

1 Article

2 **Effects of Concentration Percentages of**
3 **PCL/AgNO₃/ZnO on Electrical Properties of**
4 **Nanofiber Composites Produced by Using Co-Axial**
5 **Electrospinning**

6 Umit Kemalettin Terzi^{1,3,*}, Oguzhan Gunduz^{2,3}

7 ¹ Department of Electric-Electronic Engineering, Faculty of Technology, Marmara University, Goztepe
8 Campus, 34722, Istanbul, Turkey; terzi@marmara.edu.tr

9 ² Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University,
10 Goztepe Campus, 34722, Istanbul, Turkey; oguzhan.gunduz.09@alumni.ucl.ac.uk

11 ³ Nanotechnology and Biomaterial Research and Implementation Centre, Marmara University, Goztepe
12 Campus, 34722, Istanbul, Turkey

13 * Correspondence: terzi@marmara.edu.tr or ukterzi@gmail.com (U.K.T); Tel.: +90-542-314-9336

14

15

16 **Abstract:** Nanofibers appearing functional properties show a great promise as allowing
17 constituents for a wide range of medical applications. In this work, Polycaprolactone (PCL), Silver
18 Nitrate (AgNO₃) and Zinc Oxide (ZnO) were used for fabrication of nanofiber composite material
19 by co-axial electrospinning (CAE) process. 5, 10, and 15 wt. % concentrations of PCL were utilized
20 and different amount of AgNO₃ and ZnO were used in entire samples. Morphological analyses of
21 the electrospun nanocomposites were done by scanning electron microscopy (SEM) and AgNO₃,
22 ZnO and PCL materials' functional groups were determined by Fourier Transform Infrared
23 Spectroscopy (FTIR). Before co-axial electrospinning, physical properties such as liquid state ac
24 conductivity, density and viscosity were measured for all solutions. Capacitance (C_p) and D-factors
25 ($\tan\delta$) of nanocomposite materials are measured for the frequency range of 20Hz – 3MHz and the
26 solid state alternating current (ac) conductivity, permittivity (ϵ') and dielectric loss (ϵ'') were
27 calculated for all solutions after co-axial electrospinning. Effects of concentration percentages of
28 PCL and AgNO₃ on real and imaginary parts of dielectric constant and solid state ac conductivity
29 have been analyzed and comparisons have been made by the results obtained.

30 **Keywords:** biocomposites, nanomaterials, measurement, electrical properties, electrospinning

31

32

33 **1. Introduction**

34 With the rapid improvement of nanotechnology over the last two decades, significant progress
35 has been made not only in fabrication and measurement of nanostructures but also for their
36 functional purposes. As a crucial one-dimensional nanostructure, nanofibers have a particularly
37 very high specific surface area and therefore nanofiber membranes are very porous with superb
38 pore interconnectivity. According to literature, it can easily be seen that electrospinning process is
39 reported for the fabrication of nanofibers for different purposes. Electrospinning is a basic and
40 versatile process for the production of polymers, composite and ceramic fibers. Nanofibers polymer
41 materials fabricated by electrospinning have obtained immense research interest because of their
42 functional properties, such as high surface-area-to-volume and aspect ratios. There are some
43 alternative operation types of electrospinning and one of them is co-axial needle electrospinning.
44 The principles, method details and biomedical engineering applications of coaxial-needle
45 electrospinning have been stated in detail in the literature [1].

46 This Co-axial electrospinning (CAE) process has attracted great interest from researchers
47 because of its novel molecular structure and remarkable electronic properties and its promising
48 applications in photosensitizers, gas sensor devices, stabilizers as functional materials and
49 biochemistry and biomedical engineering applications. Although several research papers have been
50 published in recent years, CAE processing is a relatively new technique but there are many
51 applications in this technique which need to be researched. Among various types of biomaterials,
52 Polycaprolactone (PCL) has many advantages such as biocompatibility, biodegradability, low cost
53 and ease of control for fabricating process in electrospinning [2, 3]. Zinc oxide (ZnO) a wurtzite
54 n-type semiconductor, which is in its varying forms with unique properties, such as, direct band gap
55 (3.37 eV), high exciton binding energy (60 meV), and good resistivity (10–3 to 105 Ωcm) is amongst
56 the widely explored functional metal oxide semiconductors [4]. Virovska et al. have shown that
57 Electrospun poly(lactic acid) (PLA) was surface functionalized with nanosized ZnO leading to
58 nonwoven mats in which ZnO was coated either on the surface or within the bulk, the former
59 exhibiting higher photocatalytic activity [5]. Dobrzański et. al have stated that AgNO₃ leads to
60 higher electrical conductivity of the solution along with the increasing fraction of silver nitrate
61 additives relative to the initial solution. They also showed that the fraction of silver nitrate affects the
62 surface area of the nanofibers obtained [6]. Functional polymer nanocomposites have the ability to
63 meet these requirements and the use of various conductive precursors, such as metallic, ceramic,
64 nanoparticles, thin films and nanofibers have been significantly explored and revealed to improve
65 the conductivity and dielectric properties. However, insufficient research has been done on the
66 dielectric properties of the composites enhanced by these nanocomposites.

67 By using dielectric spectroscopies, Kaya et al. examined the mixing temperatures' effects on
68 dielectric properties of poly(methyl methacrylate) (PMMA)-pristine bentonite nanocomposites.
69 They observed that the permittivity decreases and the dielectric relaxation displaces towards the
70 lower frequencies by lowering the mixing temperature [7].

71 Kaya et al. investigated the dielectric and electric properties of Poly(vinyl
72 imidazole)-Na-Bentonite composite. Conductivity was increased at 25°C according to the studies
73 done on the current and voltage. From the capacitive measurements it can be concluded that the
74 samples show typical dielectric behavior. Alternating current conductivity and loss factors are also
75 high, depending on maximum interactions at 25°C [8].

