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Abstract: We show that the Einstein field equations for a five-dimensional warped spacetime, where 
only gravity can propagate into the bulk, determine the dynamical evolution of the warp factor of the 
four-dimensional brane spacetime. This can be explained as a holographic manifestation. The warped 
5D model can be reformulated by considering the warp factor as a dilaton field (ω) conformally 
coupled to gravity and embedded in a smooth M4 ⊗ R manifold. On the brane, where the U(1) 
scalar-gauge fields live, the dilaton field manifests itself classically as a warp factor and enters the 
evolution equations for the metric components and matter fields. We write the Lagrangian for the 
Einstein-scalar-gauge fields in a conformal invariant setting. However, as expected, the conformal 
invariance is broken (trace-anomaly) by the appearance of a mass term and a quadratic term in the 
energy-momentum tensor of the scalar-gauge field, arising from the extrinsic curvature terms of 
the projected Einstein tensor. These terms can be interpreted as a constraint in order to maintain 
conformal invariance. By considering the dilaton field and Higgs field on equal footing on small 
scales, there will be no singular behavior, when ω → 0 and one can deduce constraints to maintain 
regularity of the action. Our conjecture is that ω, alias warp factor, has a dual meaning. At very early 
times, when ω → 0, it describes the small-distance limit, while at later times it is a warp (or scale) 
factor that determines the dynamical evolution of the universe. We also present a numerical solution 
of the model and calculate the (time-dependent) trace-anomaly. The solution depends on the mass 
ratio of the scalar and gauge fields, the parameters of the model and the vortex charge n.

Keywords: conformal invariance ; brane world models ; U(1) scalar-gauge field ; dilaton field19

1. Introduction20

The easiest way to modify general relativity (GR) is to extend the spacetime to more than four21

dimensions. Modification seems to be necessary in order to overcome the serious problems which one22

encounters when one decreases the scale closer to the Planck scale. Specifically, the problems enclose23

the hierarchy problem, the cosmological constant problem, the fate of the black hole, the issue of dark24

energy and last but not least the handling of scales. There seems to be no limit on the smallness of25

fundamental units in one particular domain of physics, while in others there are very large space and26

time scales.27

A very attractive higher dimensional model is the so-called warped spacetime of Randall and28

Sundrum (RS)[1,2]. In this model one assumes that there is one large extra dimension. The result is29

that effective 4D Kaluza-Klein (KK) modes are obtained from the perturbative 5D graviton. These KK30

modes will be massive from the brane viewpoint. The modified Einstein equations on the brane and31

the scalar-gauge field equations will now contain contributions from the 5D Weyl tensor[3–6]. The32

hierarchy problem is solved in these models, because the graviton’s probability function is extremely33

high at the Planck-brane and drops exponentially as it moves closer towards the TeV-brane.34
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Warped spacetimes can also be linked to conformal symmetry. Conformal invariance(CI) is35

an approved property in string theory by the Anti-DeSitter/Conformal Field Theory (AdS/CFT)36

correspondence, where a conformal field theory sits on the boundary of the AdS spacetime. Some37

decades ago, ’t Hooft[7] proposed that the information about an extra dimension is visible as a38

curvature in a spacetime with one fewer dimension. So the fifth dimension can act as a spacetime39

fabric on the 4D boundary. The appearance of the five-dimensional curved spacetime is also natural40

from the black hole entropy. A five-dimensional black hole has entropy which is proportional to the41

five-dimensional “area.” But an “area” in five dimensions is a “volume” in four dimensions: this is42

appropriate as the entropy of a four-dimensional statistical system. Later it was realized that this43

principle can be reformulated as so-called AdS/CFT duality models. A famous example is the type44

IIB-string theory on the background of AdS5 ⊗ S5. It is equivalent to a (3+1)D super Yang-Mills model45

with U(N) symmetry living on the boundary. The AdS/CFT correspondence could even solve the46

black hole information paradox ( i.e., the unitarity paradox of time evolution[8,9]). In the model of47

RS, the gravitational degrees of freedom of the extra dimension appear on the brane as a dual field48

theory under AdS/CFT correspondence. So holography could be a prerequisite for the existence of49

such models. In conformal GR with (quantum) matter fields, the dilaton plays a fundamental role. In50

the low-energy limit the dilaton field can act as a dynamical warp factor in 5D warped spacetimes.51

