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10 Abstract: DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response
11 to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.
12 Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and
13 non-homologous end joining (NHE]) to repair DSBs. Whereas the roles of protein-DNA
14 interactions in HR and NHE] have been fairly well defined, the functions of small and long
15 non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be
16 elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs
17 and RNA-mediated regulation of DSB repair.
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20

21

22 1. Introduction

23

24 One of the most remarkable advances in molecular biology during the last decade is the

25  annotation of the transcriptome in numerous organisms and the discovery that ~75% of the genome
26 s transcribed into noncoding RNAs, but only ~2% of the transcriptome accounts for proteins[1-3].
27  These noncoding RNAs are involved in a diverse array of biological functions that are only
28  beginning to be understood. A strong connection has been established between several small and
29  long noncoding RNAs (IncRNAs) and human disease, especially cancer. MicroRNA signatures are
30  linked to cancer metastasis and tumor progression. Several microRNAs and IncRNAs are
31  oncogenes or tumor suppressors that regulate the DNA damage response and genomic stability.
32 Understanding the mechanisms by which they act opens up new opportunities for intervention in
33 cancer.

34 Double-strand DNA breaks (DSBs) are the most lethal form of DNA damage in cells and are
35  predominantly repaired either by Non-Homologous DNA End Joining (NHE])[4-6] or Homologous
36  Recombination (HR) pathways[7,8]. DSBs can occur endogenously as a result of unrepaired
37  mutations that lead to stalled replication forks, due to inhibition of DNA replication culminating in
38  breaks during mitosis, or because of the harmful effects of ionizing radiation[9-11]. Large-scale
39  genome rearrangements such as deletions, insertions, and translocations that are highly genotoxic,
40  are a consequence of defects in DSB repair and are positively correlated with cancer progression[12].
41  Germ line mutations in proteins involved in HR can cause several diseases such as Fanconi Anemia
42 (FA)[13,14], breast and ovarian cancers[15,16], Bloom syndrome[17,18], Werner syndrome[19], and
43 ataxia telangiectasiam Nijmegen breakage syndrome[20,21], whereas defects in NHE]J can result in
44  chromosomal instability, promoting tumorigenesis, radiosensitive severe combined
45 immunodeficiency (RS-SCID)[22,23], microcephaly, and growth defects in children[24-26]. A third
46  mechanism of repair called Microhomology-mediated end joining (MME]) or Alt-NHE] is a minor
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pathway of DSB repair, and is triggered in the event that HR is not capable of repairing
breaks[27-30]. Pathway choice for double strand break repair is complex and is dependent on the
type of DSB induced, the cell cycle, and the activity of the repair components[31-33].
Understanding the molecular mechanisms involved in repair of DSBs has broad implications for a
range of human diseases such as cancer, as well as aging[8,34].

In mammals, NHE] is the primary DSB repair pathway that is active throughout the cell cycle,
although it is more prominent during the GO and G1 phases of the cell cycle[35-38]. NHE] is used to
repair double-strand DNA breaks (DSBs) that arise due to V (D) J recombination[39,40], ionizing
radiation[41], and reactive oxygen species[42], without the need for a template DNA. The first step
in NHE] involves binding of Ku70-Ku80 heterodimers to both ends of a DNA break[43-45], followed
by the recruitment and activation of the catalytic subunits of DNA dependent protein kinase
(DNA-PKcs)[46,47]. DNA end processing involves phosphorylation of nucleases such as Artemis,
and DNA polymerases to replace damaged bases; followed by ligation of blunt DNA ends by the
XLF-XRCC4-DNA ligase IV complex. Recently, a triple-strand break repair model has been
proposed in which ribonucleotide incorporation at the break termini is important for the ligation
step of NHE][48]. Due to direct joining of the DNA ends that frequently involves DNA end
resection, NHE] is an error-prone DNA repair mechanism.