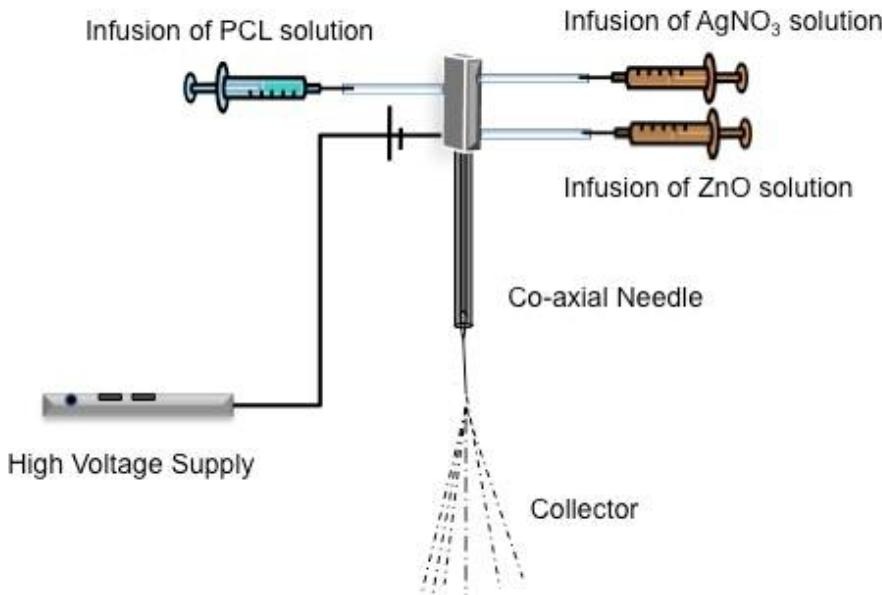
76 In this work, the goal is to analyze the effects of concentration percentages of PCL and AgNO₃
77 on electrical properties of PCL/AgNO₃/ZnO nanofiber composites produced by using CAE
78 processing. To observe the effects of concentration percentages of PCL and AgNO₃ on electrical
79 properties of nanofiber composites, nine different samples were prepared with three different
80 concentration percentages and dielectric spectroscopy was used to obtain information about
81 interactions. Behavior of a dielectric can be studied through the real part (ϵ') and the imaginary part
82 (ϵ'') of the dielectric constant and behavior of conductivity (σ^*) can also be studied through the real
83 part(σ') and the imaginary part (σ'') of the ac conductivity.

84 2. Materials and Methods

85 2.1 Preparation of PCL/AgNO₃/ZnO Composite Solutions

86 Polycaprolactone (PCL) is selected as a biopolymer material. The average molecular weight of
87 PCL (M_w) was 80000 g/mol and it was purchased from Sigma-Aldrich and used with no extra
88 treatment or purification. A solution of PCL was prepared with various concentrations and the
89 percentages of solution concentration were 5, 10 and 15 wt. %. PCL was dissolved in
90 Tetrahydrofuran (THF) and Dimethylformamide (DMF) mixture with a constant w/w 1:1 ratio and
91 all of these solutions were stirred with a magnetic stirrer at 40°C for 2 hours. The purity of the THF
92 and DMF is 99%. AgNO₃ and ZnO are selected as dielectric property agents. ZnO was purchased
93 from Sigma-Aldrich and the average molecular weight of ZnO (M_w) was 81.37 g/mol. AgNO₃ was
94 purchased from Merck and average molecular weight of AgNO₃ was 168.87 g/mol. The percentages
95 of AgNO₃ solution concentrations were 0.5 wt. %, 1 wt. % and 2 wt. % and the percentages of ZnO

96 solution concentration were 5 wt. %. ZnO and AgNO₃ were dissolved in THF and DMF mixture with
 97 a constant w/w 1:1 ratio and all of these solutions were stirred with the magnetic stirrer at 40°C for 3
 98 hours.


99 *2.2 Co-axial Electrospinning of PCL/AgNO₃/ZnO Composite Nanofibers*

100 Samples were prepared in different concentrations using polymer and dielectric properties
 101 agent solutions and detailed information about contents of the nine samples have been listed in
 102 Table 1 and also supported with co-axial electrospinning parameters.

103 **Table 1.** The sample codes for each different polymer concentrations and solution properties of
 104 prepared 9 samples before co-axial electrospinning process.

Sample No	Material Compositions	Feeding Speed (ml/h)	Distance Between Collector and Needle (cm)	Applied Voltage (kV)	Humidity (g/m ³)	Temperature (°C)
S1	PCL (5wt.%)	0.01	9	25.9	58.3	26.9
	AgNO ₃ (0.5wt.%)	0.01				
	ZnO (5wt.%)	0.01				
S2	PCL (5wt.%)	0.01	9	21.8	63.8	24.3
	AgNO ₃ (1wt.%)	0.01				
	ZnO (5wt.%)	0.01				
S3	PCL (5wt.%)	0.02	9	23.3	60.4	27.3
	AgNO ₃ (2wt.%)	0.02				
	ZnO (5wt.%)	0.02				
S4	PCL (10wt.%)	0.02	9	20.1	60	26.7
	AgNO ₃ (0.5wt.%)	0.01				
	ZnO (5wt.%)	0.01				
S5	PCL (10wt.%)	0.02	9	23.3	63.8	27.3
	AgNO ₃ (1wt.%)	0.02				
	ZnO (5wt.%)	0.02				
S6	PCL (10wt.%)	0.02	9	18.4	60	26.7
	AgNO ₃ (2wt.%)	0.01				
	ZnO (5wt.%)	0.01				
S7	PCL (15wt.%)	0.04	9	18.6	60	26.7
	AgNO ₃ (0.5wt.%)	0.04				
	ZnO (5wt.%)	0.04				
S8	PCL (15wt.%)	0.04	9	21.7	60	24.6
	AgNO ₃ (1wt.%)	0.04				
	ZnO (5wt.%)	0.04				
S9	PCL (15wt.%)	0.05	9	21.8	50.5	27.3
	AgNO ₃ (2wt.%)	0.05				
	ZnO (5wt.%)	0.05				

105
 106 As can be seen in the schematic design given in Figure 1, the solutions of PCL, ZnO and
 107 AgNO₃ were placed in three different plastic syringes and pinhead connected to a high voltage
 108 generator with the co-axial needle. Co-axial electrospinning was successfully carried out and
 109 PCL/AgNO₃/ZnO multilayered nanocomposite fibers were synthesized.

