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Abstract: Earth’s global surface temperature shows variability on an extended range of temporal
scales and satisfies an emergent scaling symmetry. Recent studies indicate that scale invariance
is not only a feature of the observed temperature fluctuations, but an inherent property of the
temperature response to radiative forcing, and a principle that links the fast and slow climate
responses. It provides a bridge between the decadal- and centennial-scale fluctuations in the
instrumental temperature record, and the millennial-scale equilibration following perturbations
in the radiative balance. In particular, the emergent scale invariance makes it possible to infer
equilibrium climate sensitivity (ECS) from the observed relation between radiative forcing and
global temperature in the instrumental era. This is verified in ensembles of Earth system models
(ESMs), where the inferred values of ECS correlate strongly to estimates from idealized model runs.
For the range of forcing data explored in this paper, the method gives best estimates of ECS between
2.3 and 3.4 K.
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1. Introduction

The Intergovernmental Panel on Climate Change [1] (IPCC) has estimated the likely range of ECS
to be between 1.5 and 4.5 K. The ECS, which is widely used in assessments of anthropogenic climate
change, is defined as the asymptotic temperature increase following an instantaneous CO2 doubling.
In ESMs, the ECS is generally estimated via the so-called Gregory plots [2], where the response in the
top-of-the-atmosphere radiation N is plotted against the global mean surface temperature anomaly
∆T during the equilibration following an instantaneous doubling or quadrupling of the atmospheric
CO2 concentration. The assumption is that the adjustment in radiation depends linearly on the
surface temperature increase,

N = F− λ∆T, (1)

so that the feedback parameter λ and the forcing F can be determined via linear regression. The ECS
is hence F2×CO2 /λ, where F2×CO2 is the forcing associated with a CO2 doubling. The Gregory plots
show that the linearity assumption is only approximate, and in particular, there are slow feedbacks
in the models that reduce the feedback parameter as the planet warms [3]. A state dependence
is also observed in the so-called paleo sensitivity [4–7]. Nevertheless, the usefulness of ECS and
its estimation still relies on the linearity assumption in Equation 1. Satellite observations of the
top-of-the-atmosphere radiation are available through the Clouds and the Earth’s Radiant Energy
System (CERES), but unfortunately, the data only covers the years 2000-present. The state-of-the-art
ECS estimates based on the satellite data gives a wide likely range (in this case a 17-83% confidence
interval) of 2.4-4.5 K [8].

A different approach, which can be used when the top-of-the-atmosphere radiation is unknown,
is to combine model results with the instrumental temperature record. Recently Cox et al. claimed
that ECS can be constrained to a “likely range” (in this paper specified to be the 66% confidence
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interval) of 2.2 to 3.4 K, with a best estimate of 2.8 K [9]. They propose a metric in both the
instrumental temperature record in the period 1880 to 2016 and in the corresponding historical runs
in the Coupled Model Intercomparison Project Phases 5 (CMIP5) ensemble. By exploring a so-called
emergent relationship, they estimate a distribution for the Gregory estimate of ECS conditioned on
their proposed metric, and using the law of total probability in conjunction with Bayes Theorem they
obtain a probability density function for the ECS when it is constrained by the instrumental record.
However, it has been demonstrated that their estimated metric depends on the response to the strong
anthropogenic forcing in the time period after year 1950, and hence one has to take into account that
models in the ensemble are forced differently [10].

A more consistent method of constraining ECS from the instrumental record is to include data
for historical forcing, with its uncertainties, and to estimate response functions that describe the
relationship between global radiative forcing and the global surface temperature. If one adopts a
hypothesis of a linear and stationary response, then the temperature anomaly ∆T can be written as a
convolution of the forcing F with a response function G(t):

∆T(t) =
∫ t

−∞
G(t− s)

(
F(s)ds + dB(s)