Unlike NHE], HR occurs only in rapidly dividing cells during the S and G2/M phases of the cell
cycle and requires a sister chromatid as a template for repair[35,49,50]. The early events in HR can
be characterized as (1) signaling to the DSB (2) relaxing chromatin to open the site of the break for
repair, and (3) resection of the 5" end of the DNA end[51-53]. The kinetics of the reaction measured
in vivo, based on fluorescence recovery after photobleaching (FRAP) experiments after UV-based
laser irradiation experiments, is rapid[54]. Within ~1 sec of the damage, the DSB is recognized by
poly (ADP-ribose) polymerase 1 (PARP1), followed by recruitment of the chromatin remodeler Alcl
to the PAR chains, relaxation of chromatin allowing access of the helicase-nuclease “sensor”
Mrel1-Rad50-Nbs1 (MRN) complex to the site of damage[55-57]. Recruitment of MRN to the DSB
site has been reported to occur within ~13 sec and appears to be via direct association with PAR
chains. Single-molecule localization experiments show that the temporal dynamics and spatial
distribution of MRN foci are cell type-specific, and the MRN complex is recruited after YH2AX foci
have already formed[58,59]. In addition to MRN, the phosphatidylinositol 3-kinase-like protein
kinase (PIKK) ATM is activated by autophosphorylation[60]. ATM phosphorylates the DNA repair
factors BRCA1, CtIP, EXOL1 that act downstream in the reaction mechanism to promote resection, as
well as the histone variant H2AX, which is phosphorylated at Ser139 to generate YH2AX[50].
Deposition of YH2AX occurs at the site of the DSB and is amplified, spreading for hundreds of
kilobases from the damage site. These initial factors recruited to the sites of DNA damage form
distinct DNA repair foci, the nature of which remains ambiguous. The amplification of this damage
is dependent on formation of the YH2AX-MDC1 complex that recruits the ubiquitin E3 ligase
RNF8[61]. RNF8-mediated ubiquitylation of histones H2A and H2AX results in decondensation of
chromatin and recruitment of RAP80, ABRA1, and BRCA1[61]. RNFS8 also interacts with other
chromatin remodeling complexes such as CHD4, a component of the nucleosome remodeling and
deacetylase complex, NuRD[62]. After repair has occurred, chromatin is remodeled to its initial
state. Resection of the 5" ends of the DSB is promoted by MRN, BRCA1, CtIP, and Exol nuclease
and helicase activities, leaving ssDNA, which is rapidly bound by replication protein A
(RPA)[50,63]. RPA is then exchanged for Rad51 in the presence of BRCA2[50]. The later steps in
HR involve strand invasion to the homologous template followed by DNA synthesis. This can
occur by either the double-strand break repair pathway (DSBR) that results in chromosomal
crossover, or the synthesis-dependent strand-annealing (SDSA) pathway in which there is strand
displacement after DNA synthesis. Precise assembly of a multitude of protein factors and
macromolecular machines is required for repair to occur. Regulators such as kinases, ubiquitin
ligases, and acetyl-transferases that remodel chromatin are also essential to temporally and spatially
control DSB repair.
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HR and NHE] DNA repair mechanisms are conserved in evolution and occur in both
eukaryotes and prokaryotes. There are several excellent reviews on the detailed mechanisms and
protein factors involved in DSB repair[64-69]. Recent studies indicate that non-coding RNAs
(ncRNAs), that include long ncRNAs (IncRNAs) as well as small ~21 nt RNAs such as microRNAs
(miRNAs), DNA damage induced RNAs (diRNAs), and Drosha- and Dicer-dependent small RNAs
(DDRNAs) play important roles in the DNA damage response[70-73]. This review focuses on
emerging themes in the roles of ncRNAs in DSB repair that are observed in humans and have direct
cancer relevance.

2. LncRNAs

Long non-coding RNAs are >200 nt RNA Pol-II transcripts that, in general, are not translated
into proteins[74,75]. It is projected that >30,000 IncRNAs are expressed in humans, greater than the
number of protein-coding genes (~20,000) in the genome[76-78]. These transcripts are
polyadenylated, capped at the 5" end, and spliced into mature RNAs, exported into the cytoplasm
and are regulated like protein-coding mRNAs, although the mechanisms of RNA processing might
differ from mRNAs[79]. Based on their proximity to protein coding genes, they have been
classified as sense, antisense, pseudogenes, intronic, and intergenic (also called lincRNAs)[80,81].
Although the functions of most IncRNAs are poorly understood, in several cases such as the Xist
RNA[82,83] that is required for mammalian dosage compensation and X-chromosome inactivation,
they are not artifacts of pervasive transcription of “junk DNA”, and play important biological roles
in control of the cell cycle, in development, and have been linked to cancer progression[84,85].

The mechanisms by which IncRNAs act are varied. Some IncRNAs exert epigenetic functions
by acting as scaffolds for chromatin-modifying complexes, e.g. HOTAIR is associated with
chromatin and recruits the polycomb repressive complex 2 (PRC2) and the LSD1/CoREST/REST
demethylase complexes to specific loci in the genome for gene silencing[86,87]. Chromatin
associated IncRNAs such as promotor RNAs (pRNAs) are tethered to specific sites in the genome by
forming RNA-DNA hybrids thereby acting in cis, where they recruit PARP1, the ATP-remodeling
complex NoRC, and the methyltransferase Dnmt3b to silence rDNA[88,89]. LncRNAs can also
directly regulate transcription by acting as transcription coregulators as in the case of the steroid
receptor RNA activator SRA that activates transcription with nuclear receptors[90,91]. An example
of a corepressor is the ncRNAs transcribed from the CCND1 gene (cyclin D1) locus that can bind the
TLS protein that in turn turns-off the histone acetyl transferase activity of p300/CBP[92]. Another
role of IncRNAs is in formation of nuclear bodies or foci. Paraspeckles are nuclear bodies that trap
adenosine-to-inosine edited RNAs and paraskeckle formation relies on the IncRNA NEAT1[93,94].
Similarly, MALAT1 (or NEAT2) is a component of nuclear speckles where it retains serine/arginine
(SR) splicing factors and affects splicing[95,96]. Besides their roles in the nucleus, several antisense
IncRNAs can hybridize with the 3’ untranslated regions (3’ UTRs) of mRNAs to regulate their
stability in the cytoplasm and/or interact with RNA decay factors and miRNAs. Examples of
antisense transcripts are IncRNAs produced from the 3" UTR of iNOS[97] and half-STAU1-binding
site RNAs (1/2sbsRNAs)[98]. The IncRNAs PTENP1 and KRASP1[99] sequester miRNAs and act as
miRNA sponges thereby affecting RNA levels of a range of mRNAs in the cell.

