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1 Abstract: Model-based image reconstruction has brought improvements in terms of contrast and
> spatial resolution to imaging applications such as magnetic resonance imaging and emission
s computed tomography. However, their use for pulse-echo techniques like ultrasound imaging
« is limited by the fact that model-based algorithms assume a finite grid of possible locations of
s scatterers in a medium — which does not reflect the continuous nature of real world objects and
s creates a problem known as off-grid deviation. To cope with this problem, we present a method of
»  dictionary expansion and constrained reconstruction that approximates the continuous manifold
e of all possible scatterer locations within a region of interest. The expanded dictionary is created
o using a highly coherent sampling of the region of interest, followed by a rank reduction procedure
1o based on a truncated singular value decomposition. We develop a greedy algorithm, based on the
1 Orthogonal Matching Pursuit (OMP), that uses a correlation-based non-convex constraint set that
1z allows for the division of the region of interest into cells of any size. To evaluate the performance of
1z the method, we present results of 2-dimensional ultrasound image reconstructions with simulated
1« data in a nondestructive testing application. Our method succeeds in the reconstructions of sparse
s images from noisy measurements, providing higher accuracy than previous approaches based on
s  regular discrete models.

iz Keywords: ultrasound; nondestructive testing; manifolds; inverse problems; dictionary; rank
1 reduction.

1o 1. Introduction

20 Model-based image reconstruction methods provided important advances to imaging techniques
a1 such as magnetic resonance imaging (MRI) [1] and emission computed tomography (ECT) [2] in the last
22 decades. These methods rely on a known model which results in the captured signal being represented
2 by a sum of N coefficient-weighted responses. These responses are usually point spread functions
2a  (PSF), and coefficients are usually intensity of pixels at a modelled location. The discrete model is
2z then fed to regression algorithms along with a vector of acquired data, and the intensity on each
26 pixel is determined [3]. The use of model-based techniques in ultrasound imaging relies on a strong
2z assumption: that all reflectors (or scatterers) are located on any of a finite grid of N modelled positions
2s  [4]. Naturally, real-world inspected objects easily break this assumption and many scatteres may be
20 located off-grid. Many previous studies with model-based algorithms for ultrasound imaging, including
s but not limited to [4-11], have reported that resolution and contrast are substantially improved in
a1 comparison to delay-and-sum (DAS) algorithms when data comes from simulations with scatterers
»2 located strictly on a modelled grid. However, images are corrupted by artifacts when the grid is not
33 respected, which is typical in data acquired from real measurements. Consequently, DAS beamforming
s¢ algorithms remain as state-of-the-art for ultrasound imaging, despite having well understood physical
55 limitations regarding spatial resolution [12,13].
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s 2. Model-based imaging and regularization

a7 Let RM be the space of the data observed through an acquisition process. A single, unity amplitude
ss event located at position T € RP (in the D-dimensional continuous space) causes the discrete acquired
s signal y(t) € RM, known as the PSF. The physical meaning of such event depends on the type of
a0 quantity being measured. In ultrasound imaging, the event denotes a point-like reflexivity (also called
a1 ascatterer) [14,15], as represented in Fig. 1, and D typically equals 2 as the reflexivity is being mapped
«2 over a 2-dimensional plane. The variation of the set of D parameters T within a region of interest
a3 describes a D-dimensional manifold

M = {y(7) : T € ROI} (1)

s of all possible PSFs on RM. We will develop our notation for the 2-dimensional case and consider the
s two parameters T = [x,z]T (where -7 denotes the transpose) as the lateral and axial spatial dimensions
s Tespectively.

ROI

ROI

Figure 1. Acquisition of the point spread function (PSF). For each position (x, z) of the unity amplitude
scatterer within the ROI (left side), an M-sample response y(x,z) € RM (arranged as an M-pixel image
on right side) is generated by the acquisition model. The set of all possible PSFs within the region of
interest form a manifold M onto the data space. This example is taken from the pulse-echo ultrasound
model described in Section 6.1.

a7 An acquired signal ¢ € RM is assumed to be composed by a sum of individual contributions from
s N events, or N samples from the continuous PSF manifold

N
c= Z ny (X, zn) + W, )

n=1

s where v, is the amplitude of the n-th event and the vector w € RM accounts for acquisition noise,
o which we will assume to be Gaussian white noise with variance .

51 In a pulse-echo image with N pixels, v, in (2) encodes the reflexivity of the n-th scatterer, located
s2 at position (xy,z,), and is represented as the brightness of the corresponding pixel. This naturally
ss implies a sampling of the parameters (x,z) as a finite number N of possible scatterer locations (or
s« pixels) is assumed.

55 Once we have defined the N coordinate pairs (x,,z,) to be considered by the acquisition model,
ss we make h, = y(xy,z,), n=1,...,N, and define the model matrix H = [hy,...,hy] € RM*N Then

sz (2) can be written in compact form as

c=Hv+w, 3)

ss where v = [vy,...,0n]" is the vector of scatterer amplitudes. This model has been used in B-mode
so  (2-dimensional) [4-9], A-mode (1-dimensional) [16,17], and 3-dimensional [18] ultrasound imaging.
60 The reconstruction of the amplitudes vector v from a given acquisition ¢ in (3) is based on the
e minimization of a cost function, such as the LS problem
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¥ = argmin||c — Hv||3, 4)
v

e which is linear and can be solved by well-known methods [19].

63 However, model matrices for real-world problems are often ill-conditioned, which causes artifacts
e« on the reconstructed signals in the presence of noise [20]. This is an issue even in reconstructions with
es simulated data where all events are on grid, i.e., where the discrete acquisition model (3) is obeyed.
e The specific problem of poor conditioning of the ultrasound acquisition model has been addressed
ez with linear regularization methods such as Truncated SVD (TSVD) [7] and Tikhonov regularizarion
es [5,6,8], where the main goal is to stabilize the inverse operator.

