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Abstract: The Colebrook equation is a popular model for estimating friction loss coefficients in 
water and gas pipes. The model is implicit in the unknown flow friction factor ݂. To date, the 
captured flow friction factor ݂ can be extracted from the logarithmic form analytically only in the 
term of the Lambert ܹ-function. The purpose of this study is to find an accurate and 
computationally efficient solution based on the shifted Lambert ܹ-function also known as the 
Wright ߗ-function. The Wright ߗ-function is more suitable because it overcomes the problem with 
the overflow error by switching the fast growing term ݕ = ܹ(݁௫) of the Lambert ܹ-function to the 
series expansions that further can be easily evaluated in computers without causing overflow run-
time errors. Although the Colebrook equation transformed through the Lambert ܹ-function is 
identical to the original expression in term of accuracy, a further evaluation of the Lambert ܹ-
function can be only approximate. Very accurate explicit approximations of the Colebrook 
equation that contains only one or two logarithms are shown. The final result is an accurate 
explicit approximation of the Colebrook equation with the relative error of no more than 0.0096%. 
The presented approximations are in the form suitable for everyday engineering use, they are both 
accurate and computationally efficient. 

Keywords: Colebrook equation; hydraulic resistance; Lambert ܹ-function; Wright ߗ-function; 
explicit approximations; computational burden; turbulent flow; friction factor. 

 

1. Introduction 

The Colebrook equation; Eq. (1), is an empirical relation which in its native form relates 
implicitly the unknown Darcy’s flow friction factor ݂ with the known Reynolds number ܴ and the 
known relative roughness of inner pipe surface [1,2] ∗ߝ. Engineers use it at defined domains of the 
input parameters: 4000<ܴ<108 and for 0<0.05>∗ߝ. The Colebrook equation is transcendental (cannot 
be expressed in the term of elementary functions), the implicitly given function in respect to the 
unknown flow friction factor ݂  
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The Colebrook equation; Eq. (1) has also an exact explicit analytical form in the term of the 
Lambert ܹ-function; Eq. (2) [3,4] that is also transcendental, but which can be evaluated through 
the numerous thoroughly tested procedures of various accuracy and complexity developed for 
various applications in physics and engineering [5].  

ଵ
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= ଶ
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· ௟௡(ଵ଴)

ଶ
ቁ +ܹ(݁௫) − ቁ	ݔ
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· ௟௡(ଵ଴)
ଶ

ቁ + ோ·ఌ∗

ଶ.ହଵ·ଷ.଻ଵ
· ௟௡(ଵ଴)

ଶ

ቑ, (2)

The parameter ݔ in Eq. (2) depends on the input parameters; the Reynolds number ܴ and the 
relative roughness of inner pipe surface ߝ∗. Its domain is 7.51<618187.84>ݔ. The Lambert ܹ-based 
Colebrook equation; Eq. (2), contains the fast growing term ܹ(݁௫), which cannot be stored in 
computer registers due to the runtime overflow error for the certain combinations of the Reynolds 
number ܴ and the relative roughness of inner pipe surface ߝ∗ that can easily occur in everyday 
engineering practice [6,7]. The problem can be solved using the Wright ߗ-function, a cognate of the 
Lambert ܹ-function, which uses a shifted, not fast-growing argument [4,8,9]. 

This paper presents few approximate solutions of the transformed Lambert ܹ-based 
Colebrook equation in the form more suitable for computing codes used in various engineering 
software. The best version of the presented explicit approximation gives the value of flow friction 
factor f, for which the Colebrook equation is in balance with the relative error of no more than 
0.0096%. Such accuracy achieved without using a large number of computationally expensive 
logarithmic functions (or non-integer powers) is highly computationally efficient. As reported by 
Clamond [10], Winning and Coole [11], Biberg [4], Vatankhah [12], etc., functions such as 
logarithms and non-integer powers require special algorithms with execution of many more 
floating-point operations compared with the basic arithmetic operations (+,-,*,/) that are executed 
directly in the Central Processor Unit (CPU) of computers. Apparently, this is the first highly 
accurate explicit approximation of the Colebrook equation that contains only two computationally 
expensive functions (two logarithms or as an alternative two functions with non-integer powers) or 
even less if a combination of Padé approximations [13,14] and symbolic regression is used for a 
further reduction of the computational burden (where as a result one of the logarithms is 
approximated by simple rational functions with moderate increase of the maximal relative error). 

