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Abstract: The relative dislocation density of aluminum and copper samples is quantitatively 
measured using linear Resonant Ultrasound Spectroscopy (RUS). For each metallic group, four 
samples were prepared with different thermomechanical treatments in order to induce changes in 
their dislocation densities. The RUS results are compared with Nonlinear Resonant Ultrasound 
Spectroscopy (NRUS) as well as Second Harmonic Generation (SHG) measurements. NRUS has a 
higher sensitivity by a factor of two to six and SHG by 14% to 62%. The latter technique is, however, 
faster and simpler. As main a result we obtain a quantitative relation between the changes in the 
nonlinear parameters and the dislocation density variations, which in a first approximation is a linear 
relation between these differences. We also present a simple theoretical expression that explains the 
better sensitivity to dislocation content of the nonlinear parameters with respect to the linear ones. 
X-Ray diffraction measurements, although intrusive and less accurate, support the acoustics results.

Keywords: alloys; nondestructive testing; dislocation density; plasticity; ultrasound; nonlinear 
acoustics13

1. Introduction14

Dislocation density is a key variable to describe and, possibly, to control, the plastic behavior15

of metallic materials. In situ measurement of plastic behavior and thus, directly or indirectly, of16

dislocation density, has been a particularly active area of research in recent years, especially at the17

micro and nano scale, using transmission electron microscopy (TEM), scanning electron microscopy18

(SEM) and atomic force microscopy (AFM). For example, in-situ TEM has been used to perform tensile19

tests of submicrometer aluminum single crystals [1], to test single crystal aluminum to study the20

evolution of dislocation patterns [2], to determine the relation between the evolution of the dislocation21

structures and the flow stress during compression of steel nanoblades [3] and to study dislocation22

emission in stainless steel [4]. However, these are destructive techniques and, in general, small,23

specially prepared samples are required. In most engineering applications these conditions can not be24

satisfied. Therefore, in situ and non-destructive tests are desirable.25

Acoustics has long been a tool for the non-destructive evaluation of materials [5–8]. It is routinely
used for crack detection [9–12]. However, concerning the plastic behavior of metals and alloys, it is only
recently that progress in theoretical modeling and instrumentation development have enabled acoustic
measurements to emerge as a quantitative tool to measure dislocation density. On the theory side,
Maurel et al., [13,14], building on the classic work of Granato and Lücke [15] derived the following
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formula, valid for isotropic materials, that relate the change in dislocation density between two samples
with the change in the speed of shear waves and with the change in the speed of sound waves:

∆vT
vT

= − 8
5π4 ∆(nL3) = − 8

5π4 ∆(ΛL2), (1)

where ∆vT/vT is the relative change of shear wave velocity between two samples of a material26

that differ in dislocation density Λ = nL, and n is the number of dislocation segments of (average)27

length L per unit volume. This is an extremely simple result that was experimentally verified using28

Resonant Ultrasound Spectroscopy (RUS) [16] by Mujica et al. [17]. In addition, Salinas et al. [18]29

measured nL3 in-situ and continuously as a function of applied stress for aluminum under standard30

testing conditions. These measurements provided and experimental verification of Taylor’s rule31

with unprecedented accuracy [18]. They provide a solid basis to use velocity measurements as a32

nonintrusive quantitative measure, as opposed to qualitative estimate, changes in dislocation density.33

From a purely conceptual point of view, it is interesting to notice that the relevant dimensionless34

parameter that measure dislocation density is nL3.35

Armed with this new tool, we can use it to assess the accuracy of other proposed techniques36

to determine dislocation density. For example, nonlinear methods have been proposed because37

of their potentially superior sensitivity [9]. Nonlinear acoustics has been widely used to probe38

material properties in many different fields, such as the nondestructive testing of single crystals and39

homogeneus small samples [19], geomaterials [11,20,21], biomaterials [10,12,22], and thin films [23].40

Nonlinear behavior has been monitored using Rayleigh waves as well [24]. There appears to be a wide41

agreement in the literature that nonlinear methods are quite sensitive to small-scale inhomogeneities.42

