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Abstract: Model-based image reconstruction has brought improvements in terms of contrast and1

spatial resolution to imaging applications such as magnetic resonance imaging and emission2

computed tomography. However, their use for pulse-echo techniques like ultrasound imaging3

is limited by the fact that model-based algorithms assume a finite grid of possible locations of4

scatterers in a medium – which does not reflect the continuous nature of real world objects and5

creates a problem known as off-grid deviation. To cope with this problem, we present a method of6

dictionary expansion and constrained reconstruction that approximates the continuous manifold7

of all possible scatterer locations within a region of interest. The expanded dictionary is created8

using a highly coherent sampling of the region of interest, followed by a rank reduction procedure9

based on a truncated singular value decomposition. We develop a greedy algorithm, based on the10

Orthogonal Matching Pursuit (OMP), that uses a correlation-based non-convex constraint set that11

allows for the division of the region of interest into cells of any size. To evaluate the performance of12

the method, we present results of 2-dimensional ultrasound image reconstructions with simulated13

data in a nondestructive testing application. Our method succeeds in the reconstructions of sparse14

images from noisy measurements, providing higher accuracy than previous approaches based on15

regular discrete models.16

Keywords: ultrasound; nondestructive testing; manifolds; inverse problems; dictionary; rank17

reduction.18

1. Introduction19

Model-based image reconstruction methods provided important advances to imaging techniques20

such as magnetic resonance imaging (MRI) [1] and emission computed tomography (ECT) [2] in the last21

decades. These methods rely on a known model which results in the captured signal being represented22

by a sum of N coefficient-weighted responses. These responses are usually point spread functions23

(PSF), and coefficients are usually intensity of pixels at a modelled location. The discrete model is24

then fed to regression algorithms along with a vector of acquired data, and the intensity on each25

pixel is determined [3]. The use of model-based techniques in ultrasound imaging relies on a strong26

assumption: that all reflectors (or scatterers) are located on any of a finite grid of N modelled positions27

[4]. Naturally, real-world inspected objects easily break this assumption and many scatteres may be28

located off-grid. Many previous studies with model-based algorithms for ultrasound imaging, including29

but not limited to [4–11], have reported that resolution and contrast are substantially improved in30

comparison to delay-and-sum (DAS) algorithms when data comes from simulations with scatterers31

located strictly on a modelled grid. However, images are corrupted by artifacts when the grid is not32

respected, which is typical in data acquired from real measurements. Consequently, DAS beamforming33

algorithms remain as state-of-the-art for ultrasound imaging, despite having well understood physical34

limitations regarding spatial resolution [12,13].35
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2. Model-based imaging and regularization36

Let RM be the space of the data observed through an acquisition process. A single, unity amplitude37

event located at position τ ∈ RD (in the D-dimensional continuous space) causes the discrete acquired38

signal y(τ) ∈ RM, known as the PSF. The physical meaning of such event depends on the type of39

quantity being measured. In ultrasound imaging, the event denotes a point-like reflexivity (also called40

a scatterer) [14,15], as represented in Fig. 1, and D typically equals 2 as the reflexivity is being mapped41

over a 2-dimensional plane. The variation of the set of D parameters τ within a region of interest42

describes a D-dimensional manifold43

M := {y(τ) : τ ∈ ROI} (1)

of all possible PSFs on RM. We will develop our notation for the 2-dimensional case and consider the44

two parameters τ = [x, z]T (where ·T denotes the transpose) as the lateral and axial spatial dimensions45

respectively.46

ACQUISITION

ROI

ROI

ACQUISITION

Figure 1. Acquisition of the point spread function (PSF). For each position (x, z) of the unity amplitude
scatterer within the ROI (left side), an M-sample response y(x, z) ∈ RM (arranged as an M-pixel image
on right side) is generated by the acquisition model. The set of all possible PSFs within the region of
interest form a manifoldM onto the data space. This example is taken from the pulse-echo ultrasound
model described in Section 6.1.

An acquired signal c ∈ RM is assumed to be composed by a sum of individual contributions from47

N events, or N samples from the continuous PSF manifold48

c =
N

∑
n=1

vny(xn, zn) + w, (2)

where vn is the amplitude of the n-th event and the vector w ∈ RM accounts for acquisition noise,49

which we will assume to be Gaussian white noise with variance σ2.50

In a pulse-echo image with N pixels, vn in (2) encodes the reflexivity of the n-th scatterer, located51

at position (xn, zn), and is represented as the brightness of the corresponding pixel. This naturally52

implies a sampling of the parameters (x, z) as a finite number N of possible scatterer locations (or53

pixels) is assumed.54

Once we have defined the N coordinate pairs (xn, zn) to be considered by the acquisition model,55

we make hn = y(xn, zn), n = 1, . . . , N, and define the model matrix H = [h1, . . . , hN ] ∈ RM×N . Then56

(2) can be written in compact form as57

c = Hv + w, (3)

where v = [v1, . . . , vN ]
T is the vector of scatterer amplitudes. This model has been used in B-mode58

(2-dimensional) [4–9], A-mode (1-dimensional) [16,17], and 3-dimensional [18] ultrasound imaging.59

The reconstruction of the amplitudes vector v from a given acquisition c in (3) is based on the60

minimization of a cost function, such as the LS problem61
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v̂ = arg min
v
‖c−Hv‖2

2, (4)

which is linear and can be solved by well-known methods [19].62

However, model matrices for real-world problems are often ill-conditioned, which causes artifacts63

on the reconstructed signals in the presence of noise [20]. This is an issue even in reconstructions with64

simulated data where all events are on grid, i.e., where the discrete acquisition model (3) is obeyed.65

The specific problem of poor conditioning of the ultrasound acquisition model has been addressed66

with linear regularization methods such as Truncated SVD (TSVD) [7] and Tikhonov regularizarion67