2. Proposed explicit approximations and comparative analysis 

The Colebrook equation in the term of the Lambert ܹ-function was apparently first proposed 
in 2018 by Keady [3]. However, as confirmed by Sonnad and Goudar [6] and Brkić [7], the term 
ܹ(݁௫) grows so fast that cannot be evaluated easily even in registers of modern computer due to 
the overflow runtime error for a certain number of combinations of the input parameters; the 
Reynolds number ܴ and the relative roughness of inner pipe surface ߝ∗; where parameter ݔ of 
equation (2) depends directly on them. The here shown procedure replaces this fast growing term 
by the much more numerically stable Wright ߗ-function [15]. As noted by Lawrence et al. [15], the 
Wright ߗ-function was studied implicitly, without being named, by Wright [16], and named and 
defined by Corless and Jeffrey [17]. 
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Further about the Colebrook equation transformed in explicit form in term of the Lambert ܹ-
function can be found in Keady [3], Goudar and Sonnad [18,19], Brkić [20-23], More [24], Sonnad 
and Goudar [25,26], Clamond [10], Rollmann and Spindler [9], Mikata and Walczak [27], Biberg [4], 
Vatankhah [12], etc. 

2.1. Transformation and formulation 

The shifted Wright ߗ-function transforms the argument ݁௫ to ݔ in the series ܹ(݁௫) = (ݔ)ߗ ≈

݈݊(݁௫) − ݈݊(݈݊(݁௫)) + ௟௡(௟௡(௘ೣ))
௟௡(௘ೣ)

; where ݔ = ݈݊(݁௫). In that way, the undesirably fast growing term 

ܹ(݁௫) in Eq. (2) is approximated accurately through ݕ ≈ ݔ − (ݔ)݈݊ + ௟௡(௫)
௫

. The transformation is 

based on unsigned Stirling numbers of the first kind as reported by Rollmann and Spindler [9]. 
Table 1 shows values of ܹ(݁௫) compared with its approximate replacement in the domain of 
applicability of the Colebrook equation. Without the proposed transformation and simplification, 
the runtime overflow error occurs during the evaluation of the friction factor ݂ in computers for 
certain pairs or the Reynolds number ܴ and the relative roughness of inner pipe surface ݁௫; where 
parameter x of Eq. (2) depends directly on them (#VALUE! is overflow error in Table 1). The values 
in Table 1 are calculated in MS Excel. 

Table 1. Values of ܹ(݁௫) compared with its approximate replacement ݕ ≈ ݔ − ݔ݈݊ + ௟௡௫
௫

. 

ܹ(݁௫) R=4000 R=104 R=105 R=106 R=107 R=108 
∗ߝ =10-6 5.763586714 6.552354737 8.594740889 10.78188015 13.94025768 26.71930109 
∗ߝ =10-5 5.767379666 6.562009418 8.694474328 11.80401384 24.50329461 125.7849498 
∗ߝ =10-3 5.805329409 6.658658836 9.697953496 22.29514802 124.0554132 #VALUE! 
∗ߝ =10-2 6.186774452 7.63459358 20.09639172 122.325789 #VALUE! #VALUE! 
∗ߝ =0.05 10.14320931 17.90904123 120.5960672 #VALUE! #VALUE! #VALUE! 

 R=4000 R=104 R=105 R=106 R=107 R=108 ݕ
∗ߝ =10-6 5.766606874 6.552971455 8.592338256 10.7784212 13.93654591 26.71669441 
∗ߝ =10-5 5.770385511 6.562602762 8.691991603 11.80037821 24.50049484 136.3596559 
∗ߝ =10-3 5.808193728 6.659024862 9.694862641 22.29214094 134.073966 1246.853296 
∗ߝ =10-2 6.188374207 7.633218988 20.093168 131.7885643 1244.552558 12371.62215 
∗ߝ =0.05 10.13993873 17.90560354 129.5034606 1242.251823 12369.31975 123639.9564 

#VALUE! – Overflow error 

The simplifications; ܹ(݁௫) − ݔ ≈ (ݔ)݈݊ · ቀଵ
௫
− 1ቁ; ଶ

௟௡ଵ଴
≈ 0.8686; ଶ·ଶ.ହଵ

௟௡ଵ଴
≈ 2.18; and 2.18 · 3.71 ≈

8.0878, transform the Lambert ܹ-based expression of the Colebrook equation in a very accurate 
explicit approximate form that can be used efficiently in everyday engineering practice; Eq. (3): 