Can nonlinear acoustics be used to monitor dislocation proliferation in metals and alloys?43

2. Materials and Methods44

The present article provides a quantitative assesment of linear versus nonlinear acoustic45

measurement of dislocation density in commercially pure copper and aluminum.46

One nonlinear acoustic experimental method that is widely used as a non destructive evaluation
tool is Second Harmonic Generation (SHG) [25]. In this method, a second harmonic wave is generated
from a propagating monochromatic elastic wave, due to the anharmonicity of the elastic material and
the presence of microstructural features such as dislocations. The second harmonic nonlinear response
is quantified by

β =
8

xk2
A2ω

A2
ω

, (2)

where k is the wave number, x is the elastic wave propagation distance, and Aω and A2ω are the47

absolute physical displacements of the fundamental and second harmonic waves [25].48

A recent review [26] reports measurements of the amplitude of the second harmonic relative to49

the amplitude of the first harmonic, in samples of aluminum alloy and of steel before and after plastic50

elongation (0.2% in aluminum, 1.5% in low carbon steel). There is an unmistakable difference, at least51

in part attributable to the presumed difference in dislocation density. However, there does not appear52

to be an accepted model that quantitatively relates this unmistakable difference to a specific increase in53

dislocation density (see [26] and references therein).54

As reported above, RUS relies on linear theory. It provides a complete set of elastic constants
using one single measurement of the resonant spectrum in a given ultrasonic frequency range [27].
Extending the drive amplitude beyond the linear limit into the nonlinear regime one obtains Nonlinear
Resonant Ultrasound Spectroscopy (NRUS), which is based on changes of one particular resonant
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frequency [9–12,28]. The corresponding frequency shift ∆ f = fi − f0 is related phenomenologically
with the average strain amplitude ∆ε by the nonlinear parameter α, defined through

∆ f
f0

= α∆ε = αγVrec = α′Vrec, (3)

where f0 is the resonant frequency in the linear regime. Here, we follow Payan [9]; instead of measuring55

the strain ε, we measure the pressure sensor voltage amplitude, Vrec, so we measure the nonlinear56

parameter α′, which will differ for samples with different dislocation densities. Also, we use the57

method of Johnson to account for the effect of temperature [29].58

In this work, two groups of aluminum and copper samples have been used to perform RUS,59

NRUS, SHG, as well as X-ray diffraction (XRD), measurements, the latter as a control method. We60

show that the results using different acoustic methods are well correlated with those obtained by XRD61

peak broadening profile analysis. The relative sensitivity of RUS, NRUS and SHG are presented and62

we show that nonlinear parameters are more sensitive to the presence of dislocations than the linear63

ones.64

99.999 at% pure aluminum and 99.95 at% pure copper samples were used to perform RUS, NRUS,65

SHG and XRD measurements. From the same as-received bar, four pieces were taken to prepare the66

experimental samples: all samples were cold-rolled at 82.8% and 88.3% in the aluminum and copper67

groups, respectively. Then, three samples of each group were annealed at about 70% of their melting68

point for 15, 30 and 60 min, labeled as Roll A15, Roll A30 and Roll A60 respectively. The sample without69

annealing was labeled only as Roll. It is well known that annealing leads to lower dislocation density,70

and stronger cold-rolling leads to higher dislocation density [17]. For each one of the four pieces71

per group, one portion was set aside for ultrasonic testing, and another two for XRD. For a correct72

application of RUS, the pieces must be modelable as perfect parallelepipeds to avoid resonance shifts73

[30]. The transverse wave speed vT is measured with RUS. The Al samples we analyzed had average74

dimensions (0.500± 0.003)× (1.704± 0.003)× (5.005± 0.003) cm3, and average density 2.667± 0.00575

gr/cm3. The Cu samples had average dimensions (0.399± 0.005)× (1.701± 0.001)× (5.001± 0.003)76

cm3, and average density 8.891± 0.010 gr/cm3. Of course, precise measurements were made for77

each single sample in order to correctly apply the characterization methods. The XRD samples had78

dimensions (1.704± 0.003)× (0.500± 0.003)2 cm3 and (1.701± 0.001)× (0.399± 0.005)2 cm3 for the79

