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Abstract: Sea ice surface roughness affects ice-atmosphere interactions, serves as an indicator of ice 8 
age, shows patterns of ice convergence and divergence, affects the spatial extent of summer melt 9 
ponds, and ice albedo. We have developed a method for mapping sea ice surface roughness using 10 
angular reflectance data from the Multi-angle Imaging SpectroRadiometer (MISR) and lidar-derived 11 
roughness measurements from the Airborne Topographic Mapper (ATM). Using an empirical data 12 
modeling approach, we derived estimates of Arctic sea ice roughness ranging from centimeters to 13 
decimeters meters within the MISR 275-m pixel size. Using independent ATM data for validation, 14 
we find that histograms of lidar and multi-angular roughness values are nearly identical for areas 15 
with roughness <20 cm but that for rougher regions, the MISR-derived roughness has a narrower 16 
range of values than the ATM data. The algorithm is able to accurately identify areas that transition 17 
between smooth and rough ice. Because of its coarser spatial scale, MISR-derived roughness data 18 
have a variance of about half that ATM roughness data. 19 
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1. Introduction 22 

Sea ice roughness is created by surface-atmosphere interactions, ice motion, and ice surface melt. 23 
Roughness caused by ice motion depends on wind speed and direction, ocean currents, and coastline 24 
interactions [1]. Seasonal snow deposition on sea ice tends to smooth the surface and reduces the 25 
aerodynamic roughness length [2,3] while subsequent wind erosion and redeposition of blowing 26 
snow creates sastrugi and snow dunes on the ice [3,4]. Sea ice roughness enhances atmospheric 27 
boundary layer turbulence thereby affecting turbulent energy transfer and boundary layer height [4–28 
6]. The spatial extent of spring season melt ponds on sea ice, as governed by surface roughness, is a 29 
skillful predictor of late summer ice extent [7]. This is because the crevices present in rough ice tend 30 
to confine surface meltwater whereas smoother ice allows surface melt to spread laterally. Because 31 
meltponds have a much lower albedo than sea ice, spatially extensive meltponds lead to lower albedo 32 
sea ice and a stronger ice-albedo positive feedback [8–10]. Thus, roughness is an important diagnostic 33 
indicator of sea ice processes and a valuable prognostic indicator of Arctic albedo. 34 

Remote sensing is a valuable tool for assessing the state of sea ice over space and time. However, 35 
sea ice surface roughness is a source of uncertainty in remote sensing and itself has been a challenging 36 
parameter to retrieve. Satellite remote sensing of sea ice is one of the oldest remote sensing records 37 
available [ref] but surface topography measurements (e.g. radar, scatterometry, laser altimeter) have 38 
been too coarse to adequately characterize spatial and temporal changes in sea ice roughness. 39 
Airborne lidar data over sea ice provides fine scale spatial resolution data over sea ice but the overall 40 
spatial and temporal coverage is sparse. 41 

In previous work, Nolin et al. [11] described initial success in characterizing ice surface 42 
roughness by combining images from the 60o forward viewing and 60o aft viewing cameras from 43 
NASA’s Multi-angle Imaging SpectroRadiometer (MISR).  This angular reflectance composite 44 
formed the 'normalized difference angular index' (NDAI), which compares the relative amount of 45 
backward to forward scattering of sunlight. It has been shown that the NDAI is a good proxy for 46 
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surface roughness and can be used to discriminate between rough bare ice and snowcover, especially 47 
when paired with observational data acquired from aircraft over sites such as widely studied 48 
Jakobshavn Isbræ on the western margin of the Greenland ice sheet. In that work and here as well, 49 
roughness is defined as the root mean square (RMS) of deviations of measured surface elevations 50 
from a fitted plane of a specified extent, in this case an 80-m “platelet” from the Airborne Topographic 51 
Mapper (ATM) lidar instrument as depicted in Figure 1. 52 