Because there is strong evidence that our universe is now expanding at an accelerating rate, a desirable52

situation would be that at earlier times the AdS/CFT correspondence holds and at later limes a dS/CFT53

correspondence[10]. The warp factor could contribute to such a model.54

At any level, CI in GR remains a peculiar issue. There is the question if it is possible to incorporate55

other fields ( massless and massive) into CI GR[8,9,11]. The resulting model should explain why in the56

high-energy situation mass scales are unimportant and could be of help to construct singularity-free57

spacetime by pushing them to infinity. Further, the notion of conformal null infinity and the definition58

of energy flux can be formulated. Conformal gauge-fixing procedures can also be linked by the upper59

limit of the amount of information that can be stored in a 5D spacetime, i.e., on a 4D hypersurface[12].60

The model has also shortcomings, described as anomalies. Will all the beta-functions of the conformal61

model vanish? It is hoped that at the quantum level anomalies can be removed and a kind of62

spontaneous symmetry breaking can be formulated at lower energies. In any case, non-conformal63

mass terms in the Lagrangian (for example a scalar gauge field with a potential term), does not64

affect the CI of the effective action after integrating over ω (dilaton)[8]. We also have the problem65

of the cosmological constant. A dimensionful mass term in the potential of the Higgs field breaks66

the tracelessness of the energy momentum tensor. However, it turns out that the tracelessness of the67

energy momentum tensor can be maintained if a cosmological constant is also generated[13].68

A related problem is the asymptotic flatness of isolated systems in GR, specially when they radiate.69

There is a back-reaction of disturbances on the background metric: we have no flat metric in terms of70

which the falloff of the curvature can be specified. There are other problems which can be linked to CI,71

i.e., the notion of asymptotic flatness at null infinity, topological regularity, the gravitational energy72

emitted by compact objects and how to handle the limit as one approaches infinity (see for example73

the textbook of Wald[14]). Further, one needs a strongly asymptotically predictable spacetime and74

the redefinition gµν = ω2 g̃µν. Here ω represents the dilaton field, or conformal factor and must be75

handled on an equal footing as the Higgs field. The "un-physical" metric g̃µν must then be generated76

from at least Ricci-flat spacetimes. However, one should like to have g̃µν = ηµν, the flat Minkowski77

spacetime, close to the Planck scale. The challenge is therefore to investigate the possibility that g̃µν is78

emergent during the evolution of our universe. In general, one could say that a conformal structure79

for gravity is inevitable and is the missing symmetry for spacetimes.80

In this manuscript we reformulate the results found earlier[15] in the light of conformal invariance.81

In this former model, a warped U(1) scalar gauge field could also be used to explain the curious82

alignment of the polarization axes of quasars in large quasar groups on Mpc scales[22,23]. This is83

possible, because a profound contribution to the energy-momentum tensor comes from the bulk84
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spacetime and can be understood as "dark"-energy. The scalar field becomes super-massive by the85

contribution of the 5D Weyl tensor on the brane and stored azimuthal preferences of the spinning axes86

of the quasars just after the symmetry breaking.87

The outline of this manuscript is as follows. In section 2 we discuss the 5D warped spacetime. In88

section 3 we reformulate the model in a conformal way. In sections 4 and 5 we handle the "un-physical"89

metric without matter and in section 6 we add matter to the model and discuss the breaking of the90

conformal invariance.91

2. The warped 5D spacetime with a U(1) scalar gauge field92

Let us consider a warped five-dimensional Friedmann–Lemaître–Robertson–Walker (FLRW)93

spacetime[15]94

ds2 =W(t, r, y)2
[
e2γ(t,r)−2ψ(t,r)(−dt2 + dr2) + e2ψ(t,r)dz2 +

r2

e2ψ(t,r)
dϕ2

]
+ Γ(y)2dy2, (1)

withW = W1(t, r)W2(y) the warp factor. Our 4-dimensional brane is located at y = 0. All standard
model fields reside on the brane, while gravity can propagate into the bulk. The 5D Einstein equations
are

(5)Gµν = −Λ5
(5)gµν + κ2

5δ(y)
(
−Λ4

(4)gµν +
(4)Tµν

)
, (2)

with κ5 = 8π(5)G = 8π/(5)M
3
pl , Λ4 the brane tension, (4)gµν = (5)gµν − nµnν and nµ the unit normal95

to the brane. The (5)Mpl is the fundamental 5D Planck mass, which is much smaller than the effective96

Planck mass on the brane, ∼ 1019 GeV. We consider here the matter field (4)Tµν confined to the brane,97

i.e., the U(1) scalar-gauge field.98

From the combination of the components of the 5D Einstein equations, 5Gtt − 5Grr one obtains
for W1(t, r) the partial differential equation[15]