69 Non-linear, sparsity-promoting regularization penalties such as £,-(pseudo)norm minimization
70 with p < 1 have shown successful results in ultrasound NDT, where the assumption of sparsity in the
7 space domain reflects the nature of discontinuities in observed materials [4,9,17,21].

72 Greedy algorithms effectively solve reconstruction problems where the cost function involves
7 the ¢y pseudonorm. In [10], sparsity is induced in the solution by the assumption that the presence of
s scatterers can be modelled by a Bernoulli process with a low value for the probability parameter. The
75 problem is then solved with a greedy algorithm called Multiple Most Likely Replacement (MMLR)
76 [22]. In [16], a Gabor dictionary is used in the reconstruction of thickness with a Matching Pursuit
7z (MP)-based algorithm that penalizes a relaxed support measure corresponding to the £,-pseudonorm
= with0 <p <L

70 3. Off-grid events and dictionary expansion

80 Aside from poor matrix conditioning, another problem known as off-grid deviation [23] limits
a1 the applicability of inverse-problem-based approaches on signal and image reconstruction. It derives
ez from the fact that, in many applications, the existing events may not be located strictly on the N
es positions modelled by (2) and (3), i.e., many events may be off-grid. Fig. 2a illustrates a grid of N =9
s« modelled positions, represented by gray dots. As three events (represented by black dots) are located
es on modelled positions, the corresponding data vector ¢ can be synthesized according to the acquisition
ss models (2) and (3). The same does not hold when an off-grid event (represented by a red dot) is added:
ez attempts to reconstruct the locations and amplitudes for the corresponding events may fail, causing
es artifacts and degradation on the reconstructed image.
80 Some formulations have been proposed for off-grid signal reconstruction, mainly within the
% framework of Compressive Sensing. In [24], the acquisition model considers a perturbation matrix
o1 summed column-wise to the (here referred to as H) regular discrete model matrix. The formulation
o2 is applied to direction-of-arrival (DOA) estimation using the derivatives of the columns of H with
o3 respect to the sampled parameters as perturbation matrix. In [25], an adaptation of the OMP algorithm
ea is proposed where the columns of the model matrix are iteratively updated in order to accommodate
os variations in the parameters of the PSFs. The algorithm is applied to pulse-Doppler radar. In [26]
96 the problem of continuous line spectral estimation is approached with an algorithm based on the
oz atomic norm minimization, which is solved via semi-definite programming. Similarly to the ¢,
e Mminimization, the atomic norm minimization promotes sparse solutions. In [27], the regression
9o problem uses a Total Least Squares (TLS) penalization with sparsity constraints. The motivation is
100 that the "errors-in-variables" assumption of the TLS regression might be able to capture the mismatch
11 between the model matrix and the acquired data. The method is then applied to cognitive radio
102 sensing and DOA estimation.
103 Our approach relies on the framework of dictionary expansion, which has been firstly proposed
10 in [23] as a means to overcome the problem of off-grid deviation in neuron spike detection. Each
105 column h,, of the discrete model H of (3) is replaced by K columns [bgn), e b%n)] =B ¢ RIMxK) g0
10s that a data vector c resulting from the acquisition of an event located in the neighborhood of an n-th
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Figure 2. (a) An illustrative discrete acquisition model with N = 3 x 3 = 9 modelled positions,
represented by the gray dots. The black dots represent 3 well located events and the red dot represents
an off-grid event. Because of the latter, the corresponding acquisition data vector ¢ cannot be
synthesized as a linear combination of the columns of the discrete model matrix H. (b) The ROI
is divided into N local ROIs with area Ay x A;. (c) Each local ROI is sampled with a fine grid with
lateral and axial distances 6y and ;. (d) On the space RM of acquired data, the set of all possible PSFs
within the ROI form a manifold M. The gray dots are the PSFs of the modelled positions of Fig. 2a.
The black dots are on the grid, while the red dot is off-grid. (e) As the ROI is divided into N local
ROIs (Fig.2b), the manifold is divided into N corresponding local manifolds. (f) The acquisitions over
the fine grid on each n-th local ROI create R samples from the corresponding local manifold. Those
samples compose matrix M) ¢ RMxR,

w7 modelled position can be approximated by some linear combination of B, i.e., by B(")x("), where
s x" € RK, As a result, an arbitrarily acquired ¢ might be approximated as

c~ Z B x(m), (5)
n=1

1o In the 2-dimensional case, the neighborhood of the n-position is the region within (x, £ 0.5Ax, z, +
10 0.5A;). This is represented in Fig. 2b, where the 9 modelled locations give place to 9 neighborhoods
11 (local ROISs).
112 Two forms of approximation are proposed in [23] for 1-dimensional linear time-invariant (LTI)
us problems. The first one is the Taylor approximation, which relies on the fact that small shifts on a
uns  waveform can be well approximated by its Taylor expansion, i.e., by linearly combining the original
us  waveform and its time derivatives. In this case, the column bgn) is identical to the original atom h,,
us and the columns b ,(;l) for k > 1 correspond to its (k — 1)-th time derivatives. The second is the Polar
1z approximation, which is motivated by the fact that the continuous manifold M of an LTI system lies
ue over a hypersphere on the M-dimensional data space [23]. The PSFs of the neighborhood of each n-th
e  modelled position are approximated by an arc of a circle and the the column hy, is replaced by three
120 normal vectors with the directions of the center (bg”)) and the two trigonometric components (bén)

121 and bgn)) of the circle. While the Taylor approximation can be done for any order K, in the Polar case K
122 always equals 3.
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123 An extension of the Basis Pursuit (BP) formulation [28], referred to as Continuous Basis Pursuit
12 (CBP), is proposed in [23] for the recovery of the expanded coefficients {x("™)}; <, <. For the sake of
s conciseness, from this point on we will represent sets {x(") }; <, <y simply as {x(") }. The formulation
126 of CBP is given by

1 ) (n 3

{ﬁ(”)} = argmlnﬁﬂc — 2 B("x! )||% +A E |x§n)\ (6a)
{x(n)} n=1 n=1

st. xMWlec, (6b)

12z Where the constraint set C prevents recovered expanded coefficients from having any arbitrary values
126 that do not represent actual PSFs. The definition of the convex set C varies according to the type of
120 approximation used. The ¢; norm of a vector composed by the first element xi”) of each K-tuple x(") is
130 used to obtain sparse solutions.

