

1 Article

2

Multifunctional platform based on electroactive 3 polymers and silica nanoparticles for tissue 4 engineering applications

5 **Sylvie Ribeiro^{1,2}, Tânia Ribeiro^{3,4}, Clarisse Ribeiro^{1,5,*}, Daniela M. Correia^{6,7}, João P. Sequeira
6 Farinha^{3,4}, Andreia Castro Gomes², Carlos Baleizão^{3,4} and Senentxu Lanceros-Méndez^{7,8}**7 ¹ Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.8 ² Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057
9 Braga, Portugal.10 ³ Centro de Química-Física Molecular and Institute of Nanosciences and Nanotechnology, Instituto Superior Técnico,
11 Universidade de Lisboa, 1049-001 Lisboa, Portugal.12 ⁴ Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.13 ⁵ CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710 057 Braga, Portugal.14 ⁶ Chemical Department and CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.15 ⁷ BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa,
16 Spain.17 ⁸ IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

18 * Correspondence: cribleiro@fisica.uminho.pt; Tel.: +351-253406074

20

21 **Abstract:** Poly(vinylidene fluoride) nanocomposites processed with different morphologies, such
22 as porous and non-porous films and fibres, have been prepared with silica nanoparticles (SiNPs) of
23 varying diameter (17, 100, 160 and 300 nm) which in turn have encapsulated perylenediimide
24 (PDI), a fluorescent molecule. Structural, morphological, optical, thermal, and mechanical
25 properties of the nanocomposites, with SiNP filler concentration up to 16 wt% were evaluated.
26 Further, cytotoxicity and cell proliferation studies were performed. All SiNPs are negatively
27 charged independently of the pH and more stable from pH 5 upwards. The SiNPs introduction
28 within the polymer matrix increases the contact angle independently of the nanoparticle diameters
29 and the smallest ones (17 nm) improve the PVDF Young modulus from 0.94 ± 0.04 GPa for the
30 pristine polymer film to 1.05 ± 0.06 GPa. Varying filler diameter, physico-chemical, thermal and
31 mechanical properties of the polymer matrix were not significantly affected. Finally, the SiNPs
32 inclusion does not induce cytotoxicity in murine myoblasts (C2C12) after 72 h of contact and
33 proliferation studies reveal that the prepared composites represent a suitable platform for tissue
34 engineering applications, as they allow to combine the biocompatibility and piezoelectricity of the
35 polymer with the possible functionalization and drug encapsulation and release of the SiNP.36 **Keywords:** Nano-structures; Polymer-matrix composites (PMCs); Mechanical properties; Thermal
37 properties

38

39

1. Introduction

40 The development of advanced multifunctional materials is essential for the development of
41 society [1]. Nanocomposites are among the most important materials for an increasing number of
42 applications due to the possibility of designing materials with tailored properties meeting specific
43 application demands in areas ranging from automotive [2-3] to food packaging [4-5] and tissue
44 engineering [6-7], among others. The introduction of inorganic nanomaterials into polymers allows

45 the combination of the rigidity and high thermal stability of the inorganic material with the
46 ductility, flexibility and processability of the organic polymers [8], as well as the
47 introduction/tuning of further functionalities such as magnetic [9] or electrical properties [10].
48 Typical nanomaterials include nanoparticles, nanotubes, nanofibres, fullerenes and nanowires [11].
49 Among nanomaterials, silica is widely present in the environment and has several key features [12].

50 Properties of silica nanoparticles, such as high mechanical strength, permeability, thermal and
51 chemical stability, relatively low refractive index and high surface area, make these nanoparticles
52 highly interesting for applications [13]. Further, their biocompatibility and the different possibilities
53 to functionalize them are at basis of their large potential for biomedicine and tissue engineering
54 applications [14]. Silica nanostructures have been extensively used as supports or carriers in drug
55 delivery [15-16], nanomedicine [17-18] or bioanalysis [19]. Their characteristics can be tuned during
56 synthesis to obtain a wide range of particle diameters ranging from 20 to 500 nm, different pore sizes
57 and the incorporation of molecules such as drugs or fluorophores [19], as well as magnetic
58 nanostructures [20]. Mesoporous silica nanoparticles (MSNPs) [15, 21] have attracted particular
59 attention for their functionalization versatility. Silica-based mesoporous nanoparticles, due to the
60 strong Si-O bond compared to niosomes, liposomes and dendrimers, are more resistant to
61 degradation and mechanical stress, inhibiting the need of any external stabilization of the MSNPs
62 [22-23].

63 With respect to tissue engineering, different tissues require different microenvironments for
64 suitable regeneration [24]. Thus, muscle tissue has electromechanical response and needs electrical
65 stimulation to support ionic exchange, mainly sodium by calcium ion [25]. In this context,
66 electroactive polymers such as magnetoelectric [26-27], piezoelectric and conductive polymers [28],
67 among others [29], show strong potential for tissue engineering applications. Among the different
68 electroactive polymers, piezoelectric polymers have already shown their suitability for tissue
69 engineering [6, 24] due to their capacity to vary surface charge when a mechanical load is applied or
70 vice versa. These materials can play a significant role because the electric stimulation can be found in
71 many living tissues of human body, namely neural [30] and bone [31-32], and it can provide the
72 electromechanical solicitations for muscle [33]. Poly(vinylidene fluoride) (PVDF) is the
73 biocompatible piezoelectric polymer with the highest piezoelectric response and can be processed in
74 different morphologies, including fibres, spheres, membranes, and 3D scaffolds [24, 34] providing a
75 suitable platform for tissue engineering.

76 In order to further exploit the applicability of PVDF in regenerative medicine, polymer
77 nanocomposites based on PVDF using silica nanoparticles with different diameters were prepared,
78 improving the electroactive characteristics of PVDF with the aforementioned characteristics of
79 MSNPs for biomedical applications. Together with the physico-chemical characteristics of the
80 developed composites, their biocompatibility was evaluated in murine myoblast cells.

81 **2. Materials and Methods**

82 *2.1. Materials*

83 PVDF (Solef 1010) was purchased from Solvay, N,N-dimethylformamide (DMF) from Merck.
84 Absolute ethanol (EtOH, Panreac, 99.5%), ammonium hydroxide solution (NH4OH, 28% in water,
85 Fluka) and tetraethyl orthosilicate (TEOS, Aldrich, 99%) were used as received. Deionized water
86 from a Millipore system Milli-Q $\geq 18 \text{ M}\Omega \text{ cm}$ was used in the synthesis of the silica nanoparticles.
87 Perylenediimide derivative (PDI) was synthesized according to the literature [35].

88 *2.2. Silica nanoparticles*

89 *2.2.1. Preparation of the silica nanoparticles*

90 Fluorescent silica nanoparticles, doped with PDI were prepared by a modified Stöber method
91 [36-37]. Water, absolute ethanol, and PDI (previously dispersed in ethanol, $1 \times 10^{-6} \text{ M}$) were mixed
92 and after 30 min the ammonia solution was added to the mixture, followed by TEOS. The reaction

93 was kept under stirring at constant temperature for 24 h. After that time, the nanoparticles were
94 recovered and washed with ethanol (3 cycles of centrifugation). The nanoparticles were redispersed
95 in ethanol and dried at 50 °C in a ventilated oven. The experimental details are provided in Table 1.

96 **Table 1** - Experimental details used for the preparation of the SiNPs.