∂ttW1 = ∂rrW1 +
1

W1

(
(∂rW1)

2 − (∂tW1)
2
)
+

2
r

∂rW1. (3)

A typical solution is

W1(t, r) =
±1√

τr

√(
d1e(

√
2τ)t − d2e−(

√
2τ)t
)(

d3e(
√

2τ)r − d4e−(
√

2τ)r
)

, (4)

with τ, di some constants. So we have two branches, i.e., the plus and minus sign in Eq. (4). W1 can99

also be complex1. In figure 1 we plotted typical solutions of W1. The dynamics of the "scale-factor" of100

the 4D hyper-surface is solely determined by the 5D Einstein equations (in the classical 4D situation101

one easily obtains from the Einstein equations that W1(r, t) must be r−independent). The y-dependent102

equations103

∂yyW2 = −
(∂yW2)

2

W2
− 1

3
Λ5W2Γ2 − c1

W2
+

∂yW2∂yΓ
Γ

, (∂yW2)
2 = −1

6
Λ5W2

2 Γ2 + c2Γ2, (5)

yield the well-known solution (for Γ(y) = 1)

W2(y) = e
√
− 1

6 Λ5(y−y0) (6)

1 Eq. (3) is invariant under W1 → iW1
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of the Randall-Sundrum model[1]. It is remarkable that the function Γ(y) is undetermined by the 5D104

field equations. So the initially non-factorizable geometry of Eq.(1) can in fact be written as M4 × K,105

with K an Euclidean smooth compact manifold. The effective 4D Einstein-Higgs-gauge field equations106

on the brane[6]107

4Gµν = −Λe f f
4gµν + κ2

4
4Tµν + κ4

5Sµν − Eµν, (7)

contain a contribution Eµν from the 5D Weyl tensor and carries information of the gravitational field108

outside the brane. The quadratic term in the energy-momentum tensor, Sµν, arises from the extrinsic109

curvature terms in the projected Einstein tensor. 4Tµν represents the matter content on the brane, in our110

case, the scalar and gauge fields Φ = ηX(t, r)einϕ, Aµ = n
ε

(
P(t, r)− 1

)
∇µ ϕ and contains the potential111

term V(Φ) = 1
8 β(ΦΦ∗ − η2)2 in the case of the Higgs field. n represents the multiplicity (or winding112

number) of the Higgs field2. Further, Λe f f = 1
2 (Λ5 +

1
6 κ4

5Λ2
4). In the low energy limit one recovers113

conventional Einstein gravity. From the 4D effective Einstein equations one cannot isolate an equation114

for W1. So W1 is a warp factor effect. The equations for the metric components γ and ψ together with115

the scalar and gauge field, can be solved numerically[15], with W1 given by Eq.(4). It is of interest to

Figure 1. Three different plots of the warp factor W1, reinterpreted as dilaton field ω. Solution C is
complex. See text.

116

observe that our "scale"-factor W1 is (t, r)-dependent. This implies that the expansion of the universe is117

different at different moments in time. The acceleration of our universe, with equation of state p = wρ118

(w close to −1), can then be explained without the need of a cosmological constant ( or dark energy).119

The Einstein equations and the scalar-gauge field equations are modified by the presence of the warp120

factor.121

3. The warped 5D metric revisited122

Let us return to our metric Eq.(1) and define

gµν = ω1(t, r)2W2(y)2 g̃µν + nµnνΓ(y)2. (8)

The g̃µν is sometimes called the un-physical metric. We now write the warp factor W1 as a dilaton field
ω1, which satisfy Eq.(3), written as ( we omit the index 1)

∂ttω = ∂rrω +
1
ω

(
(∂rω)2 − (∂tω)2

)
+

2
r

∂rω. (9)

2 Sometimes one absorbs n in the gauge field by writing Aµ = 1
ε (P− n)∂µ ϕ
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This was only possible, because we could separate Eq.(3) from the 5D Einstein equations. We rewrite
the dilaton solution as (i.e., Eq.(4) )

ω2 =
1
τr

(
d1e(

√
2τ)t − d2e−(

√
2τ)t
)(

d3e(
√

2τ)r − d4e−(
√

2τ)r
)

. (10)

We can interpret the warp factor, which originally described the behavior of the expansion of our123

warped spacetime, as a "scaling field" or dilaton field ω in conformal invariant gravity. For metrics124

with det(g̃µν) = −1, it determines the scales for rulers and clocks (see for example ’t Hooft’s treatment125

of this issue[12]).126

In general, if one considers a field F on a metric gµν, one says that ΩsF is conformally invariant127

with metric Ω2gµν for all conformal factors Ω2. s is called the conformal weight of the matter field.128