[5,6,8], where the main goal is to stabilize the inverse operator.68

Non-linear, sparsity-promoting regularization penalties such as `p-(pseudo)norm minimization69

with p ≤ 1 have shown successful results in ultrasound NDT, where the assumption of sparsity in the70

space domain reflects the nature of discontinuities in observed materials [4,9,17,21].71

Greedy algorithms effectively solve reconstruction problems where the cost function involves72

the `0 pseudonorm. In [10], sparsity is induced in the solution by the assumption that the presence of73

scatterers can be modelled by a Bernoulli process with a low value for the probability parameter. The74

problem is then solved with a greedy algorithm called Multiple Most Likely Replacement (MMLR)75

[22]. In [16], a Gabor dictionary is used in the reconstruction of thickness with a Matching Pursuit76

(MP)-based algorithm that penalizes a relaxed support measure corresponding to the `p-pseudonorm77

with 0 < p < 1.78

3. Off-grid events and dictionary expansion79

Aside from poor matrix conditioning, another problem known as off-grid deviation [23] limits80

the applicability of inverse-problem-based approaches on signal and image reconstruction. It derives81

from the fact that, in many applications, the existing events may not be located strictly on the N82

positions modelled by (2) and (3), i.e., many events may be off-grid. Fig. 2a illustrates a grid of N = 983

modelled positions, represented by gray dots. As three events (represented by black dots) are located84

on modelled positions, the corresponding data vector c can be synthesized according to the acquisition85

models (2) and (3). The same does not hold when an off-grid event (represented by a red dot) is added:86

attempts to reconstruct the locations and amplitudes for the corresponding events may fail, causing87

artifacts and degradation on the reconstructed image.88

Some formulations have been proposed for off-grid signal reconstruction, mainly within the89

framework of Compressive Sensing. In [24], the acquisition model considers a perturbation matrix90

summed column-wise to the (here referred to as H) regular discrete model matrix. The formulation91

is applied to direction-of-arrival (DOA) estimation using the derivatives of the columns of H with92

respect to the sampled parameters as perturbation matrix. In [25], an adaptation of the OMP algorithm93

is proposed where the columns of the model matrix are iteratively updated in order to accommodate94

variations in the parameters of the PSFs. The algorithm is applied to pulse-Doppler radar. In [26]95

the problem of continuous line spectral estimation is approached with an algorithm based on the96

atomic norm minimization, which is solved via semi-definite programming. Similarly to the `197

minimization, the atomic norm minimization promotes sparse solutions. In [27], the regression98

problem uses a Total Least Squares (TLS) penalization with sparsity constraints. The motivation is99

that the "errors-in-variables" assumption of the TLS regression might be able to capture the mismatch100

between the model matrix and the acquired data. The method is then applied to cognitive radio101

sensing and DOA estimation.102

Our approach relies on the framework of dictionary expansion, which has been firstly proposed103

in [23] as a means to overcome the problem of off-grid deviation in neuron spike detection. Each104

column hn of the discrete model H of (3) is replaced by K columns [b(n)
1 , . . . , b(n)

K ] = B(n) ∈ R(M×K) so105

that a data vector c resulting from the acquisition of an event located in the neighborhood of an n-th106
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Figure 2. (a) An illustrative discrete acquisition model with N = 3 × 3 = 9 modelled positions,
represented by the gray dots. The black dots represent 3 well located events and the red dot represents
an off-grid event. Because of the latter, the corresponding acquisition data vector c cannot be
synthesized as a linear combination of the columns of the discrete model matrix H. (b) The ROI
is divided into N local ROIs with area ∆x × ∆z. (c) Each local ROI is sampled with a fine grid with
lateral and axial distances δx and δz. (d) On the space RM of acquired data, the set of all possible PSFs
within the ROI form a manifoldM. The gray dots are the PSFs of the modelled positions of Fig. 2a.
The black dots are on the grid, while the red dot is off-grid. (e) As the ROI is divided into N local
ROIs (Fig.2b), the manifold is divided into N corresponding local manifolds. (f) The acquisitions over
the fine grid on each n-th local ROI create R samples from the corresponding local manifold. Those
samples compose matrix M(n) ∈ RM×R.

modelled position can be approximated by some linear combination of B(n), i.e., by B(n)x(n), where107

x(n) ∈ RK. As a result, an arbitrarily acquired c might be approximated as108

c ≈
N

∑
n=1

B(n)x(n). (5)

In the 2-dimensional case, the neighborhood of the n-position is the region within (xn ± 0.5∆x, zn ±109

0.5∆z). This is represented in Fig. 2b, where the 9 modelled locations give place to 9 neighborhoods110

(local ROIs).111

Two forms of approximation are proposed in [23] for 1-dimensional linear time-invariant (LTI)112

problems. The first one is the Taylor approximation, which relies on the fact that small shifts on a113

waveform can be well approximated by its Taylor expansion, i.e., by linearly combining the original114

waveform and its time derivatives. In this case, the column b(n)
1 is identical to the original atom hn115

and the columns b(n)
k for k > 1 correspond to its (k− 1)-th time derivatives. The second is the Polar116

approximation, which is motivated by the fact that the continuous manifoldM of an LTI system lies117

over a hypersphere on the M-dimensional data space [23]. The PSFs of the neighborhood of each n-th118

modelled position are approximated by an arc of a circle and the the column hn is replaced by three119

normal vectors with the directions of the center (b(n)
1 ) and the two trigonometric components (b(n)

2120

and b(n)
3 ) of the circle. While the Taylor approximation can be done for any order K, in the Polar case K121

always equals 3.122
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An extension of the Basis Pursuit (BP) formulation [28], referred to as Continuous Basis Pursuit123