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + (ܣ+ܤ)݈݊ · ቀ ଵ

஻ା஺
− 1ቁቃ

ܣ ≈ ோ·ఌ∗

଼.଴଼଻଼

ܤ ≈ ݈݊ ቀ ோ
ଶ.ଵ଼

ቁ ≈ ݈݊(ܴ) − 0.779397488 ⎭
⎪
⎬

⎪
⎫

, (3)
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Instead of logarithmic functions in the proposed explicit approximation; Eq. (3), a new form for 
ܤ)݈݊ and ܤ +  can be introduced, where ܽ can be any sufficiently large constant, where the larger (ܣ
value of ܽ gives the more accurate approximation of logarithmic function, Eq. (4): 

ܤ ≈ ܽ · ቀ ோ
ଶ.ଵ଼

ቁ
௔షభ

− ܽ

ln(ܤ + (ܣ ≈ ܽ · ܤ) + ௔షభ(ܣ − ܽ
ቑ, (4)

Very accurate results are obtained for ܽ > 10ହ. Choosing this value, power ܽିଵ = ଵ
௔
 is a fraction 

with integer numerator and denominator, where the appropriate form depends on the 
programming language and the option with fever floating point operations should be chosen [28]. 

The forms such as ቀ ோ
ଶ.ଵ଼

ቁ
଴.଴଴଴଴ଵ

 requires evaluation of two transcendental functions because 

compilers in most programming languages interpret it through ݁଴.଴଴଴଴ଵ·௟௡ቀ
ೃ

మ.భఴቁ [10]. 

For more accurate results ܹ(݁௫) − ݔ ≈ ଵ.଴ଷ଼·୪୬(௫)
௫ା଴.ଷଷଶ

− ln(ݔ) or ܹ(݁௫) − ݔ ≈ ଵ.଴ଵଵଽ·୪୬(௫)
௫

− ln(ݔ) +

୪୬(௫)ିଶ.ଷ଼ସଽ
௫మ

 can be used. These new approximations were found by symbolic regression software 

Eureqa [29-31] and they are 2.5 and 16.7 times respectively more accurate compared with the 
expression ݕ from Table 1. The related approximations are given with Eq. (5) and Eq. (6), 
respectively. 

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + ଵ.଴ଷ଼·௟௡(஻ା஺)

଴.ଷଷଶା஻ା஺
− ቃ, (5)(ܣ+ܤ)݈݊

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + ଵ.଴ଵଵଽ·௟௡(஻ା஺)

஻ା஺
− (ܣ+ܤ)݈݊ + ௟௡(஻ା஺)ିଶ.ଷ଼ସଽ

(஻ ା஺)మ
ቃ, (6)

In Eq. (5) and Eq. (6), parameters ܣ and ܤ are the same as in Eq. (3). 

2.2. Accuracy 

With the friction factor f computed using the approximate equations Eq. (3), the Colebrook 
equation is in balance with the relative error of no more than 0.13%, while using Eq. (5) of no more 
than 0.045%, and finally, using Eq. (6) of no more than 0.0096%, respectively. Related distribution of 
errors is shown in Figure 1. The presented approximations require evaluation of only two 
computationally expensive functions (two logarithms; Eq. (3), Eq. (5) and Eq. (6) or alternatively 
two non-integer powers; Eq. (4)), and therefore they are not only accurate, but also efficient for 
calculation. 

The here shown approximation; Eq. (3) based on the Wright ߗ-function with the relative error 
up to 0.13% is about ten times more accurate compared with the approximation from Brkić [22], 
while Eq. (5) more than 25 times and finally, Eq. (6) is more than 100 times more accurate than [22]. 
The approximations from Brkić [22,23] are based on the Lambert ܹ-function. 
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(a) 

 
(b) 

 
(c) 

Figure 1. Distribution of the relative error by the proposed explicit approximation of Colebrook’s 

equation; (a): Eq. (3), (b): Eq. (5) and (c): Eq. (6); Comparison 

The most accurate approximations available up to date are by Vatankhah [12], Buzzelli [32], 
Vatankhah and Kouchakzadeh [33], Romeo et al. [34], Zigrang and Sylvester [35] and Serghides 
[36]. All approximations mentioned or developed in this paper are listed in Appendix while its 
evaluated relative error in Table 2. 
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Further about accuracy of explicit approximations to the Colebrook equation can be found in 
Zigrang and Sylvester [37], Gregory and Fogarasi [38], Brkić [39,40], Winning and Coole [11,41], 
Brkić and Ćojbašić [42]. 