Particle diameter (nm)	EtOH (g)	H ₂ O (g)	PDI solution (mL)	NH ₃ (mL)	TEOS (mL)	Reaction temperature (°C)
17	84.13	7.99	3	1.51	4.46	50
100	105.73	4.65	4	6.68	9.00	30
160	53.18	11.03	4	2.67	4.46	50
300	53.18	11.03	4	2.67	4.46	30

97

98 2.2.2. Characterization of the SiNPs

99 Transmission electron microscopy: Transmission electron microscopy (TEM) images were
100 obtained on a Hitachi transmission electron microscope (model H-8100 with a LaB6 filament) with
101 an acceleration voltage of 200 kV. One drop of the dispersion of particles in ethanol was placed on a
102 carbon grid and dried in air before observation. The images were processed with the Fiji software.

103 Zeta potential: The surface charge of the nanoparticles was estimated with the use of zeta
104 potential (Zetasizer NANO ZS-ZEN3600, Malvern). The zeta potential of the fluorescent SiNPs with
105 different diameters were evaluated at different pH (3, 5, 7, 11, 13). To adjust the pH, it was used a
106 solutions of HCl (1M) and NaOH (1M). The average value and standard deviation for each sample
107 were obtained from 6 measurements.

108

109 2.3. *Nanocomposite samples*

110 2.3.1. Preparation of the SiNPs/PVDF nanocomposites

111 SiNPs/PVDF nanocomposites with 16 wt % of SiNPs were prepared by dispersing the
112 respective mass of SiNPs in the DMF solvent within an ultrasound bath for 4 h at room temperature.
113 The filler concentration was selected based in [38], as it shows a suitable filler content without
114 compromising the mechanical characteristics of the polymer matrix and allowing a suitable
115 dispersion of the filler. After obtain a good dispersion of the nanoparticles, PVDF was added with a
116 concentration of 15% (w/w) and the solution was magnetically stirred at room temperature until the
117 complete dissolution of the polymer. The materials were then prepared by different production
118 methods [34].

119 First, SiNPs/PVDF samples (porous and non-porous films) were prepared by solution casting
120 on a clean glass substrate and, in some cases, melted at different temperatures for different times
121 (table 2). The different preparation conditions allow to tailor both porosity and to study the
122 possibility of the nucleation of the electroactive β-phase of the polymer by the fillers [39]. The
123 thickness of the films ranges from 30 to 50 μm.

124

125

126

127

128 **Table 2** - Denomination, relevant preparation conditions and morphology of the PVDF and
 129 nanocomposite samples prepared in this work.

Morphology	Temperature (°C)	Time to melt/dry	Diameter of the nanoparticles	Samples morphology (P: porous; NP: non-porous)	Denomination
Films (F)	90	30	---	NP	F90-NP
			17	NP	F90-17NP
			100	NP	F90-100NP
			160	NP	F90-160NP
			300	NP	F90-300NP
	210	10	17	NP	F210-17NP
	Room temperature (Tamb)	----		P	FTamb-17P
Oriented fibres (O)	----	----		P	O-17P
Random fibres (R)	----	----		P	R-17P

130

131 For SiNPs/PVDF electrospun fiber mats, the solution was placed in a plastic syringe (10 mL)
 132 fitted with a steel needle with inner diameter of 0.5 mm. After an optimization procedure,
 133 electrospinning was conducted with a high voltage power supply from Glasman (model
 134 PS/FC30P04) at 14 kV with a feed rate of 0.5 mL·h⁻¹ (with a syringe pump from Syringepump). The
 135 electrospun fibres were collected in an aluminum plate (placed at 20 cm from the needle) and in a
 136 rotating drum (1500 rpm) to obtain random and oriented nanofibres, respectively.

137 Table 2 summarizes the main characteristics of the samples and the corresponding
 138 denomination that refers the type of sample and processing temperature, the nanoparticle diameter
 139 and the composite morphology. For example, F90-17NP is a film (F) obtained at 90 °C (90) with
 140 nanoparticles with a diameter of 17 nm (17), which is non-porous (NP).

141

142 2.3.2. Characterization of the nanocomposite samples

143 Scanning electron microscopy: A desktop scanning electron microscope (SEM) (Phenom ProX,
 144 Netherlands) was used to observe the morphology and microstructure of the PVDF and
 145 SiNPs/PVDF nanocomposites. This technique was also used to observe the cell morphology seeded
 146 on the different fibrous samples. All the samples were added to the aluminium pin stubs with
 147 electrically conductive carbon adhesive tape (PELCO TabsTM). The aluminium pin stub was then
 148 placed on a phenom Charge Reduction sample Holder. All results were acquired using the ProSuite
 149 Software. The images were obtained with an acceleration voltage of 10 kV. All results were acquired
 150 using the ProSuite software.

151 Laser scanning confocal fluorescence microscopy: Laser scanning confocal fluorescence
 152 microscopy (LSCFM) images were obtained with a Leica TCS SP5 laser scanning microscope (Leica
 153 Microsystems CMS GmbH, Mannheim, Germany) using an inverted microscope (DMI6000), a HCX
 154 PL APO CS 10x dry immersion objective (10x magnification and 0.4 numerical aperture) and a HC
 155 PL FLUOTAR 50x dry immersion objective (50x magnification and 0.8 numerical aperture). Imaging
 156 used the 488 nm line of an argon ion laser.

157 Contact angle measurements: Water contact angle (CA) measurements (sessile drop in dynamic
 158 mode) were performed at room temperature in a Data Physics OCA20 set up using ultrapure water
 159 as the test liquid. The samples wettability was determined by using water drops (3 µL) placed onto

160 the surface of the samples. Each sample was measured at six different locations and the mean contact
161 angle and standard deviation were calculated.

162 Fourier transform infrared spectroscopy: Fourier transform infrared spectroscopy (FTIR)
163 measurements in attenuated total reflectance (ATR) were performed at room temperature, using a
164 Nicolet Nexus 670 FTIR-spectrophotometer with Smart Orbit Accessory equipment. The analysis
165 was performed from 4000 to 600 cm^{-1} , after 64 scans with a resolution of 4 cm^{-1} . The spectra of each
166 sample was used to determine the relative content of the electroactive β -phase in the composite
167 samples, by using the method presented in [39]. In short, the β -phase content (F_β) was calculated by
168 equation 1.

169

$$F_\beta = \frac{A_\beta}{\left(\frac{K_\beta}{K_\alpha}\right) \times A_\alpha + A_\beta} \quad (1)$$

170 where A_β are the absorbance at 840 cm^{-1} and $K_\beta = 7.7 \times 10^4 \text{ cm}^2 \cdot \text{mol}^{-1}$ is the absorption coefficients
171 and correspond to the β phase. A_α is the absorbance at 760 cm^{-1} and $K_\alpha = 6.1 \times 10^4 \text{ cm}^2 \cdot \text{mol}^{-1}$ is the
172 absorption coefficient, and correspond to the α phase.

173 Thermal properties: Differential scanning calorimetry (DSC) was carried out with a DSC 6000
174 Perkin Elmer instrument. The samples were heated from 30 to 200 $^\circ\text{C}$ at a rate of 10 $^\circ\text{C} \cdot \text{min}^{-1}$ under a
175 flowing nitrogen atmosphere. Samples were cut from the middle region of the samples and placed in
176 aluminum pans.

177 From the melting in the DSC thermograms, the degree crystallinity (X_c) of the samples was
178 calculated by the following equation 2 [39].

179

$$X_c = \frac{\Delta H_f}{x\Delta H_\alpha + y\Delta H_\beta} \quad (2)$$

180 where ΔH_f is the melting enthalpy of the sample, x and y represent the α and β phase contents
181 present in the sample, respectively, and ΔH_α and ΔH_β are the melting enthalpies for a 100%
182 α -PVDF (93.04 $\text{J} \cdot \text{g}^{-1}$) and β -PVDF (104.4 $\text{J} \cdot \text{g}^{-1}$) crystalline samples respectively.