(CBP), is proposed in [23] for the recovery of the expanded coefficients {x(n)}1≤n≤N . For the sake of124

conciseness, from this point on we will represent sets {x(n)}1≤n≤N simply as {x(n)}. The formulation125

of CBP is given by126

{x̂(n)} = arg min
{x(n)}

1
2σ2 ‖c−

N

∑
n=1

B(n)x(n)‖2
2 + λ

N

∑
n=1
|x(n)1 | (6a)

s.t. {x(n)} ∈ C, (6b)

where the constraint set C prevents recovered expanded coefficients from having any arbitrary values127

that do not represent actual PSFs. The definition of the convex set C varies according to the type of128

approximation used. The `1 norm of a vector composed by the first element x(n)1 of each K-tuple x(n) is129

used to obtain sparse solutions.130

In [29], a low-rank approximation of the PSFs within the neighborhood of each n-th modelled131

position is performed by means of a Singular Value Decomposition (SVD). The continuous manifold132

drawn by τ in a local ROI is sampled with a very fine grid of R locations, generating R columns that133

form a matrix M(n) ∈ RM×R, as represented in Fig. 2f. Each matrix M(n) then undergoes an SVD134

decomposition and the K first left singular vectors compose the corresponding expanded coefficients135

B(n) for the n-th local ROI.136

An adaptation of the Orthogonal Matching Pursuit (OMP) [30] algorithm, referred to as137

Continuous OMP (COMP), is also presented in [29]. It aims at solving the `2 − `0 problem138

{x̂(n)} = arg min
{x(n)}

‖(x(1)1 , . . . , x(N)
1 )‖0 (7a)

s.t.

{
‖c−∑N

n=1 B(n)x(n)‖2
2 ≤ ε

{x(n)} ∈ C

}
, (7b)

where the symbol ‖ · ‖0 denotes the `0 pseudonorm, i.e., the cardinality (number of nonzero elements)139

of a vector.140

In [31], a minimize-maximum (Minimax) formulation is presented for the definition of the141

expanded set {B(n)}. The resulting approximation minimizes the maximum residual within the142

representation of each n-th local ROI. It is motivated by the assumption that the off-grid deviation143

from a discrete grid follows a uniform distribution, therefore the off-grid error should be as constant144

as possible, not privileging any distance from originally modelled positions.145

4. Rank-K approximation of local manifolds146

The core idea of dictionary expansion is the substitution of each n-th column hn from the discrete147

model H by K basis vectors B(n) of which the column space approximates the n-th local PSF manifold148

Mn. Our criterion to determine B(n) is based on the SVD expansion, which has been proposed for149

1-dimensional, shift-invariant problems [29]. The extension to D-dimensional problems relies mainly150

on the first step of the process, which is a fine sampling of each local manifoldMn: here the regular,151

fine grid is defined for all D dimensions. This extension is facilitated by the fact that the formulation152

is non-parametric, i.e., the deviation from originally modelled positions is not mapped onto any153

independent variable and does not play any role on the definition on the bases. On the other hand, in154

the Taylor, Polar [23] and Minimax [31] expansions, the off-grid deviation is a parameter from which155

the elements of the expanded dictionary are derived. Consequently, except for the Taylor expansion,156

their extensions to 2 or higher dimensions are not promptly defined.157
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4.1. Highly coherent discrete local manifolds158

Fig. 2d shows an illustrative example of a D-manifold embedded in an M-dimensional data space.159

In this case, D = 2 and M = 3. The 9 D-dimensional modelled positions shown in Fig. 2a correspond160

here to 9 samples of the M-dimensional manifold, as well represented by gray dots in Fig. 2d. The red161

dot corresponds to the data caused by the off-grid reflector from Fig. 2a.162

Fig. 2e shows the same manifold as Fig. 2d but, instead of having N modelled positions, it divides163

the manifold into N local manifolds164

Mn := {y(x, z) : x ∈ [xn − 0.5∆x, xn + 0.5∆x], z ∈ [zn − 0.5∆z, zn + 0.5∆z]}, (8)

which correspond to the N local ROIs of Fig. 2b.165

We start by performing a fine sampling on each local manifoldMn, as represented in Fig. 2f. In166

practice, this means acquiring the PSF of a set of points from a fine grid of R points defined for each167

local ROI (Fig. 2c). The result is a matrix M(n) ∈ RM×R, whose columns are local manifold samples.168

The finer this grid is, the better the continuous local manifold is represented by the discrete dataset169

M(n). For simplicity of notation, we keep regular spacing δx and δz for the lateral and axial directions170

respectively. The number of sampled points is R = Rx × Rz, where Rx and Rz are the number of171

locations defined on the lateral and axial directions respectively. In the example of Fig. 2c, Rx = Rz = 7,172

thus R = 49.173

Our sampling includes the boundaries of the local ROIs. For this reason, the relation between the174

spacing and the number of locations on the lateral direction is given by175

δx =
∆x

Rx − 1
(9)

and the same holds for the axial direction.176

Once we have the local matrices {M(n)}, we create a rank-K approximation for each of them and177

define the sets of K basis vectors {B(n)}, which form orthonormal bases for such approximations, to be178

later used on inverse reconstruction problems such as (6b) and (7b).179

4.2. SVD expansion180

For each matrix M(n), a rank-K approximation M̃(n) ∈ RM×R is to be defined and also factorized181

in the form182

M̃(n) = B(n)F(n), (10)

where B(n) is an orthonormal basis matrix and F(n) ∈ RK×R modulates B(n) to form M̃(n). Any183

approximation creates a residual matrix R(n) ∈ RM×R defined by the difference184

R(n) = M(n) − B(n)F(n). (11)

The SVD expansion is defined by the minimization of the Frobenius norm [19] of R(n):185

B̂(n), F̂(n) = arg min
B(n),F(n)

‖M(n) − B(n)F(n)‖F. (12)

According to the Eckart-–Young theorem, a solution for (12) is achieved by a truncated SVD [32].186

Consider the SVD of M187

M(n) = UΣVT , (13)

where U ∈ RM×R is the unitary matrix of left singular vectors, Σ ∈ RR×R is the diagonal matrix of188

singular values and V ∈ RN×R is the unitary matrix of right singular vectors [19]. The rank-K SVD189

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 October 2018                   doi:10.20944/preprints201810.0474.v1