2.3. Complexity and computational burden 

In computer environment, a logarithmic function and non-integer powers require more 
floating-point operations to be executed in the CPU compared with the simple arithmetic 
operations such as adding, subtracting, multiplication or division [10-12]. With the relative error of 
up to 0.0096%, the here proposed explicit approximation of the Colebrook equation; Eq. (6), that 
contains only two computationally expensive functions, is not only accurate but also sufficiently 
efficient. Winning and Coole [11] reported relative effort for computation as: Addition-1, 
Subtraction-1.18, Division-1.35, Multiplication-1.55, Squared-2.18, Square root-2.29, Cubed-2.38, 
Natural logarithm-2.69, Cubed root-2.71, Fractional exponential-3.32, and Logaritm to base 10-3.37. 
On the other hand, Biberg [4] adds division in the group of more expensive functions.  

For comparison, Table 2 provides number of logarithmic functions and non-integer terms used 
in available approximations. Table 2 shows only highly accurate approximations with the relative 
error of no more than 1% according to criterions set by Brkić [29]. All approximations from Table 2 
are given in Appendix of this article. 

Table 2. Number of computationally expensive functions in the available approximations of the 

Colebrook equations that introduce relative error of no more than 1%. 

Approximation 1 
Maximal 

relative error % 
Function 
Logarithms Non-integer powers Total 2 

Vatankhah 0.0028% 1 2 3(5) 

Here developed; Eq. (6) 0.0096% 2 0 2 

Here developed; Eq. (5) 0.045%, 2 0 2 

Here developed; Eq. (3) 0.13% 2 0 2 

Here developed; Eq. (4) 0.13% 0 2 2(4) 

Buzzelli 3  0.14% 2 0 2 

Zigrang and Sylvester 0.14% 3 0 3 

Serghides 0.14% 3 0 3 

Romeo et al. 0.14% 3 2 5(7) 

Vatankhah and Kouchakzadeh 0.15% 2 1 3(4) 

Barr 0.27% 2 2 4(6) 

Serghides-simple 0.35% 2 0 2 

Chen 0.36% 2 2 4(6) 

Here developed; Eq. (11) Up to 0.4% 1 0 1 

Fang et al. 0.62% 1 3 4(7) 

Papaevangelou et al. 0.82% 2 1 3(4) 

1 All approximations are listed in Appendix of this paper, 2 in brackets: according to Clamond [10] non-

integer powers require evaluation of two computationally expensive functions – logarithm and 

exponential function, 3 in addition contains also one square root function. 
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In addition to the here presented, the approximation by Brkić [22,23] is also based on the 
Lambert W-function, but with four logarithmic functions used, it is also much more 
computationally expensive (with the relative error of about 2.2% it is also significantly less 
accurate). 

In the next Section, the logarithmic function of ܤ ≈ ݈݊ ቀ ோ
ଶ.ଵ଼

ቁ from Eq. (3) is approximated very 

accurately trough rational polynomial expression, so complexity and computational additionally 
decrease. Also, subtraction requires less floating-point operations than division, so the 
computational cheaper form ܤ≈ ݈݊(ܴ) − 0.779397488 should be used instead. 

2.4. Simplifications 

A simple rational approximation of the logarithm term ܤ of the novel Colebrook 
approximation formulas; Eq. (3), Eq. (5) and Eq. (6), is shown in this Section. The logarithm 
represents the most computationally expensive operation of the Colebrook formula, while the most 
its approximations also contain computationally demanded non-integer power terms. In order to 
reduce computation costs, the idea is to replace the term ܤ that contains the logarithmic function by 
simple rational functions. A combination of Padé approximation [14,43] and an artificial intelligence 
symbolic regression procedure [29-31,] is used for this. Although the logarithm is a transcendental 
function, the found rational approximation remains simple and accurate with the maximal relative 
error limited to 0.2%. Although this rational approximation of the logarithm is not very nice for a 
human perception, it is very fast at computers, as it requires only a limited number of basic 
arithmetic operations to be executed in the CPU. 