)
, (2)

where the term F(t) is the known (deterministic) forcing and dB(t) represents a white-noise random
forcing that gives rise to the internal variability. As discussed in Section 2, such a linear response
can arise naturally from a multi-layer energy balance model, where the response function is a sum
of exponential functions with decay rates that are given by the real and negative eigenvalues of the
system of differential equations. Fredriksen and Rypdal [11] have shown that three exponential terms
are sufficient to obtain a model that simultaneously displays responses to historical and reconstructed
forcings that are consistent with the instrumental temperature record and the reconstructed last
millennium global mean temperature, respectively. In addition, it correctly describes the statistical
properties of the internal variability on time scales from months to centuries. The constructed
response function corresponds to an ECS estimate of 3.0 K, obtained via the formula

ECS = F2×CO2

∫ ∞

0
G(t)dt. (3)

The forcing F2×CO2 is well approximated by a logarithmic dependence of the CO2 concentration,
with a best estimate of 3.7 W/m2 found by the IPCC [1]. Uncertainties associated with the radiative
transfer calculations are small [12]. However, forcing estimates from CMIP5 models often include
rapid adjustments of the atmosphere, resulting in larger uncertainties [13]. The more serious issues
are the uncertainty in the estimate of the response function, the uncertainty in the forcing data, and
the validity of the linearity assumption.

The uncertainty in the response function estimates can be assessed in several ways, for instance
using an ensemble of runs of the same experiment in one ESM. The uncertainty in the forcing presents
a significant challenge, which is not addressed by Cox et al. [9]. In this paper, we take part of this
uncertainty into account by analyzing the spread in the adjusted forcing over the CMIP5 ensemble. In
historical model runs the adjusted forcing is obtained from Equation 1 by comparing the time series of
∆T(t) and the top-of-the-atmosphere radiation N(t) for a fixed estimate of the feedback parameter λ

[14]. The resulting time series F(t) is an estimate of the forcing experienced by the ESM. However, the
construction of F(t) from the assumed linear relationship between ∆T(t) and N(t) results in forcing
signals where some short-scale internal climate variability, including the El Niño Southern Oscillation
(ENSO), are clearly observable in the forcing signal. Consequently, these forcing data are not suitable
for statistical estimation of response functions G(t) from Equation 2. The alternative, which is used
in this paper, is to fix a forcing time series, for instance the time series provided by Hansen et al.
[15], and to modify it for each model so that the trend (or low-frequency variability) is equal to the
adjusted forcing for the model. This approach serves two purposes. First, we ensure that when we
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fit a response function to a model, the increasing trend in the forcing is consistent with the forcing
in the model run. Secondly, this provides an ensemble of forcing time series with different trends.
The estimates of the response function from the observational temperature record can be repeated
across this ensemble of forcing time series and provide an estimate of the uncertainty in the response
functions that is associated with the uncertainty in the forcing trend.

It is now natural to assume a general form of the response function, i.e.

G(t) =
N

∑
k=1

cke−t/τk , (4)

and to obtain estimates ĉk and τ̂k from historical runs of each of the ESMs in the CMIP5 ensemble,
as well as for the instrumental temperature record. For each model, this estimate corresponds to an
estimate of ECS through Equation 3, which in this case reads

ÊCS = F2×CO2

N

∑
k=1

ĉkτ̂k.

If the estimate ÊCS correlates strongly with the Gregory estimate of ECS over the CMIP5 ensemble,
then the estimate ÊCS obtained from the instrumental temperature record can be used to constrain
the distribution of ECS in the ensemble. Unfortunately, such an analysis will show a very weak
correlation between the two estimates, and this apparently indicates that response function estimates
are useless for constraining ECS. On the other hand, the reason for the low correlation is that the
instrumental temperature record is too short to provide any information about the slow response
of the climate system, and the general form of the response function leads to statistical overfitting.
The method can be improved by reducing the number of free parameters. The naïve approach,
which is to reduce the response function to one characteristic time scale, gives a model that is
unable to accurately describe the temporal structure of the temperature response, and would lead
to a systematic underestimation of the ECS. A better alternative is to use the emergent property of
temporal scale invariance.