110

111 **Figure 1.** Schematic design of the experimental setup for co-axial electrospinning method112 **2.3 Characterization**113 **2.3.1 Physical Properties of PCL, AgNO₃ and ZnO Solutions**114 Physical properties of PCL, AgNO₃ and ZnO solutions are studied in two sections as liquid state
115 ac conductivity, density and viscosity and solid state ac conductivity, permittivity and dielectric loss.116 **2.3.1.1. Liquid state ac conductivity, density and viscosity**117 Physical properties of PCL (5, 10 and 15 wt. %), AgNO₃ (0.5, 1 and 2 wt. %) and ZnO (5 wt. %)
118 solutions were determined. DMF and THF were used together to dissolve PCL, AgNO₃ and ZnO. All
119 these samples' viscosities were measured by a viscometer (Lamy Rheology Instruments B-one Touch
120 Viscometer). Liquid state ac conductivities of these solutions were measured with a Cond 3110 (Set
121 1-2CA101, Germany). In Table 2, measured viscosity, liquid state ac conductivity and density values
122 are shown for each solution before preparing the 9 different blend solutions. In the measurement
123 tests, 4 different examples were handled and measured to show their average numbers.124 **Table 2.** Measured liquid state ac conductivity, density and viscosity values for different
125 concentration of PCL, ZnO and AgNO₃ solutions before preparing the 9 different blend solutions.

Solution Concentrations	Viscosity (mPas)	Liquid state ac conductivity (μS/cm)	Density (g/cm ³)
5 wt. %PCL	65.4	6.18	0.9525
10 wt. %PCL	120.8	0.86	0.9728
15 wt. %PCL	182.3	0.64	0.9975
5 wt. % ZnO	45.9	3.2	0.9828
0.5 wt. % AgNO ₃	10.1	249	0.9496
1 wt. % AgNO ₃	10.2	457	0.9516
2 wt. % AgNO ₃	10.5	936	0.9554

126 **2.3.1.2. Solid state ac conductivity, permittivity and dielectric loss**127 For solid state alternating current conductivity, permittivity and dielectric loss measurements,
128 samples were cut in a square shape with a side length of 20 mm. At room temperature (23°C) and 1
129 Vrms potential, electrical measurements of PCL (5, 10 and 15 wt. %), AgNO₃ (0.5, 1 and 2 wt. %) and
130 ZnO (5 wt. %) solutions were completed by using Impedance Analyzer (Wayne Kerr 6500 B

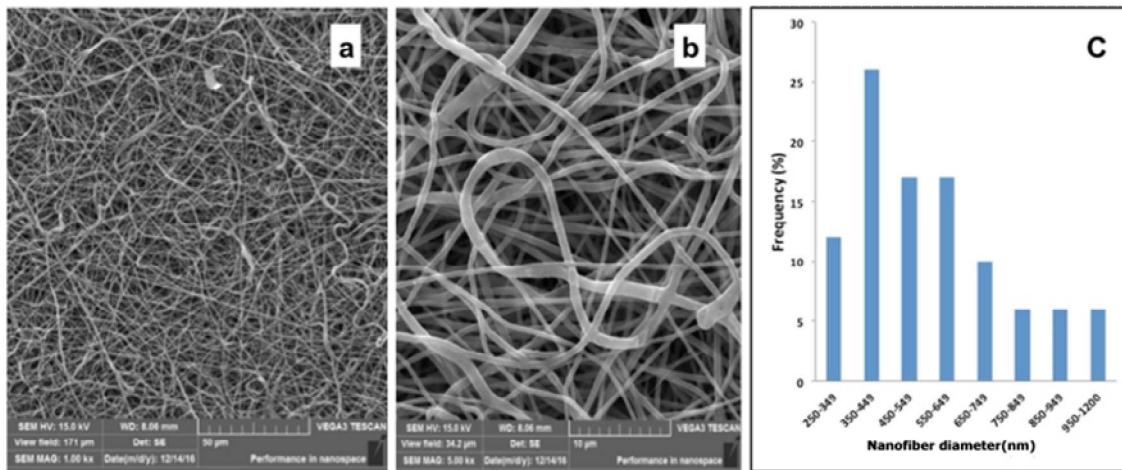
131 Precision, 20 Hz–5 MHz) and the solid state ac conductivity, the permittivity and dielectric loss
 132 values were obtained by calculations. In Table 3, the average values over a range of frequency of
 133 20Hz to 3MHz for the permittivity, the dielectric loss and the real and imaginary parts of solid state
 134 alternating current conductivity are given for each solution after preparing the 9 different blend
 135 solutions.

136 **Table 3.** The average values over a range of frequency of 20Hz to 3MHz for the permittivity, the
 137 dielectric loss and the real and imaginary parts of solid state alternating current conductivity for each
 138 sample.