Al and Cu groups, respectively.80

Both the linear and the nonlinear resonant ultrasound spectroscopy used the same setup [17,31].81

The positioning of the sample and its assembly conditions are the same as those described in [17].82

RUS is used to measure the shear wave velocity, because the shear modulus C44 can be determined83

with much higher accuracy. The drive amplitude is 1 V in the linear regime. The frequency sweep is84

performed between 26 kHz and 175 kHz, with 26 identified modes on average for Al. For Cu samples,85

the range of frequencies is 19 kHz to 127 kHz, with 21 identified modes on average. Ten independent86

measurements per sample were made to obtain associated statistical errors.87

Imposing transverse isotropy, we have computed the anisotropy parameter ε = 1− 2C44/(C11 −88

C12) for both groups [32]; within experimental errors its is zero or very small for all samples.89

Additionally, we have computed the transverse wave speed imposing both isotropy and transverse90

isotropy in the RUS analysis and the differences obtained are . 0.3%. XRD patterns show some degree91

of texture, which we have quantified using the March-Dollase model. The March-Dollase parameters92

for most reflections are close to 1. However, Cu peaks (220) and Al peaks (200) have parameters smaller93

than 1 but with small weight factors. We finally conclude that Al and Cu samples have a low degree of94

texture [33].95

For NRUS application, the set up is exactly the same as for RUS. For both the Al and Cu groups,96

the resonance frequency that was chosen is close to 49 kHz and 39 kHz, respectively. The exact value97

depends on the specific dimensions of each sample. The reason for this choice was that the selected98

modes were the most energetic in the frequency range studied. In the non-linear regime, we verified99
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that the resonance is asymmetric and that its amplitude ceases to be a linear function of the excitation100

voltage.101

The third acoustic method used in this work is SHG. In this case the experimental setup for102

non-linear ultrasonic measurements is simpler than for RUS and NRUS. A continuous sine wave of103

frequency f = 3 MHz is transmitted into the material. Thus, a longitudinal wave is propagated across104

the length d ≈ 1.7 cm of each sample of both groups and the resulting response is analyzed for its105

nonlinear features. Two equal transducers are placed on each side of the specimen (Panametrics - V110,106

resonant at 5 MHz, with element diameter 8.8 mm). Through Fourier analysis of the received signal,107

we measure the fundamental (A′ω) and the second harmonic (A′2ω) amplitudes, in volts.108

In general, the non-linear parameter is presented in units of 1/Volts [25]. This is because precise
transducer calibrations are difficult at such low driving amplitudes, which occur even in the non-linear
regime. Thus, following Matlack [25], instead of calculating β in dimensionless form we measure

β′ = A′2ω/(A′ω)
2, (4)

which is based on the amplitudes measured in voltage units.109

XRD measurements were carried out with the same procedure and equipment reported by Salinas
et al. [18] Microstructural parameters such as lattice parameter a and microstrain 〈ε2〉1/2, were obtained
from Rietveld refinements of the X-ray patterns with the Materials Analysis Using Diffraction (MAUD)
software and LaB6 (a = 4.1565915(1) Å) as external standard for the determination of instrumental
broadening. Using the information provided by MAUD, it is possible to obtain a measurement of
dislocation density ΛXRD for each Al and Cu sample through

ΛXRD =
24πE

GF
〈ε2〉
a2 , (5)

where F ≈ 5 for FCC materials, E is Young’s modulus and G is the shear modulus. The E and G values110

used for Al were 74.4± 1.9 GPa and 28.1± 0.8 GPa, respectively. These values were calculated as an111

average of those reported in [27,34,35]. For Cu, E and G used were 124.5± 0.7 GPa and 45.4± 1.2 GPa112

respectively, obtained from [36]. We measured two pieces for the same sample of both groups, in order113

to have an associated statistical error, beyond that provided by the refinement.114