131 In [29], a low-rank approximation of the PSFs within the neighborhood of each n-th modelled
132 position is performed by means of a Singular Value Decomposition (SVD). The continuous manifold
133 drawn by T in a local ROI is sampled with a very fine grid of R locations, generating R columns that
sa form a matrix M(") € RM*R ag represented in Fig. 2f. Each matrix M(") then undergoes an SVD
135 decomposition and the K first left singular vectors compose the corresponding expanded coefficients
1e B for the n-th local ROL

137 An adaptation of the Orthogonal Matching Pursuit (OMP) [30] algorithm, referred to as
13s  Continuous OMP (COMP), is also presented in [29]. It aims at solving the ¢, — ¢y problem

(5} = arg minl|(x{, ..., x{™) 7a)
{x(”)}
e — ZnNzl B(m)x(n) H% <e
s.t. { {X(n)} c C ’ (7b)

13e  where the symbol || - || denotes the ¢y pseudonorm, i.e., the cardinality (number of nonzero elements)
1s0  of a vector.

141 In [31], a minimize-maximum (Minimax) formulation is presented for the definition of the
w2 expanded set {B(™}. The resulting approximation minimizes the maximum residual within the
13 representation of each n-th local ROL It is motivated by the assumption that the off-grid deviation
1as  from a discrete grid follows a uniform distribution, therefore the off-grid error should be as constant
145 as possible, not privileging any distance from originally modelled positions.

s 4. Rank-K approximation of local manifolds

147 The core idea of dictionary expansion is the substitution of each 7n-th column h;, from the discrete
1 model H by K basis vectors B") of which the column space approximates the #-th local PSF manifold
ws M, Our criterion to determine B(") is based on the SVD expansion, which has been proposed for
150 1-dimensional, shift-invariant problems [29]. The extension to D-dimensional problems relies mainly
11 on the first step of the process, which is a fine sampling of each local manifold M, here the regular,
12 fine grid is defined for all D dimensions. This extension is facilitated by the fact that the formulation
153 is non-parametric, i.e., the deviation from originally modelled positions is not mapped onto any
15 independent variable and does not play any role on the definition on the bases. On the other hand, in
155 the Taylor, Polar [23] and Minimax [31] expansions, the off-grid deviation is a parameter from which
156 the elements of the expanded dictionary are derived. Consequently, except for the Taylor expansion,
157 their extensions to 2 or higher dimensions are not promptly defined.
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e 4.1. Highly coherent discrete local manifolds

159 Fig. 2d shows an illustrative example of a D-manifold embedded in an M-dimensional data space.
160 In this case, D = 2 and M = 3. The 9 D-dimensional modelled positions shown in Fig. 2a correspond
161 here to 9 samples of the M-dimensional manifold, as well represented by gray dots in Fig. 2d. The red
12 dot corresponds to the data caused by the off-grid reflector from Fig. 2a.

163 Fig. 2e shows the same manifold as Fig. 2d but, instead of having N modelled positions, it divides
1es the manifold into N local manifolds

My :={y(x,z) : x € [xy — 0.5Ax, xy + 0.5Ax], z € [z — 0.5A;, 2, + 0.5A;]}, (8)

1es  which correspond to the N local ROIs of Fig. 2b.

166 We start by performing a fine sampling on each local manifold M, as represented in Fig. 2f. In
1z practice, this means acquiring the PSF of a set of points from a fine grid of R points defined for each
1es  local ROI (Fig. 2¢c). The result is a matrix M) e RMXR whose columns are local manifold samples.
10 The finer this grid is, the better the continuous local manifold is represented by the discrete dataset
o M. For simplicity of notation, we keep regular spacing d, and d, for the lateral and axial directions
11 respectively. The number of sampled points is R = Ry X R, where Ry and R, are the number of
172 locations defined on the lateral and axial directions respectively. In the example of Fig. 2c, Ry = R, =7,
1z thus R = 49.

174 Our sampling includes the boundaries of the local ROIs. For this reason, the relation between the
175 spacing and the number of locations on the lateral direction is given by

Ay

5x:Rx—1

©)

176 and the same holds for the axial direction.

177 Once we have the local matrices {M(")}, we create a rank-K approximation for each of them and
s define the sets of K basis vectors {B(")}, which form orthonormal bases for such approximations, to be
170 later used on inverse reconstruction problems such as (6b) and (7b).

10 4.2. SVD expansion
181 For each matrix M("), a rank-K approximation M(") € RM*R is to be defined and also factorized
12 in the form

M — gEm) (10)

s where B(") is an orthonormal basis matrix and F") € RX*R modulates B(") to form M("). Any
1 approximation creates a residual matrix R(Y) € RM*R defined by the difference

RM™ =M™ — gWgm) (11)
185 The SVD expansion is defined by the minimization of the Frobenius norm [19] of R(™M):
B, E") = argmin| M) — BWEFM . (12)
B(") F(n)

1 According to the Eckart-—Young theorem, a solution for (12) is achieved by a truncated SVD [32].
167 Consider the SVD of M

M =uzvT, (13)

s where U € RM*R ig the unitary matrix of left singular vectors, £ € RR*R is the diagonal matrix of

RNXR

10 singular values and V & is the unitary matrix of right singular vectors [19]. The rank-K SVD


http://dx.doi.org/10.20944/preprints201810.0474.v1
http://dx.doi.org/10.3390/s18124097