Sample No	wt.%PCL	wt.%ZnO	wt.%AgNO ₃	Average ϵ'	Average ϵ''	Average σ' (S/m)	Average σ'' (S/m)
S1	5	5	0.5	1.85E+00	4.37E-03	2.72E-05	8.33E-08
S2	5	5	1	2.74E-01	4.83E-04	4.02E-06	1.09E-08
S3	5	5	2	9.71E-01	2.56E-03	1.43E-05	4.25E-08
S4	10	5	0.5	7.36E-01	1.75E-03	1.08E-05	3.12E-08
S5	10	5	1	3.43E-01	7.25E-04	5.04E-06	1.37E-08
S6	10	5	2	7.78E-01	1.71E-03	1.14E-05	3.29E-08
S7	15	5	0.5	5.58E+00	1.42E-02	8.20E-05	2.47E-07
S8	15	5	1	6.49E-01	1.53E-03	9.53E-06	2.62E-08
S9	15	5	2	6.45E-01	1.52E-03	9.48E-06	2.76E-08

139 2.3.2 Morphological Analysis of the Electrospun Nanocomposite Fibers

140 The produced nanofibers' morphology was investigated with a SEM (VEGA3 SB, Tescan USA).
 141 Before the analysis, samples were coated with gold for 5 minutes. By using Olympus AnalySIS 5
 142 (Olympus, USA), image visualization software, diameter measurements of the electrospun
 143 nanocomposites materials were done.


144 2.3.3 Fourier-Transform Infrared Spectroscopy (FTIR)

145 For the determination of the functional groups of used materials, PerkinElmer FT-IR
 146 Spectrometer Spectrum Two was used. Tests were conducted at room temperature (23°C) for all
 147 nanocomposite fiber samples in the wave number range of 400-4000 cm⁻¹, running 10 scans with a
 148 resolution of 4 cm⁻¹.

149 3. Results and Discussion

150 3.1 Morphological Characterization

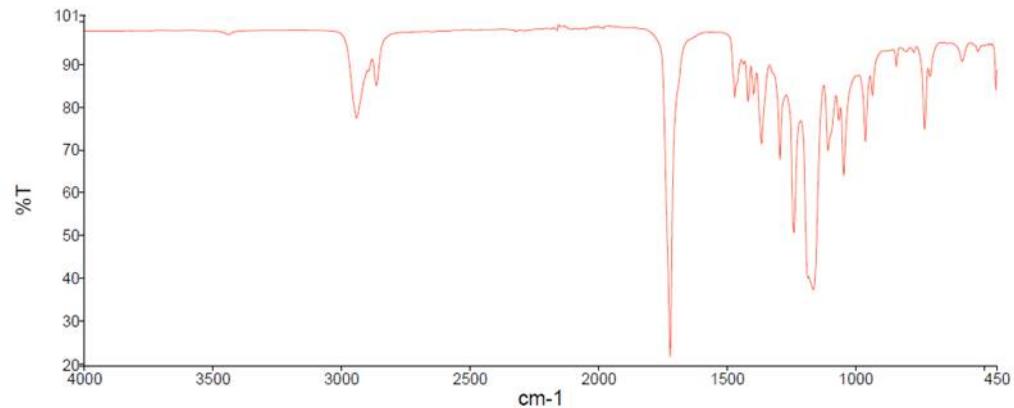
151 Unique PCL/AgNO₃/ZnO nanocomposite fibers were produced to evaluate their capability for
 152 new functional opportunities with the advantage of low cost, biomedical applications and
 153 nanocomposites. Fiber diameter, bead structures, and porosity are important morphological
 154 features, and every one of them can find a different application area in healthcare engineering
 155 applications. SEM images, fiber diameter range graphics and average fiber diameter for each sample
 156 are showed in Figure 2. ZnO nanoparticles were observed in the PCL nanofibers in the samples. All
 157 the fabricated nanocomposite materials showed uniform fiber diameter distribution (Figure 2a,b). It
 158 has been shown that the diameter of nanocomposite fibers will decrease to a large extent with
 159 increasing concentration of silver nitrate nanoparticles in nanocomposite materials [9]. Average fiber
 160 diameters were 559.66 nm (Figure 2c) for all of the samples (S1 to S9).

161
162
163
164

Figure 2. Scanning Electron Microscopy (SEM) images of the 5 wt.% PCL/1wt.% AgNO₃/5 wt.% ZnO nanocomposite fiber materials with fiber diameter frequency graphics. a) Low magnification (1000x), b) high magnification (5000x) and c) diameter distributions of nanofiber compositions

165
166
167
168
169

3.2 Fourier-Transform Infrared Spectroscopy (FTIR)


FTIR analyses were carried out for chemical bond analysis of PCL/AgNO₃/ZnO nanocomposite fiber samples (S1 to S9). In FTIR analysis, it is expected that a nanocomposite material reflects the characteristic peaks of its components.

170
171
172

Figure 3. FTIR Spectrum of the 5 wt.%PCL/1 wt.% AgNO₃/5 wt.% ZnO electrospun nanocomposite material.

173
174
175
176
177
178
179
180
181
182
183
184
185
186

The infrared spectrum bands for 5 wt.% PCL/1 wt.% AgNO₃/5 wt.% ZnO nanocomposite sample in the wave number range of 4000 to 450 cm⁻¹ can be seen in Figure 3. In all composite samples, characteristic peaks of PCL were observed including asymmetric strong bands of carbonyl stretching mode around 1722 cm⁻¹, asymmetric CH₂ stretching at 2944 cm⁻¹, symmetric CH₂ stretching at 2866 cm⁻¹, C – O and C – C stretching in the crystalline phase at 1293 cm⁻¹, asymmetric COC stretching, OC – C stretching at 1168 cm⁻¹, symmetric COC stretching at 1107 cm⁻¹, and finally C – O and C – C stretching in the amorphous phase at 1046 cm⁻¹ [10]. Vibrations peaks that indicate ZnO appeared as C-H stretching at 2944 cm⁻¹, strong absorption peaks were observed at 1635 and 1631 cm⁻¹, which indicates the N-H band. 1418 and 1470 cm⁻¹ were assigned to C-C stretching in an aromatic group. The narrow peaks at 1065 cm⁻¹ and 1046 cm⁻¹ were assigned to C-N stretching in aliphatic amines. The weak absorption bands at 453 cm⁻¹ indicate Zn-O stretching. The region between 400 and 600 cm⁻¹ corresponds to metal oxide [11]. AgNO₃ showed peaks at 1651.4, 1542, 1396 and 1057 cm⁻¹. The bands obtained at 1396 and 1046 cm⁻¹ are due to the presence of C-N stretching vibrations of aromatic and aliphatic amines. Molecules containing NO₂ groups, such as

