

Article

Sparse Ultrasound Imaging via Manifold Low-Rank Approximation and Non-Convex Greedy Pursuit

Thiago A. R. Passarin ^{*,†}, Daniel R. Pipa [†] and Marcelo V. W. Zibetti [†]

Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology, Paraná (UTFPR), Curitiba PR 80230-901, Brazil; danielpipa@utfpr.edu.br (D.R.P.); marcelozibetti@utfpr.edu.br (M.V.W.Z.)

* Correspondence: passarin@utfpr.edu.br; Tel.: +55-41-3310-4776

† These authors contributed equally to this work.

Version October 22, 2018 submitted to

1 **Abstract:** Model-based image reconstruction has brought improvements in terms of contrast and
2 spatial resolution to imaging applications such as magnetic resonance imaging and emission
3 computed tomography. However, their use for pulse-echo techniques like ultrasound imaging
4 is limited by the fact that model-based algorithms assume a finite grid of possible locations of
5 scatterers in a medium – which does not reflect the continuous nature of real world objects and
6 creates a problem known as off-grid deviation. To cope with this problem, we present a method of
7 dictionary expansion and constrained reconstruction that approximates the continuous manifold
8 of all possible scatterer locations within a region of interest. The expanded dictionary is created
9 using a highly coherent sampling of the region of interest, followed by a rank reduction procedure
10 based on a truncated singular value decomposition. We develop a greedy algorithm, based on the
11 Orthogonal Matching Pursuit (OMP), that uses a correlation-based non-convex constraint set that
12 allows for the division of the region of interest into cells of any size. To evaluate the performance of
13 the method, we present results of 2-dimensional ultrasound image reconstructions with simulated
14 data in a nondestructive testing application. Our method succeeds in the reconstructions of sparse
15 images from noisy measurements, providing higher accuracy than previous approaches based on
16 regular discrete models.

17 **Keywords:** ultrasound; nondestructive testing; manifolds; inverse problems; dictionary; rank
18 reduction.

19 1. Introduction

20 Model-based image reconstruction methods provided important advances to imaging techniques
21 such as magnetic resonance imaging (MRI) [1] and emission computed tomography (ECT) [2] in the last
22 decades. These methods rely on a known model which results in the captured signal being represented
23 by a sum of N coefficient-weighted responses. These responses are usually point spread functions
24 (PSF), and coefficients are usually intensity of pixels at a modelled location. The discrete model is
25 then fed to regression algorithms along with a vector of acquired data, and the intensity on each
26 pixel is determined [3]. The use of model-based techniques in ultrasound imaging relies on a strong
27 assumption: that all reflectors (or scatterers) are located on any of a finite grid of N modelled positions
28 [4]. Naturally, real-world inspected objects easily break this assumption and many scatterers may be
29 located *off-grid*. Many previous studies with model-based algorithms for ultrasound imaging, including
30 but not limited to [4–11], have reported that resolution and contrast are substantially improved in
31 comparison to delay-and-sum (DAS) algorithms when data comes from simulations with scatterers
32 located strictly on a modelled grid. However, images are corrupted by artifacts when the grid is not
33 respected, which is typical in data acquired from real measurements. Consequently, DAS beamforming
34 algorithms remain as state-of-the-art for ultrasound imaging, despite having well understood physical
35 limitations regarding spatial resolution [12,13].

36 2. Model-based imaging and regularization

37 Let \mathbb{R}^M be the space of the data observed through an acquisition process. A single, unity amplitude
 38 event located at position $\tau \in \mathbb{R}^D$ (in the D -dimensional continuous space) causes the discrete acquired
 39 signal $\mathbf{y}(\tau) \in \mathbb{R}^M$, known as the PSF. The physical meaning of such event depends on the type of
 40 quantity being measured. In ultrasound imaging, the event denotes a point-like reflexivity (also called
 41 a scatterer) [14,15], as represented in Fig. 1, and D typically equals 2 as the reflexivity is being mapped
 42 over a 2-dimensional plane. The variation of the set of D parameters τ within a region of interest
 43 describes a D -dimensional manifold

$$\mathcal{M} := \{\mathbf{y}(\tau) : \tau \in \text{ROI}\} \quad (1)$$

44 of all possible PSFs on \mathbb{R}^M . We will develop our notation for the 2-dimensional case and consider the
 45 two parameters $\tau = [x, z]^T$ (where \cdot^T denotes the transpose) as the lateral and axial spatial dimensions
 46 respectively.

47 **Figure 1.** Acquisition of the point spread function (PSF). For each position (x, z) of the unity amplitude
 48 scatterer within the ROI (left side), an M -sample response $\mathbf{y}(x, z) \in \mathbb{R}^M$ (arranged as an M -pixel image
 on right side) is generated by the acquisition model. The set of all possible PSFs within the region of
 interest form a manifold \mathcal{M} onto the data space. This example is taken from the pulse-echo ultrasound
 model described in Section 6.1.

49 An acquired signal $\mathbf{c} \in \mathbb{R}^M$ is assumed to be composed by a sum of individual contributions from
 50 N events, or N samples from the continuous PSF manifold

$$\mathbf{c} = \sum_{n=1}^N v_n \mathbf{y}(x_n, z_n) + \mathbf{w}, \quad (2)$$

51 where v_n is the amplitude of the n -th event and the vector $\mathbf{w} \in \mathbb{R}^M$ accounts for acquisition noise,
 52 which we will assume to be Gaussian white noise with variance σ^2 .

53 In a pulse-echo image with N pixels, v_n in (2) encodes the reflexivity of the n -th scatterer, located
 54 at position (x_n, z_n) , and is represented as the brightness of the corresponding pixel. This naturally
 55 implies a sampling of the parameters (x, z) as a finite number N of possible scatterer locations (or
 56 pixels) is assumed.

57 Once we have defined the N coordinate pairs (x_n, z_n) to be considered by the acquisition model,
 58 we make $\mathbf{h}_n = \mathbf{y}(x_n, z_n)$, $n = 1, \dots, N$, and define the model matrix $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_N] \in \mathbb{R}^{M \times N}$. Then
 59 (2) can be written in compact form as

$$\mathbf{c} = \mathbf{H}\mathbf{v} + \mathbf{w}, \quad (3)$$

60 where $\mathbf{v} = [v_1, \dots, v_N]^T$ is the vector of scatterer amplitudes. This model has been used in B-mode
 61 (2-dimensional) [4–9], A-mode (1-dimensional) [16,17], and 3-dimensional [18] ultrasound imaging.

62 The reconstruction of the amplitudes vector \mathbf{v} from a given acquisition \mathbf{c} in (3) is based on the
 63 minimization of a cost function, such as the LS problem

$$\hat{\mathbf{v}} = \arg \min_{\mathbf{v}} \|\mathbf{c} - \mathbf{Hv}\|_2^2, \quad (4)$$

62 which is linear and can be solved by well-known methods [19].

63 However, model matrices for real-world problems are often ill-conditioned, which causes artifacts
 64 on the reconstructed signals in the presence of noise [20]. This is an issue even in reconstructions with
 65 simulated data where all events are on grid, i.e., where the discrete acquisition model (3) is obeyed.
 66 The specific problem of poor conditioning of the ultrasound acquisition model has been addressed
 67 with linear regularization methods such as Truncated SVD (TSVD) [7] and Tikhonov regularization
 68 [5,6,8], where the main goal is to stabilize the inverse operator.

69 Non-linear, sparsity-promoting regularization penalties such as ℓ_p -(pseudo)norm minimization
 70 with $p \leq 1$ have shown successful results in ultrasound NDT, where the assumption of sparsity in the
 71 space domain reflects the nature of discontinuities in observed materials [4,9,17,21].