183 Mechanical characterization: Mechanical measurements were performed with a universal
184 testing machine (Shimadzu model AG-IS) at room temperature, in tensile mode at a test velocity of 1
185 mm.min⁻¹, with a load cell of 50 N. The tests were performed on rectangular samples (30 x 10 mm)
186 with a thickness between 30 and 50 μm (Fischer Dualscope 603-478, digital micrometer). The Hook's
187 mechanical parameters were calculated from the average of triplicate measurements. The Hook's
188 law was used to obtain the effective Young's modulus (E) of PVDF and SiNPs/PVDF nanocomposite
189 samples in the linear zone of elasticity between 0 and 1% strain.
190

191 2.4. Cell culture experiments

192 2.4.1. Sample sterilization

193 The samples were sterilized by multiple immersions into 70% ethanol for 30 min each and to
194 remove any residual solvent, they were washed 5 times in a phosphate buffered saline (PBS) 1x
195 solution for 5 min each. Each side of the samples was then exposed to ultraviolet (UV) light for 1 h.
196

197 2.4.2. Cell culture

198 Murine myoblasts (C2C12 cell line) were cultivated in Dulbecco's Modified Eagle's Medium
199 (DMEM, Gibco) with 4.5 g.L⁻¹ containing 10% of Fetal Bovine Serum (FBS, Biochrom) and 1% of
200 Penicillin/Streptomycin (P/S, Biochrom). The cells were grown in 75 cm^2 cell-culture flask at 37 $^\circ\text{C}$ in
201 a humidified air containing 5% CO₂ atmosphere. Every two days, the culture medium was changed.
202 The cells were trypsinized with 0.05% trypsin-EDTA when reached 60-70% confluence. For the

203 cytotoxicity assays, SiNPs/PVDF nanocomposites with different morphologies were cut according
204 the ISO_10993-12. The extraction ratio (surface area or mass/volume) was $6 \text{ cm}^2 \cdot \text{mL}^{-1}$. To analyze cell
205 morphology and viability, the materials were cut into 6 mm of diameter. PVDF films without
206 nanoparticles were used as control.

207

208 **2.4.3. Cytotoxicity assay by the indirect contact**

209 C2C12 cells were seeded at the density of $2 \times 10^4 \text{ cells} \cdot \text{mL}^{-1}$ in 96-well tissue culture polystyrene
210 plates. Cells were allowed to attach for 24 h, after which the culture medium was removed and the
211 conditioned medium (the medium that was in contact with the samples) was added to the wells
212 (100 μL). Afterwards, the cells were incubated for 24 or 72 h, and the number of viable cells was
213 quantified by (3 (4,5 Dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide) (MTT) assay. The cells
214 received MTT solution (5 mg $\cdot \text{mL}^{-1}$ in PBS dissolved in DMEM in proportion of 10%) and were
215 incubated in the dark at 37 °C for 2 h. The medium was then removed and 100 μL of DMSO/well was
216 added to dissolve the precipitated formazan. The quantification was determined by measuring the
217 absorbance at 570 nm using a microplate reader. All quantitative results were obtained from four
218 replicate samples and controls and were analyzed as the average of viability \pm standard deviation
219 (SD).

220

221 **2.4.4. Direct contact and Proliferation**

222 Since MTT interferes with the materials, it had chosen the MTS that having the same theoretical
223 base but with soluble reaction product. C2C12 cells (4000) were seeded on each samples. After 24 h
224 and 72 h, the viable cell number was determined using the
225 (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS)
226 assay. At the desired time points, the MTS reagent was added into each well in proportion of 1 part
227 to 5 of DMEM medium, and incubated at 37 °C for 2 h. The absorbance was detected at 490 nm with
228 a microplate reader. Experimental data were obtained from four replicates.

229

230 **2.4.5. Immunofluorescence staining**

231 Using the same time-points as in the proliferation assays, the nanocomposite samples were
232 subjected to immunofluorescence staining to analyse the cytoskeleton morphology of the cells,
233 verifying also the cell viability and adhesion. At each time point, the medium of each well was
234 removed, the samples were washed with PBS and the cells fixed with 4% formaldehyde for 10 min at
235 37 °C in a 5% CO₂ incubator. After fixation, the samples were washed with PBS 1x (three times) and
236 incubated for 45 min at room temperature in 0.1 $\mu\text{g mL}^{-1}$ of green phalloidin (Sigma). Then, the
237 samples were incubated for 5 min with 1 $\mu\text{g mL}^{-1}$ of 4,6-diamidino-2-phenylindole (DAPI, Sigma).
238 Afterwards, the samples were washed again with PBS 1x (three times) and one time with distillate
239 water. Finally, the samples were visualized in a fluorescence microscopy (Olympus BX51
240 Microscope).

241

242 **3. Results and Discussion**

243 **3.1. Silica nanoparticles**

244 **3.1.1. Morphology and size of the nanoparticles**

245 The morphology and the size of the SiNPs were analyzed from TEM images (figure 1). The
246 spherical nanoparticles prepared by the Stober method [40] were prepared in four different

247 diameters: 17 ± 2 , 100 ± 18 , 160 ± 17 and 300 ± 37 nm. The corresponding histograms are presented as
 248 insets in figure 1.

249

250 **Figure 1** - TEM images of SiNPs-PDI with different particle size: a) 17 ± 2 nm, b) 100 ± 18 nm, c)
 251 160 \pm 17 nm and d) 300 ± 37 nm.

252

253 3.1.2. Surface charge of the nanoparticles

254 Figure 2 shows the zeta potential of aqueous dispersions of the different SiNPs at different pH
 255 to analyze the periphery charge of the particles.

256

257 **Figure 2** - Zeta potential of the different SiNPs nanoparticles at different pH.

258

259 The particles are considered more stable with a zeta potential above +30 mV or below -30 mV.
 260 This fact is due to the electrostatic repulsions between the nanoparticles that prevent their
 261 aggregation. Figure 2 shows that all nanoparticles are more stable at $\text{pH} \geq 5$, independently of their
 262 average diameter. On the other hand, nanoparticles with higher average diameters are more stable.
 263 The isoelectric point of SiNPs is close to pH 2 so, from this pH upwards, the silica nanoparticles are
 264 negatively charged in acidic, neutral and basic environments, which can be taken to advantage, as it
 265 has been demonstrated that the interactions between negatively charged nanoparticle surfaces and
 266 the positive charge density of the CH_2 groups of the PVDF polymer, can promote the nucleation of
 267 the electroactive β -phase of the polymer [41].

268

269 3.2. *SiNPs/PVDF nanocomposite samples*

270 3.2.1. Morphology of the nanocomposites

271 The morphology of the nanocomposites was assessed by SEM. Figure 3 shows the different
272 morphologies obtained after the different processing methods as well as the variations due to the
273 introduction of fillers with different diameters. Figure 3 shows the cross section (figure 3a-3c) of the
274 nanocomposites and electrospun fibres samples (figure 3d) with 16 wt% of SiNPs. Figures 3a and 3b
275 present the differences between the samples obtained at 90 °C with SiNPs of different diameters,
276 showing that the higher diameter particles are well-dispersed in the PVDF polymer matrix, contrary
277 to the SiNPs with lower diameter that present particles agglomerates. Furthermore, a small porosity
278 is observed (figure 3a), which is in agreement with the literature [42].