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 October 2018 d0i:10.20944/preprints201810.0474.v1

7 of 18

10 truncation is obtained by using only the K largest singular values from X and the K corresponding
11 vectors from U and V. This low rank approximation is given by

M = OEVT, (14)

102 where U € RMxK § ¢ REKXK gpnd V € RR*K,
103 The K columns of U form an orthonormal basis for M(") and compose the expanded set B("),
s while the product £V compose the modulating matrix F("):

B =1, (15a)
F" = VT, (15b)
105 Naturally, large values for K mean more degrees of freedom in the approximation, which reduces

ws  the residuals. Fig. 3a shows how the value of K affects the Frobenius norm of R() for the center-most
17 local ROI of the acquisition set presented in Section 6.1. The values of the 35 first singular values oj are
1s  shown in Fig. 3b. The 75 individual residual norms ||r;|| for K = 5, 10 and 20 are shown in Fig. 3c.

o
3

o

1R
°

Singular value Ty
IS

N

=3
=3
]
=}
o

5 10 15 20 25 30 35 5 10 15 20 25 30 35 20 195 145
Order K K z [mm] x [mm]

(a) (b) ()

Figure 3. Approximation metrics for the center-most local ROI of the ultrasound acquisition set
described in Section 6.1, with R = 75 (R; = 5 and R, = 15). (a) Frobenius norm || R(") || of the residual
matrix as a function of the order of approximation K. (b) 35 first singular values oj from the SVD

(
i
the corresponding positions on the local ROI The three surfaces correspond to K = 5 (top), K = 10
(middle) and K = 20 (bottom).

of M) (c) Individual residual norms ||r ") |2 (of columns of R()), spatially arranged according to

199 It shall be noted that the processes presented from (12) to (15b) have to be independently
20 performed for every n-th local ROL Although the construction of expanded dictionaries is
201 computationally demanding, it is an offline procedure that is carried only once for each given
202 acquisition set.

203 5. Reconstruction algorithm

20s  5.1. Limitations of conic constraints

205 Two main algorithms were proposed to work with expanded dictionaries: the convex CBP [23] and
206 the greedy COMP [29]. The first one aims at solving problem (6b) while the second attempts to solve
20 problem (7b). A hybrid approach called Interpolating Band-excluded Orthogonal Matching Pursuit
28 (IBOMP) was also proposed and applied to frequency estimation (FE) and time delay estimation (TDE)
200 [33]. Basically, it performs a rough greedy estimation of the support of the solution, followed by a
20 refining convex optimization.

211 In order to implement a constraint set C, all the aforementioned algorithms have at least one
212 step involving a constrained convex optimization where the constraints define either first-order (SVD,
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Minimax and Taylor) or second-order (Polar) cones. Fig. 4a illustrates an example of a first-order cone
for K = 2. The black curved line represents the projection onto the basis B") of a continuous
1-dimensional PSF manifold. The R vectors that compose a local manifold matrix M), when
projected onto B("), result in vectors ("), represented by the dots, which compose the columns
of F"). When a reconstruction is performed, the recovered coefficients set x(") € R? for this n-th
local ROl is constrained to lie within a first-order cone, represented by the shadowed area (which
extends indefinitely to the right). This cone is defined by two linear constraints that impose an upper

and a lower bound for the relation xén) / xgn), combined with a non-negativity constraint for the first
(n)

component x;
positively-weighted copies of actual manifold samples. The upper black dot defines the upper angle of

. This constraint set aims to avoid arbitrary combinations for x(") that do not represent

the cone, and is defined by the modulating matrix F(") as max; ( f2(7) / fl('f) ), i.e., the maximum relation
between the first and second components found among the projections of M("). Similarly, the lower

black dot is defined by min;( fz(’:) / fl(':) ), and defines the lower angle of the cone. For higher orders of
K, such a cone is defined for all K — 1 relations between each k-th (k > 2) component and the first one.
The resulting linear constraint set is defined as [29,31]

f(’?) MO (n)
min ki k< max ki , (16a)
1<i<R fl(g) xgn) 1<i<R fl(g)
=0 (16b)
Vke{2,...,K}, ne{1,2,...,N}, (16¢)

where fk(if) denotes the element on the k-th line and i-th column on F"). The principle is similar for the
Polar expansion, though in that case the cones are of second order [23].

£ £ %
AN h \ AN AN A
e , - e I = e I
[ fl(n) [ ffn) [ f](n)
- . \ \ 0, \
4 e 4 \ RN
(a) (b) (c)

Figure 4. (a) lllustrative case of projection of local manifold samples M(") on a basis B("), for K = 2.
The curved line represents the projection of a continuous 1-dimensional manifold, while the dots
represent the projection of the samples (columns of M) on B("). When A is sufficiently small,
the projections have single-signed, relatively large values on the first component f1<”> and smaller
values on the remaining components. In this case, the definition of a first-order cone (represented by
the shadowed region) is possible and can be used in the reconstruction algorithm combined with a
non-negativity constraint for the first component, ensuring that the recovered coefficients represent
weighted copies of the local manifold, rather than other arbitrary combinations. The upper and lower
angles of the cone depend on max; ( f2(7:) / fl(':)) and min; ( f2(7:) / fl(':)) respectively. (b) As A increases, the
angle of the cone may as well increase,, mak’ing the constraint less effective, as a broader area is allowed
for the recovered coefficients £(). (c) An example where the definition of a convex cone is no longer
possible. This imposes a limit on the definition of A.

Notice that the cone-based convex constraints assume that the projection of M(") on the K
components of B(") yields relatively large, positive, small-variance values for the first component and
small values for the remaining, yielding relatively small values for minimum and maximum relations
of (16¢). If this assumption is broken, the cone of will span too large an area of the right half-plane, i.e.,

doi:10.20944/preprints201810.0474.v1
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23s it will constrain less, being less effective, as represented in Fig. 4b. In some cases, defining the the cone
235 is not even possible, as depicted in Fig. 4c.