Peer-reviewed version available at Sensors 2018, 18, 4097; doi:10.3390/s18124097

http://dx.doi.org/10.20944/preprints201810.0474.v1
http://dx.doi.org/10.3390/s18124097


7 of 18

truncation is obtained by using only the K largest singular values from Σ and the K corresponding190

vectors from U and V. This low rank approximation is given by191

M̃(n) = ŨΣ̃ṼT , (14)

where Ũ ∈ RM×K, Σ̃ ∈ RK×K and Ṽ ∈ RR×K.192

The K columns of Ũ form an orthonormal basis for M̃(n) and compose the expanded set B(n),193

while the product Σ̃ṼT compose the modulating matrix F(n):194

B(n) = Ũ, (15a)

F(n) = Σ̃ṼT . (15b)

Naturally, large values for K mean more degrees of freedom in the approximation, which reduces195

the residuals. Fig. 3a shows how the value of K affects the Frobenius norm of R(n) for the center-most196

local ROI of the acquisition set presented in Section 6.1. The values of the 35 first singular values σk are197

shown in Fig. 3b. The 75 individual residual norms ‖ri‖ for K = 5, 10 and 20 are shown in Fig. 3c.198
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Figure 3. Approximation metrics for the center-most local ROI of the ultrasound acquisition set
described in Section 6.1, with R = 75 (Rx = 5 and Rz = 15). (a) Frobenius norm ‖R(n)‖F of the residual
matrix as a function of the order of approximation K. (b) 35 first singular values σk from the SVD

of M(n). (c) Individual residual norms ‖r(n)i ‖2 (of columns of R(n)), spatially arranged according to
the corresponding positions on the local ROI. The three surfaces correspond to K = 5 (top), K = 10
(middle) and K = 20 (bottom).

It shall be noted that the processes presented from (12) to (15b) have to be independently199

performed for every n-th local ROI. Although the construction of expanded dictionaries is200

computationally demanding, it is an offline procedure that is carried only once for each given201

acquisition set.202

5. Reconstruction algorithm203

5.1. Limitations of conic constraints204

Two main algorithms were proposed to work with expanded dictionaries: the convex CBP [23] and205

the greedy COMP [29]. The first one aims at solving problem (6b) while the second attempts to solve206

problem (7b). A hybrid approach called Interpolating Band-excluded Orthogonal Matching Pursuit207

(IBOMP) was also proposed and applied to frequency estimation (FE) and time delay estimation (TDE)208

[33]. Basically, it performs a rough greedy estimation of the support of the solution, followed by a209

refining convex optimization.210

In order to implement a constraint set C, all the aforementioned algorithms have at least one211

step involving a constrained convex optimization where the constraints define either first-order (SVD,212
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Minimax and Taylor) or second-order (Polar) cones. Fig. 4a illustrates an example of a first-order cone213

for K = 2. The black curved line represents the projection onto the basis B(n) of a continuous214

1-dimensional PSF manifold. The R vectors that compose a local manifold matrix M(n), when215

projected onto B(n), result in vectors f(n), represented by the dots, which compose the columns216

of F(n). When a reconstruction is performed, the recovered coefficients set x(n) ∈ R2 for this n-th217

local ROI is constrained to lie within a first-order cone, represented by the shadowed area (which218

extends indefinitely to the right). This cone is defined by two linear constraints that impose an upper219

and a lower bound for the relation x(n)2 /x(n)1 , combined with a non-negativity constraint for the first220

component x(n)1 . This constraint set aims to avoid arbitrary combinations for x(n) that do not represent221

positively-weighted copies of actual manifold samples. The upper black dot defines the upper angle of222

the cone, and is defined by the modulating matrix F(n) as maxi( f (n)2,i / f (n)1,i ), i.e., the maximum relation223

between the first and second components found among the projections of M(n). Similarly, the lower224

black dot is defined by mini( f (n)2,i / f (n)1,i ), and defines the lower angle of the cone. For higher orders of225

K, such a cone is defined for all K− 1 relations between each k-th (k ≥ 2) component and the first one.226

The resulting linear constraint set is defined as [29,31]227

min
1≤i≤R

 f (n)k,i

f (n)1,i

 ≤ x(n)k

x(n)1

≤ max
1≤i≤R

 f (n)k,i

f (n)1,i

 , (16a)

f (n)1,i ≥ 0 (16b)

∀k ∈ {2, . . . , K}, n ∈ {1, 2, . . . , N}, (16c)

where f (n)k,i denotes the element on the k-th line and i-th column on F(n). The principle is similar for the228

Polar expansion, though in that case the cones are of second order [23].229

f (n)

f (n)
2

1

(a)

f (n)

f (n)
2

1

(b)

f (n)
1

2f (n)

(c)

Figure 4. (a) Illustrative case of projection of local manifold samples M(n) on a basis B(n), for K = 2.
The curved line represents the projection of a continuous 1-dimensional manifold, while the dots
represent the projection of the samples (columns of M(n)) on B(n). When ∆ is sufficiently small,

the projections have single-signed, relatively large values on the first component f (n)1 and smaller
values on the remaining components. In this case, the definition of a first-order cone (represented by
the shadowed region) is possible and can be used in the reconstruction algorithm combined with a
non-negativity constraint for the first component, ensuring that the recovered coefficients represent
weighted copies of the local manifold, rather than other arbitrary combinations. The upper and lower

angles of the cone depend on maxi( f (n)2,i / f (n)1,i ) and mini( f (n)2,i / f (n)1,i ) respectively. (b) As ∆ increases, the
angle of the cone may as well increase, making the constraint less effective, as a broader area is allowed
for the recovered coefficients f(n). (c) An example where the definition of a convex cone is no longer
possible. This imposes a limit on the definition of ∆.