For the purpose of this simplification, the observed form ܤ from Eq. (3) can be transformed as; 
Eq. (7): 

ܤ ≈ ln(ܴ) − ln(2.18) = ln(315012.6 · (ݎ − 0.77932 = ln(ݎ) + ln(315012.6) − 0.77932 =
ln(ݎ) +11.881, (7)

In Eq. (7), for term ݎ = ோ
ଷଵହ଴ଵଶ.଺

, constant 315012.6 is carefully selected in order to minimize the 

error of the /2,3/ order Padé approximation of ln(ݎ) at the expansion point ݎ଴ = 1. The proposed 
Padé approximant of the /2,3/ order of ln(ݎ) at point 1 is; Eq. (8): 

(ݎ)݈݊ ≈ (ݎ)ݏ = ௥·(௥·(ଵଵ·௥ାଶ଻)ିଶ଻)ିଵଵ
௥·(௥·(ଷ·௥ାଶ଻)ାଶ଻)ାଷ

, (8)

The value 315012.6 is a weighted average of the Reynolds number ܴ for the turbulent zone 
valid for the Colebrook equation; ܴ௠௜௡ = 4000 and ܴ௠௔௫ = 10଼, using the value 0.0063 that was set 
by numerical experiments in order to minimize the absolute value of the maximum relative error of 

the Padé approximant of ln(ݎ) in interval [ܴ௠௜௡ , ܴ௠௔௫] as 0.0063 · ோ೘೔೙ାோ೘ೌೣ
ଶ

= 315012.6. The Padé 

approximant approximates a certain function very accurately only in a relatively short domain of 
input parameters. It has been observed that the Padé approximant of ln(ݎ) at the expansion point 
଴ݎ = 1 defined by a rational function s(ݎ) approximates ln(ݎ) with the maximal relative error 
between -11.8% and 11.8% for all values of the Reynolds number ܴ in the interval [ܴ௠௜௡ , ܴ௠௔௫]. The 
Padé approximant s(ݎ) has a negligible error for 1~ݎ, whereas top errors correspond to border 
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points ܴ௠௜௡  and ܴ௠௔௫. For example, for ܴ௠௜௡ = 4000, the Padé approximant of ln(ݎ) is ݏ ቀ ସ଴଴଴
ଷଵହ଴ଵଶ.଺

ቁ =

(0.012697905)ݏ = −3.38744549 where ܴ = 315012.6 ·  Therefore, the value of ln(4000) is .ݎ
approximated by ln(315012.6) + (−3.387445469) = 9.272922448. The corresponding relative error 
for ln(4000), is -11.8%.  

Because of ܤ = ݈݊ ቆ ோ
మ·మ.ఱభ
೗೙(భబ)

ቇ = ln(ܴ) − ln ቀଶ·ଶ.ହଵ
௟௡(ଵ଴)

ቁ and ln(315012.6) − ln ቀଶ·ଶ.ହଵ
୪୬(ଵ଴)

ቁ~11.881, the value 

of ܤ can be approximated as; Eq. (9): 

ܤ ≈ ln(ݎ) + 11.881 ≈ (ݎ)ݏ + 11.881, (9)

Further, a symbolic regression technique based on computer software Eureqa [30,31], is used 
for a further more precise approximation of ln(ݎ). The aim is to construct a more accurate rational 

approximation of ln(ݎ) in comparison with Eq. (9) using two known variables: the ratio ݎ = ோ
ଷଵହ଴ଵଶ.଺

 

and its Padé approximation s(ݎ). In order to reduce the burden for the CPU, the symbolic 
regression model should have a computationally cheap evaluation. For this reason, only rational 
functions are assumed for the symbolic regression model. To achieve that, 200 carefully selected 
quasi-random points of ݎ using LPTAU51 algorithm is used [44,45]. For these generated numbers, 
the Padé approximation s(ݎ) is calculated using Eq. (8). Also, ln(ݎ) is calculated in order to train the 
model in Eureqa for the purpose to find a rational approximation of ln(ݎ) by using ݎ and s(ݎ) pairs. 
The developed models were successfully tested using 2048 quasi-random points. As a result, value 
 is approximated by simple rational functions; Eq. (10), with the negligible maximal relative error ܤ
0.0765%. 