236 Assuring a well behaved relation between the first and the remaining components, as shown
27 in Fig. 4a, implies choosing considerably small values for A, and A;, what limits the applicability
238 of recovery algorithms based on conic constraints. For instance, on the simulated acquisition set of
230 Section 6.1, choosing Ay = A, = 0.2mm still causes the first component to have both positive and
20 Negative values on certain local manifolds, which makes the CBP [23], COMP [29] and IBOMP [33]
21 algorithms not applicable.

222 5.2. Non-convex constraints

243 The problem described in Section 5.1 is the main reason why our algorithm does not rely on conic
2 cONstraints. Instead, it attempts to constrain each K-tuple of recovered coefficients x(") to be similar to
2es any column of the modulating matrix F("). We translate “similarity” as high correlation, as formalized
2e6  in the non-convex constraint set

(x(m), £My
max ————— | > u,, Vn € {1,2,...,N}, (17a)
SR g
2z where (a,b) = a’b denotes the inner product of two vectors.
248 The minimum correlation parameter . controls how similar to any of the manifold samples on
20 M) a recovered event must be. If a given x(") passes the test (17a), proving to be sufficiently similar

20 to some i-th modulating vector ffn), then the approximation
IO _ o IV by o s

CoE) CoE)

251 is assumed and the product B(")x(") is considered as a valid weighted copy of a PSF within the n-th
=2 local ROI, rather than an arbitrary combination of the n-th basis vectors. This constraint is imposed by
23 our greedy algorithm on the decision of which expanded set B(") will be added to the reconstruction
=sa  problem at each iteration.

25 5.3. OMP for Expanded Dictionaries

256 The proposed algorithm, summarized in Algorithm 1, is an extension of the OMP algorithm,
27 referred to as OMP for Expanded Dictionaries (OMPED). It attempts to solve a problem similar to (7b)
28 (i.e., to explain an acquired data vector ¢ with the expanded dictionary {B(")}) with the non-convex
20 constraint set C defined in (17a). The stop criterion is based on the residual yielded by the LS solution
260 With a given cardinality, yet instead of comparing the residual to a fixed parameter €, we compare it
201 to an estimate of the current residual that takes into account the expected acquisition noise and the
22 estimated residuals resulting from the reduced-rank approximation.
263 The input parameter epgise contains the expected ¢, norm of the acquisition noise. In practice, this
26 value can be obtained from acquisitions with samples of the inspected material known to have neither
265 discontinuities nor other sort of scatterers. For our simulations, we use the relation

e = W3 = Md?, (19)

noise

26s  which holds if the noise vector w contains white Gaussian noise with variance ¢ The approximation
267 Of (19) becomes an equality as M — co. We assume the equality and use enpise = V M0o?2.

268 We define the support S of the solution, which is initialized as the empty set, and its complement
20 S°={1,...,N}\S. The solution residual e € RM is initialized with the vector of acquired data ¢ on
270 line 2.
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Algorithm 1 OMP for Expanded Dictionaries (OMPED)
Input: {B(n) }, {F(n)}, {R(n)}/ C, €noises Hes Ay
S+ ©
2: e< ¢
3: repeat
4. j + Compute from (21)
5:  whilej=®do
6: He & YPe — Ay
7: j < Compute from (21)
8: end while
9: S« SU{j
100 {x("} < Compute from (22b)
11: e < Compute from (23)
12 eppnk + Compute from (24)
13 eest < Compute from (25)
14: until eeqr > £|e||7_ orS¢ =@
Output: S, {x("},cg
a1 At each iteration, an index j € S° is added to S as we choose the expanded set BU) which is

22 capable of causing the maximal decrease on the energy of the residual, as represented on the left side
273 of (20). Since the columns of each B(") are orthonormal, the identity

j = argmin|je — B(j)B(j)Te||2 = argmax||B(j)Te||2 (20)
] ]
zza  holds as a consequence of Parseval’s relation [34], which allows us to perform the simpler operation of
2rs  taking the norm of each product BY) Te.
276 This operation is a generalization of the measurement of maximum correlation on the original

2z OMP [30]. A constraint based on (17a) is imposed to prune candidates that do not accomplish the
27 minimum correlation required. The resulting criterion is formalized as

T o ¢0)
R T BU) e, £/
j = argmax HB(]) eH s.t. max <T—l(])> > HUe. (21)
jese 2 IEERBU ellIf]
279 The constraint in (21) allows for the recovery of only positive-amplitude events. It can be adapted

200 to consider both positive and negative amplitudes by simply replacing the inner product by its absolute
21 value |<B(f)Te, fl(j)>|.

282 The algorithm must consider the case where no index meets the correlation criterion of (21). This
283 case is treated from line 5 to line 8: while problem (11) remains infeasible, a decrease of A, is made on
2es  the parameter y. and a new attempt to compute the index j is performed.

265 The support S is then updated to include the new index j (line 9) and is used to compute the
26 coefficients

N

{x"} = arg min|jc — ) B"x(" |3 (22a)
{x(”)} n=1

st.x" =0, vn e s (22b)

27 (where 0 € RK is the zero vector), which then yield a residual

e=c— Z B x(m), (23)

nes
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288 Were the manifold approximation exact, e in (23) would be composed strictly of: 1) PSFs located
2e0  at local ROIs with the corresponding indices not yet added to the support S and 2) additive noise. In
200 that case, we could use the widespread stop criterion that compares | e[|, to the expected noise power.
21 However, our residual estimate must take into account the rank-K approximation. This estimate is
202 computed on vector e i € RM as

_ oy X"
€rank = % rf fgn) || 7 (24a)
R (x(m, gy
where i = arg max ! (24b)

1isk x| [1£7]

(n)
i

204 every index n in the current support S, the correlations performed in (24b) estimate which i-th PSF
205 within the 7-th local manifold best explains the recovered coefficients x") (see Figs. 2c and 2f). The

s and r;"’ denotes the i-th column from R("). Based on (17a), the index i in (24b) is a function of n: for

206 residual rgn), from the dictionary low-rank approximation, is then used as template for the estimation
207 Of the current approximation residual. The amplitude estimate is taken from the ratio between the

(n)

20s  orms of the recovered coefficients x(") and of the similar modulating vector f;

200 The current total residual norm is estimated as

1
Cest = (”erankH% + e%oise) z, (25)

s0 Where the summation is performed under the assumption that the acquisition noise and the vector
31 ek have negligible correlation.