279 It is to notice that the nanoparticles act as nucleation agents for crystallization in PVDF
280 composites [43], which can be verified with the results obtained, indicating a good interfacial
281 interaction between the PVDF chains and silica nanoparticles.

282 Figure 3a and 3c show the differences in composite morphology due to the crystallization
283 process. The samples obtained at 90 °C (figure 3a and 3b) present a slightly more porous
284 morphology than the ones obtained at 210 °C (figure 3c).

285

286 **Figure 3** - Cross section SEM micrographs of SiNPs/PVDF nanocomposite samples with
287 nanoparticles of different diameters and different processing conditions: a) F90-17NP, b) F90-300NP,
288 c) F210-17NP, d) R-17P.

289

290 Once the SiNPs with 17 nm do not show a suitable dispersion in the films, electrospinning has
291 been used in order to produce fibres with well dispersed particles. Relatively to the fibres (figure 3d),
292 smooth randomly oriented fibres with encapsulated particles are observed, with no particles at the
293 surface.

294 This result is confirmed by the confocal images represented in figure 4. It was observed that the
295 introduction of the particles increase the fibre diameter (243 ± 89 nm to 339 ± 92 nm). Oriented fibres
296 with SiNPs were also produced (data not shown), verifying also the particles encapsulation within
297 the fibres and fibre diameter of 683 ± 140 nm. The increase of fibre diameter with the incorporation of
298 the SiNPs is attributed to the higher viscosity of the solution, with also hinders fibre stretching by the
299 applied field. The higher diameter of the oriented fibres comparatively to the randomly oriented
300 fibres is attributed to the merging of aligned fibrils that crystallize simultaneously [44].

301

302 **Figure 4** - Representative confocal images of SiNPs/PVDF nanocomposites with different
 303 morphologies: a) F210-17NP, b) F90-17NP, c) Ftamb-17P, d) O-17P and e) R-17P.

304

305 3.2.2. Confocal fluorescence microscopy of the nanocomposites

306 The incorporation of PDI in the silica nanoparticles can increase their application range, in
 307 particular, for biomedical applications, as it allows their tracking and localization [37, 45]. In figure 4,
 308 the green colour identifies the fluorescence of the nanoparticles, higher colour intensity indicates a
 309 higher number of nanoparticles present. Figures 4a, 4b and 4c show that as the processing
 310 temperature decreases, a larger aggregation of nanoparticles is observed. In figure 4a, where the
 311 temperature is higher, more homogeneous samples were obtained.

312 Relatively to the oriented and random fibres, figure 4d and 4e, respectively, it is observed that
 313 the nanoparticles are present and included within the fibres.

314

315 3.2.3. Wettability of the nanocomposites

316 Material surface characteristics are essential in demining cell response in tissue engineering
 317 applications. In this sense, the static CA was measured on the different SiNPs/PVDF nanocomposites
 318 and the values are presented in figure 5.

319

320

321 **Figure 5** - Contact angle of the SiNPs/PVDF nanocomposites: a) PVDF with the SiNPs with
 322 different diameters processed at 90 °C and b) SiNPs/PVDF samples with silica nanoparticles (17 nm)
 323 with different morphologies.

324

325 The introduction of the Si nanoparticles increases the CA values, independently of the diameter
 326 of the silica nanoparticles [13], to around 100° excepting for the samples with silica nanoparticles

327 with the highest diameter (F90-300NP). This increase is attributed to the hydrophobic properties of
 328 the silica nanoparticles [13]. The CA of the samples with the nanoparticles with the highest diameter
 329 show a higher range of CA values, which is explained by the variation in the diameter of the
 330 nanoparticles, as observed in figure 1. Regarding figure 5b, the CA for the composite samples with
 331 the smallest silica nanoparticles show that the CA of PVDF fibres increases significantly when
 332 compared to the one of PVDF films, and the CA of the oriented PVDF fibres is slightly higher than
 333 the one for randomly oriented PVDF fibres, showing a contact angle of $146.0 \pm 7.2^\circ$. These results
 334 support the idea that the increase of the hydrophobicity of electrospun samples is mainly related to
 335 the membrane morphology [8], the fibres being significantly more hydrophobic than films. In the
 336 case of PVDF films, the CA is also higher for the films with higher porosity as already reported for
 337 pristine films [38].
 338

339 3.2.4. Structural properties and electroactive phase content of the nanocomposites

340 FTIR-ATR spectra allow to identify and quantify (equation 2) the polymer phase present in the
 341 samples and, therefore, to evaluate possible modifications induced by the introduction of silica
 342 nanoparticles (Figure 6).

343

344 **Figure 6** - FTIR spectra of a) neat PVDF and SiNPs/PVDF nanocomposites with silica
 345 nanoparticles of different diameters processed at 90 °C and b) different morphologies of SiNPs
 346 nanocomposites prepared with the smallest nanoparticles. The β-phase content for the different
 347 sample is represented in c) and d).

348

349 Figure 6a shows the FTIR spectra of the different samples prepared at 90 °C as well as the
 350 corresponding quantification of the β-phase content (figure 6c, calculated after equation 1). The
 351 characteristic bands of β PVDF (840 cm^{-1}) is present in all samples, with low traces of α-PVDF (bands
 352 at $766, 855 \text{ cm}^{-1}$), with the exception of F210-17NP. This is mainly attributed to the processing
 353 temperature [42], which mainly governs the solvent evaporation kinetics and the polymer
 354 crystallization in the β phase for processing at temperatures below 90 °C [39]. The introduction of
 355 SiNPs in PVDF does not significantly change the β-phase content, independently of the SiNPs
 356 content and average diameter. The β-phase value of pristine PVDF is $83 \pm 3.3\%$ and for the

357 nanocomposites F90-17NP, F90-100NP, F90-160NP and F90-300NP, is 62 ± 2.5 , 91 ± 3.6 , 79 ± 3.1 and
 358 74 ± 3 , respectively (figure 6c). On the other hand, figure 6d shows that depending on the
 359 nanocomposites morphology, the polymer crystallizes in different phase, mainly due to the different
 360 processing conditions. Thus, electrospinning involves room temperature solvent evaporation and
 361 polymer stretching during jet formation, both favorable conditions for the crystallization of the
 362 polymer fibres in the β phase [44]. With respect to the films, the F210-17NP nanocomposite, which is
 363 processed by a melting and recrystallization process, crystallizes in the α -phase and shows that the
 364 addition of SiNPs does not induce the nucleation of the electroactive β -phase of the polymer, as
 365 observed in previous study with Fe_3O_4 spherical nanoparticles [46]. On the other hand, the porous
 366 samples, as well as the fibres, are prepared after solvent evaporation at room temperature,
 367 conditions leading to the crystallization in the β -phase. This fact is not affected by the introduction of
 368 the nanoparticles. Thus, it is concluded that the presence of the nanoparticles does not induce strong
 369 interactions with the polymer chain, leading to the nucleation of a specific phase, as observed with
 370 other fillers such as CoFe_2O_4 [47] and NaY zeolite [48]. Thus, processing temperature and
 371 solvent/polymer ratio remains the main factor determining polymer phase content in those
 372 composites [34, 39].
 373

374 3.2.5. Thermal behaviour of the nanocomposites

375 The DSC scans allow to determine the melting temperature and the degree of polymer
 376 crystallinity (figure 7).
 377

378 **Figure 7** - a) DSC thermographs and b) degree of crystallinity of the SiNPs/PVDF
 379 nanocomposites with different morphologies and with the fillers of lowest average diameter.