ܤ ≈ 0.98236 · ݏ + ௦ళ

ଽଶ଴଴.଺଻
+ ௥

ଵହ଴.ଶଷଶହ
− ௥మ

ଵଷ଼ଵ଼଻.ଵ଺ହଵ
− ଵ

ଵ଺ଵ.ଵଶସ·௥
+ 11.881, (10)

Here the symbol s denotes the Padé approximant s(ݎ) given by Eq. (8) and ݎ = ோ
ଷଵହ଴ଵଶ.଺

 is its 

argument. 
When the Horner nested representation and the Variable Precision Arithmetic (VPA) at 4 

decimal digit accuracy is assumed, the approximation of ܤ can be simplified by Eq. (11): 

ܤ ≈ ݏ · 0.0001086 · ଺ݏ + 0.9824 − ଴.଴଴଺ଶ଴଺
௥

− ݎ · 0.000007237 · ݎ − 0.006656 + 11.88, (11)

In this case, the maximal relative error remains negligible, 0.0793% compared with ܤ 
calculated using Eq. (3).  

The combined approach with Padé approximant and the symbolic regression introduces in this 

Section is based on a human observation and introducing the ratio ݎ = ோ
ଷଵହ଴ଵଶ.଺

 with the subsequent 

symbolic regression of ݎ and s(ݎ) pairs by the Eureqa. The maximal relative error of ܤ introduced 

by Eq. (11) is small; 0.0793% and in total if it is used instead of ܤ ≈ ݈݊ ቀ ோ
ଶ.ଵ଼

ቁ from Eq. (3), the total 

maximal error of the explicit approximation of the Colebrook equation can go up to 0.4%. As can be 
seen from Table 2, with the only one-log call for ݈݊(ܣ+ܤ) from Eq. (3), this approximation is the 
cheapest for computation to date presented extremely accurate explicit approximation of the 
Colebrook equation. 
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The here presented combined approach with Padé approximation and the symbolic regression 
can be also used for faster but still accurate probabilistic modeling of gas networks, which requires 
millions of model evaluations [46-48]. 

3. Conclusion 

Although the implicit Colebrook equation for flow friction is empirical and hence with 
disputed accuracy, in many cases it is necessary to repeat calculations and to resolve the equation 
accurately in order to compare scientific results. An iterative solution [49,50] requires extensive 
computational efforts especially for flow evaluation of complex water or gas pipeline networks [51-
53]. Although various available explicit approximations offer a good alternative, they are by the 
rule very accurate, but too complex and vice versa [39]. In contrary to previous approximations of 
the Colebrook equation, the here presented relation with the relative error limited to 0.0096% 
belongs to the group of the most accurate available explicit approximations of the Colebrook 
equation. Moreover, the here presented approach is also very cheap, as it needs only one or two 
logarithms (or alternatively two non-integer powers). According to the both criterions; accuracy 
and complexity, the here presented approximations show interesting performance. For this reason, 
the here presented approximations can be recommended for implementation in software codes for 
engineering use. 

The Colebrook equation is relevant only for the turbulent flow, while for the full-scale flow 
different unified equations can be used [54]. 
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Abbreviations 

The following symbols are used in this paper: 

Constants: 

ܽ - any > 10ହ 

Variables: 

A - variable that depends on R and ߝ∗ (dimensionless) 

B - variable that depends on R (dimensionless) 

f – Darcy (Moody) flow friction factor (dimensionless) 

R – Reynolds number (dimensionless)  

r - variable that depends on R (dimensionless) 

x – variable in function on R and ߝ∗ (dimensionless) 

 Relative roughness of inner pipe surface (dimensionless) – ∗ߝ

α – variables defined in Appendix of this paper 

Functions: 

e – exponential function 

ln – natural logarithm 

s – Padé approximant 

W – Lambert function 

Ω – Wright function 
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Appendix 

The following explicit approximations of the Colebrook equation are referred in this paper: 
 
-Here developed Eq. (3), Eq. (5), Eq. (6) - Eq. (A.1.1), Eq. (A.1.2), Eq. (A.1.3): 

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + (ܣ+ܤ)݈݊ · ቀ ଵ

஻ା஺
− 1ቁቃ, (A.1.1)

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + ଵ.଴ଷ଼·௟௡(஻ା஺)

଴.ଷଷଶା஻ା஺
− ቃ, (A.1.2)(ܣ+ܤ)݈݊

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + ଵ.଴ଵଵଽ·௟௡(஻ା஺)

஻ା஺
− (ܣ+ܤ)݈݊ + ௟௡(஻ା஺)ିଶ.ଷ଼ସଽ

(஻ ା஺)మ
ቃ, (A.1.3)