302 The algorithm greedily increases the support until the estimated residual norm ecs; reaches the
s norm | e|| of the actual residual yielded by the LS or all indices n = 1,..., N have been added to the
304 support S.

sos  5.4. Recovery of locations and amplitudes

306 OMPED yields a support S as well as the sets of expanded coefficients {x(")},,cs. The computation
sz of the locations and amplitudes follows the same principle used on (24a) and (24b): each event is
s0s located inside an n-th local ROI its high resolution location is assigned the same as that of the i-th

En) within the R responses of the fine grid (Fig. 2c) which most correlates to x(m), Recalling
(n) o g(n)gn) (n)
1

i i

300 Iesponse m

;0 the approximation m , we determine 7 by finding out which f;") most correlates to x(":

o, 6)

i(n) = argmax————L " VncS§. (26)
1k [xO)|[[|£"
s11 The amplitude estimations v, result form the ratios between the norms of x(") and of the chosen
a2 template fl("):
X" as i
n= Vn € S, iasin (26). (27)
I
313 As consequence, the spatial resolution of the reconstructed events equals the fine sampling

s represented in Fig.2c, i.e., 6y and 6, for the lateral and axial axes respectively.
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s1s 6. Empirical results
se 6.1, Simulated acquisition set
a7 To simulate the ultrasound NDT acquisition set from [21], represented in Fig. 5a, we used Field II

a1e  package for Matlab [15]. A piston transducer with 3mm radius (125¢m mathematical element size)
a0 interrogates a steel sample object (sound speed ¢ = 5680m/s). The excitation pulse has center frequency
20 fo = BMHz and 6dB fractional bandwidth of 100%. The simulated transducer slides horizontally
sz along the surface of the object, acquiring scanlines from 31 lateral positions u;, from 1y = Omm to
a2 U39 = 30mm (center of transducer), with a distance of Imm between consecutive lateral positions. The
s23 31 scanlines are sampled with sampling rate f; = 25MHz and concatenated to form the acquisition
24 vector c.

=Ny

Uo Lllw Lllz Lllzs l.llso X l l ]

s o A
i

(a) (b)

(((

RO

Figure 5. (a) Simulated set (figure adapted from [21]). The transducer, fixed vertically at z = 0,
slides horizontally over the surface of the interrogated object, acquiring scanlines at 31 positions
x = {uy,..., uz}, corresponding to 0Omm up to 3lmm with Imm step. The scanlines are concatenated
to form the acquired vector c. A PSF y(x, z) is determined by placing a unity amplitude scatterer on
position (x,z) and acquiring the corresponding c. (b) Extracts from the acquired data for the three
center-most transducer positions, with a unity amplitude scatterer located at the center of the ROL
White Gaussian noise was added with o = 0 (up), ¢ = 0.08 (middle) and ¢ = 0.12 (bottom).

325 Following [21], the model grid has 31 x 41 = 1271 modelled locations distributed with regular
226 spacing of Imm on both x and z directions. On x direction, the locations are the same as the transducer
;27 positions, i.e. x = 0,1mm, ...,30mm. On z direction, 41 locations are modelled regularly between
328  18mm and 58mm, i.e., z = 18mm, 19mm, . .., 58mm.

320 As explained in Section 4.1, in the expanded acquisition model, the grid locations give place to
330 local ROIs. Our expanded model has 1271 local ROIs with Ay = A, = 1mm, with centers corresponding
a1 to the modelled locations of the regular model. Consequently, our ROI extends from x = —0.5mm to

32 x = 30.5mm and from z = 17.5mm to z = 58.5mm. The highly coherent local manifolds were created
s3 with Ry = 5 and R; = 15, thus R = 75. Therefore, d, = 250um and J, = 71.4um.

334 We simulated the acquisition for 200 cases of 5 unity amplitude scatterers randomly distributed
a5 over the ROL The scatterers positions were not forced over any kind of grid. White Gaussian noise
:3s  with three different levels (o = 0,0.08,0.12) was added to each simulated acquisition. Since the energy
sz of the acquired signal (without noise) varies according to factors such as distance to transducer and
as  constructive/destructive interference, we consider that the parametrization of noise in terms of its
:30  standard deviation ¢ is more appropriate than signal-to-noise ratio (SNR). To provide a visual notion of
w0 the noise levels, Fig. 5b shows an extract of acquired data for the three noise levels from an acquisition
sa1 where a single scatterer was placed on the center of the ROL Scanlines from the three center-most
sz positions of the tranducer are concatenated.
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sas 0.2, Recovery accuracy

348 To compute the accuracy on the recovery of scatterers, we ran OMPED with a fixed number of
sas 5 iterations, with . = 0.8, A, = 0.1 and K varying from 2 to 10 for the 200 simulated acquisitions
:ss  with the three levels of noise. Each recovered scatterer distant less than 0.5mm in both axial and
sz lateral directions from the closest original simulated scatterer was computed as a hit — otherwise it
sas  Was computed as a miss. Fig. 6a shows the percentage of misses from 1000 recovered scatterers for
a0 all 9 values of K and 3 noise levels. Even for the highest level of noise, misses kept below 10% for
0 6 < K < 10. For comparison, we ran OMP with the regular dictionary H on the same set of simulated
ss1 - acquisitions. The resulting percentages of misses were 38.9%, 42.4% and 45.2% for the noise levels
2 0 = 0,0.08 and 0.12 respectively.