 53 

 54 
Figure 1.  Depiction of sea ice surface roughness in an ATM 80-m platelet. 55 

Although a positive correlation between NDAI and roughness clearly exists, this initial 56 
approach was fundamentally limited by its qualitative nature. While airborne lidar provides excellent 57 
spatial resolution and the ability to map centimeter to meter-scale changes in roughness, airborne 58 
data lack spatial coverage and regular repeat frequency. The advantage of employing a satellite-based 59 
retrieval of roughness is that it provides good coverage over remote sea ice regions and has the 60 
potential to map changes seasonal changes in sea ice roughness. Therefore, the overarching goal of 61 
this project was to develop a satellite-based technique for quantitative mapping of sea ice roughness 62 
with adequate quantitative precision to assess surface roughness characteristics across the physically 63 
relevant scales, from centimeters to meters and with the potential for implementing the technique 64 
over large areas. 65 

Previous satellite efforts to map sea ice surface roughness has employed passive microwave, 66 
radar altimetry, scatterometry, and laser altimetry. Passive microwave has a footprint of 6-25 km, so 67 
coverage is excellent but the coarse spatial resolution doesn’t provide process scale information. 68 
Cryosat-2 radar altimetry [12] offers higher spatial resolution (1650m x 380m) but surface roughness 69 
is determined by least-squares fitting of the radar return waveform [13]and can be confounded by 70 
backscatter angle. Scatterometry is sensitive to sea ice roughness though roughness is only one of 71 
several factors that simultaneously affect backscatter [14,15]. Laser altimetry measures sea ice 72 
elevations with a footprint of 70m and 170m spacing so spatial coverage is not continuous; elevation 73 
retrievals are affected by roughness within each footprint so it remains challenging to provide 74 
process-scale information on sea ice roughness [16].   75 

2. Methodology 76 

2.2. Description of the Multi-angle Imaging SpectroRadiometer (MISR) 77 
Launched on NASA’s Terra satellite in 1999, MISR views the amount of sunlight scattered in 9 78 

along-track directions and at 4 wavelengths (blue, green, red, and near infrared) [17]. The near-polar, 79 
sun-synchronous orbit of MISR takes 16 days, to map Earth’s surface up to a latitude of 83°. Each of 80 
MISR’s 233 orbital paths contains a swath of data divided into 180 blocks each of which is 360 km 81 
wide. The 9 MISR cameras are labeled Df, Cf, Bf, Af, An, Aa, Ba, Ca, and Da. The initial letter (A, B, 82 
C, D) of each camera denotes the focal length and viewing angle of the camera. The viewing angles 83 
for the off-nadir A, B, C, and D cameras are 26.1°, 45.6°, 60.0°, and 70.5°, respectively, relative to the 84 
horizontal plane on the Earth's surface. The lowercase letters (f, n, a) denote whether the camera is 85 
looking forward, nadir, or aftward, respectively.  86 

80 m 
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2.4. Calibrating and mosaicking multiangular reflectance data to create roughness maps 87 

The overall approach for creating quantitative maps of surface roughness entails using 88 
multiangular reflectance and calibrating these data with measurements of ice sheet surface roughness 89 
from airborne LiDAR data. Calibration is achieved by developing an empirical relationship between 90 
three angular reflectance quantities (reflectance values from MISR Ca, Cf, and An cameras) and the 91 
ATM roughness data. These data are the basis for a four-dimensional (4-D) model that assigns 92 
roughness values to MISR data, based on the empirical relationship between angular reflectance and 93 
measured ice sheet surface roughness. There are four main steps in developing maps of ice sheet 94 
surface roughness: (1) preprocessing the data; (2) building the 4-D model; (3) applying the model to 95 
new MISR data; and (4) spatially aggregating and mosaicking the data to create roughness maps. We 96 
also assess the model skill using a variety of metrics.  97 

2.5. Data and data preprocessing 98 
We begin with MISR top-of-atmosphere (TOA) radiance data (ML1B2E), which has the nine 99 

MISR cameras geometrically rectified to the Earth ellipsoid. Based on previous work by Nolin et al. 100 
[11] and Nolin and Payne [18], we use the red band from the Cf, Cn, and An cameras to optically 101 
characterize the forward and backward scattering characteristics of the sea ice surface. The relative 102 
amount of backward scattering to forward scattering is an indication of the relative surface 103 
roughness. 104 