72 Greedy algorithms effectively solve reconstruction problems where the cost function involves
 73 the ℓ_0 pseudonorm. In [10], sparsity is induced in the solution by the assumption that the presence of
 74 scatterers can be modelled by a Bernoulli process with a low value for the probability parameter. The
 75 problem is then solved with a greedy algorithm called Multiple Most Likely Replacement (MMLR)
 76 [22]. In [16], a Gabor dictionary is used in the reconstruction of thickness with a Matching Pursuit
 77 (MP)-based algorithm that penalizes a relaxed support measure corresponding to the ℓ_p -pseudonorm
 78 with $0 < p < 1$.

79 3. Off-grid events and dictionary expansion

80 Aside from poor matrix conditioning, another problem known as off-grid deviation [23] limits
 81 the applicability of inverse-problem-based approaches on signal and image reconstruction. It derives
 82 from the fact that, in many applications, the existing events may not be located strictly on the N
 83 positions modelled by (2) and (3), i.e., many events may be off-grid. Fig. 2a illustrates a grid of $N = 9$
 84 modelled positions, represented by gray dots. As three events (represented by black dots) are located
 85 on modelled positions, the corresponding data vector \mathbf{c} can be synthesized according to the acquisition
 86 models (2) and (3). The same does not hold when an off-grid event (represented by a red dot) is added:
 87 attempts to reconstruct the locations and amplitudes for the corresponding events may fail, causing
 88 artifacts and degradation on the reconstructed image.

89 Some formulations have been proposed for off-grid signal reconstruction, mainly within the
 90 framework of Compressive Sensing. In [24], the acquisition model considers a perturbation matrix
 91 summed column-wise to the (here referred to as \mathbf{H}) regular discrete model matrix. The formulation
 92 is applied to direction-of-arrival (DOA) estimation using the derivatives of the columns of \mathbf{H} with
 93 respect to the sampled parameters as perturbation matrix. In [25], an adaptation of the OMP algorithm
 94 is proposed where the columns of the model matrix are iteratively updated in order to accommodate
 95 variations in the parameters of the PSFs. The algorithm is applied to pulse-Doppler radar. In [26]
 96 the problem of continuous line spectral estimation is approached with an algorithm based on the
 97 atomic norm minimization, which is solved via semi-definite programming. Similarly to the ℓ_1
 98 minimization, the atomic norm minimization promotes sparse solutions. In [27], the regression
 99 problem uses a Total Least Squares (TLS) penalization with sparsity constraints. The motivation is
 100 that the "errors-in-variables" assumption of the TLS regression might be able to capture the mismatch
 101 between the model matrix and the acquired data. The method is then applied to cognitive radio
 102 sensing and DOA estimation.

103 Our approach relies on the framework of dictionary expansion, which has been firstly proposed
 104 in [23] as a means to overcome the problem of off-grid deviation in neuron spike detection. Each
 105 column \mathbf{h}_n of the discrete model \mathbf{H} of (3) is replaced by K columns $[\mathbf{b}_1^{(n)}, \dots, \mathbf{b}_K^{(n)}] = \mathbf{B}^{(n)} \in \mathbb{R}^{(M \times K)}$ so
 106 that a data vector \mathbf{c} resulting from the acquisition of an event located in the neighborhood of an n -th

Figure 2. (a) An illustrative discrete acquisition model with $N = 3 \times 3 = 9$ modelled positions, represented by the gray dots. The black dots represent 3 well located events and the red dot represents an off-grid event. Because of the latter, the corresponding acquisition data vector \mathbf{c} cannot be synthesized as a linear combination of the columns of the discrete model matrix \mathbf{H} . (b) The ROI is divided into N local ROIs with area $\Delta_x \times \Delta_z$. (c) Each local ROI is sampled with a fine grid with lateral and axial distances δ_x and δ_z . (d) On the space \mathbb{R}^M of acquired data, the set of all possible PSFs within the ROI form a manifold \mathcal{M} . The gray dots are the PSFs of the modelled positions of Fig. 2a. The black dots are on the grid, while the red dot is off-grid. (e) As the ROI is divided into N local ROIs (Fig. 2b), the manifold is divided into N corresponding local manifolds. (f) The acquisitions over the fine grid on each n -th local ROI create R samples from the corresponding local manifold. Those samples compose matrix $\mathbf{M}^{(n)} \in \mathbb{R}^{M \times R}$.

modelled position can be approximated by some linear combination of $\mathbf{B}^{(n)}$, i.e., by $\mathbf{B}^{(n)}\mathbf{x}^{(n)}$, where $\mathbf{x}^{(n)} \in \mathbb{R}^K$. As a result, an arbitrarily acquired \mathbf{c} might be approximated as

$$\mathbf{c} \approx \sum_{n=1}^N \mathbf{B}^{(n)}\mathbf{x}^{(n)}. \quad (5)$$

In the 2-dimensional case, the neighborhood of the n -position is the region within $(x_n \pm 0.5\Delta_x, z_n \pm 0.5\Delta_z)$. This is represented in Fig. 2b, where the 9 modelled locations give place to 9 neighborhoods (local ROIs).

Two forms of approximation are proposed in [23] for 1-dimensional linear time-invariant (LTI) problems. The first one is the Taylor approximation, which relies on the fact that small shifts on a waveform can be well approximated by its Taylor expansion, i.e., by linearly combining the original waveform and its time derivatives. In this case, the column $\mathbf{b}_1^{(n)}$ is identical to the original atom \mathbf{h}_n and the columns $\mathbf{b}_k^{(n)}$ for $k > 1$ correspond to its $(k-1)$ -th time derivatives. The second is the Polar approximation, which is motivated by the fact that the continuous manifold \mathcal{M} of an LTI system lies over a hypersphere on the M -dimensional data space [23]. The PSFs of the neighborhood of each n -th modelled position are approximated by an arc of a circle and the the column \mathbf{h}_n is replaced by three normal vectors with the directions of the center ($\mathbf{b}_1^{(n)}$) and the two trigonometric components ($\mathbf{b}_2^{(n)}$ and $\mathbf{b}_3^{(n)}$) of the circle. While the Taylor approximation can be done for any order K , in the Polar case K always equals 3.

123 An extension of the Basis Pursuit (BP) formulation [28], referred to as Continuous Basis Pursuit
 124 (CBP), is proposed in [23] for the recovery of the expanded coefficients $\{\mathbf{x}^{(n)}\}_{1 \leq n \leq N}$. For the sake of
 125 conciseness, from this point on we will represent sets $\{\mathbf{x}^{(n)}\}_{1 \leq n \leq N}$ simply as $\{\mathbf{x}^{(n)}\}$. The formulation
 126 of CBP is given by

$$\{\hat{\mathbf{x}}^{(n)}\} = \arg \min_{\{\mathbf{x}^{(n)}\}} \frac{1}{2\sigma^2} \|\mathbf{c} - \sum_{n=1}^N \mathbf{B}^{(n)} \mathbf{x}^{(n)}\|_2^2 + \lambda \sum_{n=1}^N |\mathbf{x}_1^{(n)}| \quad (6a)$$

$$\text{s.t. } \{\mathbf{x}^{(n)}\} \in \mathcal{C}, \quad (6b)$$

127 where the constraint set \mathcal{C} prevents recovered expanded coefficients from having any arbitrary values
 128 that do not represent actual PSFs. The definition of the convex set \mathcal{C} varies according to the type of
 129 approximation used. The ℓ_1 norm of a vector composed by the first element $\mathbf{x}_1^{(n)}$ of each K -tuple $\mathbf{x}^{(n)}$ is
 130 used to obtain sparse solutions.

131 In [29], a low-rank approximation of the PSFs within the neighborhood of each n -th modelled
 132 position is performed by means of a Singular Value Decomposition (SVD). The continuous manifold
 133 drawn by τ in a local ROI is sampled with a very fine grid of R locations, generating R columns that
 134 form a matrix $\mathbf{M}^{(n)} \in \mathbb{R}^{M \times R}$, as represented in Fig. 2f. Each matrix $\mathbf{M}^{(n)}$ then undergoes an SVD
 135 decomposition and the K first left singular vectors compose the corresponding expanded coefficients
 136 $\mathbf{B}^{(n)}$ for the n -th local ROI.