380
 381 All the samples show an endothermic peak around 168 °C corresponding to the polymer
 382 melting of the crystalline phase [39], thus, both processing conditions and incorporation of the filler
 383 does not affect the melting temperature. The degree of crystallinity was calculated (equation 2) from
 384 the enthalpy of the melting peak of the DSC thermograms. It is not notice that the samples prepared
 385 by solvent evaporation at 90 °C and after melting and recrystallization show a lower degree of
 386 crystallinity than the samples prepared by solvent evaporation at room temperature, which also
 387 includes the electrospun samples (figure 7b). The pristine PVDF film processed at 90 °C shows a
 388 degree of crystallinity of $\approx 40\%$, which slightly increases with the introduction of the SiNPs and with
 389 the size of the SiNPs, being 43% for F90-17NP and 55% for F90-160NP (data not shown). Relatively to
 390 the different morphologies (figure 7a), the endothermic peak value is lower for the sample processed
 391 at 210 °C, indicating a lower degree of crystallinity if the sample, attributed to the fillers acting as
 392 defects during the crystallization from the melt [49]. Inclusion of the nanoparticles in the fibres does
 393 not significantly alters the crystallinity degree of the O-17P (52%) and R 17P (49%) with respect to the
 394 pristine polymer oriented fibres (50% [8]).

395 The latter is ascribed to the combined effect of solvent evaporation at room temperature and
 396 stretching during the crystallization process that overcome the effect of the presence of NP.
 397

398 3.2.6. Mechanical properties of the nanocomposites

399 The mechanical properties of the materials are essential parameters to design a scaffold suitable
 400 for tissues with different mechanical characteristics. The characteristic mechanical strain-stress
 401 curves of samples with different morphology, filler type and content are presented in figure 8.

402 Figure 8a shows the stress-strain curves for the nanocomposites prepared with fillers with
 403 different average diameter after a melting process and figure 8b refers to the nanocomposites with
 404 the same SiNPs (17 nm) after different processing conditions. Independently of the filler average
 405 diameter or processing conditions all samples show the typical mechanical behaviour of PVDF [50]
 406 characterized by the elastic region, yielding and plastic region, i.e. the typical behaviour of a
 407 thermoplastic elastomer.

408 **Figure 8** - Stress-Strain curves for a) SiNPs/PVDF nanocomposites with different SiNPs average
 409 diameters within the PVDF matrix and b) for nanocomposites obtained after different processing
 410 conditions.

411
 412 The Young modulus of the samples was calculated from the linear zone of elasticity between 0
 413 and 1% strain, as presented in table 3.
 414

415 **Table 3** - Young modulus of the SiNPs/PVDF nanocomposites varying the average diameters of the
 416 SiNPs and the processing method. The values shown as mean \pm SD.

Samples	E (GPa)	Different production methods
F210-17NP	1.05 \pm 0.06	
F90-17NP	0.95 \pm 0.04	
FTamb-17P	0.74 \pm 0.07	
O-17P	0.082 \pm 0.012	
R-17P	0.032 \pm 0.002	

Samples	E (GPa)	Increasing NPs diameters
F210-NP	0.94 \pm 0.04	
F210-17NP	1.05 \pm 0.06	
F210-100NP	0.89 \pm 0.09	
F210-160NP	0.86 \pm 0.02	
F210-300NP	0.88 \pm 0.08	

424 The characteristic features of the strain-stress curves are similar for all the materials,
 425 demonstrating that the mechanical characteristics are not strongly dependent on nanoparticle
 426 diameter. Further, the introduction of particles with different diameters does not significantly affect
 427 the Young modulus of the pristine PVDF (F210-NP) - 0.94 \pm 0.04 GPa. However, a slight

428 improvement of the Young modulus is observed for the samples prepared with smaller silica
 429 nanoparticles (F210-17NP): 1.05 ± 0.06 GPa, this is in line with reports showing that the modulus
 430 increases as the particle size decreases [51]. Relatively to the different production methods for the
 431 polymer films, F210-NP, F90-17NP and FTamb-17P, it is observed that the more porous is the
 432 structure, the lower is the Young modulus, 0.83 ± 0.16 GPa for FTamb-17P. On the other hand,
 433 oriented fibres (O-17P) show higher Young modulus (0.082 ± 0.012 GPa) than the random fiber
 434 samples (R-17P) (0.032 ± 0.002 GPa) due to the larger number of fibres along the stretch direction [8].
 435

436 Relatively to the other samples, the production method has a relevant influence on their
 437 mechanical response, as the samples prepared at room temperature by solvent evaporation showing
 438 lower Young modulus than those obtained at 210°C , due to the porous nature of the former and the
 439 compact structure of the later, as was also visible in the SEM images (figure 3).
 440

440 3.3. Cell culture studies

441 In order to explore the potential use of the developed materials in tissue engineering
 442 applications, it is necessary to evaluate the putative cytotoxicity of the samples. The study of
 443 metabolic activity of C2C12 myoblasts, evaluated with the MTS assay, was applied to all samples
 444 and the results for 24 and 72 h are presented in figure 9. Thus, the effects associated with introducing
 445 fluorescent SiNP with different sizes is analyzed as well as the effect of the different
 446 microstructures/morphologies.
 447

448 **Figure 9** - Cytotoxicity indirect test of a) samples prepared with nanoparticles of different
 449 diameters and prepared by solvent evaporation at 90°C and b) samples prepared with SiNPs of
 450 17 nm diameter after different processing methods and therefore with different morphologies.
 451

452 It has been already reported that PVDF is biocompatible and shows no cytotoxicity to C2C12
 453 cells for 24 or 72 h [24, 33]. The SiNPs are also biocompatible for many cells including C2C12
 454 myoblasts [52-54].
 455

456 Thus, figure 9 shows that none of the samples are cytotoxic, independently of the nanoparticle
 457 diameter and of the material morphology. It is to notice that despite both materials being
 458 biocompatible, the result is not evident, as polymer-filler interface effects or solvent retained in the
 459 nanoparticles or in the interface areas, can lead to cytotoxic effects. According to the ISO standard
 460 10993-5, samples are considered cytotoxic when cells suffer a viability reduction larger than 30%.
 461 The measured cell viability values are all higher than 70%, confirming the cytocompatibility of the
 462 SiNPs/PVDF nanocomposites.
 463

464 C2C12 myoblasts were used in previous studies to analyze cell proliferation of cultures grown
 465 on porous [55] and non-porous [33] PVDF films as well as fibres [33], with the verification that
 466 C2C12 cells proliferate better on piezoelectric β -PVDF “poled” samples. The samples obtained in
 467 this work were studied to determine the suitability for tissue engineering applications, namely
 468 muscle tissue.
 469

467 The MTS (figure 10), immunofluorescence (figure 11) and SEM (figure 12) assays were used to
 468 assess cell viability and morphology in the different samples. Relatively to the proliferation results
 469 (Figure 10), the cell viability has been obtained in relation to the sample of F90-NP at 24 h.
 470

471
$$\text{Cell Viability (\%)} = \left(\frac{\text{Absorbance of samples at 72h}}{\text{Absorbance of F90-NP at 24h}} \times 100 \right) - \text{cell viability of F90-NP at 24h} \quad (3)$$

472
 473 Figure 10 shows that cell viability of the samples increases after 72 h of cell culture,
 474 independently of the SiNPs diameters (figure 10a) and the morphology of the materials (figure 10b),
 475 when compared with the sample without particles (F90-NP). No significant differences are observed
 476 between the samples and the negative control (F90-NP), revealing that C2C12 myoblast proliferation
 477 is not affected by the presence of SiNPs in the PVDF matrix. In fact, it has been reported that SiNPs
 478 included in different polymers improves cell attachment and proliferation, and enhances cellular
 479 processes [56-57], which is in agreement with the obtained results.
 480