187 nitro compounds, nitrates, and nitramines, commonly exhibit asymmetric and symmetric stretching
 188 vibrations of the NO_2 group at the 1660 to 1500 cm^{-1} and 1390 to 1260 cm^{-1} region [12].

189 *3.3 Dielectric and Conductivity Studies*

190 Dielectric behavior is studied through the real (ϵ') and imaginary (ϵ'') parts of the dielectric
 191 constant ($\epsilon^* = \epsilon' + j\epsilon''$). ϵ' is related to energy which is deposited by the external field and ϵ'' is
 192 related to energy loss [7, 8];

$$\epsilon' = C_p/C_0, \epsilon'' = \epsilon' \tan\delta \quad (1)$$

193 C_0 is the vacuum capacitance and calculated by;

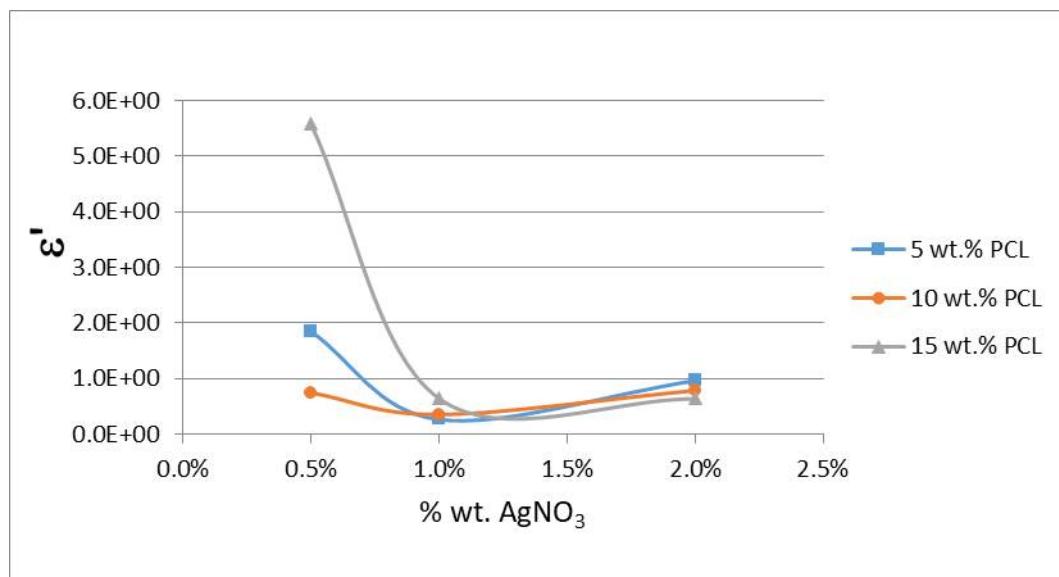
$$C_0 = \epsilon_0 \cdot A/d \quad (2)$$

194 Where;

195 A is area of the plates, ϵ_0 is the electrical permittivity of a vacuum which is equal to 8.85×10^{12}
 196 F/m and d is perpendicular spacing between plates of capacitance fixture.

197 Alternating current conductivity (σ^*) was calculated by;

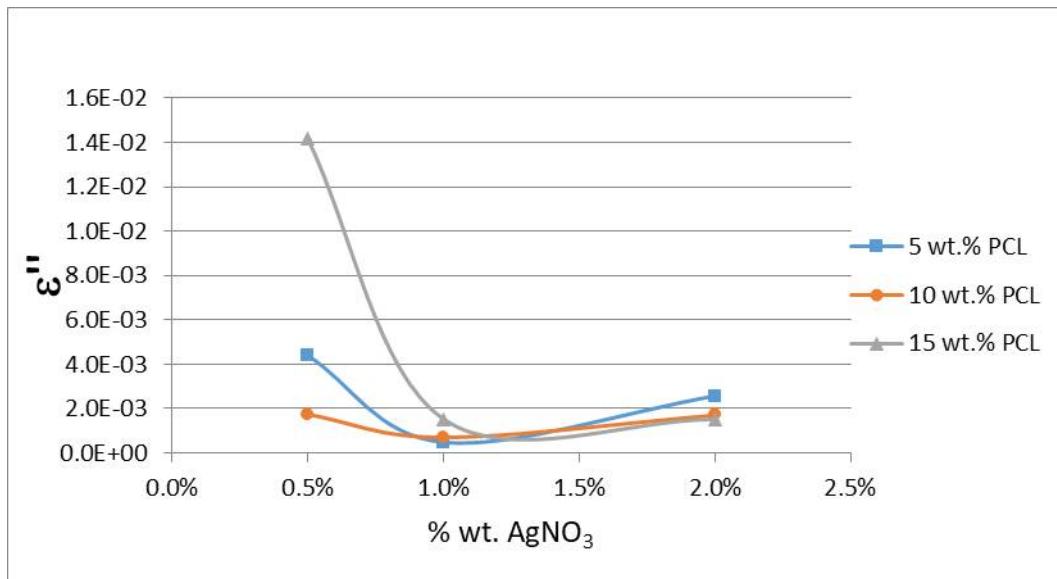
$$\sigma^*(\omega) = \sigma' + j\sigma'' = \omega\epsilon_0\epsilon'' + j\omega\epsilon_0\epsilon' \quad (3)$$


198 Where;

199 ϵ_0 is the free space dielectric constant and ω is angular frequency [13].