We consider now the conformally invariant Lagrangian without matter ( see for example Wald[14])129

LEHω =

√
−g̃

16πG

(
ω2R̃ + 6g̃µν∂µω∂νω

)
. (11)

One could also add a cosmological term −2Λ4ω4 (see section 6). Variation with respect to g̃µν results130

in the Einstein equation131

G̃µν =
1

ω2

[
∇̃µ∇̃νω2 − g̃µν∇̃α∇̃αω2 − 6(∂µω∂νω− 1

2
g̃µν∂αω∂αω)

]
≡ 1

ω2 T̃(ω)
µν . (12)

Variation of Eq.(11) with respect to ω yields the well-known conformal invariant equation

∇̃µ∂µω− 1
6

ωR̃ = 0. (13)

One can easily verify that TR[G̃µν − 1
ω2 T̃(ω)

µν ] = 0 with the help of Eq.(13). So the trace of any matter
field contribution must be zero. We will return to this issue in section 6. Here we already remark that
Maxwell’s equations,∇µFµν, are conformal invariant (for dimension n=4), but Laplace’s equation for a
scalar field Φ, ∇µ∂µΦ = 0, is not. One can easily proof that for n dimensions,

∇µ∂µΦ− n− 2
4(n− 1)

ΦR = 0, (14)

is conformal invariant for conformal weight 2−n
2 . This scalar-field equation follows also directly from

the Euler-Lagrange equations for the action[14]

I =
1

16πG

∫
dnx
√
−g
[
Φ2R + 4

n− 1
n− 2

gµν∇µΦ∇νΦ
]
. (15)

We still can perform an additional gauge freedom, i.e., a local conformal transformation132

g̃µν → Ω2 g̃µν, ω → 1
Ω

ω, Φ→ 1
Ω

Φ. (16)

The transformation properties of Gµν and R are

Gµν → Gµν +
2

Ω2

(
2∇̃µΩ∇̃νΩ−Ω∇̃µ∇̃νΩ− 1

2
g̃µν(∇̃µΩ∇̃µΩ− 2Ω∇̃µ∇̃µΩ

)
, (17)

R→ 1
Ω2

(
R− 6

Ω
∇̃µ∇̃µΩ

)
, (18)

so the vacuum breaks local conformal invariance. We obtain that Ω obeys the Laplace equation133

∇̃µ∇̃µΩ = 0 as gauge condition if the Ricci-scalar remains zero.134
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4. The un-physical metric g̃µν135

We can solve the Einstein equations for g̃µν together with the dilaton solution and without any
matter. From Eq.(12)we obtain

G̃µν =
1

ω2 T̃(ω)
µν − Eµν. (19)

The extra term E comes from the projected Weyl tensor[6], because we must use Eq.(7) as effective 4D136

Einstein equations. Written out in components, the equations for γ̃ and ψ̃ become137

∂ttγ̃ = ∂rrγ̃ + (∂rψ̃)2 − (∂tψ̃)
2 +

3
ω

(
∂rω∂rψ̃− ∂tω∂tψ̃−

∂rω

2r

)
, (20)

138

∂ttψ̃ = ∂rrψ̃ +
∂rψ̃

r
+

3
ω

(
∂rω∂rψ̃− ∂tω∂tψ̃−

∂rω

2r

)
. (21)

The equation for ω cannot be isolated from the effective 4D Einstein equations, as was already139

concluded in[15]. So we will use the dilaton equation Eq.(9). From the equations Eq.(9), Eq.(13) and140

Eq.(19) we obtain the constraint equation141

(∂tω)2 − (∂rω)2 − ω

r
∂rω = 0. (22)

We must note that in the non-vacuum model[15], the dilaton equation Eq.(9) was obtained by the142

embedding of the 4D spacetime into a 5D warped spacetime. However, the constraint equations143

Eq.(22), can become different.144

We should like to compare the solution for g̃µν with the "classical" vacuum axially symmetric145

Weyl solution of the system (the subscript w stands for Weyl)146

∂tγw = 2r∂rψw∂tψw, ∂rγw = r
(
(∂rψw)

2 + (∂tψw)
2
)

, ∂ttψw = ∂rrψw +
∂rψw

r
. (23)