Rypdal and Rypdal [16] have demonstrated that a scale-invariant response model, i.e. Equation
2 with

G(t) =
( t

µ

)β/2−1
Θ(t)ξ, (5)

(where ξ = 1 km2J−1 is a factor needed to give G(t) the right physical dimension and Θ(t) is the
unit-step function), provides a parsimonious and accurate model on time scales from months to
centuries. This is in spite of the fact that energy is not conserved in the model, and that the ECS
according to Equation 3 is infinite. The reason why this is possible is that the temperature records
and the forcing time series we have for the industrial period are relatively short compared to the time
it takes for global surface temperature to adjust after an abrupt CO2 doubling in ESMs. This also
explains why it is so difficult to provide accurate estimates of ECS from observational data; the fact
that a model with infinite ECS can perform well when tested on observational data indicate that these
time series are too short for ECS assessment. As a consequence it is natural to conclude that ECS is
not the most useful measure of climate sensitivity in the face of anthropogenic climate change, and
that it may be more useful to study a scale-dependent (or frequency-dependent) sensitivity defined
as

R( f ) = F2×CO2 |Ĝ( f )|, (6)

where
Ĝ( f ) =

∫ ∞

−∞
G(t)e−2πi f tdt
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is the Fourier transform of the response function. However, as the main results of this paper will show,
the scale dependent sensitivity evaluated at f = 10−3 yrs−1 correlates strongly with the Gregory
estimate of ECS. Hence, this technique can be used to constrain the ECS in the model ensemble on the
instrumental temperature record. It is evident from the results presented in this paper that uncertainty
in the historical forcing data is the main obstacle for more accurate assessment of ECS.

The paper is structured as follows. In section 2 we discuss stochastic linear response models
for global surface temperature variability to motivate the analyses presented in this paper. We also
discuss some dissipation-response relations that follow from this modeling framework. In section 3
we present the main results, and in section 4 we discuss and conclude our findings. Details on the
statistical analyses are presented in section 5.

2. Linear response models and scale-dependent sensitivity

2.1. The 1-box energy balance model

The simplest climate model, the so-called 1-box energy balance model, describes the temperature
anomaly ∆T via the first order differential equation

Cd∆T(t) = −λ∆Tdt + F(t)dt,

where C is a heat capacity, λ is the feedback parameter and F(t) is the radiative forcing. If one includes
a white-noise stochastic forcing, the model becomes a stochastic differential equation on the form

Cd∆T(t) = −λ∆Tdt + F(t)dt + σdB(t), (7)

where dB(t) is the white-noise random measure. The solution of the equation is

∆T(t) =
1
C

∫ t

−∞
e−(t−s)/τ F(s)ds +

σ

C

∫ t

−∞
e−(t−s)/τdB(s), (8)

where the characteristic time scale is τ = C/λ. The second term in the above expression defines the
Ornstein-Uhlenbeck process

X(t) =
σ

C

∫ t

−∞
e−(t−s)/τdB(s),

i.e. the continuous-time version of an AR(1) process, sometimes referred to as red noise. This is
a Gaussian process characterized by its exponentially decaying correlation function. In fact, the
covariance structure of the process is given by the expression

rX(∆t) = 〈X(t)X(t + ∆t)〉 = σ2τ

2C2 e−|∆t|/τ ,

and from the Wiener-Kinchin theorem it follows that the power-spectral density (PSD) of X(t) is
Lorentzian

SX( f ) =
∫ ∞

−∞
rX(t)e−2πi f tdt =

1
C2

σ2τ2

1 + 4πτ2 f 2 .

The PSD scales as S( f ) ∼ f−2 for frequencies f � 1/τ, and as S( f ) ≈ σ2τ2/C2 for f � 1/τ.
The first term in Equation 8 can be referred to as the response to the deterministic (or known)

forcing, and denoted ∆Tdet(t). If the forcing is an instantaneous CO2 doubling at time t = 0 we can
write F(t) = F2×CO2 Θ(t), where F2×CO2 is the forcing corresponding to the CO2 doubling, and Θ(t)
is the unit-step function. The response is

∆Tdet(t) =
F2×CO2

C

∫ t

0
e−(t−s)/τds =

F2×CO2 τ

C

(
1− e−t/τ

)
.
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In particular an expression for the ECS is obtained in the limit t→ ∞:

ECS =
F2×CO2 τ

C
=

F2×CO2

λ
.