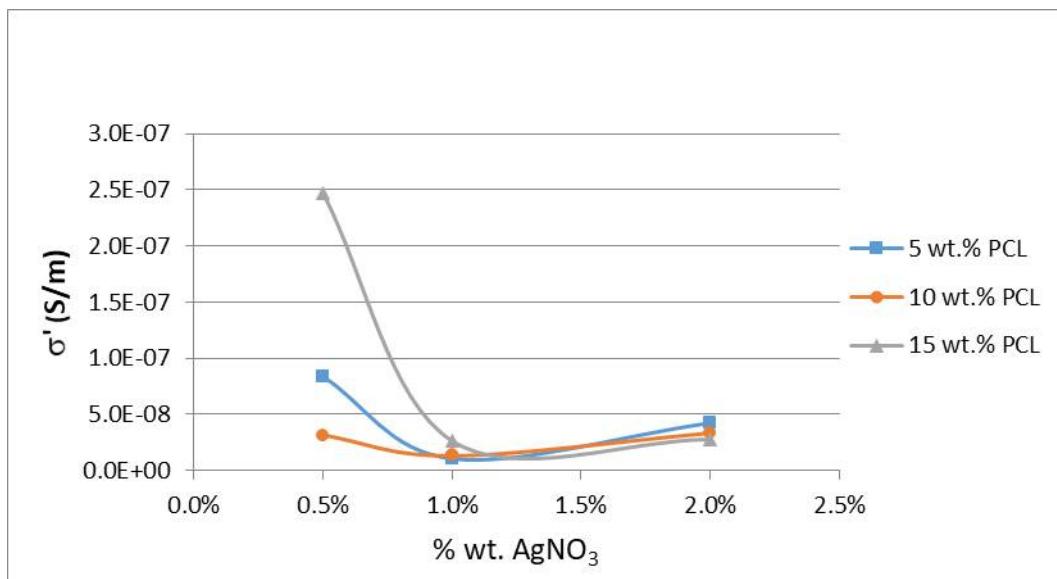
200 As mentioned in section 2.3.1.2., electrical measurements were completed by using Impedance
 201 Analyzer, at room temperature (23°C) at 1 V_{rms} potential over a range of frequency of 20Hz to 3MHz.
 202 To record the capacitance and $\tan\delta$ data, the same procedure was repeated for each sample. First, by
 203 using Equation 2, C_0 for each sample was calculated by using thickness, area, capacitance and $\tan\delta$
 204 data of each sample for the frequency range of 20 Hz-3 MHz. After calculation of the C_0 of each
 205 sample, the calculations of ϵ' , ϵ'' , σ' and σ'' were done by using Equation 1 and Equation 3
 206 respectively. After that, average value calculations over a range of frequency of 20Hz to 3MHz were
 207 done for ϵ' , ϵ'' , σ' and σ'' for each sample and values obtained from these procedures were presented
 208 in Table 3.

209 By using the data given in Table 3, graphs of average values of ϵ' , ϵ'' , σ' and σ'' for each sample
 210 were drawn and can be seen in Figure 4, Figure 5, Figure 6, Figure 7, respectively.


211

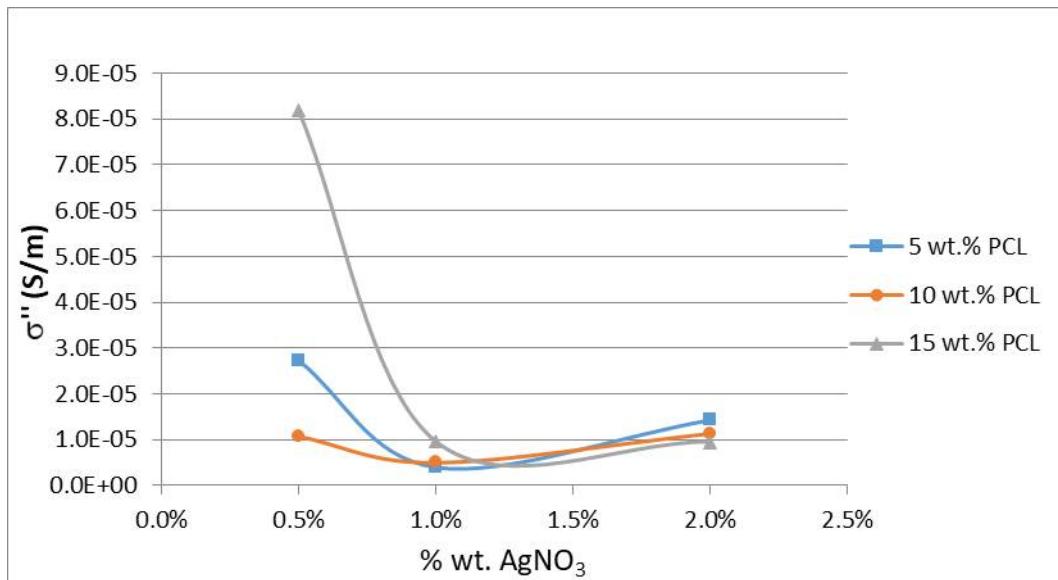
212

213 **Figure 4.** Graphs of average values of the real part of permittivity for 9 different blend solutions.


214

215
216

217


218
219

220

221

222
223

224

225 **Figure 7.** Graphs of average values of the imaginary parts of the alternating current conductivity for
 226 9 different blend solutions.