3. Results and discussion115

Figure 1 shows an example of XRD pattern for an aluminum and copper sample. As in recent116

works [18], there is not one crystallite size, but rather a distribution of sizes that contribute to each117

diffraction peak, each one having an associated microstrain. Using the information about the volume118

fraction of each phase provided by MAUD, the results for Λ were calculated as a weighted average of119

results for differents crystallite sizes.120

The results of the acoustics measurements are given in Table 1, where the behavior of the linear121

and nonlinear parameters is compared and contrasted. The linear parameter vT shows variations122

between purely rolled and annealed pieces between 1.7% and 2.6% for Al, and 2.9% and 4.4% for123

Cu. The non-linear parameters are decreasing functions of the shear velocity vT . This means they are124

increasing functions of dislocation density. The parameter α′ shows remarkable changes: 39% to 125%125

for Al, and 320% to 510% for Cu. Finally, β′ has variations from 14% to 20% for Al, and 19% for 62%126

for Cu.127

Dislocation density measurements are reported in Table 2. A RUS-determined dislocation density128

ΛRUS is obtained using Eqn. (1), together with a typical dislocation segment length L ≈ 150 nm for Al129

and L ≈ 230 nm for Cu. The results for the shear wave velocity vT reported above provide a variation130

between samples of ∆ΛRUS ≈ (4− 7) × 107 mm−2 for the Al group and ∆ΛRUS ≈ (3− 5) × 107
131

mm−2 for the Cu group. In both cases the associated errors are less than 20%. The XRD-determined132

dislocation density ΛXRD, as expected, is lower for annealed samples than for purely rolled ones.133
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Figure 1. Example of (a) Aluminum and (b) Copper XRD pattern. (a) Five peaks are observed for Al,
corresponding to different lattice planes: (111) (2θ = 38.55◦), (200) (2θ = 44.81◦), (220) (2θ = 65.21◦),
(311) (2θ = 78.35◦) and (400) (2θ = 99.22◦). Inset: A distribution of crystallite sizes (Ali, i = 1, 2, 3, 4)
contribute to the (200) diffraction peak (shown) as well as to the others (not shown). (b) For Cu samples,
five peaks are observed in the angular range measured, corresponding to the following lattice planes:
(111) (2θ = 43.37◦), (200) (2θ = 50.51◦), (220) (2θ = 74.2◦), (311) (2θ = 90.01◦) and (222) (2θ = 95.23◦).

Table 1. Acoustic parameters, both linear and nonlinear, obtained for each group of samples compared
and contrasted. Nonlinear parameters α′ and β′ exhibit a considerably higher change from sample to
sample than the linear parameter vT . Errors are obtained by standard deviation of ten measurements
with each method. See text for symbol definition.

Aluminum

Treatment vT (m/s) α′

10−4 (V−1) β′ (V−1)

Roll A60 3116± 4 −39± 8 0.42± 0.02
Roll A30 3130± 7 −44± 7 0.39± 0.02
Roll A15 3146± 4 −63± 5 0.39± 0.02

Roll 3065± 4 −28± 5 0.49± 0.01
Copper

Treatment vT (m/s) α′

10−4 (V−1) β′ (V−1)

Roll A60 2294± 6 −168± 21 0.90± 0.10
Roll A30 2304± 4 −244± 31 0.35± 0.01
Roll A15 2326± 3 −176± 18 0.42± 0.01

Roll 2229± 4 −40± 10 1.11± 0.03

However, the associated errors are so large that it is not possible to clearly differentiate between134

pieces within each group. In any case, the values obtained are of the same order of magnitude of135

the acoustically obtained values so they do provide a check on the latter method. In Figure 2 we136

present the quantitative relation between the variations of the nonlinear parameters with respect to137

the changes in dislocation density. In a first approximation, we obtain that ∆α′ and ∆β′ are linearly138

dependent of ∆ΛRUS. This method then provides a way to obtain dislocation density variations as139

function of the changes of the acoustic nonlinear parameters, with a high sensitivity compared to linear140

measurements. Thus, for a given material and once properly calibrated, one can indeed use the high141

sensitivity of the nonlinear parameters in order to quantitatively study dislocation proliferation in142

metals and alloys.143

The nonlinear parameter β is defined through β ≡ −[3 + (C111/C11)] [25], with C11 and C111