To assign a quantitative roughness value to the MISR angular reflectance data, we require 105 
measurements of sea ice surface roughness over a wide range of roughness values and at a spatial 106 
scale that is comparable to the MISR 275-m pixel size. For this purpose, we used roughness data from 107 
the Airborne Topographic Mapper (ATM) IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, 108 
Version 2 [19]. ATM is a conical scanning airborne laser altimeter that measures the distance from the 109 
aircraft to the topographic surface below using a 532-nm pulsed laser [20]. For this study, we used 110 
ATM data acquired with the instrument mounted on either the NASA P3 or DC8 aircraft. The 111 
instrument flies at a nominal altitude of 500-750 m, using a scanner angle of 22° with a laser footprint 112 
of ~1 m, a footprint spacing of ~3 m, horizontal accuracy of 74 cm, and vertical precision of 3 cm [20]. 113 
The icessn-processed ATM data have been resampled from the original high-volume elevation data 114 
set by fitting ~80 m diameter overlapping “platelets” along the flight line using along-track and cross-115 
track slopes and then computing the average and root mean square (RMS) deviation of all elevation 116 
points within each platelet to yield values for average elevation and roughness, respectively.  117 

Using the geolocation data and time tags from the ATM data we identify the corresponding 118 
MISR image closest in time (±1 day) of the ATM overflight. The interval of ±1 day from the ATM 119 
flight path is used because there may not have been cloud-free, ATM-coincident data. Since the ATM 120 
data acquisitions are flown under clear sky conditions, the corresponding MISR reflectance data must 121 
also be cloud-free. To identify and remove MISR reflectance data that are contaminated by clouds, 122 
we use the MISR Angular Signature Cloud Mask (ASCM, MIL2TCCL) product [21]. Specifically, we 123 
use the “high confidence clear” data from this cloud mask product. We note that the cloud masks 124 
over sea ice tend to exclude smooth snow-covered ice because of the similarity to clouds. Thus, for 125 
the most accurate calibration we relied on both the cloud mask and careful visual checks. If both the 126 
visual check and the ASCM cloud mask indicate the presence of a cloud, then we exclude both the 127 
MISR reflectance and the ATM surface roughness data for those locations. 128 

Because the MISR footprint is larger than that of the ATM icessn-processed roughness data, there 129 
are multiple ATM roughness values within each MISR pixel. The latitude and longitude of each ATM 130 
roughness value are matched to the closest MISR pixel using the pixel center coordinates. The ATM 131 
roughness values within each corresponding MISR pixel are then averaged and we recorded the 132 
average roughness, standard deviation, and number of ATM values. The average and number of 133 
ATM values are later used in a weighting function described in the following section. 134 

 135 
 136 
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2.6. Building the 4-D Surface Roughness Model 137 

In the roughness model, each set of three MISR reflectance values (from the An, Ca, and Cf 138 
cameras) has a corresponding ATM-derived roughness value. We refer to this as a four-dimensional 139 
(4-D) model. In constructing the empirical relationship between the angular reflectance values and 140 
lidar-derived surface roughness values, we begin by compositing the ATM icessn-processed 141 
roughness values located within a MISR pixel and assigning the average to the MISR pixel. The 142 
average, standard deviation, and number of ATM roughness values used in the calculation are 143 
retained for subsequent use. This average roughness is then the modeled roughness for the MISR 144 
pixel.  145 