3. LncRNAs and the DNA damage response

Given the large number of IncRNAs and their diverse functions, it is not surprising that several
IncRNAs are induced upon DNA damage and have been proposed to play a role in double-strand
break repair (Table 1). Oncogenes as well as tumor suppressor IncRNAs have been documented.
The first IncRNAs (ncRNAcenpr) identified as being transcribed in response to DNA damage signals
(ionizing radiation), were from the CCNDI gene (cyclin D1) locus[92,100]. The ncRNAccnp:
(between 200 — 330 nts and greater) exist on chromatin as RNA: DNA hybrids as well as ssRNA.

d0i:10.20944/preprints201810.0500.v3
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Table 1. LncRNAs involved in homologous recombination (HR) or non-homologous end

joining (NHEJ)
IncRNA Mechanism DSB repair  References
pathway

1. p53 -linked

IncRNAs

(lincRNA)-p21 Recruits hnRNPK to repress p21 transcription HR [101]

PINT Interacts with PRC2 to silence transcription [102,103]

PANDA Negatively regulates apoptosis by sequestering the HR [104]
transcription factor NF-YA from pro-apoptotic gene
site

DINO Interacts directly with p53 to stabilize it, inducing p53 HR [105]
target genes

LINP1 May interact with Ku80/70 and DNAPKcs NHE] [106]

WRAP53 Antisense IncRNA to p53 that regulates p53 levels HR, NHE] [107]

APELA Binds hnRNPL to block interaction with p53 HR [104]

MEG3 Increases p53 levels HR

LincROR Inhibits p53 translation after DNA damage HR, NHE] [108,109]

MALATI Directly binds PARP1 and LIG3 to promote DNA HR, NHE], [110,111]
repair; may promote p53 deacetylation via SIRT1 Alt-NHE]
impairing its function

TUG-1 Induced by p53 and binds PRC2 to repress cell-cycle HR [112,113]
genes

loc285194 P53 target, tumor suppressor, down regulates miR-211 HR [114]

2. p53

independent

IncRNAs

DDSR1 Sequesters the BRCA1-Rap80 complex via direct HR [115]
interactions with BRCA1

PCAT-1 Represses BRCA2 expression in prostate cancer cells HR [116-118]

IncRNA JADE Induced by ATM activation. Increases transcription of HR [119]
Jadel, a component of the HBO1 histone acetylation
complex. Promotes H4 acetylation at K5, K8, K12

ANRIL Induced by ATM-mediated E2F1 activation. Regulates HR [120]
cell cycle checkpoints and apoptosis

BARD1 9L Increases expression of a subset of BARD1 isoforms by HR [121]
sequestering miRNAs that normally destabilize
BARD1 mRNAs

TERRA Interacts with Ku70/Ku80; facilitates Exol mediated HR, NHE] [122,123]
DNA resection; promotes interaction of Mrell with
LSD1

TODRA Increases Rad51 transcription HR [124]

MDC1-AS Upregulates the expression of the chromatin adaptor ~ HR [125]
MDC1

Evf2 Directly binds BRG1 and inhibits its ATPase HR [126,127]
dependent chromatin remodeling activity, may
prevent Rad51 loading onto ssDNA via BRG1

CUPID1 and Involved in pathway choice in switching from NHE] = HR [128]

CUPID2 to HR; promotes Rad51 recruitment to DSBs



http://dx.doi.org/10.20944/preprints201810.0500.v3
http://dx.doi.org/10.3390/molecules23112789

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 October 2018 d0i:10.20944/preprints201810.0500.v3

5 of 28

153  RNA immunoprecipitation and ChIP experiments established TLS (translocated in liposarcoma) as
154  the protein that was recruited to ncRNAccwvoi.  RNA bound TLS results in an allosteric change that
155  allows TLS to bind and inhibit the histone acetyltransferase complex CBP/p300, resulting in
156  transcription repression. Since then, several damage-induced IncRNAs have been identified. The
157  mechanisms by which IncRNAs modulate DSB repair include (i) modulating the activity of p53
158  either at the level of transcription, translation or posttranslational modifications (ii) by acting as

159  tethers for recruitment of chromatin remodeling complexes to the site of damage (iii) by
160  sequestering negative regulators of DNA repair away from the damage site as decoys (iv) by acting
161  as scaffolds that directly interact with several DNA repair proteins such as Ku70/Ku80, BRCA1,
162 53BP1, Mrell, PARP1, (v) by sequestering miRNAs that regulate the stability of DNA repair
163 proteins, thereby modulating mRNA expression levels. As noted below and in Table 1, a subset of
164  IncRNAs are part of a p53 network i.e. either under direct p53 control or they modulate the activity
165  or expression of p53. In this section, I highlight some of the unique IncRNAs that have clear cancer
166  relevance. A summary of the roles of DNA damage induced IncRNAs in specific disease states and
167  development is in Table 2.