the second- and third-order longitudinal elastic constants given by σ = C11ε + (C111 + C11)ε
2 + . . . ,

where σ is stress and ε is strain. We already know [14] that n dislocation segments of length L per unit
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Table 2. Comparison of XRD and RUS measurements of relative dislocation density for the Al and Cu
samples. Errors for XRD measurements are calculated with the contribution of the Rietveld refinement
results and the statistical error from the repetition of the experiment in two pieces of the same sample.
These errors are large and preclude a sample-to-sample comparison. By contrast, the errors associated
with the acoustic measurements are sufficiently small that a quantitative comparison can be confidently
provided.

Aluminum

Compared samples ∆ΛXRD
107 (mm−2) ∆ΛRUS

107 (mm−2)

Roll & Roll A60 1.24± 1.47 4.47± 0.70
Roll & Roll A30 0.87± 1.35 5.68± 0.96
Roll & Roll A15 0.42± 7.12 7.07± 0.69

Copper

Compared samples ∆ΛXRD
107 (mm−2) ∆ΛRUS

107 (mm−2)

Roll & Roll A60 2.34± 21.74 3.31± 0.51
Roll & Roll A30 4.73± 19.35 3.81± 0.41
Roll & Roll A15 5.04± 19.0 4.90± 0.35

volume induce a change ∆C11 given by ∆C11/C11 = −32∆(nL3)/(45π2). The influence of dislocations
on β has been studied by several authors [37–41]. Since this influence is a small effect, one has that the
change induced is proportional to dislocation density: ∆C111/C111 = B∆(nL3), with a dimensionless
constant B that depends on the geometry and modeling employed. A simple calculation shows

∆β = −
(

∆C111

C111
− ∆C11

C11

)
C111

C11
. (6)

Since, for aluminum and copper C111 ∼ −10C11 [42], this formula provides, a rationale for144

understanding the factor of ten higher sensitivity of β to dislocation density, compared to the second145

order coefficient, as well as its increase, as long as ∆C111/C111 > ∆C11/C11.146

The parameter α depends on the coupling between the different normal modes of an elastic147

sample due to nonlinearities. Chakrapani and Barnard [43] have determined, both theoretically and148

experimentally, the value of α for a purely longitudinal mode of a thin beam, and have inferred that149

β = −Kα with K > 0. Our measurements of α′ and β′ are consistent with this result (we remind that150

from Eqns. (3) and (4), we have α′ ∝ α and β′ ∝ β). In particular, when the dislocation density increases151

the material is more nonlinear with respect to β, as it increases, but less nonlinear for α as it decreases152

in its absolute value. However, further investigation and modeling is needed to ascertain a precise153

formula for the influence of dislocations on the parameter α.154

4. Conclusions155

We have measured the change in the nonlinear parameters β′ and α′ as a function of the change in156

dislocation density in copper and aluminum, the change in dislocation density nL3 being determined157

by linear acoustics. We have determined that a change of nL3 by a factor of ten leads to a 20-60%158

change in β′, and to a factor of two to six change in α′. We also explain the difference in about a factor159

10 between the sensitivity of the linear and nonlinear measurements. These results pave the way for160

the use of nonlinear acoustics as a sensitive, quantitative, probe of dislocation density in metals and161

alloys.162
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Figure 2. Normalized variations of nonlinear acoustic parameters α′ and β′ of each sample respect
to the purely rolled one as functions of the variations of dislocation density, obtained with the linear
measurements. For both groups Al and Cu, ∆ΛRUS are similar, which are obtained from changes in
the transverse elastic wave speed vT , which are of the order of a few percent. (a) For the Al group, α′

shows changes of 39% to 125% and β′ of 14% to 20% (b) For the Cu group, α′ shows changes of 320% to
510%, and β′ of 19% to 62%.
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The following abbreviations are used in this manuscript:171

172

RUS Resonant ultrasound spectroscopy
TEM Transmission electron microscopy
XRD X-ray diffraction
SHG Second harmonic generation
NRUS Nonlinear resonant ultrasound spectroscopy
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