We use a nearest-neighbor approach to assign a surface roughness value for each triad of An, 146 
Ca, Cf reflectance values. Thus, we needed to determine the prediction radius within which a 147 
roughness value can be determined. Using all the 2013 and 2016 ATM roughness data and 148 
corresponding MISR data, we computed an optimal prediction radius, rpred.  We varied rpred to 149 
determine whether there exists an optimal rpred value that gives the highest correlation with the “true” 150 
roughness (as measured by the ATM). Note that not all MISR-ATM model data points will have 151 
surrounding data points within the prediction radius. As rpred is increased, there is a greater chance 152 
that there will be a roughness prediction value within the search radius but there is also a greater 153 
chance that the predicted roughness will have a lower correlation with the actual roughness of the 154 
point to be modeled. So, another important parameter is the coverage, C, of the ATM model as a 155 
function of the prediction radius. Coverage is defined as the number of MISR pixels within the 156 
prediction radius that can be assigned a roughness value (npred) relative to the total number of valid 157 
MISR pixels in the image (NMISR): 158 

C =
( )

                         (1) 159 

It is desirable to maximize C but as the prediction radius is increased, there is a greater chance 160 
that the predicted roughness will have a lower correlation with the actual roughness of the point to 161 
be modeled. This is important because for nearest neighbor classification a small radius could result 162 
in no corresponding roughness value and a large radius would mean that a value could have an 163 
excessively wide a range of roughness values. 164 

We computed the average of the roughness values within each progressively larger concentric 165 
sphere and then computed the correlation between the “true” ATM-measured roughness value and 166 
the estimated roughness value for each value of 푟 .  This was performed for each of the >1,000,000 167 
pixels used to generate the 4-D model. The optimal radius was determined to be 0.025. Units are 168 
reflectance.  169 

Using the 0.025 value for 푟 , we then assign a roughness value to each new MISR pixel. The 170 
nearest-neighbor method was used to find those roughness values in the model data cloud closest to 171 
that of the new MISR pixel. The location of each point within the local prediction radius is determined 172 
by the following constraint: 173 

푟 ≤ Cf − Cf + Ca − Ca + An −An      (2) 174 

where, Cfm, Cam, and Anm are the x, y, z coordinates of the model data point and Cfp, Cap, and Anp are 175 
the x, y, z coordinates of the prediction data point. Because in creating the model, we average the 176 
multiple ATM roughness values within a MISR pixel, not all model points are created with the same 177 
number of ATM roughness values. To account for this, a weighting scheme is used that is based on 178 
the number of ATM roughness values that comprise each point in the data model. The weighted 179 
average roughness value (μw) of the prediction data point is: 180 

휇 = ∑
∑

	         (3) 181 
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where, 휇 = weighted average roughness predicted for the new MISR pixel, m = total number of 182 
model data points within rpred, ni = number of ATM roughness values used to compute the roughness 183 
for that model data point, and xi = model roughness values within 푟   184 

2.6. Applying the Model to New MISR Data 185 
Next the 4-D model was used to assign a roughness value to every pixel in a new MISR sea ice 186 

image. Preprocessing of the MISR data is the same as with the MISR data used to construct the 4-D 187 
model: converting TOA radiance (from the Ca, Cf, and An cameras) to reflectance. The reflectance 188 
values are placed into the 4-D model space and, using rpred = 0.025, each MISR roughness value is 189 
formulated as the weighted average of points within rpred.   190 

3. Results 191 

3.1. Roughness Maps from MISR 192 
The 4-D model described above was used to convert MISR reflectance data for all cloud-free 193 

MISR orbits during April-July 2013 and 2016 in the Arctic region extending from the Beaufort Sea to 194 
Ellesmere Island in the Canadian Archipelago. This region was selected because prior research 195 
showed this to be an important region of convergence and divergence [22] used that model to 196 
calibrate MISR reflectance data into roughness. Figure 2 shows the results of the MISR-derived 197 
surface roughness algorithm for a spring image (26 April 2016) and a summer image (15 July 2016). 198 
The spring image is almost entirely cloud-free. It shows an extensive area of relatively smooth sea ice 199 
with roughness values of mostly 12-20 cm. There is one very rough area of ice in the Greely Fiord of 200 
Ellesmere Island where there are ice roughness values exceeding 80 cm. In this region, the ice pack 201 
represents dynamic glacier ice that has flowed into the fiord and frozen in place. The summer image 202 
contains clouds in the center portion of the image. Focusing on the cloud-free southern part of the 203 
image the roughness image shows ice floes, ridges, cracks and other convergence-divergence 204 
features. As in the spring image, the largest values for ice roughness are found in Greely Fiord. 205 