We note that there are connections between the response to deterministic forcing and the statistical
properties of the random fluctuations X(t). For instance, the low-frequency limit of the PSD is
proportional to the square of the ECS:

lim
f→0

SX( f ) =
∫ ∞

−∞
rX(t)dt =

σ2τ2

C2 =
σ2

λ2 =
σ2

F2
2×CO2

ECS2.

The above expression is an example of a dissipation-response relation that holds for more general
linear response models.

2.2. Generalizations of the 1-box model

The 1-box energy-balance model describes temperature response through a single characteristic
time scale, and does not accurately take into account the warming of the deep oceans, which is much
slower than the thermal response of the atmosphere. A more accurate energy-balance model is the
so-called 2-box model, for which the analog of Equation 7 is

C1d∆T1(t) = −λ∆T1dt + κ(∆T2 − ∆T1)dt + F(t)dt + σdB(t)

C2d∆T2(t) = −κ(∆T2 − ∆T1)dt.

For κ > 0, this system has two negative eigenvalues −1/τ1 and −1/τ2, and the surface temperature
anomaly ∆T = ∆T1 can be written as Equation 2, where G(t) = (c1e−t/τ1 + c2e−t/τ2)Θ(t) now is a
response function with two characteristic time scales. The model can be further generalized to the
class of N-box models for which we have a response function given by Equation 4, or to an even
more general class of models for which we just assume that there is some response function G(t) with
G(t) = 0 for t < 0. In the general case we have

rX(∆t) = 〈X(t)X(t + ∆t)〉 = σ2
∫ ∞

0
G(t)G(t + ∆t)dt

for ∆t > 0, and from Equation 3 (which holds in general) it follows that

ECS2 = F2
2×CO2

∫ ∞

0

∫ ∞

0
G(t)G(s)dtds =

F2
2×CO2

σ2

∫ ∞

−∞
rX(∆t)d∆t =

F2
2×CO2

σ2 lim
f→0

SX( f ). (9)

2.3. Scale-invariant models

The statistical properties of global surface temperature are consistent with those of long-range
dependent (LRD) stochastic properties [17–22], in particular with fractional Gaussian noise (fGn).
This can be modeled by letting the response function G(t) take the form of Equation 5. In fact, the
stochastic component

X(t) =
∫ t

−∞

( t− s
µ

)β/2−1
ξdB(s)

can be taken as a formal definition of a fGn (see the Appendix of [16]). Its PSD is S( f ) ∼ f−β. Studies
also indicate that scale invariance is not only a feature of the observed temperature fluctuations, but
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Figure 1. (a) The red curve is the adjusted forcing for the NorESM1-M model provided by Forster et
al. [14]. The black curve is the forcing data of Hansen et al. [15] modified so that its 17-yr moving
average equals the 17-yr moving average of the red curve. (b) The black curve is the global surface
temperature in the historical run of the NorESM1-M model, and the blue curve is the response to the
modified Hansen forcing (the black curve in (a)) for the model given by Equation 5. Parameters are
estimated as β = 0.67 and µ = 7.8× 10−3 yrs−1.

an inherent property of the temperature response to radiative forcing [11,16,22–24]. This means that
the deterministic component

∆Tdet(t) =
∫ t

−∞

( t− s
µ

)β/2−1
F(s)ξds

is an accurate description of the temperature response to the known deterministic forcing. Moreover,
the stochastic and deterministic responses can simultaneously describe the deterministic temperature
response and the climate noise (residual), meaning that the parameters β and µ can take the same
values in the two terms. This is a type of dissipation-fluctuation result, but not as strong as those that
directly link the statistical properties of the climate noise to the characteristics of the response. More
importantly, it provides a statistical model for which parameter estimates are very stable, and this
makes these models suitable for extracting proxies of ECS from historical runs in the model ensemble.

3. Results

For each ESM in the CMIP5 ensemble we take the adjusted forcing provided by Forster et al.
[14] and modify the forcing data of Hansen et al. [15] so that the 17-yr moving averages of the two
time series are equal. For the model given by Equation 2 with response function given by Equation
5 we fit parameters β and µ to the global surface temperature of the historical run of the given
ESM, using the modified Hansen forcing as input. The parameters are estimated using a technique
described in section 5. Figure 1(a) shows the adjusted forcing and the modified Hansen forcing for the
NorESM1-M model, and Figure 1(b) shows the response to the modified Hansen forcing according to
the fitted linear response model together with the global surface temperature in the historical run of
the NorESM1-M model.