Where ܣ ≈ ோ·ఌ∗

଼.଴଼଻଼
ܤ , ≈ ݈݊ ቀ ோ

ଶ.ଵ଼
ቁ≈ ݈݊(ܴ) − 0.779397488 

 
-Here developed Eq. (4); Eq. (A.2.1), Eq. (A.2.2), Eq. (A.2.3): 

ଵ
ඥ௙
≈ 0.8686 · ቂܤ + ൫ܽ · ܤ) + ௔షభ(ܣ − ܽ൯ · ቀ ଵ

஻ା஺
− 1ቁቃ, (A.2.1)

ଵ
ඥ௙
≈ 0.8686 · ቈܤ +

ଵ.଴ଷ଼·ቀ௔·(஻ା஺)ೌషభି௔ቁ

଴.ଷଷଶା஻ା஺
− ൫ܽ · ܤ) + ௔షభ(ܣ − ܽ൯቉, (A.2.2)

ଵ
ඥ௙
≈ 0.8686 · ቈܤ +

ଵ.଴ଵଵଽ·ቀ௔·(஻ା஺)ೌషభି௔ቁ

஻ା஺
− ൫ܽ · ܤ) + ௔షభ(ܣ − ܽ൯ +

ቀ௔·(஻ା஺)ೌషభି௔ቁିଶ.ଷ଼ସଽ

(஻ ା஺)మ
቉, (A.2.3)

Where ܣ ≈ ோ·ఌ∗

଼.଴଼଻଼
, and ܤ ≈ ܽ · ቀ ோ

ଶ.ଵ଼
ቁ
௔షభ

− ܽ ≈ ܽ · (ܴ)௔షభ − ܽ − 0.779397488. 

As parameter ܽ is larger, the more accurate solution is (ܽ > 10ହ gives sufficiently satisfied 
results). 

 
-Here developed Eq. (11); Eq. (A.3): 
Parameter ܤ from the Eqs. (A.1.1)-(A.1.3) and Eqs. (A.2.1)-(A.2.3) should be calculated using 

Eq. (A.3). 
ܤ ≈ ݏ · (0.0001086 · ଺ݏ + 0.9824) − ଴.଴଴଺ଶ଴଺

௥
− ݎ · (0.000007237 · ݎ − 0.006656) + 11.881

ݎ = ோ
ଷଵହ଴ଵଶ.଺

ݏ ≈ (ݎ)ݏ = ௥·(௥·(ଵଵ·௥ାଶ଻)ିଶ଻)ିଵଵ
௥·(௥·(ଷ·௥ାଶ଻)ାଶ଻)ାଷ ⎭

⎪
⎬

⎪
⎫

, (A.3)

 
-Buzzelli [32]; (A.4): 

ଵ
ඥ௙
≈ ଵߙ − ቆ

ఈభାଶ·୪୭୥భబቀ
ഀమ
ೃ ቁ

ଵାమ.భఴഀమ

ቇ

ଵߙ ≈
(଴.଻଻ସ·୪୬(ோ))ିଵ.ସଵ

ଵାଵ.ଷଶ·√ఌ∗

ଶߙ ≈
ఌ∗

ଷ.଻
· ܴ + 2.51 · ଵߙ ⎭

⎪
⎬

⎪
⎫

, (A.4)

 
-Zigrang and Sylvester [35]; (A.5): 

1
ඥ݂

≈ −2 · logଵ଴ ൬
∗ߝ

3.7 −
5.02
ܴ · ଷ൰ߙ

ଷߙ ≈ logଵ଴ ൬
∗ߝ

3.7 −
5.02
ܴ · ସ൰ߙ

ସߙ ≈ logଵ଴ ൬
∗ߝ

3.7 −
13
ܴ
൰ ⎭

⎪⎪
⎬

⎪⎪
⎫

 (A.5)
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-Serghides [36]; (A.6): 
1
ඥ݂

≈ ହߙ −
଺ߙ) − ହ)ଶߙ

଻ߙ − 2 · ଺ߙ + ହߙ

ହߙ ≈ −2 · logଵ଴ ൬
∗ߝ

3.7 −
12
ܴ
൰

଺ߙ ≈ −2 · logଵ଴ ൬
∗ߝ

3.7 −
2.51
ܴ · ହ൰ߙ

଻ߙ ≈ −2 · logଵ଴ ൬
∗ߝ

3.7 −
2.51
ܴ · ⎭଺൰ߙ

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (A.6)