481 **Figure 10** - Cell proliferation of C2C12 cells seeded on a) SiNPs/PVDF samples prepared at
 482 90 °C with different sized nanoparticles and b) SiNPs/PVDF samples with different morphologies.
 483

484 Cell cytoskeleton morphology, viability and adhesion were analyzed by fluorescence
 485 microscopy for porous and non porous films and SEM for fibre samples.
 486

487 Independently of the nanoparticles diameters and the sample morphology, it is observed that
 488 the cell behavior is similar. Bigger cell agglomerates are observed with increasing nanoparticles
 489 diameter (which also show larger nanoparticle agglomerates) on the samples (figure 11 a-d). This
 490 fact is associated with the interaction between serum proteins and nanoparticles present on the
 491 PVDF matrix, as it has been reported that negative surface charge enhance the adsorption of proteins
 492 with isoelectric point more than 5.5 such as immunoglobulin G (IgG) that can be important for
 493 C2C12 myoblasts [58-59]. Cell cultures on PVDF fibres prepared with the smaller silica nanoparticles
 494 were analyzed by SEM and figure 12 shows the cell morphology of C2C12 cells after 72 h of cell
 495 culture on oriented and random PVDF fiber nanocomposites.

496

497 **Figure 11-** Representative images of C2C12 myoblast culture after 72 h on a) F90-17NP, b)
498 F90-100NP, c) F90-160NP, d) F90-300NP, e) F210-17NP and f) FTamb-17P samples (nucleus stained
499 with DAPI-blue and cytoskeleton stained with FITC-green). Scale bar = 100 μ m for all the samples.

500

501 These representative images demonstrate that in the presence of fibrillar microstructure the
502 muscle cells orientate their cytoskeleton along the fibres, which is in agreement with the literature
503 [33]. In this way, in the presence of oriented fibres, the cells share a similar architecture to the natural
504 muscle cells in living systems.
505

506

507 **Figure 12 -** Cell morphology obtained by SEM of C2C12 myoblasts seeded on PVDF fibres: a)
508 O-17P and b) R-17P, after 3 days of culture. The scale bar is 200 μ m for all samples.

509

510 Thus, the overall results prove the potential of the use of SiNPs/PVDF piezoelectric
511 nanocomposites for muscle tissue engineering. Physical and chemical stimuli are important factors
512 to obtain tissues with characteristics similar to those of natural living tissues in the human body,
513 developing therefore specific biomimetic microenvironments for different tissues, attending their
514 specific biophysico-chemical needs. The developed platform presents nanocomposites with different
515 morphologies (membranes and fibres), piezoelectric β phase and SiNPs diameter (from 17 to
516 300 nm), which makes it an interesting and complete platform for tissue engineering.

517 Furthermore, this platform will allow further studies applying mechanical stimuli on the
518 nanocomposites obtained in this work with specific bioreactors [31] applying mechanical and/or
519 mechanoelectrical stimuli. It may also take advantage of the SiNPs capacity to include specific
520 biomolecules or to develop drug delivery systems, or more specifically, differentiation factors to
521 promote directed myogenic differentiation. This will allow not only a deeper knowledge of the
522 necessary stimuli for muscle tissue regeneration, but also more effective therapies.

524 5. Conclusions

525 Different parameters are important for tissue engineering, such as materials morphology,
526 porosity and the PVDF electroactive phase, are modified in the obtained membranes.

527 Different diameters of silica nanoparticles have been introduced within PVDF polymer matrix
528 to obtain multifunctional samples for tissue engineering applications.

529 It is observed that the introduction of the SiNPs fillers in the PVDF matrix decreases its
530 wettability. Further, it is shown that the filler diameter does not significantly affects the properties of
531 the polymer matrix, such as physico-chemical, thermal and mechanical properties.

532 Cytotoxicity assays with C2C12 cells show no cytotoxic associated with neat PVDF and
533 composites with different SiNPs diameters and sample morphologies.

534 Thus, it is demonstrated that the developed platform of PVDF materials with silica
535 nanoparticles demonstrates a large potential for tissue engineering applications allowing to develop
536 electromechanically active microenvironments with different morphologies with SiNPs allowing
537 protein functionalization and/or controlled release of specific drugs and/or growth or differentiation
538 factors according the targeted application.

539 **Author Contributions:** S.L.-M. conceived and designed the project. S.R. and T.R. contributed to the processing
540 and characterization of the particles. J.P.C. and C.B. contributed to the characterization of the nanoparticles. S.R.
541 and D.M.C. contributed to the processing and characterization of the samples in the different morphologies.
542 S.R. was in charge of the cell culture assays and their characterization and interpretation. C.R. contributed to the
543 cell culture assays and the interpretation of the cell culture assays. All authors contributed to the evaluation and
544 interpretation of the data, as well as to the writing of the manuscript. All authors agree with the paper
545 submission.

546
547 **Funding:** This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the
548 framework of the Strategic Funding UID/FIS/04650/2013 and UID/BIA/04050/2013
549 (POCI-01-0145-FEDER-007569) and project POCI-01-0145-FEDER-028237 funded by national funds through
550 Fundação para a Ciéncia e a Tecnologia (FCT) and by the ERDF through the COMPETE2020 - Programa
551 Operacional Competitividade e Internacionalização (POCI); and also under the scope of the strategic funding of
552 UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation
553 (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of
554 Norte2020 - Programa Operacional Regional do Norte. The authors also thank the FCT for the
555 SFRH/BD/111478/2015 (S.R.), SFRH/BPD/96707/2013 (T.R.), SFRH/BPD/90870/2012 (C.R.) and
556 SFRH/BPD/121526/2016 (D.C) grants. The authors acknowledge funding by the Spanish Ministry of Economy
557 and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the
558 Basque Government Industry Department under the ELKARTEK and HAZITEK programs.

559
560 **Acknowledgments:** The SEM measurements have been conducted at Center of Biological Engineering (CEB),
561 Braga, Portugal. The authors thank CEB for offering access to their instruments and expertise.

562 **Conflicts of Interest:** The authors declare no conflict of interest.