One can solve the Laplace equation for ψw and then integrate the first-order equations for γw. An147

integrability condition follows from R = 0. However, many solutions can quickly be obtained from the148

stationary axially symmetric counterpart model by the substitution t→ iz, z→ it[25]. An example is149

the Einstein-Rosen spacetime. The advantage of working in this axially symmetric coordinate system150

is the possibility to generate new solutions (for example the "electro-vac" solution) from vacuum151

solutions. If there is rotation, one can use the method of Ernst[16], to generate the well known Kerr152

solution. Moreover, these axially symmetric models admit radiation effects, even in (conformally) flat153

spacetimes. Further, non-conform-stationary (vacuum) solutions are only possible in axially symmetric154

models[17]. A spherical mass surrounded by empty space is truly isolated, but a cylindrical mass155

distribution will cause energy flow to and from infinity. If an initially static solution emits a pulse of156

radiation, then there will be a change in the values of the parameters describing the solution (Birkhoff’s157

theorem).158

A well studied solution of Eq.(23) is the (complex) Weyl solution (z→ it)159

Ψw = C ln


√

r2 + (it−m)2 +
√

r2 + (it + m)2 − 2 m√
r2 + (it−m)2 +

√
r2 + (it + m)2 + 2 m

 . (24)

This solution leads for C = 1 to the Schwarzschild metric by the transformation160

r →
√

r2 − 2mr sin θ, z = (r−m) cos θ. In section 6 we will use a slightly different solution of Eq.(23)161

for our conformal invariant model.162

In figure 2 we plotted a typical solution for e2γ̃ and e2ψ̃. We also plotted, for comparison, the163

"classical" Weyl solution. For ω we took a typical value from Eq.(10). It is obvious that the dilaton164
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plays a crucial role in the evolution of the metric. It is a foretaste of the cosmological significancy of165

ω. We can apply the Cauchy-Kowalewski theorem for conformal invariancy: we can choose Eq.(22)166

as initial condition on the boundary of g̃µν. If we substitute Eq.(22) into Eq.(9) we obtain the Laplace167

equation and next from Eq.(13) we see that R̃ = 0, i.e., the flat spacetime. One could also say that our168

dilaton equation Eq.(9) can conformally transformed (ω → 1
Ω ω) into the Laplace equation in order169

that Eq.(22) holds. This yields a gauge condition for Ω. This result can also be formulated as follows:170

the vacuum R = 0 breaks local conformal invariance, unless we impose Eq.(9) together with Eq.(22).171

We will return to this issue in the next section.172

5. Generation of conformally Ricci-flat g̃µν173

To get an indication how to proceed with the un-physical metric g̃µν in order to ends up with
a Ricci-flat spacetime by conformal transformations, we consider, as an illustrative example, the
Minkowski spacetime written in radiative coordinates [see textbook of Wald[14])

ds2 = −dudv +
1
4
(v− u)2(dθ2 + sin2θdϕ2), (25)

with v = t+ r, u = t− r. One needs information about the behavior of fields when v→ ∞. Introducing
V = 1

v we obtain

ds2 =
1

V2

(
dudV +

1
4
(1− uV)2(dθ2 + sin2θdϕ2

)
, (26)

and "infinity" corresponds to V = 0. But the metric is singular at V = 0. We have obtained a
bad coordinate system. Suppose we define an un-physical metric g̃µν = V2ηµν. We then obtain
a smooth metric extended to V = 0 and can handle tensor analysis at infinity. One can even do
better by introducing the conformal factor g̃µν = 4

(1+v2)(1+u2)
ηµν. If one chooses the coordinates

T = tan−1v + tan−1u and R = tan−1v− tan−1u, one obtains the static (S3 ⊗<) Einstein universe

ds̃2 = −dT2 + dR2 + sin2R(dθ2 + sin2θdϕ2). (27)

So there exists a conformal map of (<4, ηµν) into an open region (S3 ⊗ <, g̃µν) restricted by −π <174

(T ± R) < π, R ≥ 0. The conformal infinity of Minkowski is then the boundary in the Einstein static175

universe.176

Let us now consider the special Ricci-flat solution of the Weyl class of the equations Eq.(23)[18]177

ψ
(0)
w = c1 ln

(
t +
√

t2 − r2
)

, γ
(0)
w = 2c2

1 ln
1
2

( t√
t2 − r2

+ 1
)
+ c2, (28)

with ci constants of integration. This Ricci-flat Weyl solution has some interesting properties, i.e.,
the C-energy is non-vanishing and c2 6= 0 introduces a conical singularity. For some values of c1 are
the solutions self-similar. For c1 = 1

2 it is flat. Let us denote this metric as g(0)µν . In order to maintain

Ricci-flat spacetimes after the conformal map g(0)µν → Ω2g(0)µν , Ω must satisfy again Laplace equation (
see Eq.(13) with ω replaced by Ω)