3.2 Assessment of Results 206 
To assess the accuracy of the method, MISR-derived sea ice roughness values were compared 207 

with corresponding independent ATM roughness data, which had not been used to construct the 4-208 
D model. Results were assessed for three categories: smooth (roughness < 20cm), rough (roughness > 209 
20 cm), and smooth-rough transitions. Figures 3a-c show MISR-derived and ATM roughness values 210 
from a validation data set that used co-located MISR and ATM roughness data. As before, the MISR 211 
data acquisition was within 1 day of the ATM overflight. The 80m ATM roughness values within 212 
each MISR pixels were averaged so that an individual ATM and MISR values could be compared. 213 
The validation data were from ATM overflight data during April-May 2016 and were selected to 214 
encompass smooth, rough, and smooth-rough transitions. Figure 3 and Table 1 show that for smooth 215 
ice, the mean values are virtually identical and the range and variance are also quite similar between 216 
MISR and ATM. This is not the case for rough ice where the mean values are close but the ATM has 217 
a much greater variance than MISR. Results for smooth-rough transitions show that the MISR 218 
roughness retrievals do a good job of tracking abrupt changes in roughness.  219 

 220 
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 251 

Figure 2 a-b. MISR-derived sea ice surface roughness for (a) 26 April 2016 and (b) 15 July 2016 252 
(bottom). The Beaufort Sea region has been highlighted to show the seasonal changes in roughness. 253 
Clouds have not been masked and appear as rough streaks. The roughest ice in both images is in the 254 
Greely Fiord of Ellesmere Island (upper right of both images). 255 
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 257 

258 

 259 

Figure 3 a-c. Comparison of ATM and MISR-derived sea ice surface roughness from April and May 260 
2016. (a) smooth (<20 cm roughness); (b) rough (up to 100 cm roughness); and (c) smooth-rough 261 
transitions. 262 

 263 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0
Ro

ug
hn

es
s [

cm
]

Arbitrary Distance Along ATM-MISR Transect

ATM roughness

MISR roughness

(a)

0

10

20

30

40

50

60

70

80

90

100

Ro
ug

hn
es

s [
cm

]

Arbitrary Distance Along ATM-MISR Transect

ATM roughness

MISR roughness

(b)

0

5

10

15

20

25

30

35

40

45

Ro
ug

hn
es

s [
cm

]

Arbitrary Distance Along ATM-MISR Transect

ATM roughness

MISR roughness

(c)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 October 2018                   doi:10.20944/preprints201810.0484.v1

Peer-reviewed version available at Remote Sens. 2018, 11, 50; doi:10.3390/rs11010050

http://dx.doi.org/10.20944/preprints201810.0484.v1
http://dx.doi.org/10.3390/rs11010050


 8 of 11 

 

2.2. Frequency Distributions 264 

A comparison of the frequency distributions of ATM and MISR-derived roughness values 265 
indicates that the ability to accurately represent sea ice roughness depends on the magnitude of 266 
roughness. We note that the values shown here are separate from the ATM and MISR data that were 267 
used to construct the 4-D model used to derive MISR roughness. The frequency distributions shown 268 
in Figure 4a demonstrate these differences for smooth, rough, and smooth-rough transitions. The 269 
mean and median of ATM and MISR roughness values are nearly identical for smooth sea ice. For 270 
rough ice (Figure 4b), the mean and median of ATM and MISR roughness values are also quite similar 271 
but the range and variances are very different. The histogram in Figure 4c shows the characteristic 272 
bimodal distribution for the smooth and rough sea ice areas. In the smooth-rough transition data, 273 
most of the areas are smooth with short transitions to rough ice. The much smaller secondary mode 274 
in Figure 4c shows this for both ATM and MISR-derived roughness values. 275 

 276 

 277 

 278 
Figure 4 a-c. Histograms of ATM and MISR roughness frequency distributions for sea ice areas that 279 
are (a) smooth (<20 cm roughness); (b) rough (up to 100 cm roughness); and (c) smooth-rough 280 
transitions. 281 