When parameters β and µ are estimated for the historical runs of each ESM, the estimated scale
dependent sensitivity R( f ) can be computed for each model using Equation 6. The factor F2×CO2 is
taken individually for each model based on the Gregory estimates in [1]. A scalar metric R is obtained
by evaluating the functions R( f ) at the frequency f = 10−3 yrs−1. The results are presented in Table
1. The choice of frequency is based on how well the corresponding scalar metric correlates with the
Gregory estimates of ECS. Figure 2(a) shows that over the model ensemble, R( f ) typically equals the
Gregory estimate of ECS for frequencies f ≈ 10−3 yrs−1, and Figure 2(b) shows that the correlation
(over the model ensemble) between R( f ) and the Gregory estimate of ECS has its maximum for
f ≈ 10−3 yrs−1.

Figure 3(a) shows a plot of the R, i.e. R( f ) evaluated at f = 10−3 yrs−1, versus the Gregory
estimate of ECS. The points (letters) represent the different ESMs in the model ensemble, and the
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Figure 2. (a) A double-logarithmic plot of the scale dependent sensitivity R( f ) for each ESM in the
ensemble. The scale-dependent sensitivities are computed from Equation 6 under the assumption
that the response function is scaling and given by Equation 5. Hence the R( f )-curves are power-laws
and displayed as straight lines in the double-logarithmic plot. The different slopes correspond to
different β-estimates. The horizontal lines indicate the ECS of the ESMs obtained from the Gregory
plots and reported in [1], and the black dots indicate for which frequency f we have R( f ) = ECS
for each model. (b) Shows the correlation (over the ensemble of ESMs) between the scale-dependent
sensitivity R( f ) and the Gregory estimate of the ECS. The correlation coefficient is plotted as a function
of the frequency f , and shows a maximum at f ≈ 10−3 yrs−1.

contour plot shows the conditional probability density function (PDF) p(ECS|R) estimated from the
seventeen data points corresponding to the seventeen ESMs in the ensemble. The method used to
estimate p(ECS|R) is identical to the one described in [9].

The vertical black line in Figure 3(a) is R = 2.9 K. This value of R is obtained from the parameters
β = 0.66 and µ = 11.9× 10−3 yrs−1, which are estimated from the instrumental temperature record
using the Hansen-forcing. We have used F2×CO2 = 3.8 W/m2, which is the value for the GISS-E2-R
model. The black curve in the lower part of Figure 3(a) is an estimated PDF P(R) for the metric R. The
pdf is obtained by considering two sources of uncertainty in the R-estimates. The first is the spread in
parameter estimates when we vary the forcing. The forcing is varied over the set of modified Hansen
forcing time series, where each modification corresponds to a historical run of a ESM in the ensemble.
The parameter estimates for the instrumental temperature record, and the resulting value of R, for
varying forcing data is shown in Table 2. The second is the spread in the parameters β and µ across
repeated historical runs of the same model, i.e. runs where the known forcing is the same, but where
we due to chaotic dynamics have random components that vary between realizations. Table 3 shows
a set of parameter estimates for repeated historical runs of the CSIRO model. The total variability
from these two sources is obtained by a simple mixture model, and the plotted PDF is computed by
a smooth kernel method. The black curve in Figure 3(b) shows the PDF for ECS computed from the
formula

p(ECS) =
∫

p(ECS|R)p(R)dR, (10)