∂ttΩ− ∂rrΩ− ∂rΩ
r

= 0. (29)

The constraint equation from the Einstein equations is again Eq.(22), now for Ω

(∂tΩ)2 − (∂rΩ)2 − Ω
r

∂rΩ = 0 (30)

and doesn’t contain the constants ci. The constant c1 enters an initial condition for ∂rΩ. A special178

solution is Ω = 1√
t2−r2 . So one can construct self-similar Einstein-Rosen spacetimes. There exist many179

generating methods to obtain, for example, Einstein-Rosen soliton wave solutions, superimposed on180
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a Levi-Civita seed[19]. This generation procedure complicates of course considerable for our g̃µν of181

Eq.(8). In the non-vacuum case becomes the procedure even worse. Conformal invariance will then be182

broken. We will study this problem in the next section.183

6. Matter comes into play184

The reason for writing the FRLW spacetime Eq.(1) in polar coordinates will become clear when185

we include the U(1) scalar gauge fields into the model, i.e., Eq.(7). In a FLRW spacetime, any spacelike186

geodesic with t = constant delineates an axis of rotational symmetry, so it is always possible to rotate187

the coordinate system in such a way that this axis becomes the polar axis.188

In a former study[15] it was found that in order to incorporate the Nielsen-Olesen vortex solution
of the U(1) scalar-gauge field (axially symmetric!), one needs the FLRW in polar coordinates. Radiative
effects can then be studied and the behavior of the "string-like" matter field. One must consider two
regions, i.e., the moment in time when the Hubble radius is much larger than the string-core and
the moment in time when the radius of the vortex was comparable with the Hubble radius. A nasty
problem is that the late-time approximate spacetime is of the form[20]

ds2 = a(t)
[
−dt2 + dr2 + K(r)2dz2 + (1− 4Gµ)2S(r)2dϕ2

]
, (31)

or transformed

ds2 = a(t)2
[
−dτ2 +

dR2

1− kR2 + R2dθ2 + (1− 4Gµ)2R2 sin2 θdϕ2. (32)

Some tricky matching conditions are necessary at the boundary with the radiating Einstein-Rosen189

spacetime g̃µν[21]. For k = −1 (open universe) these conditions can be found. The spacetime of Eq.(31)190

has a residual angle deficit proportional to the mass density of the string. However, in the warped 5D191

counterpart model[24], this remnant disappears by the effect of the warp factor. Further, the magnitude192

of cylindrical gravitational waves is proportional to the ratio of the string core radius rs and the Hubble193

radius RH . This ratio rs/RH is negligible at late times, but not at the moment of formation: the vortex194

builds up a huge mass by the presence of the bulk spacetime. It was conjectured that another effect195

could emerge just after the symmetry breaking phase of the scalar gauge field: preferred azimuthal196

angle of the spinning axes of quasars in large quasar groups[22,23]. These considerations can now be197

related to the conformal invariance approach.198

The resemblance of the equations for the dilaton ω and the scalar field Φ of Eq.(13) and Eq.(14)199

(in 4D) is evident. However, matter fields must be placed in the Lagrangian for matter fields LM and200

we must have local energy-momentum conservation ∇µT(M)
µν = 0, where201

Tµν(M) =
2√−g

δ(LM
√−g)

δgµν
= 2

δLM
δgµν

+ gµνLM. (33)

Indeed, our world is not vacuum, so the task is to add a matter Lagrangian LM to the action and202

investigate if it can be made conformal invariant. Moreover, Tµν must be traceless[14]. When gravity is203

coupled to matter, it is believed that conformal invariance ( which is an exact local invariance) must204

be spontaneously broken and will fix all the parameters of the model. It could be possible that in an205

eventually conformal invariant gravity theory all physical constants, including Newton’s constant,206

masses and cosmological constant, are in principle computable[7–9]. In the case of our scalar gauge207

field we have (where we wrote Φ→ 1
ω Φ̃ and Φ̃→ η + Φ̃√

2
)208

I =
∫

d4x
√
−g̃
{ 1

2κ2
4

(
ω2R̃ + 6∂αω∂αω− 2Λ4ω4

)
− 1

12
Φ̃Φ̃∗R̃

−1
2
DαΦ̃(DαΦ̃)∗ − 1

4
FαβFαβ −V(Φ̃, ω)

}
, (34)
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where we omitted, for the time being, other interaction terms. The gauge covariant derivative is209