137 An adaptation of the Orthogonal Matching Pursuit (OMP) [30] algorithm, referred to as
 138 Continuous OMP (COMP), is also presented in [29]. It aims at solving the $\ell_2 - \ell_0$ problem

$$\{\hat{\mathbf{x}}^{(n)}\} = \arg \min_{\{\mathbf{x}^{(n)}\}} \|(x_1^{(1)}, \dots, x_1^{(N)})\|_0 \quad (7a)$$

$$\text{s.t. } \left\{ \begin{array}{l} \|\mathbf{c} - \sum_{n=1}^N \mathbf{B}^{(n)} \mathbf{x}^{(n)}\|_2^2 \leq \epsilon \\ \{\mathbf{x}^{(n)}\} \in \mathcal{C} \end{array} \right\}, \quad (7b)$$

139 where the symbol $\|\cdot\|_0$ denotes the ℓ_0 pseudonorm, i.e., the cardinality (number of nonzero elements)
 140 of a vector.

141 In [31], a minimize-maximum (Minimax) formulation is presented for the definition of the
 142 expanded set $\{\mathbf{B}^{(n)}\}$. The resulting approximation minimizes the maximum residual within the
 143 representation of each n -th local ROI. It is motivated by the assumption that the off-grid deviation
 144 from a discrete grid follows a uniform distribution, therefore the off-grid error should be as constant
 145 as possible, not privileging any distance from originally modelled positions.

146 4. Rank-K approximation of local manifolds

147 The core idea of dictionary expansion is the substitution of each n -th column \mathbf{h}_n from the discrete
 148 model \mathbf{H} by K basis vectors $\mathbf{B}^{(n)}$ of which the column space approximates the n -th local PSF manifold
 149 \mathcal{M}_n . Our criterion to determine $\mathbf{B}^{(n)}$ is based on the SVD expansion, which has been proposed for
 150 1-dimensional, shift-invariant problems [29]. The extension to D -dimensional problems relies mainly
 151 on the first step of the process, which is a fine sampling of each local manifold \mathcal{M}_n : here the regular,
 152 fine grid is defined for all D dimensions. This extension is facilitated by the fact that the formulation
 153 is non-parametric, i.e., the deviation from originally modelled positions is not mapped onto any
 154 independent variable and does not play any role on the definition on the bases. On the other hand, in
 155 the Taylor, Polar [23] and Minimax [31] expansions, the off-grid deviation is a parameter from which
 156 the elements of the expanded dictionary are derived. Consequently, except for the Taylor expansion,
 157 their extensions to 2 or higher dimensions are not promptly defined.

158 4.1. Highly coherent discrete local manifolds

159 Fig. 2d shows an illustrative example of a D -manifold embedded in an M -dimensional data space.
 160 In this case, $D = 2$ and $M = 3$. The 9 D -dimensional modelled positions shown in Fig. 2a correspond
 161 here to 9 samples of the M -dimensional manifold, as well represented by gray dots in Fig. 2d. The red
 162 dot corresponds to the data caused by the off-grid reflector from Fig. 2a.

163 Fig. 2e shows the same manifold as Fig. 2d but, instead of having N modelled positions, it divides
 164 the manifold into N local manifolds

$$\mathcal{M}_n := \{\mathbf{y}(x, z) : x \in [x_n - 0.5\Delta_x, x_n + 0.5\Delta_x], z \in [z_n - 0.5\Delta_z, z_n + 0.5\Delta_z]\}, \quad (8)$$

165 which correspond to the N local ROIs of Fig. 2b.

166 We start by performing a fine sampling on each local manifold \mathcal{M}_n , as represented in Fig. 2f. In
 167 practice, this means acquiring the PSF of a set of points from a fine grid of R points defined for each
 168 local ROI (Fig. 2c). The result is a matrix $\mathbf{M}^{(n)} \in \mathbb{R}^{M \times R}$, whose columns are local manifold samples.
 169 The finer this grid is, the better the continuous local manifold is represented by the discrete dataset
 170 $\mathbf{M}^{(n)}$. For simplicity of notation, we keep regular spacing δ_x and δ_z for the lateral and axial directions
 171 respectively. The number of sampled points is $R = R_x \times R_z$, where R_x and R_z are the number of
 172 locations defined on the lateral and axial directions respectively. In the example of Fig. 2c, $R_x = R_z = 7$,
 173 thus $R = 49$.

174 Our sampling includes the boundaries of the local ROIs. For this reason, the relation between the
 175 spacing and the number of locations on the lateral direction is given by

$$\delta_x = \frac{\Delta_x}{R_x - 1} \quad (9)$$

176 and the same holds for the axial direction.

177 Once we have the local matrices $\{\mathbf{M}^{(n)}\}$, we create a rank- K approximation for each of them and
 178 define the sets of K basis vectors $\{\mathbf{B}^{(n)}\}$, which form orthonormal bases for such approximations, to be
 179 later used on inverse reconstruction problems such as (6b) and (7b).

180 4.2. SVD expansion

181 For each matrix $\mathbf{M}^{(n)}$, a rank- K approximation $\tilde{\mathbf{M}}^{(n)} \in \mathbb{R}^{M \times R}$ is to be defined and also factorized
 182 in the form

$$\tilde{\mathbf{M}}^{(n)} = \mathbf{B}^{(n)} \mathbf{F}^{(n)}, \quad (10)$$

183 where $\mathbf{B}^{(n)}$ is an orthonormal basis matrix and $\mathbf{F}^{(n)} \in \mathbb{R}^{K \times R}$ modulates $\mathbf{B}^{(n)}$ to form $\tilde{\mathbf{M}}^{(n)}$. Any
 184 approximation creates a residual matrix $\mathbf{R}^{(n)} \in \mathbb{R}^{M \times R}$ defined by the difference

$$\mathbf{R}^{(n)} = \mathbf{M}^{(n)} - \mathbf{B}^{(n)} \mathbf{F}^{(n)}. \quad (11)$$

185 The SVD expansion is defined by the minimization of the Frobenius norm [19] of $\mathbf{R}^{(n)}$:

$$\hat{\mathbf{B}}^{(n)}, \hat{\mathbf{F}}^{(n)} = \arg \min_{\mathbf{B}^{(n)}, \mathbf{F}^{(n)}} \|\mathbf{M}^{(n)} - \mathbf{B}^{(n)} \mathbf{F}^{(n)}\|_F. \quad (12)$$

186 According to the Eckart–Young theorem, a solution for (12) is achieved by a truncated SVD [32].
 187 Consider the SVD of \mathbf{M}

$$\mathbf{M}^{(n)} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T, \quad (13)$$

188 where $\mathbf{U} \in \mathbb{R}^{M \times R}$ is the unitary matrix of left singular vectors, $\mathbf{\Sigma} \in \mathbb{R}^{R \times R}$ is the diagonal matrix of
 189 singular values and $\mathbf{V} \in \mathbb{R}^{N \times R}$ is the unitary matrix of right singular vectors [19]. The rank- K SVD

truncation is obtained by using only the K largest singular values from Σ and the K corresponding vectors from \mathbf{U} and \mathbf{V} . This low rank approximation is given by

$$\tilde{\mathbf{M}}^{(n)} = \tilde{\mathbf{U}}\tilde{\Sigma}\tilde{\mathbf{V}}^T, \quad (14)$$

where $\tilde{\mathbf{U}} \in \mathbb{R}^{M \times K}$, $\tilde{\Sigma} \in \mathbb{R}^{K \times K}$ and $\tilde{\mathbf{V}} \in \mathbb{R}^{R \times K}$.