where p(R) is the PDF shown in 3(a). The histogram in Figure 3(b) is the distribution of ECS in the
model ensemble, and the dotted curve in Figure 3(b) is a Gaussian fit to the distribution of ECS in the
model ensemble. The figure demonstrates that when constrained by the scale-dependent sensitivity
of the instrumental temperature record, the best estimate of ECS in the model ensemble is reduced by
approximately 0.2 K. The pdf p(R) shown in Figure 3a, also shows that, with the uncertainties taken
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Figure 3. (a) Shows a plot of the R, i.e. R( f ) evaluated at f = 10−3 yrs−1, versus the Gregory estimate
of ECS. The points (letters) represent the different ESMs in the model ensemble, and the contour plot
shows the conditional probability density function (PDF) p(ECS|R). The vertical black line in Figure
3(a) is R = 2.9 K. This value of R is obtained from the parameters β = 0.66 and µ = 11.9× 10−3 yrs−1,
which are estimated from the instrumental temperature record using the Hansen forcing. The thick,
black curve is the estimated PDF of R( f ). (b) The full curve in Figure 3(b) shows the PDF for ECS
computed from the Equation 10, where p(R) is the PDF shown in 3(a). The histogram in Figure 3(b)
is the distribution of ECS in the model ensemble, and the dotted curve in in Figure 3(b) is a Gaussian
fit to the histogram.

into account in this work, models with ECS larger than 4 K are inconsistent with the instrumental
temperature record.

The results of this paper can alternatively be presented without estimating a conditional PDF.
From the scatter plot in Figure 3(a) we can fit a linear relationship between R and ECS, and in Table
2 we have a set of estimates of R for the instrumental temperature record. The linear fit maps each of
the R-estimates to an ECS-value, which can be interpreted as the best estimate of ECS based on the
corresponding forcing data. This mapping is shown in Figure 4(a). The range of these best estimates
of ECS are between 2.3 and 3.4 K. A histogram of the best estimates is shown in Figure 4(b).

4. Discussion

The PDF for the ECS shown in Figure 3(b) is similar to the one presented by Cox et al. [9].
However, there are important differences in methodology that must be pointed out. Cox et al. use
a pure dissipation-response relationship to constrain ECS in the model ensemble. They propose a
metric Ψ, which is analogous to the metric R proposed in this work, and claim that estimates of Ψ are
independent of the forcing. This claim has been demonstrated to be false [10]. In our framework, an
approach in the spirit of Cox et al. would be to use Equation 9, and to seek estimates of the correlation
function (or equivalently the PSD) of the climate noise X(t) that are independent of the forcing. Such
an approach would lead to the same problems as those in [9], namely that the estimates would be
influenced by the strong anthropogenic forcing in the instrumental period. This is our motivation
for developing a method that employs forcing data in the estimation of our metric R, and as a
consequence we have to take the uncertainty in the forcing into account. We have done this by using
a fixed data set for historical forcing (the Hansen-forcing) and varied its low-frequency variability
over the ensemble of adjusted forcing time series provided by Forster et al. [14]. Clearly, this does not
represent the full uncertainty in the historical forcing, and hence the spread in the distribution of ECS
(the black curve in Figure 3(b)) is narrower than what we expect to find if we were to model the full
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Figure 4. (a) The points in the scatter plot are the same as (the letters) in Figure 3(a). The blue line
is the least-square fit of the model ECS = aR + b. The vertical lines correspond to the R-values
estimated from the instrumental temperature record for the different modified Hansen forcing time
series. The horizontal lines show how these R-values are mapped to ECS-values by the linear relation
ECS = aR + b. (b) Shows a histogram of the ECS-values that are displayed as horizontal lines in (a).
The black curve is a Gaussian fit to the histogram.

forcing uncertainty. We conclude that accurate estimates of the uncertainty in historical forcing is a
key for establishing constraints on ECS in ESM ensembles. The modeling of the relationship between
R and ECS is also a source of uncertainty. It is evident from Figure 4(a) that the coefficient a in the
linear map ECS = aR + b is less than one. In fact, its estimated value is a = 0.6. As a consequence the
mapping from R to ECS is contracting, so that the spread in ECS-values is smaller than the spread in
R-values. The same is true for the analysis presented in Figure 3, since the conditional PDF p(ECS|R)
is constructed from the fitted line ECS = aR + b. We note that for a model without the intercept
term b, the the estimated coefficient is a = 0.91, and the range of the best estimates of ECS becomes
1.8− 3.4 K. Other assumptions about the functional relationship between R and ECS will lead to yet
different ranges of best estimates.