Notice that the cone-based convex constraints assume that the projection of M(n) on the K230

components of B(n) yields relatively large, positive, small-variance values for the first component and231

small values for the remaining, yielding relatively small values for minimum and maximum relations232

of (16c). If this assumption is broken, the cone of will span too large an area of the right half-plane, i.e.,233
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it will constrain less, being less effective, as represented in Fig. 4b. In some cases, defining the the cone234

is not even possible, as depicted in Fig. 4c.235

Assuring a well behaved relation between the first and the remaining components, as shown236

in Fig. 4a, implies choosing considerably small values for ∆x and ∆z, what limits the applicability237

of recovery algorithms based on conic constraints. For instance, on the simulated acquisition set of238

Section 6.1, choosing ∆x = ∆z = 0.2mm still causes the first component to have both positive and239

negative values on certain local manifolds, which makes the CBP [23], COMP [29] and IBOMP [33]240

algorithms not applicable.241

5.2. Non-convex constraints242

The problem described in Section 5.1 is the main reason why our algorithm does not rely on conic243

constraints. Instead, it attempts to constrain each K-tuple of recovered coefficients x(n) to be similar to244

any column of the modulating matrix F(n). We translate “similarity” as high correlation, as formalized245

in the non-convex constraint set246 (
max

1≤i≤R

〈x(n), f(n)i 〉

‖x(n)‖‖f(n)i ‖

)
≥ µc, ∀n ∈ {1, 2, . . . , N}, (17a)

where 〈a, b〉 = aTb denotes the inner product of two vectors.247

The minimum correlation parameter µc controls how similar to any of the manifold samples on248

M(n) a recovered event must be. If a given x(n) passes the test (17a), proving to be sufficiently similar249

to some i-th modulating vector f(n)i , then the approximation250

m̃(n)
i
‖x(n)‖
‖f(n)i ‖

= B(n)f(n)i
‖x(n)‖
‖f(n)i ‖

≈ B(n)x(n) (18)

is assumed and the product B(n)x(n) is considered as a valid weighted copy of a PSF within the n-th251

local ROI, rather than an arbitrary combination of the n-th basis vectors. This constraint is imposed by252

our greedy algorithm on the decision of which expanded set B(n) will be added to the reconstruction253

problem at each iteration.254

5.3. OMP for Expanded Dictionaries255

The proposed algorithm, summarized in Algorithm 1, is an extension of the OMP algorithm,256

referred to as OMP for Expanded Dictionaries (OMPED). It attempts to solve a problem similar to (7b)257

(i.e., to explain an acquired data vector c with the expanded dictionary {B(n)}) with the non-convex258

constraint set C defined in (17a). The stop criterion is based on the residual yielded by the LS solution259

with a given cardinality, yet instead of comparing the residual to a fixed parameter ε, we compare it260

to an estimate of the current residual that takes into account the expected acquisition noise and the261

estimated residuals resulting from the reduced-rank approximation.262

The input parameter enoise contains the expected `2 norm of the acquisition noise. In practice, this263

value can be obtained from acquisitions with samples of the inspected material known to have neither264

discontinuities nor other sort of scatterers. For our simulations, we use the relation265

e2
noise = ‖w‖2

2 ≈ Mσ2, (19)

which holds if the noise vector w contains white Gaussian noise with variance σ2 The approximation266

of (19) becomes an equality as M→ ∞. We assume the equality and use enoise =
√

Mσ2.267

We define the support S of the solution, which is initialized as the empty set, and its complement268

Sc = {1, . . . , N} \ S. The solution residual e ∈ RM is initialized with the vector of acquired data c on269

line 2.270
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Algorithm 1 OMP for Expanded Dictionaries (OMPED)

Input: {B(n)}, {F(n)}, {R(n)}, c, enoise, µc, ∆µ

1: S← ∅
2: e← c
3: repeat

4: j← Compute from (21)
5: while j = ∅ do

6: µc ← µc − ∆µ

7: j← Compute from (21)
8: end while
9: S← S

⋃{j}
10: {x(n)} ← Compute from (22b)
11: e← Compute from (23)
12: erank ← Compute from (24)
13: eest ← Compute from (25)
14: until eest ≥ ‖e‖2 or SC = ∅
Output: S, {x(n)}n∈S

At each iteration, an index j ∈ Sc is added to S as we choose the expanded set B(j) which is271

capable of causing the maximal decrease on the energy of the residual, as represented on the left side272

of (20). Since the columns of each B(n) are orthonormal, the identity273

ĵ = arg min
j
‖e− B(j)B(j)T

e‖2 = arg max
j
‖B(j)T

e‖2 (20)

holds as a consequence of Parseval’s relation [34], which allows us to perform the simpler operation of274

taking the norm of each product B(j)T
e.275

This operation is a generalization of the measurement of maximum correlation on the original276

OMP [30]. A constraint based on (17a) is imposed to prune candidates that do not accomplish the277

minimum correlation required. The resulting criterion is formalized as278

ĵ = arg max
j∈SC

∥∥∥B(j)T
e
∥∥∥

2
s.t. max

1≤i≤R

〈B(j)T
e, f(j)

i 〉

‖B(j)T
e‖‖f(j)

i ‖
≥ µc. (21)

The constraint in (21) allows for the recovery of only positive-amplitude events. It can be adapted279

to consider both positive and negative amplitudes by simply replacing the inner product by its absolute280

value |〈B(j)T
e, f(j)

i 〉|.281

The algorithm must consider the case where no index meets the correlation criterion of (21). This282

case is treated from line 5 to line 8: while problem (11) remains infeasible, a decrease of ∆µ is made on283

the parameter µc and a new attempt to compute the index j is performed.284

The support S is then updated to include the new index j (line 9) and is used to compute the285

coefficients286

{x̂(n)} = arg min
{x(n)}

‖c−
N

∑
n=1

B(n)x(n)‖2
2 (22a)

s.t. x(n) = 0, ∀n ∈ Sc (22b)

(where 0 ∈ RK is the zero vector), which then yield a residual287

e = c− ∑
n∈S

B(n)x(n). (23)
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Were the manifold approximation exact, e in (23) would be composed strictly of: 1) PSFs located288

at local ROIs with the corresponding indices not yet added to the support S and 2) additive noise. In289

that case, we could use the widespread stop criterion that compares ‖e‖2 to the expected noise power.290