The K columns of $\tilde{\mathbf{U}}$ form an orthonormal basis for $\tilde{\mathbf{M}}^{(n)}$ and compose the expanded set $\mathbf{B}^{(n)}$, while the product $\tilde{\Sigma}\tilde{\mathbf{V}}^T$ compose the modulating matrix $\mathbf{F}^{(n)}$:

$$\mathbf{B}^{(n)} = \tilde{\mathbf{U}}, \quad (15a)$$

$$\mathbf{F}^{(n)} = \tilde{\Sigma}\tilde{\mathbf{V}}^T. \quad (15b)$$

Naturally, large values for K mean more degrees of freedom in the approximation, which reduces the residuals. Fig. 3a shows how the value of K affects the Frobenius norm of $\mathbf{R}^{(n)}$ for the center-most local ROI of the acquisition set presented in Section 6.1. The values of the 35 first singular values σ_k are shown in Fig. 3b. The 75 individual residual norms $\|\mathbf{r}_i\|$ for $K = 5, 10$ and 20 are shown in Fig. 3c.

Figure 3. Approximation metrics for the center-most local ROI of the ultrasound acquisition set described in Section 6.1, with $R = 75$ ($R_x = 5$ and $R_z = 15$). (a) Frobenius norm $\|\mathbf{R}^{(n)}\|_F$ of the residual matrix as a function of the order of approximation K . (b) 35 first singular values σ_k from the SVD of $\mathbf{M}^{(n)}$. (c) Individual residual norms $\|\mathbf{r}_i^{(n)}\|_2$ (of columns of $\mathbf{R}^{(n)}$), spatially arranged according to the corresponding positions on the local ROI. The three surfaces correspond to $K = 5$ (top), $K = 10$ (middle) and $K = 20$ (bottom).

It shall be noted that the processes presented from (12) to (15b) have to be independently performed for every n -th local ROI. Although the construction of expanded dictionaries is computationally demanding, it is an offline procedure that is carried only once for each given acquisition set.

5. Reconstruction algorithm

5.1. Limitations of conic constraints

Two main algorithms were proposed to work with expanded dictionaries: the convex CBP [23] and the greedy COMP [29]. The first one aims at solving problem (6b) while the second attempts to solve problem (7b). A hybrid approach called Interpolating Band-excluded Orthogonal Matching Pursuit (IBOMP) was also proposed and applied to frequency estimation (FE) and time delay estimation (TDE) [33]. Basically, it performs a rough greedy estimation of the support of the solution, followed by a refining convex optimization.

In order to implement a constraint set \mathcal{C} , all the aforementioned algorithms have at least one step involving a constrained convex optimization where the constraints define either first-order (SVD,

213 Minimax and Taylor) or second-order (Polar) cones. Fig. 4a illustrates an example of a first-order cone
 214 for $K = 2$. The black curved line represents the projection onto the basis $\mathbf{B}^{(n)}$ of a continuous
 215 1-dimensional PSF manifold. The R vectors that compose a local manifold matrix $\mathbf{M}^{(n)}$, when
 216 projected onto $\mathbf{B}^{(n)}$, result in vectors $\mathbf{f}^{(n)}$, represented by the dots, which compose the columns
 217 of $\mathbf{F}^{(n)}$. When a reconstruction is performed, the recovered coefficients set $\mathbf{x}^{(n)} \in \mathbb{R}^2$ for this n -th
 218 local ROI is constrained to lie within a first-order cone, represented by the shadowed area (which
 219 extends indefinitely to the right). This cone is defined by two linear constraints that impose an upper
 220 and a lower bound for the relation $x_2^{(n)} / x_1^{(n)}$, combined with a non-negativity constraint for the first
 221 component $x_1^{(n)}$. This constraint set aims to avoid arbitrary combinations for $\mathbf{x}^{(n)}$ that do not represent
 222 positively-weighted copies of actual manifold samples. The upper black dot defines the upper angle of
 223 the cone, and is defined by the modulating matrix $\mathbf{F}^{(n)}$ as $\max_i(f_{2,i}^{(n)} / f_{1,i}^{(n)})$, i.e., the maximum relation
 224 between the first and second components found among the projections of $\mathbf{M}^{(n)}$. Similarly, the lower
 225 black dot is defined by $\min_i(f_{2,i}^{(n)} / f_{1,i}^{(n)})$, and defines the lower angle of the cone. For higher orders of
 226 K , such a cone is defined for all $K - 1$ relations between each k -th ($k \geq 2$) component and the first one.
 227 The resulting linear constraint set is defined as [29,31]

$$\min_{1 \leq i \leq R} \left(\frac{f_{k,i}^{(n)}}{f_{1,i}^{(n)}} \right) \leq \frac{x_k^{(n)}}{x_1^{(n)}} \leq \max_{1 \leq i \leq R} \left(\frac{f_{k,i}^{(n)}}{f_{1,i}^{(n)}} \right), \quad (16a)$$

$$f_{1,i}^{(n)} \geq 0 \quad (16b)$$

$$\forall k \in \{2, \dots, K\}, n \in \{1, 2, \dots, N\}, \quad (16c)$$

228 where $f_{k,i}^{(n)}$ denotes the element on the k -th line and i -th column on $\mathbf{F}^{(n)}$. The principle is similar for the
 229 Polar expansion, though in that case the cones are of second order [23].

Figure 4. (a) Illustrative case of projection of local manifold samples $\mathbf{M}^{(n)}$ on a basis $\mathbf{B}^{(n)}$, for $K = 2$. The curved line represents the projection of a continuous 1-dimensional manifold, while the dots represent the projection of the samples (columns of $\mathbf{M}^{(n)}$) on $\mathbf{B}^{(n)}$. When Δ is sufficiently small, the projections have single-signed, relatively large values on the first component $f_1^{(n)}$ and smaller values on the remaining components. In this case, the definition of a first-order cone (represented by the shadowed region) is possible and can be used in the reconstruction algorithm combined with a non-negativity constraint for the first component, ensuring that the recovered coefficients represent weighted copies of the local manifold, rather than other arbitrary combinations. The upper and lower angles of the cone depend on $\max_i(f_{2,i}^{(n)} / f_{1,i}^{(n)})$ and $\min_i(f_{2,i}^{(n)} / f_{1,i}^{(n)})$ respectively. (b) As Δ increases, the angle of the cone may as well increase, making the constraint less effective, as a broader area is allowed for the recovered coefficients $\mathbf{f}^{(n)}$. (c) An example where the definition of a convex cone is no longer possible. This imposes a limit on the definition of Δ .

230 Notice that the cone-based convex constraints assume that the projection of $\mathbf{M}^{(n)}$ on the K
 231 components of $\mathbf{B}^{(n)}$ yields relatively large, positive, small-variance values for the first component and
 232 small values for the remaining, yielding relatively small values for minimum and maximum relations
 233 of (16c). If this assumption is broken, the cone will span too large an area of the right half-plane, i.e.,

234 it will constrain less, being less effective, as represented in Fig. 4b. In some cases, defining the the cone
 235 is not even possible, as depicted in Fig. 4c.

236 Assuring a well behaved relation between the first and the remaining components, as shown
 237 in Fig. 4a, implies choosing considerably small values for Δ_x and Δ_z , what limits the applicability
 238 of recovery algorithms based on conic constraints. For instance, on the simulated acquisition set of
 239 Section 6.1, choosing $\Delta_x = \Delta_z = 0.2\text{mm}$ still causes the first component to have both positive and
 240 negative values on certain local manifolds, which makes the CBP [23], COMP [29] and IBOMP [33]
 241 algorithms not applicable.

242 *5.2. Non-convex constraints*

243 The problem described in Section 5.1 is the main reason why our algorithm does not rely on conic
 244 constraints. Instead, it attempts to constrain each K -tuple of recovered coefficients $\mathbf{x}^{(n)}$ to be similar to
 245 any column of the modulating matrix $\mathbf{F}^{(n)}$. We translate “similarity” as high correlation, as formalized
 246 in the non-convex constraint set

$$\left(\max_{1 \leq i \leq R} \frac{\langle \mathbf{x}^{(n)}, \mathbf{f}_i^{(n)} \rangle}{\|\mathbf{x}^{(n)}\| \|\mathbf{f}_i^{(n)}\|} \right) \geq \mu_c, \quad \forall n \in \{1, 2, \dots, N\}, \quad (17a)$$

247 where $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b}$ denotes the inner product of two vectors.