Apart from the constraints on ECS, an important result presented in this paper is that
scale-dependent climate sensitivity provides a good proxy for ECS. Moreover, despite having infinite
ECS, scale-invariant linear response models are useful for estimating ECS from observational data.
The advantage over multi-layer energy balance models is that the scale-invariant models have few
free parameters and are not prone to statistical overfitting. The accuracy of the models is associated
with the scaling nature of climate variability, an emergent property of the complex climate system.

5. Materials and Methods

5.1. Data

The instrumental temperature record used in this paper is the HadCRUT4 observational dataset
which was downloaded from https://crudata.uea.ac.uk/cru/data/temperature/. The CMIP5
ESM data was downloaded from https://esgf-data.dkrz.de/search/cmip5-dkrz/. Forcing data
was retrieved from the sources provided in [15] and [14]. The time period 1850-2016 is used for all
historical runs and for the instrumental temperature record.
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Table 1. Shows estimated quantities for the ESM in the ensemble. The columns for ECS and F2×CO2

are obtained from Gregory plots for 4×CO2 runs and taken from [1]. The columns denoted β, µ and σ

show the estimates of the parameters in the model given by Equation 2 with response function given
by Equation 5, obtained from historical runs of the ESMs and the modified Hansen forcing for each
model. The last column displays the scale-dependent sensitivity R( f ) obtained from Equation 6 using
the values of F2×CO2 , β and µ that are listed in the columns to the left, and evaluated at f = 10−3

yrs−1.

Model ECS (K) F2×CO2 (W/m2) β µ (10−3 yrs) σ (W/m2) R (K)∗

GISS-E2-R 2.1 3.8 0.49 13.8 0.07 3.3
HadGEM2-ES 4.6 2.9 0.95 7.3 0.32 4.8
IPSL-CM5A-LR 2.6 3.1 0.79 9.6 0.16 4.0
NorESM1-M 2.8 3.1 0.67 7.8 0.12 2.7
Access1-0 3.8 3.0 0.68 7.3 0.10 2.6
Miroc-ESM 4.7 4.3 0.73 6.6 0.12 3.9
Miroc5 2.7 4.1 0.78 4.0 0.21 3.2
CanESM2 3.7 4.1 0.59 17.5 0.15 4.8
CCSM4 2.9 3.8 0.49 14.9 0.12 3.5
CNRM-CM5 3.3 3.6 0.60 15.0 0.12 3.9
GFDL-CM3 4.0 3.0 0.62 19.0 0.14 4.0
GFDL-ESM2G 2.4 3.1 0.72 5.8 0.15 2.5
CSIRO-MK3 4.1 2.6 0.82 8.9 0.17 3.4
BCC-CSM1-1M 2.8 3.2 0.53 15.8 0.09 3.2
GFDL-ESM2m 2.4 3.1 0.47 15.3 0.16 2.8
INM-CM4 2.1 3.0 0.82 1.6 0.12 1.6
MPI-ESM-LR 3.6 4.1 0.78 7.6 0.16 4.5
MRI-CGCM3 2.6 3.2 0.58 9.9 0.10 2.6

∗In the last column R = R( f ) for f = 10−3 yrs−1.

5.2. Parameter estimation

In discrete time, the statistical model given by Equations 2 and 5 can be written as

∆T = σf G(β) (F0 + F) + ε(σ, β), (11)

where we have defined a matrix

Gt,s(β) =

{
(t− s + 1

2 )
β/2−1, 1 ≤ s ≤ t

0, otherwise
.

Here ∆T = (∆T(t1), ∆T(t2), . . . , ∆T(tn))T is the time series for global surface temperature,
F = (F(t1), F(t2), . . . , F(tn))T is the time series for the known forcing, and ε = ε(σ, β) =

(ε(t1), ε(t2), . . . , ε(tn))T , where ε is a fGn with parameters β and σ. In this paper we only consider
time series that are sampled yearly, so we let ti = i, and omit the time unit for simplicity. The random
vector ε is a segment of a fGn, so by definition it is a stationary zero-mean Gaussian vector with
covariance matrix

Σi,j =
σ2

2

(
|i− j + 1|β+1 + |i− j− 1|β+1 − 2|i− j|β+1

)
.