168
169 3.1 p53 linked IncRNAs
170 The transcription factor p53 plays key roles in normal cell proliferation and tumor suppression

171  and is mutated in over 50% of human cancers. In response to DNA damage, it is involved in
172 transactivation or repression of target genes to induce either cell cycle arrest or apoptosis. Not
173 surprisingly, several IncRNAs have been discovered that are either transcription targets of p53 or
174 regulate the p53-dependent gene expression signature[129,130]. Notably, the intergenic IncRNA that
175  resides ~15 Kb upstream of the p53 target CDKN1A (or p21), called lincRNA-p21[101,104,131] was
176  identified as a repressor of the p53 transcriptional response, decreasing gene expression of hundreds
177  of p53 target genes and triggering apoptosis. lincRNA-p21 is a large ~3.1 Kb transcript that is a
178  distinct gene with its own promoter and is transcribed in the opposite orientation to CDKNIA in
179  response to DNA damage. LincRNA-p21 likely functions through its interaction with

180

181 p53

182 e —
183

_—m
184 ————— WRAP53a
185 ) \WWRAP53

186
187

188
189 WRAP533

190 ?
191
192
—
193 *

194 j E

195

196 p53 stabilization
197

198 MDC1-RNF8

199

200

201 Figure 1. The antisense IncRNA WRAP53 ¢ (shown in blue) directly interacts with the p53
202  mRNA (shown in red) to stabilize it, affecting p53 protein levels. The WRAP53 (in green) recruits
203  and stabilizes RNF8 at double strand breaks.

204
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205  heterogeneous nuclear ribonucleoprotein-K (hnRNP-K), which is a component of repressor
206  complexes, and is recruited to promoters of p53 target genes. In addition to its roles in the nucleus,
207  1lincRNA-p21 is also reported to regulate translation in the cytoplasm[132]. A similar mechanism is
208  employed by the DNA damage induced IncRNA called PANDA (for p21 associated ncRNA DNA
209  damage activated) which is also induced by p53 and is transcribed antisense ~5 Kb upstream of
210  CDKN1A[104]. PANDA acts as a decoy for the nuclear transcription factor Y subunit alpha
211  (NF-YA) to repress the pro-apoptotic genes FAS and BIK. The APELA IncRNA is a positive regulator
212 of p53[104,133]. It binds to heterogeneous nuclear ribonucleoprotein-L (hnRNP-L) to inhibit the
213 hnRNP-L-p53 interaction, thereby promoting p53-induced apoptosis. A more recent study[105]
214  identified the IncRNA DINO (Damage Induced Noncoding), a ~951 bp RNA that is induced by p53
215  and is also located upstream of CDKNIA. Intriguingly, DINO interacts directly with p53 and
216  stabilizes it, promoting the transactivation functions of p53. DINO knockout mice are also deficient
217  in p53-dependent gene expression in response to DNA damage. Several IncRNAs have been
218  shown to bind the repressor PRC2 that has H3K27 trimethylase activity. PINT is a lincRNA that is
219  transcriptionally activated by p53 and is a positive regulator of cell proliferation and cell survival in
220 mouse cells and a negative regulator in human cells. In both mice and humans, PINT targets PRC2 to
221  specific gene loci for repression, thereby affecting cell proliferation, although the outcomes appear to
222 be different in mice vs. humans[102,103]. TUGI is a lincRNA transcript that is upregulated by p53
223 and may act on chromatin to downregulate p53 mediated transcriptional pathways[112,113]. TUG1
224  interacts with PRC2 and additional corepressor complexes that include histone methyltransferases,
225  demethylases, and chromatin modifiers[112,113].

226
227 3.1.1. WRAP53 (WD repeat containing antisense to p53)
228 A fascinating example of a IncRNA that is partially antisense to p53 and induces p53 levels

229  upon DNA damage is WRAP53134,135] (Figure 1).  Antisense IncRNA transcripts of p53 that
230  overlap with the first p53 exon are called WRAP530{135] and those that overlap with the first intron
231  are called WRAP53y.  The WRAP53c RNA directly interacts with the p53 mRNA via RNA-RNA
232 interactions to affect p53 protein levels[135].  WRAP53 an interesting example of gene that
233 encodes both a IncRNA and is also transcribed into the protein WRAP53B (also known as WDR79 or
234  TCABI1)[136-138]. WRAP53B has multiple functions in the cell one of which is to target RNF8 to
235  DNA double-strand breaks. Therefore both the protein, as well as the IncRNA is involved in the
236  DNA damage response, albeit through different mechanisms.

237
238 3.1.2. LINP1
239 The long non-coding RNA “IncRNA in non-homologous end joining pathway”

240  LINP1[106,139,140] forms an RNA scaffold that, at least in cell extracts, interacts with both Ku70-
241  Ku80 and DNA-PKcs on chromatin to promote end joining (Figure 2). LINP1 is overexpressed in
242 triple negative breast cancer (TNBC) tumors, in the TNBC cell lines MDA-MB-231 and
243  MDA-MB-468, and in triple-negative immortalized mammary cells MCF10A. LINP1 is not detected
244 in ER-positive MCF7 cells. NHE] reporter assays show that knockdown of LINP1 in TNBC cells
245 decreases NHE] and overexpression of LINP1 in MCF7 cells increases NHE] activity[106].
246  Knockdown of LINP1 also sensitizes mice to ionizing radiation due to defects in DNA repair via the
247  NHE] pathway. Activation of EGFR signaling via MEK and JNK kinases up regulates LINP1
248  whereas tumor suppressor p53 represses LINP1 via the microRNA miR-29. Recent studies show
249  that LINP1 levels are also increased in cervical cancer[141] as well as advanced prostate cancer[139]
250  and are correlated with poor prognosis.