 
-Romeo et al. [34]; (A.7): 

1
ඥ݂

≈ −2 · logଵ଴ ൬
∗ߝ

3.7065 −
5.0272
ܴ · ൰଼ߙ

଼ߙ ≈ logଵ଴ ൬
∗ߝ

3.827 −
4.567
ܴ · ଽ൰ߙ

ଽߙ ≈ logଵ଴ ቆ൬
∗ߝ

7.7918
൰
଴.ଽଽଶସ

+ ൬
5.3326

208.815+ ܴ
൰
଴.ଽଷସହ

ቇ
⎭
⎪⎪
⎬

⎪⎪
⎫

 (A.7)

 
-Vatankhah and Kouchakzadeh [33]; (A.8): 

ଵ
ඥ௙
≈ 0.8686 · ln ቀ ଴.ସହ଼଻·ோ

(ఈభబି଴.ଷଵ)ഀభభ
ቁ

ଵ଴ߙ ≈ 0.124 · ܴ · ∗ߝ + ln(0.1587 · ܴ)
ଵଵߙ ≈

ఈభబ
ఈభబା଴.ଽ଺ଷଷ ⎭

⎪
⎬

⎪
⎫

  (A.8)

 
-Barr [55]; (A.9): 

ଵ
ඥ௙
≈ −2 · logଵ଴ ቆ

ఌ∗

ଷ.଻
+

ସ.ହଵ଼·୪୭୥భబቀ
ೃ
ళቁ

ఈభమ
ቇ

ଵଶߙ ≈ ܴ · ቀ1 + ோబ.ఱమ

ଶଽ
· ଴.଻ቁ(∗ߝ)

ൢ  (A.9)

 
-Serghides-simple [36]; (A.10): 

ଵ
ඥ௙
≈ 4.781 − (ఈభయିସ.଻଼ଵ)మ

ఈభరିଶ·ఈభయାସ.଻଼ଵ

ଵଷߙ ≈ −2 · logଵ଴ ቀ
ఌ∗

ଷ.଻
− ଵଶ

ோ
ቁ

ଵସߙ ≈ −2 · logଵ଴ ቀ
ఌ∗

ଷ.଻
− ଶ.ହଵ

ோ
· ⎭ଵଷቁߙ

⎪
⎬

⎪
⎫

  (A.10)

 
-Chen [56]; (A.11): 

ଵ
ඥ௙
≈ −2 · logଵ଴ ቀ

ఌ∗

ଷ.଻଴଺ହ
− ହ.଴ସହଶ

ோ
· ଵହቁߙ

ଵହߙ ≈ logଵ଴ ቀ
(ఌ∗)భ.భబవఴ

ଶ.଼ଶହ଻
+ ହ.଼ହ଴଺

ோబ.ఴవఴభ
ቁ

ቑ  (A.11)

 
-Fang et al. [57]; (A.12): 

ଵ
ඥ௙
≈ (1.613 · (ln(0.234 · ଵ.ଵ଴଴଻(∗ߝ) − ଵ଺))ିଶ)ିଶߙ

ଵ଺ߙ ≈
଺଴.ହଶହ
ோభ.భభబఱ

+ ହ଺.ଶଽଵ
ோభ.బళభమ

ቑ  (A.12)

 
-Papaevangelou et al. [58]; (A.13): 

1
ඥ݂

≈ ቌ
0.2479 − 0.0000947 · (7 − logଵ଴(ܴ))ସ

ቀlogଵ଴ ቀ
ఌ∗

ଷ.଺ଵହ
+ ଻.ଷ଺଺

ோబ.వభరమ
ቁቁ

ଶ ቍ

ିଶ

 (A.13)
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-Vatankhah.[12]; (A.14): 

ଵ
ඥ௙
≈ 0.8686 · ln ቆ ଴.ଷଽ଼ସ·ோ

(଴.଼଺଼଺·ఈభళ)
ഀభళ

ഀభళశഀభఴ
ቇ

ଵ଻ߙ ≈ 0.12363 · ܴ · ∗ߝ + ln(0.3984 · ܴ)
ଵ଼ߙ ≈ 1 + ଵ

భశഀభళ
బ.ఱ·ౢ౤(బ.ఴలఴల·ഀభళ)

ି భశర·ഀభళ
య·(భశഀభళ) ⎭

⎪
⎬

⎪
⎫

  (A.14)
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