DµΦ = ∇µΦ + iεAµΦ. The term 1
12 R̃Φ̃Φ̃∗ makes the scalar Lagrangian conformal invariant. The210

resemblance between the two parts in Lagrangian Eq.(34) is clear when one redefines ω̄2 ≡ − 6ω2

κ2
4

211

(apart from the potential term V(Φ, ω) ). So ω̄ is complex (unitarity gauge[11]). In this case, this212

means that now the ω̄2-solution is of the form of figure 1-c. The functional integration over the ω213

degree of freedom should be rotated in the complex plane (Wick rotation). In flat spacetimes this is214

comparable with the transformation t→ it, which makes the metric positive definite on an analytically215

extended manifold. In GR this is problematic, since time has no physical meaning in GR. Moreover,216

it can produce complex solutions, for example, the deSitter spacetime. It must be noted that in our217

axially symmetric spacetime, we defined t → iz together with z → it, so the latter problem doesn’t218

occur. A more detailed analysis of this issue can be found in the book of Parker, et al.[27]. Note that the219

potential V(Φ̃, ω) is also ω-dependent. We can take for example V(Φ̃, ω̄) = 1
8 βη2κ2

4Φ̃Φ̃∗ω̄2 (where the220

"double-well"-potential mass parameter is now βη2κ2
4ω̄2).221

The re-scaled Lagrangian Eq.(34) becomes222

I =
∫

d4x
√
−g̃
{
− 1

12

(
Φ̃Φ̃∗ + ω̄2

)
R̃− 1

2

(
DαΦ̃(DαΦ̃)∗ + ∂αω̄∂αω̄

)
−1

4
FαβFαβ −V(Φ̃, ω)− 1

36
κ2

4Λ4ω̄4
}

(35)

After variation with respect to the field variables, one obtains the equations of motion

G̃µν =
1

(ω̄2 + Φ̃Φ̃∗)

(
T(ω̄)

µν + T(Φ̃,c)
µν + T̃(A)

µν +
1
6

g̃µνΛe f f κ2
4ω̄4 + κ4

5Sµν + g̃µνV(Φ̃, ω̄)
)
− Eµν (36)

223

∇̃α∂αω̄− 1
6

R̃ω̄− ∂V
∂ω̄
− 1

9
Λ4κ2

4ω̄3 = 0 (37)

224

DαDαΦ̃− 1
6

R̃Φ̃− ∂V
∂Φ̃∗

= 0, ∇̃νFµν =
i
2

ε
(

Φ̃(DµΦ̃)∗ − Φ̃∗DµΦ̃
)

(38)

with225

T̃(A)
µν = FµαFα

ν −
1
4

g̃µνFαβFαβ (39)

226

T̃(Φ̃,c)
µν =

(
∇̃µ∂νΦ̃Φ̃∗ − g̃µν∇̃α∂αΦ̃Φ̃∗

)
−6
(1

2
(DµΦ̃(DνΦ̃)∗ + (DµΦ̃)∗DνΦ̃)− 1

2
g̃µνDαΦ̃(DαΦ̃)∗

)
(40)

227

T(ω̄)
µν =

(
∇̃µ∂νω̄2 − g̃µν∇̃α∂αω̄2

)
− 6
(

∂µω̄∂νω̄− 1
2

g̃µν∂αω̄∂αω̄)
)

(41)

Newton’s constant reappears in the quadratic interaction term for the scalar field. The Λe f f ω̄4-term is228

more problematic and we will omit it from now on. For other issues, such as renormalizability and the229

mechanism of the spontaneous breaking of conformal invariance close to the Planck scale, we refer to230

the discussion on these subjects by ’t Hooft[8,9]. When the curvature radius becomes comparable to231

the Planck length, the correct gravitational action must contain additional terms such as R2, RµνRµν,232

Rµνστ Rµνστ or combinations of them. They are the result of the back reaction induced by quantum233

effects. Vacuum polarization effects will spoil conformal invariance of the "classical" theory (trace234

anomaly). See for example the textbook of Mukhanov et al.[26] or Parker et al.[27].235
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Here we proceed with the field equations Eq.(36)-Eq.(41) and will try to solve them. If we
calculate the trace of the Einstein equations Eq.(36) and using Eq.(37) and Eq.(38), we have the rest
term ( "trace-anomaly")

1
ω̄2 + X2

[
16κ2

4βη2X2ω̄2 − κ4
5n4
( (∂rP)2 − (∂tP)2

r2ε2

)2
e8ψ̃−4γ̃

]
(42)