251

252 3.1.3. MALAT1 or NEAT2

253 Metastasis-associated lung adenocarcinoma transcript 1 or MALAT7[110,111] is a ~7 Kb
254 lincRNA that is evolutionarily conserved and is associated with many cancers[142]. It was
255  originally identified in a screen for IncRNAs in early-stage non-small cell lung cancers that were
256  metastatic.  MALATT performs a wide array of functions. It co-localizes with nuclear

257  speckles[143] and is important for pre-mRNA processing and splicing[96,144,145].  The longer
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258 MALATT transcript can be further processed into a short 61 nt tRNA-like fragment called
259 MALATT-associated small cytoplasmic RNA (mascRNA) that regulates translation in the
260  cytoplasm[146].  MALATT is one of the few IncRNAs for which structural information is available
261  for at least a portion of the RNA.  The 3' end of MALATT forms an expression and nuclear

EGFR Pathway

upregulates LINP1 Ku 70/30
c-Jun/c-Fos Arfaris Ku 70/80
DNA-PKcs ¢ '- \Q/V\Q/\ LINP1
LINP1

P . _
miR-29 mediated \QN"Q’ g c J 7'
LINP1 degradation w ' o wm
T C DNA ligase IV 5

XLF PAXX
p53

Figure 2. LINP1 is a 917 nt long RNA that promotes the assembly of NHE] factors to enhance
DNA repair in Triple Negative Breast Cancers (TNBC). LINP1 directly associates with
Ku70/Ku80 as well as DNA-PKcs to increase NHE] activity in TNBC tumors. Activation of EGFR
signaling via MEK and JNK kinases up regulates LINP1 whereas the tumor suppressor TP53
represses LINP1 via the microRNA miR-29.

262

263 retention element (ENE)+A, a triple helix element for which a 3.1 A crystal structure is available
264  (Figure 3A).  The structure shows how the triple helix sequesters the 3’ end of MALAT7in a U-A-U
265  base triple, and protects the 3’ end of the IncRNA from decay[147].

266 Like TUGT, MALATT is also upregulated by p53 upon DNA damage. A proteomics screen has
267  identified numerous proteins involved in transcription, RNA processing, translation, protein
268  degradation, and metabolism as MALATT interacting proteins[148].  MALATT indirectly regulates
269  p53 protein transactivation function by sequestering DBC1, a partner for the deacetylase SIRT1,
270 which targets p53 for deacetylation (Figure 3B).  Therefore similar to several IncRNAs discussed
271 here, p53 creates a feedback loop to regulate the expression of several IncRNAs, that in turn control
272  p53 function. Besides regulating p53 activity, MALATT has also been reported to exist in a
273  complex with PARP1 and Lig3 /n vivo, and may regulate the Alt-NHEJ pathway of double-strand
274  break repair[149].

275
276 3.2 p53-independent IncRNAs
277 Several IncRNAs (Table 1) are transcribed independent of p53, and act indirectly in DDR by

278  altering signaling pathways or via epigenetic mechanisms that repress transcription of DNA repair
279  genes. The IncRNAs ANRI/L (antisense noncoding RNA in the INK4 locus), MDCT7-AS and
280  /ncRNA-JADE are induced by ATM activation.  ANRIL is encoded from the INK4B-ARF-INK4A locus
281 on chromosome 9p21 and this locus is the most frequent copy number alteration across tumors.
282 ANRIL recruits the PRC complex to repress transcription of tumor suppressors INK4B, ARF, INK4A at
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283  this locus and indirectly affects HR by altering cell cycle checkpoints. The CUPIDT and CUPIDZ2
284  IncRNAs are transcribed in hormone-positive breast cancers and regulate pathway choice /n vivo,
285  switching repair from the error-prone NHEJ to HR.  However the exact mechanism is unclear.
286  The TODRARNA (transcribed in opposite direction of RAD51) increases the expression of RAD57 in
287  an E2F1-dependent manner and hence facilitates HR.

288
A
SIRT1 + MALAT1 SIRT1
'
s
+ acetylated p53 s
DBC1 >
@ |
P
=
DBC1
+ MALAT1 ’ DA
289
290
291 Figure 3. (A) Structure of the 3" end of MALATI reveals a triple helix with the 3' end

292 sequestered in a U-A-U base triple, protecting the 3’ end from nucleolytic degradation (B) MALAT1
293  sequesters the negative regulator DBCI, releasing the deacetylase SIRT1 to activate p53 for
294 transactivation.