248 The minimum correlation parameter μ_c controls how similar to any of the manifold samples on
 249 $\mathbf{M}^{(n)}$ a recovered event must be. If a given $\mathbf{x}^{(n)}$ passes the test (17a), proving to be sufficiently similar
 250 to some i -th modulating vector $\mathbf{f}_i^{(n)}$, then the approximation

$$\tilde{\mathbf{m}}_i^{(n)} \frac{\|\mathbf{x}^{(n)}\|}{\|\mathbf{f}_i^{(n)}\|} = \mathbf{B}^{(n)} \mathbf{f}_i^{(n)} \frac{\|\mathbf{x}^{(n)}\|}{\|\mathbf{f}_i^{(n)}\|} \approx \mathbf{B}^{(n)} \mathbf{x}^{(n)} \quad (18)$$

251 is assumed and the product $\mathbf{B}^{(n)} \mathbf{x}^{(n)}$ is considered as a valid weighted copy of a PSF within the n -th
 252 local ROI, rather than an arbitrary combination of the n -th basis vectors. This constraint is imposed by
 253 our greedy algorithm on the decision of which expanded set $\mathbf{B}^{(n)}$ will be added to the reconstruction
 254 problem at each iteration.

255 *5.3. OMP for Expanded Dictionaries*

256 The proposed algorithm, summarized in Algorithm 1, is an extension of the OMP algorithm,
 257 referred to as OMP for Expanded Dictionaries (OMPED). It attempts to solve a problem similar to (7b)
 258 (i.e., to explain an acquired data vector \mathbf{c} with the expanded dictionary $\{\mathbf{B}^{(n)}\}$) with the non-convex
 259 constraint set \mathcal{C} defined in (17a). The stop criterion is based on the residual yielded by the LS solution
 260 with a given cardinality, yet instead of comparing the residual to a fixed parameter ϵ , we compare it
 261 to an estimate of the current residual that takes into account the expected acquisition noise and the
 262 estimated residuals resulting from the reduced-rank approximation.

263 The input parameter e_{noise} contains the expected ℓ_2 norm of the acquisition noise. In practice, this
 264 value can be obtained from acquisitions with samples of the inspected material known to have neither
 265 discontinuities nor other sort of scatterers. For our simulations, we use the relation

$$e_{\text{noise}}^2 = \|\mathbf{w}\|_2^2 \approx M\sigma^2, \quad (19)$$

266 which holds if the noise vector \mathbf{w} contains white Gaussian noise with variance σ^2 . The approximation
 267 of (19) becomes an equality as $M \rightarrow \infty$. We assume the equality and use $e_{\text{noise}} = \sqrt{M\sigma^2}$.

268 We define the support S of the solution, which is initialized as the empty set, and its complement
 269 $S^c = \{1, \dots, N\} \setminus S$. The solution residual $\mathbf{e} \in \mathbb{R}^M$ is initialized with the vector of acquired data \mathbf{c} on
 270 line 2.

Algorithm 1 OMP for Expanded Dictionaries (OMPED)**Input:** $\{\mathbf{B}^{(n)}\}, \{\mathbf{F}^{(n)}\}, \{\mathbf{R}^{(n)}\}, \mathbf{c}, e_{\text{noise}}, \mu_c, \Delta_\mu$ 1: $S \leftarrow \emptyset$ 2: $\mathbf{e} \leftarrow \mathbf{c}$ 3: **repeat**4: $j \leftarrow$ Compute from (21)5: **while** $j = \emptyset$ **do**6: $\mu_c \leftarrow \mu_c - \Delta_\mu$ 7: $j \leftarrow$ Compute from (21)8: **end while**9: $S \leftarrow S \cup \{j\}$ 10: $\{\mathbf{x}^{(n)}\} \leftarrow$ Compute from (22b)11: $\mathbf{e} \leftarrow$ Compute from (23)12: $\mathbf{e}_{\text{rank}} \leftarrow$ Compute from (24)13: $e_{\text{est}} \leftarrow$ Compute from (25)14: **until** $e_{\text{est}} \geq \|\mathbf{e}\|_2$ or $S^c = \emptyset$ **Output:** $S, \{\mathbf{x}^{(n)}\}_{n \in S}$

271 At each iteration, an index $j \in S^c$ is added to S as we choose the expanded set $\mathbf{B}^{(j)}$ which is
 272 capable of causing the maximal decrease on the energy of the residual, as represented on the left side
 273 of (20). Since the columns of each $\mathbf{B}^{(n)}$ are orthonormal, the identity

$$\hat{j} = \arg \min_j \|\mathbf{e} - \mathbf{B}^{(j)} \mathbf{B}^{(j)T} \mathbf{e}\|_2 = \arg \max_j \|\mathbf{B}^{(j)T} \mathbf{e}\|_2 \quad (20)$$

274 holds as a consequence of Parseval's relation [34], which allows us to perform the simpler operation of
 275 taking the norm of each product $\mathbf{B}^{(j)T} \mathbf{e}$.

276 This operation is a generalization of the measurement of maximum correlation on the original
 277 OMP [30]. A constraint based on (17a) is imposed to prune candidates that do not accomplish the
 278 minimum correlation required. The resulting criterion is formalized as

$$\hat{j} = \arg \max_{j \in S^c} \|\mathbf{B}^{(j)T} \mathbf{e}\|_2 \text{ s.t. } \max_{1 \leq i \leq R} \frac{\langle \mathbf{B}^{(j)T} \mathbf{e}, \mathbf{f}_i^{(j)} \rangle}{\|\mathbf{B}^{(j)T} \mathbf{e}\| \|\mathbf{f}_i^{(j)}\|} \geq \mu_c. \quad (21)$$

279 The constraint in (21) allows for the recovery of only positive-amplitude events. It can be adapted
 280 to consider both positive and negative amplitudes by simply replacing the inner product by its absolute
 281 value $|\langle \mathbf{B}^{(j)T} \mathbf{e}, \mathbf{f}_i^{(j)} \rangle|$.

282 The algorithm must consider the case where no index meets the correlation criterion of (21). This
 283 case is treated from line 5 to line 8: while problem (11) remains infeasible, a decrease of Δ_μ is made on
 284 the parameter μ_c and a new attempt to compute the index j is performed.

285 The support S is then updated to include the new index j (line 9) and is used to compute the
 286 coefficients

$$\{\hat{\mathbf{x}}^{(n)}\} = \arg \min_{\{\mathbf{x}^{(n)}\}} \left\| \mathbf{c} - \sum_{n=1}^N \mathbf{B}^{(n)} \mathbf{x}^{(n)} \right\|_2^2 \quad (22a)$$

$$\text{s.t. } \mathbf{x}^{(n)} = \mathbf{0}, \forall n \in S^c \quad (22b)$$

287 (where $\mathbf{0} \in \mathbb{R}^K$ is the zero vector), which then yield a residual

$$\mathbf{e} = \mathbf{c} - \sum_{n \in S} \mathbf{B}^{(n)} \mathbf{x}^{(n)}. \quad (23)$$