This term brakes the conformal invariance. The cosmological constant of the brane, Λ4, appears in236

the conformal breaking term term of Eq.(42) in the case of κ4
5 ≡

6κ2
4

Λ4
(RS-balance between the bulk and237

brane cosmological constant is broken). So the quadratic term in the energy momentum tensor, Sµν,238

could play an important role in the early universe. It depends also on the multiplicity of the scalar field.239

There is still a relation between Eµν and Sµν from the Bianchi identities, ∇µEµν = κ4
5∇µSµν, which240

shows how (1+3) spacetime variations in the matter-radiation on the brane can induce Kaluza-Klein241

modes.242

How should we interpret the dilaton equation for ω(t, r)? The features of our 5D universe243

depends, after all, on 5gµν, not 4 g̃µν. It is clear that our dilaton field, by the identification as a warp244

factor, is a real field that acts on the evolution of our universe[15] and can play a role in the explanation245

of the alignment of the polarization axes of quasars on Mpc scales[22,23]. We solved the field equations246

Eq.(36)- Eq.(41) for [g̃µν, X, P, ω] and can compare the results with the former solutions of Eq.(2) and247

Eq.(7)[15]. A typical solution is given in figure 3 by Mathematica and checked by Maple. The solution248

depends on the mass-ratio of the scalar and gauge masses, m2
A

m2
Φ
= ε2

β , the boundary conditions, the249

multiplicity n and of course the dilaton solution (the constants di). In figure 4 and 5 we plotted a250

different solution, with slightly different values of the parameters. Our conjecture is that ω, alias warp251

factor W1, has a dual meaning. At a very early time in the evolution of our universe, when ω → 0, it252

describes the small-distance limit. At later times, it represents a warp (or scale) factor that determines253

the dynamical evolution of the universe.254

7. Conclusions255

We analyzed conformal invariance in a non-vacuum 5D warped Einstein-scalar-gauge-field model,256

where the warp factor is reinterpreted as dilaton field. The equation for this dilaton can be isolated257

from the 5D field equations of the resulting un-physical metric. On the "classical" level, the dilaton258

plays the role of a warp factor determining the evolution of the FLRW model. On small scales, when259

the dilaton field approaches zero, no singular behavior emerges because the conformal invariant model260

treats the dilaton and Higgs field on equal footing. The parameters of the scalar-gauge field, i.e.,261

(β, η, ε) and the gravitational coupling constants enter the trace of the total energy momentum tensor262

constraint equation. This means that the mass of the vortex per unit length, µ ≈ 2πη2
∫

gϕϕdr and the263

ratio of the gauge and scalar field, i. e. β

ε2 , also determines the dilaton behavior. The dimensionless264

parameter κ2
4µ plays an important role in the physics of cosmic strings. It can be approximated by265

Gµ ≈ η2

m2
pl

. Observational bounds require Gµ ∼ 10−6. However, the most interesting gravitational266

impact will occur at Gµ >> 1, which is possible in our 5D model by means of the warp factor, or267

now the dilaton field ω. If we specify ω, then the evolution of ω2 g̃µν becomes ambiguous: the time268

evolution of a FLRW model depends then heavily on the parameters determining the dilaton solution.269

Conformal invariant gravity theories need additional constraint equations in order to obtain a traceless270

energy-momentum tensor. If the conformal invariance is exact and spontaneously broken, then one271

needs additional field transformations on g̃µν. There are some shortcomings in our pure classical272

model. First, one should like to incorporate fermionic fields. Secondly, all conformal anomalies of273

the model must cancel out when one approaches smaller scales[12]. After all, we are dealing here274

with a curved g̃µν. Some constraints must be fulfilled together with the "classical" tracelessness of the275

energy momentum tensor. The reward is, however, that we can generate non-vacuum spacetimes from276

Ricci-flat spacetimes needed in the small-scale limit of the model.277
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Figure 2. Typical solutions of the un-physical metric g̃µν (Eq.(20)-Eq.(21)) for some values of τ and di for
ω( Eq.(10)) compared with the classical Weyl solution of Eq.(23) (top). For ψ we took as initial condition
a Weber-Wheeler pulse wave. We observe that in some cases the metric becomes asymptotically flat.
For situation (c) is ω complex.
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Figure 3. Typical solution of the metric of Eq.(36)- Eq.(41). Notice the behavior of the trace of the
energy-momentum tensor. We also plotted ω.

Figure 4. As figure 3, for different values of the parameters. The behavior of gtt and gϕϕ differ
considerable with respect to the solution of figure 3
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Figure 5. A solution with oscillating behavior of the scalar field.
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