However, our residual estimate must take into account the rank-K approximation. This estimate is291

computed on vector erank ∈ RM as292

erank = ∑
n∈S

r(n)
î

‖x(n)‖
‖f(n)

î
‖

, (24a)

where î = arg max
1≤i≤R

〈x(n), f(n)i 〉

‖x(n)‖‖f(n)i ‖
(24b)

and r(n)i denotes the i-th column from R(n). Based on (17a), the index i in (24b) is a function of n: for293

every index n in the current support S, the correlations performed in (24b) estimate which i-th PSF294

within the n-th local manifold best explains the recovered coefficients x(n) (see Figs. 2c and 2f). The295

residual r(n)i , from the dictionary low-rank approximation, is then used as template for the estimation296

of the current approximation residual. The amplitude estimate is taken from the ratio between the297

norms of the recovered coefficients x(n) and of the similar modulating vector f(n)i .298

The current total residual norm is estimated as299

eest = (‖erank‖2
2 + e2

noise)
1
2 , (25)

where the summation is performed under the assumption that the acquisition noise and the vector300

erank have negligible correlation.301

The algorithm greedily increases the support until the estimated residual norm eest reaches the302

norm ‖e‖ of the actual residual yielded by the LS or all indices n = 1, . . . , N have been added to the303

support S.304

5.4. Recovery of locations and amplitudes305

OMPED yields a support S as well as the sets of expanded coefficients {x(n)}n∈S. The computation306

of the locations and amplitudes follows the same principle used on (24a) and (24b): each event is307

located inside an n-th local ROI; its high resolution location is assigned the same as that of the i-th308

response m(n)
i within the R responses of the fine grid (Fig. 2c) which most correlates to x(n). Recalling309

the approximation m(n)
i ≈ B(n)f(n)i , we determine i by finding out which f(n)i most correlates to x(n):310

î(n) = arg max
1≤i≤R

〈x(n), f(n)i 〉

‖x(n)‖‖f(n)i ‖
, ∀n ∈ S. (26)

The amplitude estimations vn result form the ratios between the norms of x(n) and of the chosen311

template f(n)i :312

vn =
‖x(n)‖
‖f(n)i ‖

, ∀n ∈ S, i as in (26). (27)

As consequence, the spatial resolution of the reconstructed events equals the fine sampling313

represented in Fig.2c, i.e., δx and δz for the lateral and axial axes respectively.314
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6. Empirical results315

6.1. Simulated acquisition set316

To simulate the ultrasound NDT acquisition set from [21], represented in Fig. 5a, we used Field II317

package for Matlab [15]. A piston transducer with 3mm radius (125µm mathematical element size)318

interrogates a steel sample object (sound speed c = 5680m/s). The excitation pulse has center frequency319

fc = 5MHz and 6dB fractional bandwidth of 100%. The simulated transducer slides horizontally320

along the surface of the object, acquiring scanlines from 31 lateral positions ui, from u0 = 0mm to321

u30 = 30mm (center of transducer), with a distance of 1mm between consecutive lateral positions. The322

31 scanlines are sampled with sampling rate fs = 25MHz and concatenated to form the acquisition323

vector c.324

ROI

x

z

u0 u1 u2 ... u29 u30...

(a) (b)

Figure 5. (a) Simulated set (figure adapted from [21]). The transducer, fixed vertically at z = 0,
slides horizontally over the surface of the interrogated object, acquiring scanlines at 31 positions
x = {u0, . . . , u30}, corresponding to 0mm up to 31mm with 1mm step. The scanlines are concatenated
to form the acquired vector c. A PSF y(x, z) is determined by placing a unity amplitude scatterer on
position (x, z) and acquiring the corresponding c. (b) Extracts from the acquired data for the three
center-most transducer positions, with a unity amplitude scatterer located at the center of the ROI.
White Gaussian noise was added with σ = 0 (up), σ = 0.08 (middle) and σ = 0.12 (bottom).

Following [21], the model grid has 31× 41 = 1271 modelled locations distributed with regular325

spacing of 1mm on both x and z directions. On x direction, the locations are the same as the transducer326

positions, i.e. x = 0, 1mm, . . . , 30mm. On z direction, 41 locations are modelled regularly between327

18mm and 58mm, i.e., z = 18mm, 19mm, . . . , 58mm.328

As explained in Section 4.1, in the expanded acquisition model, the grid locations give place to329

local ROIs. Our expanded model has 1271 local ROIs with ∆x = ∆z = 1mm, with centers corresponding330

to the modelled locations of the regular model. Consequently, our ROI extends from x = −0.5mm to331

x = 30.5mm and from z = 17.5mm to z = 58.5mm. The highly coherent local manifolds were created332

with Rx = 5 and Rz = 15, thus R = 75. Therefore, δx = 250µm and δz = 71.4µm.333

We simulated the acquisition for 200 cases of 5 unity amplitude scatterers randomly distributed334

over the ROI. The scatterers positions were not forced over any kind of grid. White Gaussian noise335

with three different levels (σ = 0, 0.08, 0.12) was added to each simulated acquisition. Since the energy336

of the acquired signal (without noise) varies according to factors such as distance to transducer and337

constructive/destructive interference, we consider that the parametrization of noise in terms of its338

standard deviation σ is more appropriate than signal-to-noise ratio (SNR). To provide a visual notion of339

the noise levels, Fig. 5b shows an extract of acquired data for the three noise levels from an acquisition340

where a single scatterer was placed on the center of the ROI. Scanlines from the three center-most341

positions of the tranducer are concatenated.342
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6.2. Recovery accuracy343

To compute the accuracy on the recovery of scatterers, we ran OMPED with a fixed number of344