295
296 3.2.1 DNA damage-sensitive RNA1 (DDSR1)
297 The [incRNA DDSR7 was identified in microarray screens of RNA isolated from

298  hTert-immortalized human skin fibroblasts treated with the DNA damaging agents neocarzinostatin,
299  campothecin, or etoposide[115].  DDSR7 was identified as a 1616 nt inter-genic transcript that
300  was upregulated by ~2.5 fold in all samples treated with the DNA damaging drugs.  DDSR7
301  expression is induced by ATM and under control of NF-xB, however p53 is not required for
302  expression.  Although DDSR7 expression is not under p53 control, DDSR7 was found to regulate
303  the expression of p53 target genes and DDSR7 knockdown significantly upregulated p53 targeted
304  mRNAs, particularly those involved in cell proliferation and cell survival.  Intriguingly, DDSR7
305  knockdown impaired HR by ~50% and DDSR7 knockdown cells were also more sensitive to the
306  PARP1 inhibitor Olaparib. RNA pull-down experiments identified heterogeneous nuclear
307  ribonucleoprotein U-like 1 (hnRNPUL1) as an RNA binding protein that specifically associated with
308  DDSR17, is recruited to sites of double-strand breaks and is important for end resection during
309 HR[150].  /n vivo imaging experiments show that depletion of DDSR7 or hnRNPUL1 leads to an
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This leads to a model in which the DDSR7-hnRNPUL1 complex

Table 2. Relevance of IncRNAs to development, disease, and inborn errors of metabolism

IncRNA Role is Disease and Development References

1. p53 -linked

IncRNAs

(lincRNA)-p21 Type 2 diabetes, multiple cancer types [151,152]

PINT Breast cancer, pancreatic cancer, neuronal development, [153-155]
acute myocardial infarction

PANDA Pancreatic cancer, Type 2 diabetes, osteosarcoma [151,156,157]

DINO multiple sclerosis [158]

LINP1 Triple negative breast cancer, cervical cancer, prostate [106,139-141]
cancer

WRAP53 Unknown

APELA Ovarian cancer [159]

MEGS3 Huntington’s disease, gliomas

LincROR Non-small-cell lung cancer [160]

MALATI1 multiple sclerosis [158]

TUG-1 multiple sclerosis [158]

loc285194 Osteosarcoma, ischemic heart failure [161-163]

2. p53 independent
IncRNAs

DDSR1 Unknown
PCAT-1 Multiple cancers including prostate cancer, bladder cancer, [116-118,164,1
gastric cancer 65]
IncRNA JADE Unknown
ANRIL Coronary artery disease, COPD, multiple cancer types Type [151,156,166,1
2 diabetes, multiple sclerosis 67]
BARD19°L Multiple cancer types [168]
TERRA Alternative lengthening of telomeres via homology directed [169]
repair (ALT) cancers
TODRA Epithelial ovarian cancer [124]
MDC1-AS Bladder cancer, gliomas, gastric cancer [125,170,171]
Evf2 Important for embryonic neuronal development in mice [172,173]
CUPID1 and CUPID2  Breast cancer [128]

3.2.2 Prostate cancer associated transcript 1 (PCAT-1)
PCAT-1 is the first lincRNA identified that participates in DSB repair in prostate cancer[118],

and extends the “BRCA-ness” paradigm to include IncRNAs, in addition to mutations in DNA
repair genes. Increased PCAT-1 levels downregulate BRCA2 and impairs HR, resulting in an
increase in y-H2AX foci formation[116]. PCAT-1 is being used as a biomarker for a predictive
response to treatment with PARP1 inhibitors due to synthetic lethality. PCAT-1 levels are inversely
correlated with RAD51 foci formation when prostate cancer cells are treated with the PARP1
inhibitors Olaparib or ABT-888. The mechanism by which PCAT-1 down regulates BRCA2 is
unique compared to other lincRNAs that act predominantly via epigenetic pathways. PCAT-11is a
predominantly cytoplasmic lincRNA and the first 250 nt from the 5" end of the PCAT-1 RNA were
sufficient to downregulate the 3’ untranslated region of BRCA2 mRNA via posttranscriptional
mechanisms, likely at the level of RNA stability, although the exact mechanism is unknown. PCAT-1
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329  can also regulate c-Myc levels via a microRNA sequestering mechanism[117]. It will be interesting
330  to see whether a similar mechanism of regulation applies to BRCA2 mRNA.

331
332 3.2.3 Telomeric repeat-containing RNAs (TERRA)
333 Telomeres are structures assembled at the ends of chromosomes that protect the chromosome

334  ends from being recognized as double-strand breaks and hence inhibit activation of the DNA
335  damage response[174]. Telomeres have a unique “end problem” in that activation of DDR could
336 either result in end degradation or trigger incorrect recombination events. Telomere ends also need
337  to be replicated, and progressive shortening of telomeres is correlated with aging. TERRA RNAs
338  are unique class of IncRNAs that are transcribed from the ends of chromosomes and consist of the
339 Gerich telomeric repeats (TTAGGG)n in mammalian cells. TERRA RNAs form stacked
340  G-quadruplex structures[175] that can interact with a number of proteins that are part of the
341  shelterin complex for telomere capping, as well as DNA repair factors[123,176,177]. TERRA
342 IncRNAs regulate the activity of telomerase, form heterochromatin at chromosome ends, and are
343  also involved in capping of chromosome ends to protect telomere genomic integrity. During
344  telomere replication, the ssDNA is bound by RPA, which triggers the ATR checkpoint for repair. The
345  shelterin component POT1 is believed to compete with RPA and inhibit the ATR mediated
346  checkpoint[178]. TERRA RNAs play a role in switching RPA for POT1. In addition, upon depletion
347  of the shelterin protein, telomeric repeat factor 2, TERRA RNA levels increase and TERRA interacts
348 with the hisone demethylase LSD1[122]. This interaction stimulates the exonuclease activity of
349  Mrell to trim the 3° G overhangs of uncapped telomeres and form heterochromatin at telomeric
350  ends[122,177]. Although TERRA RNAs are a very specialized IncRNA family, structure/function
351  studies of TERRA interactions with chromatin modifiers and DNA repair proteins provides
352 important insights into IncRNA function in DSB repair.