288 Were the manifold approximation exact, \mathbf{e} in (23) would be composed strictly of: 1) PSFs located
 289 at local ROIs with the corresponding indices not yet added to the support S and 2) additive noise. In
 290 that case, we could use the widespread stop criterion that compares $\|\mathbf{e}\|_2$ to the expected noise power.
 291 However, our residual estimate must take into account the rank- K approximation. This estimate is
 292 computed on vector $\mathbf{e}_{\text{rank}} \in \mathbb{R}^M$ as

$$\mathbf{e}_{\text{rank}} = \sum_{n \in S} \mathbf{r}_{\hat{i}}^{(n)} \frac{\|\mathbf{x}^{(n)}\|}{\|\mathbf{f}_{\hat{i}}^{(n)}\|}, \quad (24a)$$

$$\text{where } \hat{i} = \arg \max_{1 \leq i \leq R} \frac{\langle \mathbf{x}^{(n)}, \mathbf{f}_i^{(n)} \rangle}{\|\mathbf{x}^{(n)}\| \|\mathbf{f}_i^{(n)}\|} \quad (24b)$$

293 and $\mathbf{r}_i^{(n)}$ denotes the i -th column from $\mathbf{R}^{(n)}$. Based on (17a), the index i in (24b) is a function of n : for
 294 every index n in the current support S , the correlations performed in (24b) estimate which i -th PSF
 295 within the n -th local manifold best explains the recovered coefficients $\mathbf{x}^{(n)}$ (see Figs. 2c and 2f). The
 296 residual $\mathbf{r}_i^{(n)}$, from the dictionary low-rank approximation, is then used as template for the estimation
 297 of the current approximation residual. The amplitude estimate is taken from the ratio between the
 298 norms of the recovered coefficients $\mathbf{x}^{(n)}$ and of the similar modulating vector $\mathbf{f}_i^{(n)}$.

299 The current total residual norm is estimated as

$$e_{\text{est}} = (\|\mathbf{e}_{\text{rank}}\|_2^2 + e_{\text{noise}}^2)^{\frac{1}{2}}, \quad (25)$$

300 where the summation is performed under the assumption that the acquisition noise and the vector
 301 \mathbf{e}_{rank} have negligible correlation.

302 The algorithm greedily increases the support until the estimated residual norm e_{est} reaches the
 303 norm $\|\mathbf{e}\|$ of the actual residual yielded by the LS or all indices $n = 1, \dots, N$ have been added to the
 304 support S .

305 5.4. Recovery of locations and amplitudes

306 OMPED yields a support S as well as the sets of expanded coefficients $\{\mathbf{x}^{(n)}\}_{n \in S}$. The computation
 307 of the locations and amplitudes follows the same principle used on (24a) and (24b): each event is
 308 located inside an n -th local ROI; its high resolution location is assigned the same as that of the i -th
 309 response $\mathbf{m}_i^{(n)}$ within the R responses of the fine grid (Fig. 2c) which most correlates to $\mathbf{x}^{(n)}$. Recalling
 310 the approximation $\mathbf{m}_i^{(n)} \approx \mathbf{B}^{(n)} \mathbf{f}_i^{(n)}$, we determine i by finding out which $\mathbf{f}_i^{(n)}$ most correlates to $\mathbf{x}^{(n)}$:

$$\hat{i}(n) = \arg \max_{1 \leq i \leq R} \frac{\langle \mathbf{x}^{(n)}, \mathbf{f}_i^{(n)} \rangle}{\|\mathbf{x}^{(n)}\| \|\mathbf{f}_i^{(n)}\|}, \quad \forall n \in S. \quad (26)$$

311 The amplitude estimations v_n result from the ratios between the norms of $\mathbf{x}^{(n)}$ and of the chosen
 312 template $\mathbf{f}_i^{(n)}$:

$$v_n = \frac{\|\mathbf{x}^{(n)}\|}{\|\mathbf{f}_i^{(n)}\|}, \quad \forall n \in S, i \text{ as in (26)}. \quad (27)$$

313 As consequence, the spatial resolution of the reconstructed events equals the fine sampling
 314 represented in Fig. 2c, i.e., δ_x and δ_z for the lateral and axial axes respectively.

315 6. Empirical results

316 6.1. Simulated acquisition set

317 To simulate the ultrasound NDT acquisition set from [21], represented in Fig. 5a, we used Field II
 318 package for Matlab [15]. A piston transducer with 3mm radius (125 μ m mathematical element size)
 319 interrogates a steel sample object (sound speed $c = 5680\text{m/s}$). The excitation pulse has center frequency
 320 $f_c = 5\text{MHz}$ and 6dB fractional bandwidth of 100%. The simulated transducer slides horizontally
 321 along the surface of the object, acquiring scanlines from 31 lateral positions u_i , from $u_0 = 0\text{mm}$ to
 322 $u_{30} = 30\text{mm}$ (center of transducer), with a distance of 1mm between consecutive lateral positions. The
 323 31 scanlines are sampled with sampling rate $f_s = 25\text{MHz}$ and concatenated to form the acquisition
 324 vector \mathbf{c} .

325 **Figure 5.** (a) Simulated set (figure adapted from [21]). The transducer, fixed vertically at $z = 0$,
 326 slides horizontally over the surface of the interrogated object, acquiring scanlines at 31 positions
 327 $x = \{u_0, \dots, u_{30}\}$, corresponding to 0mm up to 31mm with 1mm step. The scanlines are concatenated
 328 to form the acquired vector \mathbf{c} . A PSF $y(x, z)$ is determined by placing a unity amplitude scatterer on
 329 position (x, z) and acquiring the corresponding \mathbf{c} . (b) Extracts from the acquired data for the three
 330 center-most transducer positions, with a unity amplitude scatterer located at the center of the ROI.
 331 White Gaussian noise was added with $\sigma = 0$ (up), $\sigma = 0.08$ (middle) and $\sigma = 0.12$ (bottom).

332 Following [21], the model grid has $31 \times 41 = 1271$ modelled locations distributed with regular
 333 spacing of 1mm on both x and z directions. On x direction, the locations are the same as the transducer
 334 positions, i.e. $x = 0, 1\text{mm}, \dots, 30\text{mm}$. On z direction, 41 locations are modelled regularly between
 335 18mm and 58mm, i.e., $z = 18\text{mm}, 19\text{mm}, \dots, 58\text{mm}$.

336 As explained in Section 4.1, in the expanded acquisition model, the grid locations give place to
 337 local ROIs. Our expanded model has 1271 local ROIs with $\Delta_x = \Delta_z = 1\text{mm}$, with centers corresponding
 338 to the modelled locations of the regular model. Consequently, our ROI extends from $x = -0.5\text{mm}$ to
 339 $x = 30.5\text{mm}$ and from $z = 17.5\text{mm}$ to $z = 58.5\text{mm}$. The highly coherent local manifolds were created
 340 with $R_x = 5$ and $R_z = 15$, thus $R = 75$. Therefore, $\delta_x = 250\mu\text{m}$ and $\delta_z = 71.4\mu\text{m}$.

341 We simulated the acquisition for 200 cases of 5 unity amplitude scatterers randomly distributed
 342 over the ROI. The scatterers positions were not forced over any kind of grid. White Gaussian noise
 343 with three different levels ($\sigma = 0, 0.08, 0.12$) was added to each simulated acquisition. Since the energy
 344 of the acquired signal (without noise) varies according to factors such as distance to transducer and
 345 constructive/destructive interference, we consider that the parametrization of noise in terms of its
 346 standard deviation σ is more appropriate than signal-to-noise ratio (SNR). To provide a visual notion of
 347 the noise levels, Fig. 5b shows an extract of acquired data for the three noise levels from an acquisition
 348 where a single scatterer was placed on the center of the ROI. Scanlines from the three center-most
 349 positions of the transducer are concatenated.

343 6.2. Recovery accuracy

344 To compute the accuracy on the recovery of scatterers, we ran OMPED with a fixed number of
 345 5 iterations, with $\mu_c = 0.8$, $\Delta_\mu = 0.1$ and K varying from 2 to 10 for the 200 simulated acquisitions
 346 with the three levels of noise. Each recovered scatterer distant less than 0.5mm in both axial and
 347 lateral directions from the closest original simulated scatterer was computed as a hit – otherwise it
 348 was computed as a miss. Fig. 6a shows the percentage of misses from 1000 recovered scatterers for
 349 all 9 values of K and 3 noise levels. Even for the highest level of noise, misses kept below 10% for
 350 $6 \leq K \leq 10$. For comparison, we ran OMP with the regular dictionary \mathbf{H} on the same set of simulated
 351 acquisitions. The resulting percentages of misses were 38.9%, 42.4% and 45.2% for the noise levels
 352 $\sigma = 0, 0.08$ and 0.12 respectively.