563 **References**

- 564 1. Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and
565 new application opportunities. *Mater. Res.-Ibero-Am. J. Mater.* **2009**, *12*, 1-39.
- 566 2. Muller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.;
567 Hankin, S.; Bolz, U., *et al.* Review on the processing and properties of polymer nanocomposites and
568 nanocoatings and their applications in the packaging, automotive and solar energy fields. *Nanomaterials* **2017**, *7*,
569 .E74
- 570 3. Raji, M.; Mekhzoum, M.E.M.; Rodrigue, D.; Qaiss, A.E.K.; Bouhfid, R. Effect of silane functionalization on
571 properties of polypropylene/clay nanocomposites. *Compos. B: Eng.* **2018**, *146*, 106-115.
- 572 4. Ribeiro, S.; Costa, P.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Lanceros-Méndez, S. Electrospun
573 styrene-butadiene-styrene elastomer copolymers for tissue engineering applications: Effect of
574 butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties
575 and cytotoxicity. *Compos. B: Eng.* **2014**, *67*, 30-38.
- 576 5. Narayanan, K.B.; Han, S.S. Dual-crosslinked poly(vinyl alcohol)/sodium alginate/silver nanocomposite
577 beads - a promising antimicrobial material. *Food Chemistry* **2017**, *234*, 103-110.
- 578 6. Ribeiro, C.; Sencadas, V.; Correia, D.M.; Lanceros-Mendez, S. Piezoelectric polymers as biomaterials for
579 tissue engineering applications. *Colloids Surf. B* **2015**, *136*, 46-55.
- 580 7. Cardoso, V.F.; Correia, D.M.; Ribeiro, C.; Fernandes, M.M.; Lanceros-Méndez, S. Fluorinated polymers as
581 smart materials for advanced biomedical applications. *Polymers* **2018**, *10*, 161.
- 582 8. Maciel, M.M.; Ribeiro, S.; Ribeiro, C.; Francesko, A.; Maceiras, A.; Vilas, J.L.; Lanceros-Méndez, S. Relation
583 between fiber orientation and mechanical properties of nano-engineered poly(vinylidene fluoride) electrospun
584 composite fiber mats. *Compos. B: Eng.* **2018**, *139*, 146-154.
- 585 9. Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances
586 in magnetic nanoparticles for biomedical applications. *Advanced Healthcare Materials* **2017**, *7*, 1700845.
- 587 10. Xu, D.; Cheng, X.; Banerjee, S.; Huang, S. Dielectric and electromechanical properties of modified
588 cement/polymer based 1-3 connectivity piezoelectric composites containing inorganic fillers. *Compos. Sci. Technol.* **2015**, *114*, 72-78.
- 589 11. Li, Y.; Yang, X.Y.; Feng, Y.; Yuan, Z.Y.; Su, B.L. One-dimensional metal oxide nanotubes, nanowires,
590 nanoribbons, and nanorods: Synthesis, characterizations, properties and applications. *Crit. Rev. Solid State Mater.*
591 *Sci.* **2012**, *37*, 1-74.
- 592 12. Chen, L.; Jia, Z.; Tang, Y.; Wu, L.; Luo, Y.; Jia, D. Novel functional silica nanoparticles for rubber
593 vulcanization and reinforcement. *Compos. Sci. Technol.* **2017**, *144*, 11-17.
- 594 13. Ribeiro, T.; Baleizao, C.; Farinha, J.P.S. Functional films from silica/polymer nanoparticles. *Materials* **2014**,
595 *7*, 3881-3900.
- 596 14. Asefa, T.; Tao, Z.M. Biocompatibility of mesoporous silica nanoparticles. *Chem. Res. Toxicol.* **2012**, *25*,
597 2265-2284.
- 598 15. Rodrigues, A.S.; Ribeiro, T.; Fernandes, F.; Farinha, J.P.S.; Baleizao, C. Intrinsically fluorescent silica
599 nanocontainers: A promising theranostic platform. *Microsc. Microanal.* **2013**, *19*, 1216-1221.
- 600 16. Jiao, J.; Liu, C.; Li, X.; Liu, J.; Di, D.; Zhang, Y.; Zhao, Q.; Wang, S. Fluorescent carbon dot modified
601 mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. *J. Colloid Interface*
602 *Sci.* **2016**, *483*, 343-352.
- 603 17. Burns, A.; Ow, H.; Wiesner, U. Fluorescent core-shell silica nanoparticles: Towards "Lab on a particle"
604 Architectures for nanobiotechnology. *Chem. Soc. Rev.* **2006**, *35*, 1028-1042.
- 605 18. Chen, F.; Hableel, G.; Zhao, E.R.; Jokerst, J.V. Multifunctional nanomedicine with silica: Role of silica in
606 nanoparticles for theranostic, imaging, and drug monitoring. *J. Colloid Interface Sci.* **2018**, *521*, 261-279.
- 607 19. Yan, J.; Estevez, M.C.; Smith, J.E.; Wang, K.; He, X.; Wang, L.; Tan, W. Dye-doped nanoparticles for
608 bioanalysis. *Nano Today* **2007**, *2*, 44-50.
- 609 20. Cardoso, V.F.; Irusta, S.; Navascues, N.; Lanceros-Mendez, S. Comparative study of sol-gel methods for
610 the facile synthesis of tailored magnetic silica spheres. *Mater. Res. Express* **2016**, *3*, 075402.
- 611 21. Slowing, I.I.; Vivero-Escoto, J.L.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles: Structural
612 design and applications. *J. Mater. Chem.* **2010**, *20*, 7924-7937.
- 613

614 22. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional
615 inorganic nanoparticles for imaging, targeting, and drug delivery. *AcS Nano* **2008**, *2*, 889-896.

616 23. Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery
617 system: A review. *Int. J. Pharm. Invest.* **2015**, *5*, 124-133.

618 24. Parssinen, J.; Hammaren, H.; Rahikainen, R.; Sencadas, V.; Ribeiro, C.; Vanhatupa, S.; Miettinen, S.;
619 Lanceros-Mendez, S.; Hytonen, V.P. Enhancement of adhesion and promotion of osteogenic differentiation of
620 human adipose stem cells by poled electroactive poly(vinylidene fluoride). *J. Biomed. Mater. Res. A* **2015**, *103*,
621 919-928.

622 25. Gilbert, J.R.; Meissner, G. Sodium-calcium ion-exchange in skeletal-muscle sarcolemmal vesicles. *J. Membr.
623 Biol.* **1982**, *69*, 77-84.

624 26. Brito-Pereira, R.; Ribeiro, C.; Lanceros-Mendez, S.; Martins, P. Magnetoelectric response on terfenol-d/
625 p(vdf-trfe) two-phase composites. *Compos. B: Eng.* **2017**, *120*, 97-102.

626 27. Ribeiro, C.; Correia, V.; Martins, P.; Gama, F.M.; Lanceros-Mendez, S. Proving the suitability of
627 magnetoelectric stimuli for tissue engineering applications. *Colloids Surf. B* **2016**, *140*, 430-436.

628 28. Ribeiro, S.; Correia, D.M.; Ribeiro, C.; Lanceros-Méndez, S. Electrospun polymeric smart materials for
629 tissue engineering applications. In *Electrospun biomaterials and related technologies*, Almodovar, J., Ed. Springer
630 International Publishing: Cham, 2017; pp 251-282.

631 29. Cardoso, V.F.; Ribeiro, C.; Lanceros-Mendez, S. Metamorphic biomaterials. In *Bioinspired materials for
632 medical applications*, 2016; pp 69-99.

633 30. Lee, Y.S.; Collins, G.; Arinzech, T.L. Neurite extension of primary neurons on electrospun piezoelectric
634 scaffolds. *Acta Biomaterialia* **2011**, *7*, 3877-3886.

635 31. Ribeiro, C.; Moreira, S.; Correia, V.; Sencadas, V.; Rocha, J.G.; Gama, F.M.; Ribelles, J.L.G.;
636 Lanceros-Mendez, S. Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. *Rsc
637 Adv.* **2012**, *2*, 11504-11509.

638 32. Ribeiro, C.; Parssinen, J.; Sencadas, V.; Correia, V.; Miettinen, S.; Hytonen, V.P.; Lanceros-Mendez, S.
639 Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. *J. Biomed.
640 Mater. Res. A* **2015**, *103*, 2172-2175.

641 33. Martins, P.M.; Ribeiro, S.; Ribeiro, C.; Sencadas, V.; Gomes, A.C.; Gama, F.M.; Lanceros-Mendez, S. Effect
642 of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue
643 engineering. *Rsc Adv.* **2013**, *3*, 17938-17944.

644 34. Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso,
645 V.F.; Lanceros-Méndez, S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications.
646 *Nat. Protoc.* **2018**, *13*, 681-704.

647 35. Ribeiro, T.; Baleizão, C.; Farinha, J.P.S. Synthesis and characterization of perylenediimide labeled
648 core-shell hybrid silica-polymer nanoparticles. *J. Phys. Chem. C* **2009**, *113*, 18082-18090.