353
354 4. Small ncRNAs
355 In mammals, two classes of small non-coding RNAs have been identified as major players

356  in the DNA damage response. The first class consists of microRNAs (miRNAs) which are small,
357  phylogenetically conserved ~22 nt RNAs that negatively regulate the translation and stability of
358 mRNAs via their association with Argonaute (Ago) proteins. miRNAs associate with 3’
359  untranslated regions (3’'UTRs) of mRNAs via RNA-RNA interactions to trigger translational
360  repression or mRNA decay. The second class consisting of ~21 nt small RNAs has recently been
361  identified in response to DNA damage, and are produced from sequences around the DSB. These
362  ncRNAs are called DSB-induced small RNAs or diRNAs in plants and Drosha- and Dicer-dependent
363  small RNAs (DDRNAs) in mammals. Although the same enzymes that are involved in the miRNA
364  pathway generate DDRNAs and diRNAs, their biogenesis and mechanism is distinct from miRNAs,
365  andis discussed in greater detail below.

366
367 4.1. miRNAs involved in the DNA damage response
368 miRNAs are generated from precursor RNA Pol II transcripts that can either be intergenic or

369  intragenic in origin[179,180]. Intergenic miRNAs have their own promoters and are transcribed
370  into pri-miRNA precursors that are capped, and polyadenylated. More than 50% of miRNAs can
371  be transcribed from intergenic regions as multicistronic transcripts[181]. Intragenic miRNAs are
372  predominantly transcribed from introns of a host gene and released during splicing of the host gene.
373  The pri-miRNAs have stem-loop structures that harbor the mature miRNA. The mature miRNA is
374  generated by endonucleolytic cleavage by the nuclear Drosha/DGCR8 heterodimer to release a ~70
375  nt pre-miRNA hairpin with a 2 nt 3’ overhang. Exportin-5 (XPO5) and Ran-GTP facilitate nuclear
376  export of the pre-miRNA hairpin by recognizing the 3’ overhang. In the cytoplasm, the pre-miRNA
377  hairpin is cleaved by the RNAse III enzyme Dicer to generate the mature ~22 nt miRNA duplex.
378  These mature miRNA duplexes associate with Ago proteins to form the RNA-induced silencing
379  complex (RISC). Assembly of RISC requires degradation of one of the miRNA strands (passenger
380  strand) while retaining the guide strand that ultimately base pairs with the mRNA 3’ UTR. The
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381  loading of the Ago-miRNA complex onto the mRNA recruits the mRNA degradation machinery
382  that then targets the mRNA for either translational repression or decay (Figure 4A).

383

384

385 A B

386 RNA Pol Il
387 RNA Pol 11 o
388

389

390 NUCLEUS

391

ggg DGCRB / Drosha
394 Drosha pri-miRNA ,

395 - —

396 Ago2 CYTOPLASM

397 Trbp DDRNAs

398 pre-miRNA

399

400

401

402 GW182

403 4 RISC

404 ‘ miRNA

405 ¢

406

407 mRNA DECAY

408 DNA DAMAGE RESPONSE
409

410 Figure 4. (A) pathway of miRNA processing to regulate mRNA decay.  Pri-miRNA precursors

411 are transcribed and processed before assembling into a macromolecular complex containing the
412 Drosha/DGCRS8 heterodimer to release a ~70 nt pre-miRNA hairpin in the nucleus. The pre-miRNA
413 hairpin is exported to the cytoplasm by XPO5and Ran-GTP. In the cytoplasm, the pre-miRNA
414 hairpin is cleaved by Dicer to generate the mature ~22 nt miRNA duplex that associates with Ago2
415  leading to the formation of the RNA-induced silencing complex (RISC). Activation of mRNA decay
416  results in base-pairing of the guide strand to the mRNA 3’ UTR and recruitment of mRNA decay
417  factors such as GW182. (B) Activation of the DNA damage response by DDRNAs also involves
418  miRNA processing factors Drosha and Dicer that are required to generate small ~20-35 nt RNAs
419  from the sequences around the site of damage. Formation of DNA damage foci and recruitment of
420 DNA damage factors requires DDRNAs, Drosha, and Dicer.