227 For making the effects of concentration percentages of PCL and AgNO₃ on dielectric properties
 228 of the nanofiber composites produced by using co-axial electrospinning clear, for each concentration
 229 percentage of AgNO₃, the average of absolute values of differences for each PCL (5, 10 and 15 wt. %)
 230 have been calculated. Values obtained from calculations can be seen in Table 4.
 231

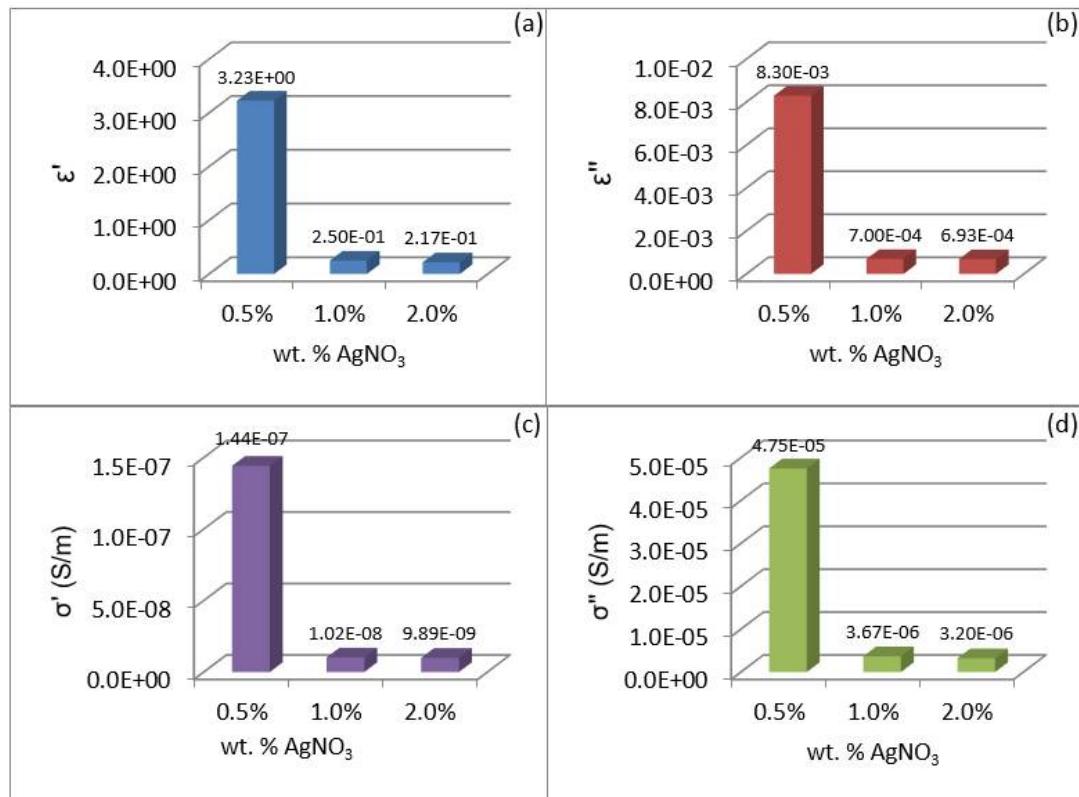

232

Table 4. Average of absolute values of differences for PCL (5, 10, and 15 wt. %) vs. wt.%AgNO₃

wt.%AgNO ₃	Average of absolute values of differences for PCL (5, 10 and 15 wt. %)			
	ϵ'	ϵ''	σ' (S/m)	σ'' (S/m)
0.5	3.228448078	0.008297431	1.44194E-07	4.74548E-05
1.0	0.249881712	0.000700123	1.02001E-08	3.6723E-06
2.0	0.217367156	0.00069333	9.88801E-09	3.20041E-06

233

234 By using data given in Table 4, graphs of the average of absolute values of differences for PCL
 235 (5, 10 and 15 wt.%) vs. wt.%AgNO₃ have been drawn and can be seen in Figure 8.
 236

237
238

239 **Figure 8.** Graphs of the averages of absolute values of differences of (a) permittivity for PCL (5, 10
240 and 15 wt. %) for each concentration percentage of AgNO₃ (b) dielectric loss for PCL (5, 10 and 15 wt.
241 %) for each concentration percentage of AgNO₃ (c) real part of alternating current conductivity for
242 PCL (5, 10 and 15 wt. %) for each concentration percentage of AgNO₃ (d) imaginary part of
243 alternating current conductivity for PCL (5, 10 and 15 wt. %) for each concentration percentage of
244 AgNO₃.

245 As can be seen in Figure 8(a), while the concentration percentage of AgNO₃ changes from 0.5 %
246 to 1%, the change in percentage of the average of absolute values of differences for the permittivity is
247 -92.26% and when the concentration percentage of AgNO₃ changes from 1% to 2%, the change in
248 percentage of the average of absolute values of differences for the permittivity is -13.01%. Similarly,
249 as can be seen in Figure 8(b), while the concentration percentage of AgNO₃ changes from 0.5 % to
250 1%, the change in percentage of the average of absolute values of differences for the dielectric loss is
251 -91.56% and when the concentration percentage of AgNO₃ changes from 1% to 2%, the change in
252 percentage of the average of absolute values of differences for the dielectric loss is -0.97%.

253 The same situation is valid for the real and imaginary parts of ac conductivity. As can be seen in
254 Figure 8(c), while the concentration percentage of AgNO₃ changes from 0.5 % to 1%, the change in
255 percentage of the average of absolute values of differences for the real part of the ac conductivity is
256 -92.93% and when the concentration percentage of AgNO₃ changes from 1% to 2%, the change in
257 percentage of the average of absolute values of differences for the real part of the ac conductivity is
258 -3.06%. Similarly, as can be seen in Figure 8(d), while the concentration percentage of AgNO₃
259 changes from 0.5 % to 1%, the change in percentage of the average of absolute values of differences
260 for the imaginary part of the ac conductivity is -92.26% and when the concentration percentage of
261 AgNO₃ changes from 1% to 2%, the change in percentage of the average of absolute values of
262 differences for the imaginary part of the ac conductivity is -12.85%.