5 iterations, with µc = 0.8, ∆µ = 0.1 and K varying from 2 to 10 for the 200 simulated acquisitions345

with the three levels of noise. Each recovered scatterer distant less than 0.5mm in both axial and346

lateral directions from the closest original simulated scatterer was computed as a hit – otherwise it347

was computed as a miss. Fig. 6a shows the percentage of misses from 1000 recovered scatterers for348

all 9 values of K and 3 noise levels. Even for the highest level of noise, misses kept below 10% for349

6 ≤ K ≤ 10. For comparison, we ran OMP with the regular dictionary H on the same set of simulated350

acquisitions. The resulting percentages of misses were 38.9%, 42.4% and 45.2% for the noise levels351

σ = 0, 0.08 and 0.12 respectively.352
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Figure 6. (a) Percentage of misses (from 1000 simulated events) as a function of K, for three levels of
noise, with OMPED running with a fixed number of 5 iterations (each of the 200 simulated acquisition
had 5 scatterers). Each recovered scatterer distant more than 0.5mm in any direction (axial or lateral)
from the closest original simulated scatterer was computed as a miss. A minimum in the global number
of misses is found at K = 8. For K > 8, few useful information is added to the dictionary at the expense
of increased coherence. (b) Distance between recovered events (hits) and their corresponding simulated
true event. (c) Average amplitude of the events computed as hits, for noise levels σ = 0 (up), σ = 0.08
(middle) and σ = 0.12 (bottom). The bars indicate one standard deviation above and below the average.
All simulated events have unity amplitude.

A small increase in the count of misses is observed for values of K ≥ 8. This is possibly explained353

by the fact that, for K ≥ 8, increasing K adds few useful information to the dictionary at the cost of354

increasing coherence. For the SVD basis, the value of the singular values σk can be used as a measure355

of useful information. Fig. 3b shows how σk behaves for the center-most local manifold M(636). Notice356

that values of σk for k ≥ 8 are significantly smaller than the previous ones.357

For every hit, the distance between the original and the recovered scatterers was computed. The358

average distances are shown in Fig. 6b.359

The computation of hits and misses does not take into account the amplitude of recovered360

scatterers, i.e., recovered scatterers are implicitly considered as having unity amplitude. To endorse361

this assumption, the average amplitudes of recovered events are shown in fig. 6c, where the bars362

indicate one standard deviation above and below the average. Notice that, for all cases, the average363

amplitudes are between 0.98 and 1.01, i.e., the average amplitude error is less than 2%. The average364

absolute amplitude resulting from the reconstructions with OMP using the regular dictionary H were365

0.70, 0.70 and 0.71 for the noise levels σ = 0, 0.08 and 0.12 respectively.366

6.3. Estimation of residual and stop criterion367

To assess the accuracy of the stop criterion, OMPED was executed one more time on the 5-scatterer368

dataset of Section 6.1, this time with the residual-based stop criterion defined on line 14 of Algorithm 1,369

with a maximum of 10 iterations. Because all images contained 5 scatterers, the algorithm was expected370
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to stop at the 5-th iteration. The histogram of Fig. 7a shows this outcome: the peak of occurrences is on371

iteration 5. The frequencies on the neighboring final iterations 4 and 6 are also sensibly greater than372

on the remaining iterations (except for the maximum 10). The maximum iteration allowed was 10, at373

which the algorithm stopped when eest failed to reach ‖e‖. The results for values of K from 2 to 10 are374

summed on the histogram of Fig. 7a. A total of 5400 reconstruction (3 noise levels × 200 images × 9375

orders K) are computed.376

(a)

2 4 6 8 10

Iteration

16.55

16.6

16.65

16.7

16.75

16.8

eest

‖e‖

(b)

Figure 7. (a) Histogram of final iteration (when eest ≥ ‖e‖ for the first time) for OMPED running with
the SVD dictionary, for K varying from 2 to 10. Results from all values of K are summed. The total
number of reconstructions is 5400. The 5th iteration was more frequently identified as final iteration,
which is correct since all simulated acquisitions contained 5 scatterers. (b) Example of evolution of
eest and ‖e‖ along the iterations of OMPED. In this case, eest dropped below ‖e‖ at the 5th iteration,
which was correctly identified as the final iteration. The simulated object contained 5 scatterers. White
Gaussian noise with σ = 0.12 was added to the acquired data. OMPED was ran with the SVD dictionary
with K = 8.

Fig. 7b shows an example of the evolution of the regression residual norm ‖e‖ and the estimated377

residual norm eest. As new events are iteratively added to the solution, the latter decreases while the378

former increases. On iteration 5, ‖e‖ drops below eest and OMPED correctly meets the stop criterion,379

yielding a final solution with cardinality 5. White Gaussian noise with σ = 0.12 was added to the data.380

OMPED was ran with SVD (K = 8) dictionary.381

6.4. Reconstructed images: examples382

Fig. 8a shows the ground truth for a simulation from the dataset of Section 6.1. Gaussian noise was383

added to the acquired data with σ = 0.08. The reconstructed image using OMPED with SVD dictionary384

(K = 8) is shown in Fig. 8b. No limit was imposed on the number of iterations, i.e., the algorithm385

correctly stopped at the 5th iteration based on the values of the estimated and actual residuals. The386

activated pixels are the same on the ground truth of Fig. 8a and on the OMPED result of Fig. 8b. While387

all simulated scatterers had unity amplitude, the recovered amplitudes ranged from 0.9398 to 1.0387.388

Both Figs. 8a and 8b have 41× 31 pixels corresponding to the local ROIs of the expanded model.389

The result of the reconstruction using OMP with the regular dictionary model H is shown in Fig. 8c.390

We ran 7 iterations of the algorithm in order to show that, beyond iteration 4, the algorithm created391

artifacts around the left-most scatterer instead of identifying the bottom-right scatterer. The recovered392

amplitudes also display small and even negative values (the image shows absolute, normalized values).393

Moreover, the bottom-left scatterer is displaced one pixel to the left on the reconstructed image.394