421

422

423  The miRNA expression profile or “signatures” are predictors of cancer prognosis and are cancer
424 hallmarks[182,183]. miRNA dependent pathways can be regulated at multiple levels upon DNA
425  damage[181,184]. Similar to IncRNAs, the transcription of several miRNA genes, such as the
426  miR-34 family in under the control of p53 and is altered upon DNA-damage[185]. Several miRNAs
427  have been identified that directly regulate the abundance of DSB repair proteins at the
428  posttranscriptional level (Table 3). The up- or down-regulation of miRNAs can affect protein

429  stability of sensors of DNA damage such as YH2AX[186,187], decreasing YH2AX containing damage
430  foci. The kinase ATM, a key regulator of the DNA damage response, is also under the control of
431  several miRNAs (Table 3). Upregulation of miR-18a decreases the DNA damage response due to
432  decreased ATM levels[188] whereas increased levels of miR-421, miR-100 and miR-101 leads to
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433 increased radiosensitivity[188-190]. The expression of DNA repair effectors is also under
434  microRNA regulation (Table 3). In particular, the tumor suppressor BRCA1 and ssDNA binding
435  protein RAD51, which are important for strand invasion in HR are tightly regulated by a number of
436  miRNAs. MicroRNAs also control protein levels of cell cycle checkpoint factors and apoptosis
437  regulators as has been reviewed [181,184]. Intriguingly, miRNAs can be secreted into body fluids
438  such plasma and urine via exosomes and may be important mediators of DNA damage from
439  radiation-targeted cells to abscopal normal cells, leading to the bystander effect[191]. Exosomes have
440  been reported to contain as many as 764 miRNAs[192,193]. The miR-1246 is an example of a
441  radiation-induced miRNA that is packaged into exosomes and is delivered to non-irradiated cells to
442  decrease NHE] efficiency by targeting the 3’ UTR of LIG4[194]. These diverse roles of miRNAs in
443 the DNA damage response and cancer have made them attractive targets for cancer therapy.

444

445 Table 3. miRNAs that directly target genes involved in homologous recombination (HR)

446 or non-homologous end joining (NHE])
miRNAs Target gene DSB repair  References

pathway

miR-27a, miR-421, miR-101, miR-100, miR-18a, @ ATM HR [188-190,195,1
miR-181 96]
miR-101 DNA-PKcs NHE] [190]
miR-124, miR-622 Ku70 NHE] [197,198]
miR-623, miR-526b, miR-622 Ku80 NHE] [198-200]
miR-1246 LIG4 NHE] [194]
miR-138, miR-24 H2AX HR, NHE] [186,187]
miR-182-5p, miR-146a, miR-146b-5p, mir-1255b, BRCAI1 HR [188,201-205]
miR-148b, miR-193b, miR-99, miR-28, let-7
miR-19a, miR-19b, miR-1255b, miR-148b, BRCA2 HR [204-206]
miR-193b, let-7
miR-96, miR-193a-3p, miR-506, miR-155, RADS51 HR [204,207-212]
miR-1255b, miR-148b, miR-193b, miR-222,
miR-107
let-7 FANCD2 HR [205]
miR-210 RAD52 HR [213]
miR-335 CTIP HR [214]

447

448

449  4.2. Drosha- and Dicer-dependent small RNAs (DDRNAs)

450 Recent studies have shown that small ~21 nt RNAs are induced from the sequences around the

451  site of damage in response to ionizing radiation. These RNAs are called diRNAs in Arabidopsis
452 thaliana[71], qiRNAs in Neurospora crassa[215], endo-siRNAs in Drosophila melanogaster[216], and
453  DDRNAs in human cells[217,218]. These RNAs are generated in a Dicer-dependent manner in all
454  organisms and are distinct from miRNAs (Figure 4B). In mammals, down-regulation or
455  inactivation of Drosha and Dicer impairs formation of DNA damage foci containing phosphor-ATM,
456  MDC1, and 53BP1 in response to ionizing radiation[217,218]. Knockdown of Dicer and Drosha also
457 results in a loss of the G1/S and G2/M checkpoints. Formation of DNA damage foci is
458  RNA-dependent and removal of RNaseA and inhibiting transcription reduces foci formation.
459  Using a chromosomally integrated reporter system and deep sequencing, recent studies show that
460  foci formation requires small RNAs (20-35 nt) called DDRNAs that are generated by Drosha and
461  Dicer from precursor RNAs at the damage site. The precise mechanism by which DDRNAs act is
462  unclear, and it has been proposed that they act later in the DNA damage response and may function
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463  to recruit factors such as MDC1 and 53BP1 during HR[217]. A more recent study[219] shows that
464  Drosha has an early role in DSB repair and is required for both HR and NHE]. Drosha facilitates
465  formation of RNA-DNA hybrids before resection can occur, and may interact directly with BRCA1.
466  However, no DDRNAs were observed in this study[219] that examined endogenous break loci.
467  However, all studies are in agreement for the role of RNA at DNA damage breaks and the
468  requirement for miRNA processing enzymes such as Dicer and Drosha for efficient repair.

469
470 5. Concluding Remarks
471 Small RNA and IncRNAs play intricate roles in the DNA damage response, although the

472  mechanisms by which they act remain unclear. Understanding their modes of regulation in DDR
473  provides new opportunities in cancer therapy. IncRNAs can act as guides, scaffolds, decoys in
474  DNA repair. They may also be important for spatial regulation of DNA repair complexes by
475  formation of DNA repair foci. Use of the latest deep sequencing technologies, imaging tools,
476  combined with molecular and structural information on RNA and RNA-protein complexes is
477  needed to understand non-coding RNA function in in DNA repair.
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