Figure 6. (a) Percentage of misses (from 1000 simulated events) as a function of K , for three levels of noise, with OMPED running with a fixed number of 5 iterations (each of the 200 simulated acquisition had 5 scatterers). Each recovered scatterer distant more than 0.5mm in any direction (axial or lateral) from the closest original simulated scatterer was computed as a miss. A minimum in the global number of misses is found at $K = 8$. For $K > 8$, few useful information is added to the dictionary at the expense of increased coherence. (b) Distance between recovered events (hits) and their corresponding simulated true event. (c) Average amplitude of the events computed as hits, for noise levels $\sigma = 0$ (up), $\sigma = 0.08$ (middle) and $\sigma = 0.12$ (bottom). The bars indicate one standard deviation above and below the average. All simulated events have unity amplitude.

353 A small increase in the count of misses is observed for values of $K \geq 8$. This is possibly explained
 354 by the fact that, for $K \geq 8$, increasing K adds few useful information to the dictionary at the cost of
 355 increasing coherence. For the SVD basis, the value of the singular values σ_k can be used as a measure
 356 of useful information. Fig. 3b shows how σ_k behaves for the center-most local manifold \mathbf{M} ⁽⁶³⁶⁾. Notice
 357 that values of σ_k for $k \geq 8$ are significantly smaller than the previous ones.

358 For every hit, the distance between the original and the recovered scatterers was computed. The
 359 average distances are shown in Fig. 6b.

360 The computation of hits and misses does not take into account the amplitude of recovered
 361 scatterers, i.e., recovered scatterers are implicitly considered as having unity amplitude. To endorse
 362 this assumption, the average amplitudes of recovered events are shown in fig. 6c, where the bars
 363 indicate one standard deviation above and below the average. Notice that, for all cases, the average
 364 amplitudes are between 0.98 and 1.01, i.e., the average amplitude error is less than 2%. The average
 365 absolute amplitude resulting from the reconstructions with OMP using the regular dictionary \mathbf{H} were
 366 0.70, 0.70 and 0.71 for the noise levels $\sigma = 0, 0.08$ and 0.12 respectively.

367 6.3. Estimation of residual and stop criterion

368 To assess the accuracy of the stop criterion, OMPED was executed one more time on the 5-scatterer
 369 dataset of Section 6.1, this time with the residual-based stop criterion defined on line 14 of Algorithm 1,
 370 with a maximum of 10 iterations. Because all images contained 5 scatterers, the algorithm was expected

371 to stop at the 5-th iteration. The histogram of Fig. 7a shows this outcome: the peak of occurrences is on
 372 iteration 5. The frequencies on the neighboring final iterations 4 and 6 are also sensibly greater than
 373 on the remaining iterations (except for the maximum 10). The maximum iteration allowed was 10, at
 374 which the algorithm stopped when e_{est} failed to reach $\|\mathbf{e}\|$. The results for values of K from 2 to 10 are
 375 summed on the histogram of Fig. 7a. A total of 5400 reconstruction (3 noise levels \times 200 images \times 9
 376 orders K) are computed.

Figure 7. (a) Histogram of final iteration (when $e_{\text{est}} \geq \|\mathbf{e}\|$ for the first time) for OMPED running with the SVD dictionary, for K varying from 2 to 10. Results from all values of K are summed. The total number of reconstructions is 5400. The 5th iteration was more frequently identified as final iteration, which is correct since all simulated acquisitions contained 5 scatterers. (b) Example of evolution of e_{est} and $\|\mathbf{e}\|$ along the iterations of OMPED. In this case, e_{est} dropped below $\|\mathbf{e}\|$ at the 5th iteration, which was correctly identified as the final iteration. The simulated object contained 5 scatterers. White Gaussian noise with $\sigma = 0.12$ was added to the acquired data. OMPED was ran with the SVD dictionary with $K = 8$.

377 Fig. 7b shows an example of the evolution of the regression residual norm $\|\mathbf{e}\|$ and the estimated
 378 residual norm e_{est} . As new events are iteratively added to the solution, the latter decreases while the
 379 former increases. On iteration 5, $\|\mathbf{e}\|$ drops below e_{est} and OMPED correctly meets the stop criterion,
 380 yielding a final solution with cardinality 5. White Gaussian noise with $\sigma = 0.12$ was added to the data.
 381 OMPED was ran with SVD ($K = 8$) dictionary.

382 6.4. Reconstructed images: examples

383 Fig. 8a shows the ground truth for a simulation from the dataset of Section 6.1. Gaussian noise was
 384 added to the acquired data with $\sigma = 0.08$. The reconstructed image using OMPED with SVD dictionary
 385 ($K = 8$) is shown in Fig. 8b. No limit was imposed on the number of iterations, i.e., the algorithm
 386 correctly stopped at the 5th iteration based on the values of the estimated and actual residuals. The
 387 activated pixels are the same on the ground truth of Fig. 8a and on the OMPED result of Fig. 8b. While
 388 all simulated scatterers had unity amplitude, the recovered amplitudes ranged from 0.9398 to 1.0387.
 389 Both Figs. 8a and 8b have 41×31 pixels corresponding to the local ROIs of the expanded model.

390 The result of the reconstruction using OMP with the regular dictionary model \mathbf{H} is shown in Fig. 8c.
 391 We ran 7 iterations of the algorithm in order to show that, beyond iteration 4, the algorithm created
 392 artifacts around the left-most scatterer instead of identifying the bottom-right scatterer. The recovered
 393 amplitudes also display small and even negative values (the image shows absolute, normalized values).
 394 Moreover, the bottom-left scatterer is displaced one pixel to the left on the reconstructed image.

395 Fig. 8d shows the image yielded by the LS (unregularized) solution of (4). As is common in
 396 unregularized model-based solutions, the image is dominated by noise [35]. We also applied ℓ_1
 397 regularization to the LS problem, which corresponds to the BP formulation [28]

Figure 8. Example of image simulated and reconstructed, from the dataset described in Section 6.1. The simulated data contains 5 scatterers and white Gaussian noise with $\sigma = 0.08$. All images are normalized by the maximum absolute pixel value. (a) Ground truth, with 5 unity amplitude scatterers randomly distributed over the ROI. (b) Result from OMPEd with the SVD dictionary ($K = 8$). The algorithm correctly identified the 5th iteration as the final one. (c) Result from OMP with regular model H. 7 iterations were run to show that, after the 4th iteration, the algorithm creates artifacts on the neighborhood of the left-most scatterer instead of identifying the bottom-right scatterer present on the ground truth image. (d) Solution of the unregularized LS problem (4). The image is dominated by artifacts. (e) Solution of the ℓ_1 -regularized problem (28). The penalization of the recovered amplitudes causes the suppression of most points on the resulting image. The chosen regularization parameter $\lambda = 2.0691$ minimizes the norm $\|\mathbf{v} - \hat{\mathbf{v}}\|$, where \mathbf{v} is the ground truth.

$$\hat{\mathbf{v}} = \arg \min_{\mathbf{v}} \|\mathbf{c} - \mathbf{Hv}\|_2^2 + \lambda \|\mathbf{v}\|_1. \quad (28)$$

398 The ℓ_1 -regularized formulation was solved with L1_LS package for Matlab [36]. The resulting image is
 399 shown in Fig. 8e. While a small value for λ yields an image dominated by noise, such as that of Fig. 8d,
 400 larger values cause the image to be too sparse, suppressing some features. This is a consequence of
 401 the penalization of recovered amplitudes on (28). The chosen regularization parameter $\lambda = 2.0691$
 402 minimizes the norm $\|\mathbf{v} - \hat{\mathbf{v}}\|_2$, where \mathbf{v} is the ground truth and $\hat{\mathbf{v}}$ is the BP result.