 282 
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 284 

Table 1. ATM and MISR-derived roughness statistics for the histogram data in Figure 4.  285 
Roughness 

type 
Instrument Mean 

roughness 
[cm] 

Median 
roughness 

[cm] 

Variance 
[cm2] 

Maximum 
roughness 

[cm] 

Minimum 
roughness 

[cm] 
Smooth ATM 8.2 8.0 0.9 14.1 6.2 
 MISR 8.4 8.1 0.9 14.2 6.7 
Rough ATM 21.2 19.4 86.0 92.1 5.3 
 MISR 20.8 20.4 23.1 46.0 6.0 
Smooth-
rough 
transitions 

ATM 8.5 6.6 29.2 39.7 4.3 

 MISR 8.6 6.9 14.5 24.2 4.8 

4. Discussion 286 
In the context of other methods to derive roughness, this work stands out because it provides 287 

spatially extensive roughness information at a horizontal scale of 275m and with vertical precision at 288 
centimeters to decimeters. This method is effective at mapping smooth ice, corresponding to thinner 289 
first year sea ice; rough ice, corresponding to thicker first year and multi-year sea ice; and ice with 290 
roughness that transitions between smooth and rough, corresponding to ice floes, surrounded by 291 
leads.  292 

The MISR lower range of roughness values and smaller variance compared with ATM data is 293 
likely due to the differences in spatial resolution between MISR and ATM. Finer scale roughness 294 
features that appear in the ATM data are not resolved in a MISR pixel. 295 

There are several sources of error to consider. First, the potential temporal offset of 1 day 296 
between ATM data acquisition and a MISR overpass may result in a co-location error: a MISR pixel 297 
may not represent the same ice conditions as the ATM footprint. This type of error is relatively small 298 
in spring because cold temperatures tend to reduce ice motion at that time of year. A second source 299 
of error is the time period used in the calibration. If the 4D model is constructed using data from 300 
April-May, it may omit ice characteristics that are present later in the summer. Most ATM overflights 301 
occur in spring and it would be helpful to have a larger number of flights in summer and fall. 302 
Additional errors may enter from the 4D modeling process. Calculation of the prediction radius is 303 
optimized and results over multiple ice types show that it varies only a little; this would not 304 
contribute much to the full error budget. The largest challenge in the modeling process is identifying 305 
cloud-free MISR imagery. There is no adequate cloud mask that effectively identifies clouds over sea 306 
ice that can be used in an automated manner. Visual identification of clouds remains the best 307 
approach but is overly time consuming.  308 

5. Conclusions 309 

This multiangular remote sensing approach to mapping sea ice surface roughness appears to 310 
show great promise. These results demonstrate the ability to map changes in surface roughness at 311 
centimeter to decimeter scales in a 275-m MISR pixel. MISR-derived estimates of surface roughness 312 
suggest the ability to map features such as cracks, ridges, smooth snow, frozen leads, and meltponds. 313 
While this method is limited to cloud-free images during the sunlit season, it has the potential to map 314 
sea ice roughness during the critical spring season prior to meltpond formation. Calibration using 315 
the ATM lidar provides the key data to convert multiangular reflectance to quantifiable roughness 316 
estimates. 317 

With further analysis this method could be used to map ice types based on roughness 318 
characteristics, to examine changes in the extent of first year and multiyear ice, and to map areas 319 
where leads are present. One could also analyze spatial patterns of sea ice roughness using frequency 320 
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analysis to better characterize convergence and divergence features. It is hoped that this approach 321 
can also be combined with new data to better train and constrain MISR-derived sea ice roughness. 322 
Future work will apply this method to a much larger region of the Arctic and over the full MISR 323 
record from 2000 to present. These sea ice roughness data can improve interpretation of sea ice 324 
thickness from spaceborne radar and laser altimeter instruments. Applying this new roughness 325 
method to the entire Arctic will benefit the Arctic sea ice science community and has potential for 326 
operational use in Arctic navigation.  327 
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