263 There is very little change in properties when either PCL or AgNO₃ are varied over the PCL
264 range of 5-15% and the AgNO₃ range of 1-2%. From all the results explained above and figures
265 4,5,6,7, it clearly can be concluded that increasing the concentration percentage of AgNO₃ makes all

266 the electrical properties studied in this paper almost independent from concentration percentage of
267 PCL.

268 **4. Conclusion**

269 Within this study, 9 samples of nanocomposite material with fiber structure have been
270 prepared by using Polycaprolactone (PCL), Silver Nitrate (AgNO_3) and Zinc Oxide (ZnO) and have
271 been produced by a co-axial electrospinning method. 9 samples were examined under laboratory
272 conditions. As seen in Figures 4,5,6,7, an increase in concentration percentage of AgNO_3 makes the
273 variety of permittivity, dielectric loss and real and imaginary parts of ac conductivity of samples
274 which are studied almost PCL independent. If these types of nanocomposite materials with fiber
275 structure are going to be used for industrial purposes, it should be considered that concentration
276 percentage of AgNO_3 will play an important role to vary the value of permittivity, dielectric loss and
277 real and imaginary parts of ac conductivity more than concentration percentage of PCL. In other
278 words, adjusting the concentration percentage of AgNO_3 will be enough to vary the value of all the
279 electrical properties of nanocomposite materials with the fiber structure studied in this paper.
280

281 **Author Contributions:** U.K.T. and O.G. designed the experiments; O.G. developed and manufactured the
282 samples. U.K.T. performed the experiments and the characterization, analyzed the data. The manuscript was
283 written through contributions of all of the authors. All of the authors have approved the final version of the
284 manuscript.

285 **Acknowledgments:** The authors are thankful to Marmara University Nanotechnology and Biomaterial
286 Research and Implementation Centre for their support.

287 **Conflicts of Interest:** The authors declare no conflict of interest.

288 **References**

1. Komur, B.; Bayrak, F.; Eken, N.; Eroglu, M.; Oktar, F.; Sinirlioglu, Z.; Yucel, S.; Guler, O.; Gunduz, O., Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. *Biomedical engineering online* **2017**, *16* (1), 40.
2. Paneva, D.; Manolova, N.; Argirova, M.; Rashkov, I., Antibacterial electrospun poly (ϵ -caprolactone)/ascorbyl palmitate nanofibrous materials. *International journal of pharmaceutics* **2011**, *416* (1), 346-355.
3. Hou, Q.; Grijpma, D. W.; Feijen, J., Preparation of Porous Poly (ϵ -caprolactone) Structures. *Macromolecular rapid communications* **2002**, *23* (4), 247-252.
4. Patil, P. T.; Anwane, R. S.; Kondawar, S. B., Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. *Procedia Materials Science* **2015**, *10*, 195-204.
5. Virovska, D.; Paneva, D.; Manolova, N.; Rashkov, I.; Karashanova, D., Electrospinning/electrospraying vs. electrospinning: a comparative study on the design of poly (l-lactide)/zinc oxide non-woven textile. *Applied Surface Science* **2014**, *311*, 842-850.
6. Dobrzański, L.; Hudecki, A.; Chladek, G.; Król, W.; Mertas, A., Surface properties and antimicrobial activity of composite nanofibers of polycaprolactone with silver precipitations. *Archives of Materials Science and Engineering* **2014**, *70* (2), 53-60.
7. Uğur Kaya, A.; Güner, S.; Esmer, K., Effects of solution mixing temperature on dielectric properties of PMMA/Pristine bentonite nanocomposites. *Journal of Applied Polymer Science* **2014**, *131* (4).
8. Kaya, A. U.; Esmer, K.; Tekin, N.; Beyaz, S. K., Investigation of temperature, thermodynamic parameters and dielectrical properties of poly (vinylimidazole)-Na-bentonite nanocomposite. *Journal of Applied Polymer Science* **2011**, *120* (2), 874-879.
9. Augustine, R.; Kalarikkal, N.; Thomas, S., Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. *Applied Nanoscience* **2016**, *6* (3), 337-344.
10. Augustine, R.; George, S. C.; Kalarikkal, N.; Thomas, S., Gentamicin loaded electrospun poly (ϵ -caprolactone)/TiO₂ nanocomposite membranes with antibacterial property against methicillin resistant *Staphylococcus aureus*. *Polymer-Plastics Technology and Engineering* **2016**, *55* (17), 1785-1796.

316 11. Elumalai, K.; Velmurugan, S.; Ravi, S.; Kathiravan, V.; Ashokkumar, S., Bio-fabrication of zinc oxide
317 nanoparticles using leaf extract of curry leaf (*Murraya koenigii*) and its antimicrobial activities. *Materials*
318 *Science in Semiconductor Processing* **2015**, *34*, 365-372.

319 12. Raheman, F.; Deshmukh, S.; Ingle, A.; Gade, A.; Rai, M., Silver nanoparticles: novel antimicrobial agent
320 synthesized from an endophytic fungus *Pestalotia* sp. isolated from leaves of *Syzygium cumini* (L.). *Nano*
321 *Biomed Eng* **2011**, *3* (3), 174-178.

322 13. Aydogdu, M. O.; Ekren, N.; Suleymanoglu, M.; Erdem-Kuruca, S.; Lin, C.-C.; Bulbul, E.; Erdol, M. N.;
323 Oktar, F. N.; Terzi, U. K.; Kilic, O., Novel electrospun polycaprolactone/graphene oxide/Fe₃O₄
324 nanocomposites for biomedical applications. *Colloids and Surfaces B: Biointerfaces* **2018**, *172*, 718-727.