The parameter β is related to the Hurst exponent H through the relation β = 2H − 1 [25].
In fitting Equation 11 to a given temperature series, the parameters β, σf , σ and F0 are found

numerically using the methodology of integrated nested Laplace approximation (INLA) [26]. In
addition, the parameter µ is determined using the formula (1/µ)β/2−1 = σf . INLA is available within
the programming environment R, using the open-source package R-INLA which can be downloaded
from www.r-inla.org. It represents a computationally efficient Bayesian approach which gives
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Table 2. The parameter estimates for the instrumental temperature record, and the resulting values of
R, for varying forcing data.

Forcing β µ (10−3 yrs) σ (W/m2) R (K)∗

GISS-E2-R 0.61 5.8 0.12 2.4
HadGEM2-ES 0.87 5.3 0.20 3.3
IPSL-CM5A-LR 0.64 6.4 0.12 2.2
NorESM1-M 0.74 6.3 0.14 2.8
Access1-0 0.67 6.3 0.12 2.3
Miroc-ESM 0.68 7.6 0.14 3.7
Miroc5 0.68 6.6 0.12 3.3
CanESM2 0.68 5.5 0.13 3.0
CCSM4 0.62 4.5 0.13 2.1
CNRM-CM5 0.69 8.2 0.13 3.3
GFDL-CM3 0.86 5.6 0.19 3.4
GFDL-ESM2G 0.75 4.4 0.14 2.3
CSIRO-MK3 0.86 6.0 0.19 3.1
BCC-CSM1-1M 0.70 3.9 0.13 2.0
GFDL-ESM2m 0.73 4.9 0.14 2.4
INM-CM4 0.67 5.9 0.12 2.2
MPI-ESM-LR 0.81 1.8 0.15 2.3
MRI-CGCM3 0.79 6.9 0.15 3.4

∗In the last column R = R( f ) for f = 10−3 yrs−1.

Table 3. Shows a set of parameter estimates for repeated historical runs of the CSIRO model.

Ensemble run β µ (10−3 yrs) σ (W/m2) R (K)∗

1 0.82 13.0 0.17 3.5
2 0.91 8.0 0.23 3.9
3 0.80 19.4 0.16 4.1
4 0.88 13.6 0.23 4.4
5 0.73 21.8 0.14 3.6
6 0.89 9.9 0.22 3.8
7 0.82 16.9 0.17 4.1
8 0.87 9.5 0.19 3.4
9 0.86 11.6 0.19 3.8
∗In the last column R = R( f ) for f = 10−3 yrs−1.

accurate estimates of the posterior marginals for all the parameters in Equation 11, potentially also
including the predictor itself.

Specifically, INLA is designed to provide inference for a flexible class of three-stage hierarchical
models, referred to as latent Gaussian models [26]. The first stage specifies that the observations (∆T)
are assumed conditionally independent given a latent field and hyperparameters. The second stage
assumes that the latent field (E(∆T)T , εT) given additional hyperparameters is a zero-mean Gaussian
Markov random field. This assumption implies that the precision (inverse covariance) matrix of the
latent field will be sparse. The third stage specifies a prior for each of the hyperparameters (β, σ, σf ,F0).

The model defined by Equation 11 does not fit into the class of latent Gaussian models without
modifications. First, the LRD properties of the fGn process make the precision matrix of the
latent field dense. To ensure computational efficiency, this is circumvented by approximating the
fGn as a weighted sum of four AR(1) processes as introduced in [27]. Second, the mean of the
observation vector, E(∆T) = σf G(β) F has a non-standard form. This requires separate specification
as described in [28], also providing implementation of the model using the freely available R package
INLA.climate.
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Abbreviations

The following abbreviations are used in this manuscript:

ECS: Equilibrium climate sensitivity
ESM: Earth system model
IPCC: Intergovernmental Panel on Climate Change
CERES: Clouds and Earth’s Radiant Energy System
CMIP5: Coupled Model Intercomparison Project Phase 5
ENSO: El Niño Southern Oscillation
PSD: Power Spectral Density
LRD: Long-range dependence
fGn: fractional Gaussian noise
PDF: Probability density function
INLA: Integrated nested Laplace approximation
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