—_ 1.1
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3 —0—05=0.12 § 5 2 4 6 8 10
2 S g o2 '
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Figure 6. (a) Percentage of misses (from 1000 simulated events) as a function of K, for three levels of
noise, with OMPED running with a fixed number of 5 iterations (each of the 200 simulated acquisition
had 5 scatterers). Each recovered scatterer distant more than 0.5mm in any direction (axial or lateral)
from the closest original simulated scatterer was computed as a miss. A minimum in the global number
of misses is found at K = 8. For K > 8, few useful information is added to the dictionary at the expense
of increased coherence. (b) Distance between recovered events (hits) and their corresponding simulated
true event. (c) Average amplitude of the events computed as hits, for noise levels o = 0 (up), ¢ = 0.08
(middle) and ¢ = 0.12 (bottom). The bars indicate one standard deviation above and below the average.
All simulated events have unity amplitude.

353 A small increase in the count of misses is observed for values of K > 8. This is possibly explained
s Dy the fact that, for K > 8, increasing K adds few useful information to the dictionary at the cost of
355 increasing coherence. For the SVD basis, the value of the singular values ¢} can be used as a measure
sss  of useful information. Fig. 3b shows how 0} behaves for the center-most local manifold M(63¢). Notice
57 that values of oy for k > 8 are significantly smaller than the previous ones.

358 For every hit, the distance between the original and the recovered scatterers was computed. The
e average distances are shown in Fig. 6b.
360 The computation of hits and misses does not take into account the amplitude of recovered

se1  scatterers, i.e., recovered scatterers are implicitly considered as having unity amplitude. To endorse
sz this assumption, the average amplitudes of recovered events are shown in fig. 6¢c, where the bars
se3  indicate one standard deviation above and below the average. Notice that, for all cases, the average
;s amplitudes are between 0.98 and 1.01, i.e., the average amplitude error is less than 2%. The average
ses  absolute amplitude resulting from the reconstructions with OMP using the regular dictionary H were
ses  0.70,0.70 and 0.71 for the noise levels ¢ = 0, 0.08 and 0.12 respectively.

ser  6.3. Estimation of residual and stop criterion

368 To assess the accuracy of the stop criterion, OMPED was executed one more time on the 5-scatterer
seo  dataset of Section 6.1, this time with the residual-based stop criterion defined on line 14 of Algorithm 1,
s70 - with a maximum of 10 iterations. Because all images contained 5 scatterers, the algorithm was expected
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s to stop at the 5-th iteration. The histogram of Fig. 7a shows this outcome: the peak of occurrences is on
a2 iteration 5. The frequencies on the neighboring final iterations 4 and 6 are also sensibly greater than
373 on the remaining iterations (except for the maximum 10). The maximum iteration allowed was 10, at
s7a - which the algorithm stopped when et failed to reach | e||. The results for values of K from 2 to 10 are
sz summed on the histogram of Fig. 7a. A total of 5400 reconstruction (3 noise levels x 200 images x 9
a7 orders K) are computed.
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Figure 7. (a) Histogram of final iteration (when eest > || e|| for the first time) for OMPED running with
the SVD dictionary, for K varying from 2 to 10. Results from all values of K are summed. The total
number of reconstructions is 5400. The 5th iteration was more frequently identified as final iteration,
which is correct since all simulated acquisitions contained 5 scatterers. (b) Example of evolution of
eest and | e|| along the iterations of OMPED. In this case, eest dropped below | e|| at the 5th iteration,
which was correctly identified as the final iteration. The simulated object contained 5 scatterers. White
Gaussian noise with o = 0.12 was added to the acquired data. OMPED was ran with the SVD dictionary
with K = 8.

377 Fig. 7b shows an example of the evolution of the regression residual norm ||e|| and the estimated
s7e  residual norm egst. As new events are iteratively added to the solution, the latter decreases while the
s7o  former increases. On iteration 5, ||e|| drops below eest and OMPED correctly meets the stop criterion,
se0  yielding a final solution with cardinality 5. White Gaussian noise with ¢ = 0.12 was added to the data.
ss OMPED was ran with SVD (K = 8) dictionary.

se2 6.4, Reconstructed images: examples

383 Fig. 8a shows the ground truth for a simulation from the dataset of Section 6.1. Gaussian noise was
ss«  added to the acquired data with o = 0.08. The reconstructed image using OMPED with SVD dictionary
ses (K = 8) is shown in Fig. 8b. No limit was imposed on the number of iterations, i.e., the algorithm
;e correctly stopped at the 5th iteration based on the values of the estimated and actual residuals. The
se7  activated pixels are the same on the ground truth of Fig. 8a and on the OMPED result of Fig. 8b. While
see  all simulated scatterers had unity amplitude, the recovered amplitudes ranged from 0.9398 to 1.0387.
;e Both Figs. 8a and 8b have 41 x 31 pixels corresponding to the local ROIs of the expanded model.

390 The result of the reconstruction using OMP with the regular dictionary model H is shown in Fig. 8c.
s:01 Weran 7 iterations of the algorithm in order to show that, beyond iteration 4, the algorithm created
sz artifacts around the left-most scatterer instead of identifying the bottom-right scatterer. The recovered
303 amplitudes also display small and even negative values (the image shows absolute, normalized values).
30 Moreover, the bottom-left scatterer is displaced one pixel to the left on the reconstructed image.