403 7. Discussion

404 To cope with the problem of off-grid deviation in image reconstruction from pulse-echo ultrasound
 405 data, we developed a technique of dictionary expansion based on a highly coherent sampling of the
 406 PSF manifold followed by a rank reduction procedure, as well as a generalization of the OMP algorithm
 407 with non-convex constraints. Based on [29], the criterion for the rank reduction is the minimization of
 408 the Frobenius norm of the resulting residuals.

409 Since no assumption is made regarding the geometry of the continuous PSF manifold, our
 410 expansion formulation is applicable to both shift-invariant and shift-variant problems. On the other
 411 hand, for instance, the Polar expansion [23] is conceived based on the fact that the PSF manifold of
 412 any shift-invariant system lies over a hypersphere. In 2-dimensional ultrasound (our main motivating
 413 application), the fact that the Spatial Impulse Response (SIR) is spatially variant [15,37] puts the direct
 414 acquisition model in the class of shift-variant systems.

415 The criterion for definition of the order K of expansion may vary according to each application. In
 416 cases where it is possible to carry out simulations (as presented here) or a relevant amount of data
 417 with accessible ground truth is available, K can be determined empirically. Moreover, in our case,
 418 a minimum in the number of misses is identifiable and lies near to a transition on the baseline of
 419 singular values shown in Fig. 3b. A suggestion for future studies is the development of a generalized
 420 criterion for the definition of K . The behavior of the singular values yielded by an SVD decomposition
 421 of matrices $\mathbf{M}^{(n)}$ is potentially a starting point for such investigation.

422 The original OMP algorithm [30] is a particular case of OMPED where $K = 1$ and the parameter
423 μ_c (Eqs. (17a) and (21)) is set to an arbitrarily large negative value. In both OMP and OMPED, the
424 residual vector \mathbf{e} on each iteration is orthogonal to all active elements of the dictionary, what places
425 OMPED in the family of *Orthogonal* Matching Pursuit algorithms. The same does not hold for the
426 COMP algorithm presented in [29]: the fact that the LS regression performed at each iteration contains
427 linear constraints may result in eventual coherence between the residual and the active atoms.

428 Another particularity of OMPED in regard to previously proposed algorithms for expanded
429 dictionaries [23,29,33] is that it is not based on conic constraints, which removes any restrictions on the
430 choice of the sizes Δ_x and Δ_z (and further dimensions if that is the case) for the division of the ROI into
431 local ROIs.

432 The adaptation of OMP into OMPED, with a constraint imposed on the selection of the index
433 added the support at each iteration, might be replicable to other greedy search algorithms. The class of
434 forward-backward algorithms is of special interest in signal and image recovery because of its capacity
435 of later “correction” of “wrong” choices made on the selection of indices to add to the support [38,39],
436 what constitutes a motivation for future investigation.

437 The computation of the estimated residual e_{est} on OMPED may be subject to improvement in
438 order to increase the accuracy of the stop criterion (see Fig. 7a). Decreasing the variance of the residuals
439 $\mathbf{r}_i^{(n)}$ caused by the low-rank approximation inside each local ROI (i.e. flattening the surfaces of Fig. 3c)
440 would cause the inaccuracies on the computation of high resolution locations to have a smaller impact
441 on the computation of e_{est} . This may be achieved with a different criterion for the rank reduction than
442 the LS. For instance, an extension of the Minimax dictionary expansion [31].

443 One limitation of our technique is that one single point-like event is identifiable inside each local
444 ROI. The search for a means to overcome this limitation, allowing for the recovery of several scatterers
445 inside the same local ROI is a relevant topic for further investigation and may broaden the applicability
446 of the proposed technique.

447 Finally, our simulated data considered point-like reflectors, with spatial coordinates (x, z) as the
448 only nonlinear parameters. The ultrasound NDT literature contains parametric reflection models for
449 more complex discontinuity structures, such as spherical voids and circular cracks, where the distortion
450 of ultrasound waves is modelled as a nonlinear function of parameters like diameter and angle to
451 the surface [40,41]. The proposed method is applicable to those cases as long as those parameters
452 are comprised in the parameter set τ in (1) and sampled like the parameters of spatial location. In
453 this case, characterization of discontinuities could be performed along with location. Classification of
454 discontinuities could also be jointly performed if dictionaries for several types of discontinuities are
455 combined. An equivalent principle has been used in the joint detection and identification of neuron
456 activity using SVD [29] and Taylor [42] expanded dictionaries.

457 **Author Contributions:** All authors are part of the *Lineup for Inverse Problems, Signal and Image Processing and*
458 *Reconstruction* (LIPRO) at the Graduate Program in Electrical and Computer Engineering (CPGEI), at the Federal
459 University of Technology-Paraná (UTFPR), Brazil. T.A.R.P. is responsible for generating the datasets, writing and
460 running the MATLAB codes, and describing the models and methods. M.V.W.Z. and D.R.P. are responsible for
461 reviewing the mathematical accuracy of methods, organizing the paper argument and reviewing the ultrasonic
462 model accuracy.

463 **Conflicts of Interest:** The authors declare no conflict of interest.

464

- 465 1. Fessler, J.A. Model-based image reconstruction for MRI. *IEEE Signal Processing Magazine* **2010**, *27*, 81–89.
- 466 2. Ollinger, J.M.; Fessler, J.A. Positron-emission tomography. *IEEE Signal Processing Magazine* **1997**, *14*, 43–55.
- 467 3. Censor, Y. Finite series-expansion reconstruction methods. *Proceedings of the IEEE* **1983**, *71*, 409–419.
- 468 4. Lavarello, R.; Kamalabadi, F.; O’Brien, W.D. A regularized inverse approach to ultrasonic pulse-echo
469 imaging. *Medical Imaging, IEEE Transactions on* **2006**, *25*, 712–722.

470 5. Zanin, L.; Zibetti, M.; Schneider, F. Conjugate gradient and regularized Inverse Problem-Based solutions
471 applied to ultrasound image reconstruction. Ultrasonics Symposium (IUS), 2011 IEEE International, 2011,
472 pp. 377–380.

473 6. Zanin, L.G.S.; K., S.F.; Zibetti, M.V.W. Regularized Reconstruction of Ultrasonic Imaging and the
474 Regularization Parameter Choice. Proceedings of the International Conference on Bio-inspired Systems
475 and Signal Processing, 2012, pp. 438–442.

476 7. Desoky, H.; Youssef, A.B.M.; Kadah, Y.M. Reconstruction using optimal spatially variant kernel for B-mode
477 ultrasound imaging. SPIE Medical Imaging 2003: Ultrasonic Imaging and Signal Processing, 2003, pp.
478 147–153.

479 8. Lingvall, F.; Olofsson, T.; Stepinski, T. Synthetic aperture imaging using sources with finite aperture:
480 Deconvolution of the spatial impulse response. *The Journal of the Acoustical Society of America* **2003**,
481 114, 225–234.

482 9. Lingvall, F.; Olofsson, T. On time-domain model-based ultrasonic array imaging. *Ultrasonics, Ferroelectrics
483 and Frequency Control, IEEE Transactions on* **2007**, 54, 1623–1633.

484 10. Olofsson, T.; Wennerstrom, E. Sparse Deconvolution of B-Scan Images. *IEEE Transactions on Ultrasonics,
485 Ferroelectrics, and Frequency Control* **2007**, 54, 1634–1641.

486 11. Viola, F.; Ellis, M.A.; Walker, W.F. Time-domain optimized near-field estimator for ultrasound imaging:
487 initial development and results. *Medical Imaging, IEEE Transactions on* **2008**, 27, 99–110.

488 12. