interesting result as we needed to make no assumptions to obtain this
 202 result. Additionally, our method predicts that hydrogenation of ethylene is a side reaction that can
 203 be predominant under certain experimental conditions: low CO partial pressures.

204

205 **Figure 6.** Free energy profile for the Co-catalyzed hydroformylation of ethylene obtained in our tsscds
 206 study using DFT calculations [117].

207 With the full reaction network constructed, the kinetics simulation module of tsscds can provide
 208 a rate law for the hydroformylation reaction when a range of different initial conditions for each
 209 species is employed. Table 2 shows the orders of the catalyst and starting materials for the
 210 hydroformylation reaction obtained experimentally [122], using a kinetic model based on highly-

211 accurate electronic structure calculations by Harvey and co-workers [117], and obtained from another
 212 automated method by Habershon [27].

213 As seen in Table 2, tsscds agrees rather well with experiment and with the results obtained by
 214 Harvey and co-workers [117]. Moreover, tsscds agrees much better with experiment than the other
 215 automated method does [27] (last column of Table 2), despite the fact that both employ the same
 216 alkene, initial conditions for the kinetics, and level of theory for the electronic structure calculations.

217 **Table 2.** Orders of the hydroformylation reaction with respect to the catalyst and starting materials.

Species	Exp [122]	tsscds [43]	Harvey [117]	Habershon [27]
H ₂	0.6	0.4	0.5	1
CO	<0	<0	<0	<0
catalyst	0.8	0.5	0.5	1
alkene	1	1	1	0.55

218

219 **3. Improvements**

220 In this section we describe some improvements we plan to implement in the near future. They
 221 include: the use of Spectral Graph Theory, implementation of knowledge-based methods,
 222 implementation of rare event acceleration MD simulations, interface with other electronic structure
 223 codes, and reparametrization of semiempirical methods.

224 *3.1. Use of Spectral Graph Theory to minimize the number of Hessian calculations*

225 In standard tsscds, every single structure obtained after the BBFS analysis is subjected to TS
 226 optimization [45]. As seen in Figure 7(a), for a trajectory i , BBFS selects m_i TS candidates, which
 227 results in $M = \sum_{i=1}^n m_i$ optimizations, where n is the total number of trajectories. On the one hand,
 228 these M optimizations are the most CPU-time consuming step of the procedure as they involve
 229 Hessian calculations, while the integration of the trajectories only requires gradients. On the other
 230 hand, a number of those optimizations are repeated. This is so because trajectories visit more often
 231 those areas of the configurational space around the kinetically most relevant TSs, leading to multiple
 232 optimizations of those structures.

233 The workflow of the enhanced procedure is shown in Figure 7(b). Briefly, instead of carrying
 234 out the optimizations for every single structure selected by the BBFS algorithm (as in the original
 235 implementation), the new procedure will run the MD simulations and store at once the M structures
 236 for the analysis of all trajectory data. This analysis will consist of a pre-screening, a Spectral Graph
 237 Theory (SGT) step, and the final optimization step.

238 **Figure 7.** (a) Original tsscds showcasing an example with n different trajectories resulting in a total
 239 number of $M = \sum_{i=1}^n m_i$ optimizations. (b) Modified tsscds showcasing the same example as in panel
 240 (a) with n different trajectories resulting in a total number of N optimizations.

241 Upon completion of the MD simulations, a pre-screening of the M structures will be performed
242 based on the eigenvalues of the Laplacian matrix [44]. The lowest eigenvalues of this matrix indicate
243 the degree of fragmentation of the molecular system. We aim here to discard highly fragmented
244 structures, i.e., TSs connecting van der Waals complexes, usually of negligible relevance in a kinetics
245 study. In the SGT step the remaining points will be partitioned into N groups according to the
246 eigenvalues of a TS adjacency matrix, calculated as the average of the reactant and product adjacency
247 matrices. Finally, we will select the closest point (geometry) to the centroid of each cluster for
248 optimization. With this new scheme the gain in efficiency can easily be quantified as the reduction in
249 the number of optimizations from M to N .

250 *3.2. Implementation of knowledge-based mechanism generators*

251 A number of reaction discovery methods are based on the so-called chemical heuristics [23, 48-
252 50]. In these methods, molecules are typically represented as graphs, in pretty much the same way as
253 in tsscds. Then, by applying transformations, based on encoded rules or principles inspired by
254 organic chemistry, to the reactant molecule graph, reactions, products and intermediates can readily
255 be obtained. Compared to MD-based methods, heuristic-based methods are less CPU-time
256 demanding.

257 Our idea will be to combine a heuristic-based bias in the MD simulations alongside with our
258 BBFS algorithm to obtain TSs. In particular, having defined a set of encoded rules based on chemical
259 knowledge, every single MD simulation will suffer a different bias, aimed to trigger a particular
260 reaction mechanism. In this way, the problem of multiple optimizations of a given TS mentioned
261 above would be minimized, if not completely avoided. The bias (analytical) potentials will be added
262 on top of the semiempirical potential to steer the dynamics towards a particular intermediate or
263 product.

264 *3.3. Implementation of rare-event acceleration MD methods*

265 One of the shortcomings of tsscds is the fact that chemical reactions are triggered by using very
266 high energies in the MD simulations. While this approach was successfully employed to tackle
267 different problems, it is biased towards the entropically favored reaction pathways. To alleviate this
268 drawback of the method we propose to replace the current MD strategy by the rare-event acceleration
269 method named Boxed Molecular Dynamics (BXD) [123]. BXD has its roots in work done by one of us
270 and D. Shalashilin more than a decade ago [124]. It introduces several reflective barriers in the phase
271 space of a MD trajectory along a particular collective variable. Those boundaries are employed to
272 push the dynamics along the collective variable into regions of phase space which would be rarely
273 sampled in an unbiased trajectory. However, the use of BXD constrains in configuration space suffers
274 from the same “entropic” bias mentioned above.

275 A generalization of BXD has been very recently put forward by D. R. Glowacki and co-workers
276 [125]. They show that the BXD bias can also be introduced along the potential energy (E) of the
277 system, which is referred to as BXDE. By scanning through potential energy “boxes”, the energetic
278 “windows” at which different chemical reaction channels switch on or off can be identified. The
279 software design of tsscds is highly modular, which means that interfacing it with BXDE only requires
280 little effort, like the need of compatible input/output geometry formats in both codes and the use of
281 extra keywords in tsscds.

282 *3.4. Interface with other electronic structure codes*

283 At present tsscds has been only interfaced with the MOPAC2016 [126] and the G09 [127]
284 electronic structure packages. The MD simulation employs gradients calculated at the semiempirical
285 level of theory, and the optimization step is carried out at both the semiempirical level with
286 MOPAC2016 and using higher levels (ab initio/DFT) with G09. Although we plan to reparametrize a
287 semiempirical Hamiltonian for use in organometallic catalysis (see below), we do not want to be

288 limited to this low-level electronic structure calculations. Therefore, we will use the ASE package[128]
289 to interface tsscds with other electronic structure codes like NWChem [129] or ORCA [130].

290 *3.5. Reparametrization of semiempirical methods*

291 The application of the tsscds method relies on the use of semiempirical Hamiltonians for
292 exploring potential energy surfaces. For this reason, it is important that the semiempirical method
293 provides a reasonably accurate representation of the system under investigation. Although
294 significant improvements in these methods have been made over the last years [131], there are still
295 known limitations, which claim for further developments and more accurate parametrizations. Two
296 important limitations concern the non-covalent interactions for large systems and ligand dissociation
297 energies for transition metal complexes. In both cases, the performance of the semiempirical methods
298 is, in general, quite poor. Our goal is therefore to improve the description of both non-covalent
299 interactions and transition metal complexes in PM7.

300 Regarding non-covalent interactions, we aim to develop an analytical correction for PM7. To this
301 end, we will consider a set of small molecules, which are representative of the most important
302 functional groups. All pairs of molecules will be considered to calculate interaction energies at three
303 levels of theory: coupled-cluster (CC), DFT and PM7. For every pair, various orientations will be
304 considered, each one emphasizing a different two-body interaction.

305 Then, sums of two-body Buckingham potentials (supplemented with damping functions for the
306 dispersion) will be fit to the CC, DFT and PM7 interaction energies using our genetic algorithm
307 program GAFit [132]. Finally, the resulting potentials $V_{\text{fit,CC}}$, $V_{\text{fit,DFT}}$ and $V_{\text{fit,PM7}}$ will be employed to
308 build corrections V_X^{corr} to the PM7 interaction energies:

309
$$V_X^{\text{corr}} = V_{\text{fit},X} - V_{\text{fit,PM7}} \quad (1)$$

310 where X is either CC or DFT. Whereas the $V_{\text{DFT}}^{\text{corr}}$ correction term will be employed to validate this
311 methodology as explained below, the highly-accurate $V_{\text{CC}}^{\text{corr}}$ correction will be used once the
312 validation succeeds.

313 The correction will be added to the PM7 energy V_{PM7} so that the PM7 Hamiltonian corrected for
314 non-covalent (*nc*) interactions would read:

315
$$V_{\text{PM7},X}^{\text{nc}} = V_{\text{PM7}} + V_X^{\text{corr}} \quad (2)$$

316 The strategy of using small representative molecules and sums of two-body functions was
317 successfully employed in the development of intermolecular potentials for interactions of protonated
318 peptides and silyl ions with perfluoroalkane self-assembled monolayers [133, 134]. Nevertheless, this
319 strategy will be validated for the new functional groups by running DFT calculations for large
320 systems. This will allow us to compare the DFT-calculated energies with those obtained with $V_{\text{PM7},X}^{\text{nc}}$.

321 The semiempirical methods, and particularly PM6 and PM7, do not perform well for transition-
322 metal complexes [135]. Our strategy here will be to reoptimize the PM7 Hamiltonian as in previous
323 studies of our group (e.g., see ref. [65]). We will select popular transition metals and ligand molecules
324 used in organometallic catalysis, and will carry out high-level ab initio calculations for our own
325 benchmark database. To gain flexibility in the parametrizations, we will consider the possibility of
326 defining “atom types” for the ligand atoms, depending on the functional groups, in much the same
327 way as that done for the parametrization of the hpCADD NDDO Hamiltonian [136].

328 **4. Materials and Methods**

329 *4.1. Graph Theory*

330 Our algorithm to discover reaction mechanisms is based on the analysis of short-time high-
331 energy trajectories [43-45, 47, 126]. A number of graph theoretic tools are employed at various stages
332 of the procedure to find transition states (TS), screen their structures and construct a reaction
333 network. Specifically, the time dependence of the adjacency matrix A is employed to discriminate
334 TS-like geometries along the trajectories. The elements of this matrix are defined as:

335
$$a_{ij} = \begin{cases} 1 & \text{if } r_{ij} < r_{ij}^{\text{ref}} \\ 0 & \text{otherwise} \end{cases} \quad (3)$$

336 with r_{ij} being the distance between atoms i and j , and r_{ij}^{ref} a reference value that sets the upper
 337 limit for the bond length between the pair; in practice r_{ij}^{ref} is taken 20% greater than the sum of the
 338 covalent radii of i and j .[45] Thus, for an N –atom system, \mathbf{A} is a $N \times N$ symmetric matrix with
 339 zeros on its diagonal.

340 Additionally, a weighted adjacency matrix \mathbf{A}^w is also employed in tsscds, whose off-diagonal
 341 elements are defined as:

342
$$a_{ij}^w = \frac{1 - (r_{ij}/r_{ij}^{\text{ref}})^n}{1 - (r_{ij}/r_{ij}^{\text{ref}})^m} \quad (4)$$

343 Values of 6 and 12 have been employed in previous work for n and m , respectively.[44] Matrix \mathbf{A}^w
 344 contains information on the 3D geometry of the molecule,[137] and its eigenvalues and eigenvectors
 345 can be employed to construct the so-called SPRINT coordinates.[137] An important property of these
 346 coordinates is their invariance with respect to translation, rotation and permutation of atoms, which
 347 makes them good molecular descriptors in trajectory-based methods. SPRINT coordinates are
 348 employed in tsscds to remove redundant structures.

349 Another matrix employed to determine the number of fragments in the system is the Laplacian,
 350 which is defined as:

351
$$\mathbf{L}^{(w)} = \mathbf{D} - \mathbf{A}^{(w)} \quad (5)$$

352 where \mathbf{D} is the so-called degree matrix,[44] whose elements are defined as:

353
$$d_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \quad (6)$$

354 where the degree $\deg(v_i)$ of an atom counts the number of contacts. The superscript (w) on \mathbf{L} and
 355 \mathbf{A} indicates that the corresponding matrix can either be weighted or not. For a non-weighted graph,
 356 the lowest eigenvalue of the Laplacian λ_1 is always zero, and the total number of zero eigenvalues
 357 determines the number of fragments of the system. For a weighted graph, an upper threshold for λ_1^w
 358 is employed to identify fragmented structures.[44] The smallest non-zero eigenvalue is called the
 359 spectral gap (sg), which is a measure of the degree of fragmentation of the structure. Thus, a small
 360 value of sg is associated with structures presenting non-covalent bonds (like van der Waals
 361 complexes), which are usually of no interest in chemical dynamics and kinetics.

362 The invariance of the SPRINT coordinates upon atom permutation is very important for the
 363 analyses of trajectories, where scrambling of atoms is frequent, as stated above. However, since the
 364 identity of each atom is absent in the adjacency matrix, SPRINT coordinates are identical for two
 365 structures where two non-equivalent atoms swap positions. For that reason, another type of
 366 molecular descriptor, based on a modified (weighted or not) adjacency matrix, is employed in tsscds.
 367 This new matrix, denoted as $\mathbf{A}_Z^{(w)}$, contains the atomic numbers Z_i of the atoms on the diagonal:

368
$$a_{Z,ij}^{(w)} = \begin{cases} a_{ij}^{(w)} & \text{if } i \neq j \\ 1 + \frac{Z_i}{10} & \text{if } i = j \end{cases} \quad (7)$$

369 The expression for the diagonal elements is chosen to provide values comparable to the off-
 370 diagonal ones. Most importantly, the eigenvalues of this new matrix are only invariant with respect
 371 to the permutation of like atoms, and it is widely employed in tsscds.

372 *4.2. Kinetics simulations*

373 The kinetics module of tsscds calculates rate constants and solves the kinetics. The rate constants
 374 can either be obtained as a function of temperature or energy. In the former case, transition state
 375 theory is employed:

376
$$k(T) = \sigma \frac{k_B T}{h} \left(\frac{RT}{p_0} \right)^{\Delta n} e^{-\frac{\Delta G^\ddagger}{RT}} \quad (8)$$

377 where σ is the reaction path degeneracy, T is the temperature, h is Planck's constant, ΔG^\ddagger is the
378 free energy of activation, p_0 is 1 bar and $\Delta n = 1$ (0) for bimolecular (unimolecular) reactions. The
379 reaction path degeneracy is calculated as $\sigma = \frac{m^{TS}}{m}$, where m and m^{TS} are the number of optical
380 isomers of the reactant and transition states, respectively [138].

381 By contrast, the microcanonical rate constants are computed according to RRKM theory [138]:

382
$$k(E) = \sigma \frac{W^{TS}(E)}{h\rho(E)} \quad (9)$$

383 where $W^{TS}(E)$ is the sum of states at the TS, $\rho(E)$ is the density of states at the reactant, and E is
384 the excitation energy of the system. The sums and densities of states are evaluated by direct count of
385 the harmonic vibrational states using the Beyer-Swinehart algorithm.

386 Once all state-to-state rates are determined, the kinetics are solved using Kinetic Monte Carlo
387 simulations [62].

388 **Author Contributions:** Writing-Review & Editing, S. A. V., X. L. O. and E.M.-N.

389 **Funding:** This research was funded by "Consellería de Cultura, Educación e Ordenación Universitaria, Xunta
390 de Galicia", grant number ED431C 2017/17", and by "Ministerio de Economía y Competitividad of Spain", grant
391 number CTQ2014-58617-R.

392 **Acknowledgments:** The authors thank "Centro de Supercomputación de Galicia (CESGA)" for the use of their
393 computational facilities.

394 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
395 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision
396 to publish the results.

397

398 **References**

399 1. Schlegel, H. B., Geometry optimization. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2011**, 1, 790-809.

400 2. Davis, H. L.; Wales, D. J.; Berry, R. S., Exploring potential energy surfaces with transition state
401 calculations. *J. Chem. Phys.* **1990**, 92, 4308-4319.

402 3. Sun, J. Q.; Ruedenberg, K., Gradient Extremals and Steepest Descent Lines on Potential Energy
403 Surfaces. *J. Chem. Phys.* **1993**, 98, 9707-9714.

404 4. Tsai, C. J.; Jordan, K. D., Use of an eigenmode method to locate the stationary points on the potential
405 energy surfaces of selected argon and water clusters. *J. Phys. Chem.* **1993**, 97, 11227-11237.

406 5. Abashkin, Y.; Russo, N., Transition state structures and reaction profiles from constrained optimization
407 procedure. Implementation in the framework of density functional theory. *J. Chem. Phys.* **1994**, 100,
408 4477-4483.

409 6. Bondensgard, K.; Jensen, F., Gradient Extremal Bifurcation and Turning Points: an Application to the
410 H₂CO Potential Energy Surface. *J. Chem. Phys.* **1996**, 104, 8025-8031.

411 7. Doye, J. P. K.; Wales, D. J., Surveying a potential energy surface by eigenvector-following. *Z. Phys. D*
412 **1997**, 40, 194-197.

413 8. Quapp, W.; Hirsch, M.; Imig, O.; Heidrich, D., Searching for Saddle Points of Potential Energy Surfaces
414 by Following a Reduced Gradient. *J. Comput. Chem.* **1998**, 19, 1087-1100.

415 9. Černohorský, M.; Kettou, S.; Koča, J., VADER: New Software for Exploring Interconversions on
416 Potential Energy Surfaces. *J. Chem. Inf. Comput. Sci.* **1999**, 39, 705-712.

417 10. Westerberg, K. M.; Floudas, C. A., Locating all transition states and studying the reaction pathways of
418 potential energy surfaces. *J. Chem. Phys.* **1999**, 110, 9259-9295.

419 11. Wales, D. J.; Doye, J. P.; Miller, M. A.; Mortenson, P. N.; Walsh, T. R., Energy Landscapes: From Clusters
420 to Biomolecules. *Adv. Chem. Phys.* **2000**, 115, 1-111.

421 12. Irikura, K. K.; Johnson, R. D., Predicting unexpected chemical reactions by isopotential searching. *J.*
422 *Phys. Chem. A* **2000**, 104, 2191-2194.

423 13. Müller, E. M.; Meijere, A. d.; Grubmüller, H., Predicting unimolecular chemical reactions: Chemical
424 flooding. *J. Chem. Phys.* **2002**, 116, 897-905.

425 14. Dallos, M.; Lischka, H.; Ventura Do Monte, E.; Hirsch, M.; Quapp, W., Determination of Energy Minima
426 and Saddle Points Using Multireference Configuration Interaction Methods in Combination with
427 Reduced Gradient Following: The S₀ surface of H₂CO and the T₁ and T₂ surfaces of acetylene. *J. Comput.*
428 *Chem.* **2002**, 23, 576-583.

429 15. Baker, J.; Wolinski, K., Isomerization of stilbene using enforced geometry optimization. *J. Comput. Chem.*
430 **2011**, 32, 43-53.

431 16. Zimmerman, P. M., Automated discovery of chemically reasonable elementary reaction steps. *J.*
432 *Comput. Chem.* **2013**, 34, 1385-1392.

433 17. Zimmerman, P. M., Growing string method with interpolation and optimization in internal
434 coordinates: Method and examples. *J. Chem. Phys.* **2013**, 138, 184102.

435 18. Zimmerman, P., Reliable Transition State Searches Integrated with the Growing String Method. *J. Chem.*
436 *Theory Comput.* **2013**, 9, 3043-3050.

437 19. Zimmerman, P. M., Single-ended transition state finding with the growing string method. *J. Comput.*
438 *Chem.* **2015**, 36, 601-611.

439 20. Zimmerman, P. M., Navigating molecular space for reaction mechanisms: an efficient, automated
440 procedure. *Mol. Simul.* **2015**, 41, 43-54.

441 21. Jafari, M.; Zimmerman, P. M., Reliable and efficient reaction path and transition state finding for surface
442 reactions with the growing string method. *J. Comput. Chem.* **2017**, *38*, 645-658.

443 22. Dewyer, A. L.; Zimmerman, P. M., Finding reaction mechanisms, intuitive or otherwise. *Org. & Biomol.*
444 *Chem.* **2017**, *15*, 501-504.

445 23. Rappoport, D.; Galvin, C. J.; Zubarev, D. Y.; Aspuru-Guzik, A., Complex Chemical Reaction Networks
446 from Heuristics-Aided Quantum Chemistry. *J. Chem. Theory Comput.* **2014**, *10*, 897-907.

447 24. Schaefer, B.; Mohr, S.; Amsler, M.; Goedecker, S., Minima hopping guided path search: An efficient
448 method for finding complex chemical reaction pathways. *J. Chem. Phys.* **2014**, *140*, 214102.

449 25. Wales, D. J., Perspective: Insight into reaction coordinates and dynamics from the potential energy
450 landscape. *J. Chem. Phys.* **2015**, *142*, 130901.

451 26. Habershon, S., Sampling reactive pathways with random walks in chemical space: Applications to
452 molecular dissociation and catalysis. *J. Chem. Phys.* **2015**, *143*, 094106.

453 27. Habershon, S., Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based
454 Reaction Path Sampling. *J. Chem. Theory Comput.* **2016**, *12*, 1786-1798.

455 28. Zhang, X.-J.; Liu, Z.-P., Reaction sampling and reactivity prediction using the stochastic surface walking
456 method. *Phys. Chem. Chem. Phys.* **2015**, *17*, 2757-2769.

457 29. Wang, L.-P.; McGibbon, R. T.; Pande, V. S.; Martinez, T. J., Automated Discovery and Refinement of
458 Reactive Molecular Dynamics Pathways. *J. Chem. Theory Comput.* **2016**, *12*, 638-649.

459 30. Wang, L.-P.; Titov, A.; McGibbon, R.; Liu, F.; Pande, V. S.; Martínez, T. J., Discovering chemistry with
460 an ab initio nanoreactor. *Nat. Chem.* **2014**, *6*, 1044-1048.

461 31. Yang, M.; Zou, J.; Wang, G.; Li, S., Automatic Reaction Pathway Search via Combined Molecular
462 Dynamics and Coordinate Driving Method. *J. Phys. Chem. A* **2017**, *121*, 1351-1361.

463 32. Jacobson, L. D.; Bochevarov, A. D.; Watson, M. A.; Hughes, T. F.; Rinaldo, D.; Ehrlich, S.; Steinbrecher,
464 T. B.; Vaitheswaran, S.; Philipp, D. M.; Halls, M. D.; Friesner, R. A., Automated Transition State Search
465 and Its Application to Diverse Types of Organic Reactions. *J. Chem. Theory Comput.* **2017**, *13*, 5780-5797.

466 33. Ohno, K.; Maeda, S., A Scaled Hypersphere Search Method for the Topography of Reaction Pathways
467 on the Potential Energy Surface. *Chem. Phys. Lett.* **2004**, *384*, 277-282.

468 34. Maeda, S.; Ohno, K., Global Mapping of Equilibrium and Transition Structures on Potential Energy
469 Surfaces by the Scaled Hypersphere Search Method: Applications to ab Initio Surfaces of Formaldehyde
470 and Propyne Molecules. *J. Phys. Chem. A* **2005**, *109*, 5742-5753.

471 35. Ohno, K.; Maeda, S., Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde,
472 Formic Acid, and Their Metal-Substituted Analogues. *J. Phys. Chem. A* **2006**, *110*, 8933-8941.

473 36. Ohno, K.; Maeda, S., Automated Exploration of Reaction Channels. *Phys. Scr.* **2008**, *78*, 058122.

474 37. Maeda, S.; Morokuma, K., Communications: A systematic method for locating transition structures of
475 A+B→X type reactions. *J. Chem. Phys.* **2010**, *132*, 241102.

476 38. Maeda, S.; Morokuma, K., Finding Reaction Pathways of Type A + B → X: Toward Systematic
477 Prediction of Reaction Mechanisms. *J. Chem. Theory Comput.* **2011**, *7*, 2335-2345.

478 39. Maeda, S.; Ohno, K.; Morokuma, K., Systematic exploration of the mechanism of chemical reactions:
479 the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. *Phys. Chem.*
480 *Chem. Phys.* **2013**, *15*, 3683-3701.

481 40. Maeda, S.; Taketsugu, T.; Morokuma, K., Exploring transition state structures for intramolecular
482 pathways by the artificial force induced reaction method. *J. Comput. Chem.* **2014**, *35*, 166-173.

483 41. Maeda, S.; Harabuchi, Y.; Takagi, M.; Taketsugu, T.; Morokuma, K., Artificial Force Induced Reaction
484 (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. *Chem. Rec.* **2016**, 16, 2232-
485 2248.

486 42. Maeda, S.; Harabuchi, Y.; Takagi, M.; Saita, K.; Suzuki, K.; Ichino, T.; Sumiya, Y.; Sugiyama, K.; Ono,
487 Y., Implementation and performance of the artificial force induced reaction method in the GRRM17
488 program. *J. Comput. Chem.* **2017**, 39, 233-250.

489 43. Varela, J. A.; Vazquez, S. A.; Martinez-Nunez, E., An automated method to find reaction mechanisms
490 and solve the kinetics in organometallic catalysis. *Chem. Sci.* **2017**, 8, 3843-3851.

491 44. Martínez-Núñez, E., An automated transition state search using classical trajectories initialized at
492 multiple minima. *Phys. Chem. Chem. Phys.* **2015**, 17, 14912-14921.

493 45. Martínez-Núñez, E., An automated method to find transition states using chemical dynamics
494 simulations. *J. Comput. Chem.* **2015**, 36, 222-234.

495 46. Rodríguez, A.; Rodríguez-Fernández, R.; A. Vázquez, S.; L. Barnes, G.; J. P. Stewart, J.; Martínez-Núñez,
496 E., tsscds2018: A code for automated discovery of chemical reaction mechanisms and solving the
497 kinetics. *J. Comput. Chem.* **2018**, 39, 1922-1930.

498 47. Rodríguez, A.; Rodriguez-Fernandez, R.; Vazquez, S. A.; Barnes, G. L.; Stewart, J. J. P.; Martinez-Nunez,
499 E. *tsscds2018*, <http://forge.cesga.es/wiki/g/tsscds/HomePage>.

500 48. Broadbelt, L. J.; Stark, S. M.; Klein, M. T., Computer Generated Pyrolysis Modeling: On-the-Fly
501 Generation of Species, Reactions, and Rates. *Ind. Eng. Chem. Res.* **1994**, 33, 790-799.

502 49. Matheu, D. M.; Dean, A. M.; Grenda, J. M.; Green, W. H., Mechanism Generation with Integrated
503 Pressure Dependence: A New Model for Methane Pyrolysis. *J. Phys. Chem. A* **2003**, 107, 8552-8565.

504 50. Gao, C. W.; Allen, J. W.; Green, W. H.; West, R. H., Reaction Mechanism Generator: Automatic
505 construction of chemical kinetic mechanisms. *Comput. Phys. Commun.* **2016**, 203, 212-225.

506 51. Bhoorasingh, P. L.; West, R. H., Transition state geometry prediction using molecular group
507 contributions. *Phys. Chem. Chem. Phys.* **2015**, 17, 32173-32182.

508 52. Bhoorasingh, P. L.; Slakman, B. L.; Seyedzadeh Khanshan, F.; Cain, J. Y.; West, R. H., Automated
509 Transition State Theory Calculations for High-Throughput Kinetics. *J. Phys. Chem. A* **2017**, 121, 6896-
510 6904.

511 53. Suleimanov, Y. V.; Green, W. H., Automated Discovery of Elementary Chemical Reaction Steps Using
512 Freezing String and Berny Optimization Methods. *J. Chem. Theory Comput.* **2015**, 11, 4248-4259.

513 54. Bergeler, M.; Simm, G. N.; Proppe, J.; Reiher, M., Heuristics-Guided Exploration of Reaction
514 Mechanisms. *J. Chem. Theory Comput.* **2015**, 11, 5712-5722.

515 55. Proppe, J.; Husch, T.; Simm, G. N.; Reiher, M., Uncertainty quantification for quantum chemical models
516 of complex reaction networks. *Faraday Discuss.* **2016**, 195, 497-520.

517 56. Simm, G. N.; Reiher, M., Context-Driven Exploration of Complex Chemical Reaction Networks. *J. Chem.*
518 *Theor. Comput.* **2017**, 13, 6108-6119.

519 57. Simm, G. N.; Reiher, M., Error-Controlled Exploration of Chemical Reaction Networks with Gaussian
520 Processes. *J. Chem. Theor. Comput.* **2018**, 14, 5238-5248.

521 58. Dewyer, A. L.; Argüelles, A. J.; Zimmerman, P. M., Methods for exploring reaction space in molecular
522 systems. *WIREs Comput Mol Sci* **2018**, 8:e1354, doi: 10.1002/wcms.1354.

523 59. arXiv:1810.07490v1 [physics.chem-ph].

524 60. Baker, J., An algorithm for the location of transition states. *J. Comput. Chem.* **1986**, 7, 385-395.

525 61. Fukui, K., The Path of Chemical Reactions-The IRC Approach. *Acc. Chem. Res.* **1981**, 14, 363-368.

526 62. Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled
527 chemical reactions. *J. Comput. Phys.* **1976**, 22, 403-434.

528 63. Ferro-Costas, D.; Martínez-Núñez, E.; Rodríguez-Otero, J.; Cabaleiro-Lago, E.; Estévez, C. M.;
529 Fernández, B.; Fernández-Ramos, A.; Vázquez, S. A., Influence of Multiple Conformations and Paths
530 on Rate Constants and Product Branching Ratios. Thermal Decomposition of 1-Propanol Radicals. *J.*
531 *Phys. Chem. A* **2018**, 122, 4790-4800.

532 64. Fenard, Y.; Gil, A.; Vanhove, G.; Carstensen, H.-H.; Van Geem, K. M.; Westmoreland, P. R.; Herbinet,
533 O.; Battin-Leclerc, F., A model of tetrahydrofuran low-temperature oxidation based on theoretically
534 calculated rate constants. *Combust. Flame* **2018**, 191, 252-269.

535 65. Wilhelm, M. J.; Martínez-Núñez, E.; González-Vázquez, J.; Vázquez, S. A.; Smith, J. M.; Dai, H.-L., Is
536 Photolytic Production a Viable Source of HCN and HNC in Astrophysical Environments? A
537 Laboratory-based Feasibility Study of Methyl Cyanoformate. *ApJ* **2017**, 849, 15.

538 66. Perez-Soto, R.; Vazquez, S. A.; Martinez-Nunez, E., Photodissociation of acryloyl chloride at 193 nm:
539 interpretation of the product energy distributions, and new elimination pathways. *Phys. Chem. Chem.*
540 *Phys.* **2016**, 18, 5019-5026.

541 67. Vazquez, S. A.; Martinez-Nunez, E., HCN elimination from vinyl cyanide: product energy partitioning,
542 the role of hydrogen-deuterium exchange reactions and a new pathway. *Phys. Chem. Chem. Phys.* **2015**,
543 17, 6948-6955.

544 68. Rossich Molina, E.; Salpin, J.-Y.; Spezia, R.; Martinez-Nunez, E., On the gas phase fragmentation of
545 protonated uracil: a statistical perspective. *Phys. Chem. Chem. Phys.* **2016**, 18, 14980-14990.

546 69. Tarrazo-Antelo, T.; Martinez-Nunez, E.; Vazquez, S. A., Ab initio and RRKM study of the elimination
547 of HF and HCl from chlorofluoroethylene. *Chem. Phys. Lett.* **2007**, 435, 176-181.

548 70. Martínez-Núñez, E.; Vázquez, S., Rotational distributions of HBr in the photodissociation of vinyl
549 bromide at 193 nm: An investigation by direct quasiclassical trajectory calculations. *Chem. Phys. Lett.*
550 **2006**, 425, 22-27.

551 71. Martínez-Núñez, E.; Vázquez, S., Quasiclassical trajectory calculations on the photodissociation of
552 CF₂CHCl at 193 nm: Product energy distributions for the HF and HCl eliminations. *J. Chem. Phys.* **2005**,
553 122, 104316.

554 72. Martínez-Núñez, E.; Vázquez, S. A.; Aoiz, F. J.; Bañares, L.; Castillo, J. F., Further investigation of the
555 HCl elimination in the photodissociation of vinyl chloride at 193 nm: A direct MP2/6-31G(d,p) trajectory
556 study. *Chem. Phys. Lett.* **2004**, 386, 225-232.

557 73. Martínez-Núñez, E.; Vázquez, S., Rovibrational distributions of HF in the photodissociation of vinyl
558 fluoride at 193 nm: A direct MP2 quasiclassical trajectory study. *J. Chem. Phys.* **2004**, 121, 5179-5182.

559 74. Martínez-Núñez, E.; Fernández-Ramos, A.; Vázquez, S. A.; Javier Aoiz, F.; Bañares, L., A Direct Classical
560 Trajectory Study of HCl Elimination from the 193 nm Photodissociation of Vinyl Chloride. *J. Phys. Chem.*
561 *A* **2003**, 107, 7611-7618.

562 75. Gonzalez-Vazquez, J.; Martinez-Nunez, E.; Fernandez-Ramos, A.; Vazquez, S. A., Dissociation of
563 difluoroethylenes. II. Direct Classical Trajectory Study of the HF elimination from 1,2-difluoroethylene.
564 *J. Phys. Chem. A* **2003**, 107, 1398-1404.

565 76. Gonzalez-Vazquez, J.; Fernandez-Ramos, A.; Martinez-Nunez, E.; Vazquez, S. A., Dissociation of
566 difluoroethylenes. I. Global potential energy surface, RRKM, and VTST calculations. *J. Phys. Chem. A*
567 **2003**, 107, 1389-1397.

568 77. Martínez-Núñez, E.; Estévez, C. M.; Flores, J. R.; Vázquez, S. A., Product energy distributions for the
569 four-center HF elimination from 1,1-difluoroethylene. a direct dynamics study. *Chem. Phys. Lett.* **2001**,
570 348, 81-88.

571 78. Martínez-Núñez, E.; Vázquez, S. A., Three-center vs. four-center HF elimination from vinyl fluoride: A
572 direct dynamics study. *Chem. Phys. Lett.* **2000**, 332, 583-590.

573 79. Homayoon, Z.; Vázquez, S. A.; Rodríguez-Fernández, R.; Martínez-Núñez, E., Ab initio and RRKM
574 study of the HCN/HNC elimination channels from vinyl cyanide. *J. Phys. Chem. A* **2011**, 115, 979-985.

575 80. Martinez-Nunez, E.; Vazquez, S. A.; Borges, I.; Rocha, A. B.; Estevez, C. M.; Castillo, J. F.; Aoiz, F. J., On
576 the conformational memory in the photodissociation of formic acid. *J. Phys. Chem. A* **2005**, 109, 2836-
577 2839.

578 81. Martinez-Nunez, E.; Vazquez, S.; Granucci, G.; Persico, M.; Estevez, C. M., Photodissociation of formic
579 acid: A trajectory surface hopping study. *Chem. Phys. Lett.* **2005**, 412, 35-40.

580 82. Chang, C. M.; Huang, Y. H.; Liu, S. Y.; Lee, Y. P.; Pombar-Perez, M.; Martinez-Nunez, E.; Vazquez, S.
581 A., Internal energy of HCl upon photolysis of 2-chloropropene at 193 nm investigated with time-
582 resolved Fourier-transform spectroscopy and quasiclassical trajectories. *J. Chem. Phys.* **2008**, 129, 224301.

583 83. Spezia, R.; Martínez-Núñez, E.; Vazquez, S.; Hase, W. L., Theoretical and computational studies of non-
584 equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.
585 *Phil. Trans. R. Soc. A* **2017**, 375, 20170035.

586 84. Tsutsumi, T.; Harabuchi, Y.; Ono, Y.; Maeda, S.; Taketsugu, T., Analyses of trajectory on-the-fly based
587 on the global reaction route map. *Phys. Chem. Chem. Phys.* **2018**, 20, 1364-1372.

588 85. Wilhelm, M. J.; Nikow, M.; Letendre, L.; Dai, H.-L., Photodissociation of vinyl cyanide at 193 nm:
589 Nascent product distributions of the molecular elimination channels. *J. Chem. Phys.* **2009**, 130, 044307.

590 86. Chin, C.-H.; Lee, S.-H., Theoretical study of isomerization and decomposition of propenal. *J. Chem. Phys.*
591 **2011**, 134, 044309.

592 87. Chaudhuri, C.; Lee, S.-H., A complete look at the multi-channel dissociation of propenal photoexcited
593 at 193 nm: branching ratios and distributions of kinetic energy. *Phys. Chem. Chem. Phys.* **2011**, 13, 7312-
594 7321.

595 88. Lee, P.-W.; Scrape, P. G.; Butler, L. J.; Lee, Y.-P., Two HCl-Elimination Channels and Two CO-Formation
596 Channels Detected with Time-Resolved Infrared Emission upon Photolysis of Acryloyl Chloride
597 [CH₂CHC(O)Cl] at 193 nm. *J. Phys. Chem. A* **2015**, 119, 7293-7304.

598 89. Bauer, C. A.; Grimme, S., How to Compute Electron Ionization Mass Spectra from First Principles. *J.*
599 *Phys. Chem. A* **2016**, 120, 3755-3766.

600 90. Macaluso, V.; Homayoon, Z.; Spezia, R.; Hase, W. L., Threshold for shattering fragmentation in
601 collision-induced dissociation of the doubly protonated tripeptide TIK(H⁺)₂. *Phys. Chem. Chem. Phys.*
602 **2018**, 20, 19744-19749.

603 91. Martin-Somer, A.; Martens, J.; Grzetic, J.; Hase, W. L.; Oomens, J.; Spezia, R., Unimolecular
604 Fragmentation of Deprotonated Diproline [Pro2-H]- Studied by Chemical Dynamics Simulations and
605 IRMPD Spectroscopy. *J. Phys. Chem. A* **2018**, 122, 2612-2625.

606 92. Homayoon, Z.; Macaluso, V.; Martin-Somer, A.; Muniz, M. C. N. B.; Borges, I.; Hase, W. L.; Spezia, R.,
607 Chemical dynamics simulations of CID of peptide ions: comparisons between TIK(H⁺)₂ and TLK(H⁺)₂
608 fragmentation dynamics, and with thermal simulations. *Phys. Chem. Chem. Phys.* **2018**, 20, 3614-3629.

609 93. Martin-Somer, A.; Spezia, R.; Yáñez, M., Gas-phase reactivity of [Ca(formamide)]²⁺ complex: an
610 example of different dynamical behaviours. *Phil. Trans. R. Soc. A* **2017**, 375, 20160196.

611 94. Molina, E. R.; Eizaguirre, A.; Haldys, V.; Urban, D.; Doisneau, G.; Bourdrex, Y.; Beau, J.-M.; Salpin, J.-
612 Y.; Spezia, R., Characterization of Protonated Model Disaccharides from Tandem Mass Spectrometry
613 and Chemical Dynamics Simulations. *ChemPhysChem* **2017**, *18*, 2812-2823.

614 95. Lee, G.; Park, E.; Chung, H.; Jeanvoine, Y.; Song, K.; Spezia, R., Gas phase fragmentation mechanisms
615 of protonated testosterone as revealed by chemical dynamics simulations. *Int. J. Mass Spectrom.* **2016**,
616 407, 40-50.

617 96. Spezia, R.; Lee, S. B.; Cho, A.; Song, K., Collision-induced dissociation mechanisms of protonated penta-
618 and octa-glycine as revealed by chemical dynamics simulations. *Int. J. Mass Spectrom.* **2015**, *392*, 125-
619 138.

620 97. Spezia, R.; Martens, J.; Oomens, J.; Song, K., Collision-induced dissociation pathways of protonated
621 Gly2NH₂ and Gly3NH₂ in the short time-scale limit by chemical dynamics and ion spectroscopy. *Int.*
622 *J. Mass Spectrom.* **2015**, *388*, 40-52.

623 98. Song, K.; Spezia, R., *Theoretical Mass Spectrometry, Tracing Ions with Classical Trajectories*. De Gruyter:
624 Berlin, Boston, 2018.

625 99. Zador, J.; Jasper, A. W.; Miller, J. A., The reaction between propene and hydroxyl. *Phys. Chem. Chem.*
626 *Phys.* **2009**, *11*, 11040-11053.

627 100. Zhou, C.-W.; Li, Z.-R.; Li, X.-Y., Kinetics and Mechanism for Formation of Enols in Reaction of
628 Hydroxide Radical with Propene. *J. Phys. Chem. A* **2009**, *113*, 2372-2382.

629 101. Huynh, L. K.; Zhang, H. R.; Zhang, S.; Eddings, E.; Sarofim, A.; Law, M. E.; Westmoreland, P. R.;
630 Truong, T. N., Kinetics of Enol Formation from Reaction of OH with Propene. *J. Phys. Chem. A* **2009**,
631 113, 3177-3185.

632 102. El-Nahas, A. M.; Uchimaru, T.; Sugie, M.; Tokuhashi, K.; Sekiya, A., Relative reactivity and
633 regioselectivity of halogen-substituted ethenes and propene toward addition of an OH radical or O (3P)
634 atom: An ab initio study. *THEOCHEM* **2006**, *770*, 59-65.

635 103. Szori, M.; Fittschen, C.; Csizmadia, I. G.; Viskolcz, B., Allylic H-Abstraction Mechanism: The Potential
636 Energy Surface of the Reaction of Propene with OH Radical. *J. Chem. Theor. Comput.* **2006**, *2*, 1575-1586.

637 104. Díaz-Acosta, I.; Alvarez-Idaboy, J. R.; Vivier-Bunge, A., Mechanism of the OH-propene-O₂ reaction:
638 An ab initio study. *Int. J. Chem. Kinet.* **1999**, *31*, 29-36.

639 105. Alvarez-Idaboy, J. R.; Díaz-Acosta, I.; Vivier-Bunge, A., Energetics of mechanism of OH-propene
640 reaction at low pressures in inert atmosphere. *J. Comput. Chem.* **1998**, *19*, 811-819.

641 106. Ferro-Costas, D.; Cordeiro, M. N. D. S.; Truhlar, D. G.; Fernández-Ramos, A., Q2DTor: A program to
642 treat torsional anharmonicity through coupled pair torsions in flexible molecules. *Comput. Phys.*
643 *Commun.* **2018**, *232*, 190-205.

644 107. Truhlar, D. G.; Isaacson, A. D.; Garret, G. C., Theory of Chemical Reaction Dynamics. Baer, M., Ed.
645 CRC: Boca Raton, FL, 1985; Vol. 4, p 65.

646 108. Schwarz, H., Chemistry with Methane: Concepts Rather than Recipes. *Angew. Chem. Int. Ed.* **2011**, *50*,
647 10096-10115.

648 109. Bao, J. L.; Truhlar, D. G., Variational transition state theory: theoretical framework and recent
649 developments. *Chem. Soc. Rev.* **2017**, *46*, 7548-7596.

650 110. Yu, T.; Zheng, J.; Truhlar, D. G., Multi-structural variational transition state theory. Kinetics of the 1,4-
651 hydrogen shift isomerization of the pentyl radical with torsional anharmonicity. *Chem. Sci.* **2011**, *2*,
652 2199-2213.

653 111. Bao, J. L.; Meana-Pañeda, R.; Truhlar, D. G., Multi-path variational transition state theory for chiral
654 molecules: the site-dependent kinetics for abstraction of hydrogen from 2-butanol by hydroperoxyl
655 radical, analysis of hydrogen bonding in the transition state, and dramatic temperature dependence of
656 the activation energy. *Chem. Sci.* **2015**, *6*, 5866-5881.

657 112. Yu, T.; Zheng, J.; Truhlar, D. G., Multipath Variational Transition State Theory: Rate Constant of the
658 1,4-Hydrogen Shift Isomerization of the 2-Cyclohexylethyl Radical. *J. Phys. Chem. A* **2012**, *116*, 297-308.

659 113. Meana-Pañeda, R.; Fernández-Ramos, A., Accounting for conformational flexibility and torsional
660 anharmonicity in the H + CH₃CH₂OH hydrogen abstraction reactions: A multi-path variational
661 transition state theory study. *J. Chem. Phys.* **2014**, *140*, 174303.

662 114. Sperger, T.; Sanhueza, I. A.; Schoenebeck, F., Computation and Experiment: A Powerful Combination
663 to Understand and Predict Reactivities. *Acc. Chem. Res.* **2016**, *49*, 1311-1319.

664 115. Peng, Q.; Paton, R. S., Catalytic Control in Cyclizations: From Computational Mechanistic
665 Understanding to Selectivity Prediction. *Acc. Chem. Res.* **2016**, *49*, 1042-1051.

666 116. Sperger, T.; Sanhueza, I. A.; Kalvet, I.; Schoenebeck, F., Computational Studies of Synthetically Relevant
667 Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly
668 Employed DFT Methods and Mechanistic Insights. *Chem. Rev.* **2015**, *115*, 9532-9586.

669 117. Rush, L. E.; Pringle, P. G.; Harvey, J. N., Computational Kinetics of Cobalt-Catalyzed Alkene
670 Hydroformylation. *Angew. Chem. Int. Ed.* **2014**, *53*, 8672-8676.

671 118. Maeda, S.; Morokuma, K., Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path
672 Search Method: A Case Study on HCo(CO)₃-Catalyzed Hydroformylation. *J. Chem. Theor. Comput.* **2012**,
673 *8*, 380-385.

674 119. Kim, Y.; Choi, S.; Kim, W. Y., Efficient Basin-Hopping Sampling of Reaction Intermediates through
675 Molecular Fragmentation and Graph Theory. *J. Chem. Theory Comput.* **2014**, *10*, 2419-2426.

676 120. Kim, Y.; Kim, J. W.; Kim, Z.; Kim, W. Y., Efficient prediction of reaction paths through molecular graph
677 and reaction network analysis. *Chem. Sci.* **2018**, *9*, 825-835.

678 121. Heck, R. F.; Breslow, D. S., The Reaction of Cobalt Hydrotetracarbonyl with Olefins. *J. Am. Chem. Soc.*
679 **1961**, *83*, 4023-4027.

680 122. Gholap, R. V.; Kut, O. M.; Bourne, J. R., Hydroformylation of propylene using an unmodified cobalt
681 carbonyl catalyst: a kinetic study. *Ind. Eng. Chem. Res.* **1992**, *31*, 1597-1601.

682 123. Booth, J.; Vazquez, S.; Martínez-Núñez, E.; Marks, A.; Rodgers, J.; Glowacki, D. R.; Shalashilin, D. V.,
683 Recent Applications of Boxed Molecular Dynamics: a Simple Multiscale Technique for Atomistic
684 Simulations. *Phil. Trans. R. Soc. A* **2014**, *372*, 20130384.

685 124. Martínez-Núñez, E.; Shalashilin, D. V., Acceleration of classical mechanics by phase space constraints.
686 *J. Chem. Theor. Comput.* **2006**, *2*, 912-919.

687 125. Shannon, R. J.; Amabilino, S.; O'Connor, M.; Shalashilin, D. V.; Glowacki, D. R., Adaptively Accelerating
688 Reactive Molecular Dynamics Using Boxed Molecular Dynamics in Energy Space. *J. Chem. Theor.
689 Comput.* **2018**, *14*, 4541-4552.

690 126. Stewart, J. J. P. *MOPAC2016*, Stewart Computational Chemistry: Colorado Springs, CO, USA,
691 <HTTP://OpenMOPAC.net>, 2016.

692 127. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.;
693 Barone, V.; Mennucci, B.; Petersson, G. A.; et al; *Gaussian 09* revision A.02; Gaussian Inc.: Wallingford
694 CT, 2009.

695 128. Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves,
696 M. N.; Hammer, B.; Hargus, C.; Hermes, E. D.; Jennings, P. C.; Jensen, P. B.; Kermode, J.; Kitchin, J. R.;
697 Kolsbjerg, E. L.; Kubal, J.; Kaasbjerg, K.; Lysgaard, S.; Maronsson, J. B.; Maxson, T.; Olsen, T.; Pastewka,
698 L.; Peterson, A.; Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.; Vegge, T.; Vilhelmsen,
699 L.; Walter, M.; Zeng, Z.; Jacobsen, K. W., The atomic simulation environment—a Python library for
700 working with atoms. *J. Phys. Condens. Matter* **2017**, *29*, 273002.

701 129. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.;
702 Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A., NWChem: A comprehensive and scalable open-
703 source solution for large scale molecular simulations. *Comput. Phys. Commun.* **2010**, *181*, 1477-1489.

704 130. Neese, F., The ORCA program system. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* **2012**, *2*, 73-78.

705 131. Christensen, A. S.; Kubař, T.; Cui, Q.; Elstner, M., Semiempirical Quantum Mechanical Methods for
706 Noncovalent Interactions for Chemical and Biochemical Applications. *Chem. Rev.* **2016**, *116*, 5301-5337.

707 132. Rodríguez-Fernández, R.; Pereira, F. B.; Marques, J. M. C.; Martínez-Núñez, E.; Vázquez, S. A., GAFit:
708 A general-purpose, user-friendly program for fitting potential energy surfaces. *Comput. Phys. Commun.*
709 **2017**, *217*, 89-98.

710 133. Nogueira, J. J.; Sánchez-Coronilla, A.; Marques, J. M. C.; Hase, W. L.; Martínez-Núñez, E.; Vázquez, S.
711 A., Intermolecular potentials for simulations of collisions of SiNCS+ and (CH₃)₂SiNCS+ ions with
712 fluorinated self-assembled monolayers. *Chem. Phys.* **2012**, *399*, 193-204.

713 134. Pratihar, S.; Kohale, S. C.; Vázquez, S. A.; Hase, W. L., Intermolecular Potential for Binding of
714 Protonated Peptide Ions with Perfluorinated Hydrocarbon Surfaces. *J. Phys. Chem. B* **2014**, *118*, 5577-
715 5588.

716 135. arXiv:1806.06147 [physics.chem-ph].

717 136. Thomas, H. B.; Hennemann, M.; Kibies, P.; Hoffgaard, F.; Güssregen, S.; Hessler, G.; Kast, S. M.; Clark,
718 T., The hpCADD NDDO Hamiltonian: Parametrization. *J. Chem. Inf. Model.* **2017**, *57*, 1907-1922.

719 137. Pietrucci, F.; Andreoni, W., Graph Theory Meets Ab Initio Molecule Dynamics: Atomic Structures and
720 Transformations at the Nanoscale. *Phys. Rev. Lett.* **2011**, *107*, 085504.

721 138. Smith, G.; Gilbert, R. G., *Theory of unimolecular and recombination reactions*. Blackwell Scientific
722 Publications: Oxford, 1990.

723