649 36. Santiago, A.M.; Ribeiro, T.; Rodrigues, A.S.; Ribeiro, B.; Frade, R.F.M.; Baleizão, C.; Farinha, J.P.S.
650 Multifunctional hybrid silica nanoparticles with a fluorescent core and active targeting shell for fluorescence
651 imaging biodiagnostic applications. *Eur. J. Inorg. Chem.* **2015**, *2015*, 4579-4587.

652 37. Ribeiro, T.; Raja, S.; Rodrigues, A.S.; Fernandes, F.; Baleizão, C.; Farinha, J.P.S. Nir and visible
653 perylenediimide-silica nanoparticles for laser scanning bioimaging. *Dyes Pigm.* **2014**, *110*, 227-234.

654 38. Lopes, A.C.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Lanceros-Mendez, S. Effect of filler content on
655 morphology and physical-chemical characteristics of poly(vinylidene fluoride)/nay zeolite-filled membranes. *J.
656 Mater. Sci.* **2014**, *49*, 3361-3370.

657 39. Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride):
658 Determination, processing and applications. *Prog. Polym. Sci.* **2014**, *39*, 683-706.

659 40. Stober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in micron size range. *J.
660 Colloid Interface Sci.* **1968**, *26*, 62-69.

661 41. Martins, P.; Caparros, C.; Gonçalves, R.; Martins, P.M.; Benelmekki, M.; Botelho, G.; Lanceros-Mendez, S.
662 Role of nanoparticle surface charge on the nucleation of the electroactive β -poly(vinylidene fluoride)
663 nanocomposites for sensor and actuator applications. *J. Phys. Chem. C* **2012**, *116*, 15790-15794.

664 42. Ferreira, J.C.C.; Monteiro, T.S.; Lopes, A.C.; Costa, C.M.; Silva, M.M.; Machado, A.V.; Lanceros-Mendez, S.
665 Variation of the physicochemical and morphological characteristics of solvent casted poly(vinylidene fluoride)
666 along its binary phase diagram with dimethylformamide. *J. Non-Cryst. Solids* **2015**, *412*, 16-23.

667 43. Sencadas, V.; Martins, P.; Pitães, A.; Benelmekki, M.; Gómez Ribelles, J.L.; Lanceros-Mendez, S. Influence
668 of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of
669 poly(vinylidene fluoride). *Langmuir* **2011**, *27*, 7241-7249.

670 44. Ribeiro, C.; Sencadas, V.; Ribelles, J.L.G.; Lanceros-Méndez, S. Influence of processing conditions on
671 polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes.
672 *Soft Mater.* **2010**, *8*, 274-287.

673 45. Ribeiro, T.; Raja, S.; Rodrigues, A.S.; Fernandes, F.; Farinha, J.P.S.; Baleizao, C. High performance nir
674 fluorescent silica nanoparticles for bioimaging. *Rsc Adv.* **2013**, *3*, 9171-9174.

675 46. Sebastian, M.S.; Larrea, A.; Goncalves, R.; Alejo, T.; Vilas, J.L.; Sebastian, V.; Martins, P.; Lanceros-Mendez,
676 S. Understanding nucleation of the electroactive beta-phase of poly(vinylidene fluoride) by nanostructures. *RSC
677 Adv.* **2016**, *6*, 113007-113015.

678 47. Martins, P.; Costa, C.M.; Lanceros-Mendez, S. Nucleation of electroactive β -phase poly(vinilidene
679 fluoride) with CoFe_2O_4 and NiFe_2O_4 nanofillers: A new method for the preparation of multiferroic
680 nanocomposites. *Appl. Phys. A.* **2011**, *103*, 233-237.

681 48. Lopes, A.C.; Ribeiro, C.; Sencadas, V.; Botelho, G.; Lanceros-Méndez, S. Effect of filler content on
682 morphology and physical-chemical characteristics of poly(vinylidene fluoride)/nay zeolite-filled membranes. *J.
683 Mater. Sci.* **2014**, *49*, 3361-3370.

684 49. Costa, C.M.; Rodrigues, L.C.; Sencadas, V.; Silva, M.M.; Lanceros-Méndez, S. Effect of the microstructure
685 and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate
686 composite membranes for battery applications. *Solid State Ionics* **2012**, *217*, 19-26.

687 50. Zeng, F.; Liu, Y.; Sun, Y. In *Mechanical properties and fracture behavior of poly(vinylidene fluoride)-polyhedral
688 oligomeric silsesquioxane nanocomposites by nanotensile testing*, 13th International Conference on Fracture 2013, ICF
689 2013, 2013; pp 4862-4869.

690 51. Xu, Y.L.; Yu, L.Y.; Han, L.F. Polymer-nanoinorganic particles composite membranes: A brief overview.
691 *Frontiers Chem. Eng. China* **2009**, *3*, 318-329.

692 52. Beck, G.R.; Ha, S.W.; Camalier, C.E.; Yamaguchi, M.; Li, Y.; Lee, J.K.; Weitzmann, M.N. Bioactive
693 silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and
694 enhance bone mineral density in vivo. *Nanomedicine* **2012**, *8*, 793-803.

695 53. Liu, D.; He, X.X.; Wang, K.M.; He, C.M.; Shi, H.; Jian, L.X. Biocompatible silica nanoparticles-insulin
696 conjugates for mesenchymal stem cell adipogenic differentiation. *Bioconjugate Chem.* **2010**, *21*, 1673-1684.

697 54. Poussard, S.; Decossas, M.; Le Bihan, O.; Mornet, S.; Naudin, G.; Lambert, O. Internalization and fate of
698 silica nanoparticles in c2c12 skeletal muscle cells: Evidence of a beneficial effect on myoblast fusion. *Int. J.
699 Nanomedicine* **2015**, *10*, 1479-1492.

700 55. Nunes-Pereira, J.; Ribeiro, S.; Ribeiro, C.; Gombek, C.J.; Gama, F.M.; Gomes, A.C.; Patterson, D.A.;
701 Lanceros-Mendez, S. Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering
702 applications. *Polym. Test.* **2015**, *44*, 234-241.

703 56. Mehrasa, M.; Asadollahi, M.A.; Nasri-Nasrabadi, B.; Ghaedi, K.; Salehi, H.; Dolatshahi-Pirouz, A.;
704 Arpanaei, A. Incorporation of mesoporous silica nanoparticles into random electrospun plga and plga/gelatin
705 nanofibrous scaffolds enhances mechanical and cell proliferation properties. *Mater. Sci. Eng. C* **2016**, *66*, 25-32.

706 57. Mehrasa, M.; Anarkoli, A.O.; Rafienia, M.; Ghasemi, N.; Davary, N.; Bonakdar, S.; Naeimi, M.; Agheb, M.;
707 Salamat, M.R. Incorporation of zeolite and silica nanoparticles into electrospun pva/collagen nanofibrous
708 scaffolds: The influence on the physical, chemical properties and cell behavior. *Int. J. Polym. Mater. Polym.
709 Biomater.* **2016**, *65*, 457-465.

710 58. Gessner, A.; Lieske, A.; Paulke, B.R.; Müller, R.H. Influence of surface charge density on protein
711 adsorption on polymeric nanoparticles: Analysis by two-dimensional electrophoresis. *Eur. J. Pharm. Biopharm.*
712 **2002**, *54*, 165-170.

713 59. Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with
714 plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. *Adv. Drug
715 Deliv. Rev.* **2009**, *61*, 428-437.