Fig. 8d shows the image yielded by the LS (unregularized) solution of (4). As is common in395

unregularized model-based solutions, the image is dominated by noise [35]. We also applied `1396

regularization to the LS problem, which corresponds to the BP formulation [28]397
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(a) (b) (c) (d) (e)

Figure 8. Example of image simulated and reconstructed, from the dataset described in Section 6.1.
The simulated data contains 5 scatterers and white Gaussian noise with σ = 0.08. All images are
normalized by the maximum absolute pixel value. (a) Ground truth, with 5 unity amplitude scatterers
randomly distributed over the ROI. (b) Result from OMPED with the SVD dictionary (K = 8). The
algorithm correctly identified the 5th iteration as the final one. (c) Result from OMP with regular model
H. 7 iterations were run to show that, after the 4th iteration, the algorithm creates artifacts on the
neighborhood of the left-most scatterer instead of identifying the bottom-right scatterer present on the
ground truth image. (d) Solution of the unregularized LS problem (4). The image is dominated by
artifacts. (e) Solution of the `1-regularized problem (28). The penalization of the recovered amplitudes
causes the suppression of most points on the resulting image. The chosen regularization parameter
λ = 2.0691 minimizes the norm ‖v− v̂‖, where v is the ground truth.

v̂ = arg min
v
‖c−Hv‖2

2 + λ‖v‖1. (28)

The `1-regularized formulation was solved with L1_LS package for Matlab [36]. The resulting image is398

shown in Fig. 8e. While a small value for λ yields an image dominated by noise, such as that of Fig. 8d,399

larger values cause the image to be too sparse, suppressing some features. This is a consequence of400

the penalization of recovered amplitudes on (28). The chosen regularization parameter λ = 2.0691401

minimizes the norm ‖v− v̂‖2, where v is the ground truth and v̂ is the BP result.402

7. Discussion403

To cope with the problem of off-grid deviation in image reconstruction from pulse-echo ultrasound404

data, we developed a technique of dictionary expansion based on a highly coherent sampling of the405

PSF manifold followed by a rank reduction procedure, as well as a generalization of the OMP algorithm406

with non-convex constraints. Based on [29], the criterion for the rank reduction is the minimization of407

the Frobenius norm of the resulting residuals.408

Since no assumption is made regarding the geometry of the continuous PSF manifold, our409

expansion formulation is applicable to both shift-invariant and shift-variant problems. On the other410

hand, for instance, the Polar expansion [23] is conceived based on the fact that the PSF manifold of411

any shift-invariant system lies over a hypersphere. In 2-dimensional ultrasound (our main motivating412

application), the fact that the Spatial Impulse Response (SIR) is spatially variant [15,37] puts the direct413

acquisition model in the class of shift-variant systems.414

The criterion for definition of the order K of expansion may vary according to each application. In415

cases where it is possible to carry out simulations (as presented here) or a relevant amount of data416

with accessible ground truth is available, K can be determined empirically. Moreover, in our case,417

a minimum in the number of misses is identifiable and lies near to a transition on the baseline of418

singular values shown in Fig. 3b. A suggestion for future studies is the development of a generalized419

criterion for the definition of K. The behavior of the singular values yielded by an SVD decomposition420

of matrices M(n) is potentially a starting point for such investigation.421
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The original OMP algorithm [30] is a particular case of OMPED where K = 1 and the parameter422

µc (Eqs. (17a) and (21)) is set to an arbitrarily large negative value. In both OMP and OMPED, the423

residual vector e on each iteration is orthogonal to all active elements of the dictionary, what places424

OMPED in the family of Orthogonal Matching Pursuit algorithms. The same does not hold for the425

COMP algorithm presented in [29]: the fact that the LS regression performed at each iteration contains426

linear constraints may result in eventual coherence between the residual and the active atoms.427

Another particularity of OMPED in regard to previously proposed algorithms for expanded428

dictionaries [23,29,33] is that it is not based on conic constraints, which removes any restrictions on the429

choice of the sizes ∆x and ∆z (and further dimensions if that is the case) for the division of the ROI into430

local ROIs.431

The adaptation of OMP into OMPED, with a constraint imposed on the selection of the index432

added the support at each iteration, might be replicable to other greedy search algorithms. The class of433

forward-backward algorithms is of special interest in signal and image recovery because of its capacity434

of later “correction” of “wrong” choices made on the selection of indices to add to the support [38,39],435

what constitutes a motivation for future investigation.436

The computation of the estimated residual eest on OMPED may be subject to improvement in437

order to increase the accuracy of the stop criterion (see Fig. 7a). Decreasing the variance of the residuals438

r(n)i caused by the low-rank approximation inside each local ROI (i.e. flattening the surfaces of Fig. 3c)439

would cause the inaccuracies on the computation of high resolution locations to have a smaller impact440

on the computation of eest. This may be achieved with a different criterion for the rank reduction than441

the LS. For instance, an extension of the Minimax dictionary expansion [31].442

One limitation of our technique is that one single point-like event is identifiable inside each local443

ROI. The search for a means to overcome this limitation, allowing for the recovery of several scatterers444

inside the same local ROI is a relevant topic for further investigation and may broaden the applicability445

of the proposed technique.446

Finally, our simulated data considered point-like reflectors, with spatial coordinates (x, z) as the447

only nonlinear parameters. The ultrasound NDT literature contains parametric reflection models for448

more complex discontinuity structures, such as spherical voids and circular cracks, where the distortion449

of ultrasound waves is modelled as a nonlinear function of parameters like diameter and angle to450

the surface [40,41]. The proposed method is applicable to those cases as long as those parameters451

are comprised in the parameter set τ in (1) and sampled like the parameters of spatial location. In452

this case, characterization of discontinuities could be performed along with location. Classification of453

discontinuities could also be jointly performed if dictionaries for several types of discontinuities are454

combined. An equivalent principle has been used in the joint detection and identification of neuron455

activity using using SVD [29] and Taylor [42] expanded dictionaries.456
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