395 Fig. 8d shows the image yielded by the LS (unregularized) solution of (4). As is common in
s unregularized model-based solutions, the image is dominated by noise [35]. We also applied ¢4
307 regularization to the LS problem, which corresponds to the BP formulation [28]
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Figure 8. Example of image simulated and reconstructed, from the dataset described in Section 6.1.
The simulated data contains 5 scatterers and white Gaussian noise with ¢ = 0.08. All images are
normalized by the maximum absolute pixel value. (a) Ground truth, with 5 unity amplitude scatterers
randomly distributed over the ROI. (b) Result from OMPED with the SVD dictionary (K = 8). The
algorithm correctly identified the 5th iteration as the final one. (c) Result from OMP with regular model
H. 7 iterations were run to show that, after the 4th iteration, the algorithm creates artifacts on the
neighborhood of the left-most scatterer instead of identifying the bottom-right scatterer present on the
ground truth image. (d) Solution of the unregularized LS problem (4). The image is dominated by
artifacts. (e) Solution of the /1-regularized problem (28). The penalization of the recovered amplitudes
causes the suppression of most points on the resulting image. The chosen regularization parameter
A = 2.0691 minimizes the norm ||v — ¥||, where v is the ground truth.

¥ = argmin||c — Hv||3 + A||v]|;. (28)
v

s0s  The /1-regularized formulation was solved with L1_LS package for Matlab [36]. The resulting image is
300 shown in Fig. 8e. While a small value for A yields an image dominated by noise, such as that of Fig. 8d,
a0 larger values cause the image to be too sparse, suppressing some features. This is a consequence of
a1 the penalization of recovered amplitudes on (28). The chosen regularization parameter A = 2.0691
202 minimizes the norm ||v — ¥||, where v is the ground truth and ¥ is the BP result.

a3 7. Discussion

404 To cope with the problem of off-grid deviation in image reconstruction from pulse-echo ultrasound
a5 data, we developed a technique of dictionary expansion based on a highly coherent sampling of the
as PSF manifold followed by a rank reduction procedure, as well as a generalization of the OMP algorithm
a7 with non-convex constraints. Based on [29], the criterion for the rank reduction is the minimization of
a8 the Frobenius norm of the resulting residuals.

a09 Since no assumption is made regarding the geometry of the continuous PSF manifold, our
a0 expansion formulation is applicable to both shift-invariant and shift-variant problems. On the other
a1 hand, for instance, the Polar expansion [23] is conceived based on the fact that the PSF manifold of
a1z any shift-invariant system lies over a hypersphere. In 2-dimensional ultrasound (our main motivating
a3 application), the fact that the Spatial Impulse Response (SIR) is spatially variant [15,37] puts the direct
a1+ acquisition model in the class of shift-variant systems.

a1s The criterion for definition of the order K of expansion may vary according to each application. In
a1 cases where it is possible to carry out simulations (as presented here) or a relevant amount of data
a7 with accessible ground truth is available, K can be determined empirically. Moreover, in our case,
a1s @ minimum in the number of misses is identifiable and lies near to a transition on the baseline of
a0 singular values shown in Fig. 3b. A suggestion for future studies is the development of a generalized
a20 criterion for the definition of K. The behavior of the singular values yielded by an SVD decomposition
a2 of matrices M(") is potentially a starting point for such investigation.
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a2z The original OMP algorithm [30] is a particular case of OMPED where K = 1 and the parameter
a3 Y (Egs. (17a) and (21)) is set to an arbitrarily large negative value. In both OMP and OMPED, the
a2¢ residual vector e on each iteration is orthogonal to all active elements of the dictionary, what places
a2s  OMPED in the family of Orthogonal Matching Pursuit algorithms. The same does not hold for the
a2s  COMP algorithm presented in [29]: the fact that the LS regression performed at each iteration contains
a2z linear constraints may result in eventual coherence between the residual and the active atoms.

a28 Another particularity of OMPED in regard to previously proposed algorithms for expanded
a20 dictionaries [23,29,33] is that it is not based on conic constraints, which removes any restrictions on the
a0 choice of the sizes Ay and A; (and further dimensions if that is the case) for the division of the ROI into
a1 local ROIs.

432 The adaptation of OMP into OMPED, with a constraint imposed on the selection of the index
a3 added the support at each iteration, might be replicable to other greedy search algorithms. The class of
a3a  forward-backward algorithms is of special interest in signal and image recovery because of its capacity
a5 of later “correction” of “wrong” choices made on the selection of indices to add to the support [38,39],
a3s  What constitutes a motivation for future investigation.

a37 The computation of the estimated residual eest on OMPED may be subject to improvement in
a3s  order to increase the accuracy of the stop criterion (see Fig. 7a). Decreasing the variance of the residuals

(n)

s 1;  caused by the low-rank approximation inside each local ROI (i.e. flattening the surfaces of Fig. 3c)
a0 would cause the inaccuracies on the computation of high resolution locations to have a smaller impact
21 on the computation of ees;. This may be achieved with a different criterion for the rank reduction than
a2 the LS. For instance, an extension of the Minimax dictionary expansion [31].

443 One limitation of our technique is that one single point-like event is identifiable inside each local
asa ROL The search for a means to overcome this limitation, allowing for the recovery of several scatterers
ass  inside the same local ROl is a relevant topic for further investigation and may broaden the applicability
ass  of the proposed technique.

447 Finally, our simulated data considered point-like reflectors, with spatial coordinates (x,z) as the
ass  only nonlinear parameters. The ultrasound NDT literature contains parametric reflection models for
a0 more complex discontinuity structures, such as spherical voids and circular cracks, where the distortion
«so  of ultrasound waves is modelled as a nonlinear function of parameters like diameter and angle to
a1 the surface [40,41]. The proposed method is applicable to those cases as long as those parameters
42 are comprised in the parameter set T in (1) and sampled like the parameters of spatial location. In
«s3  this case, characterization of discontinuities could be performed along with location. Classification of
ass  discontinuities could also be jointly performed if dictionaries for several types of discontinuities are
ass  combined. An equivalent principle has been used in the joint detection and identification of neuron
ase  activity using using SVD [29] and Taylor [42] expanded dictionaries.
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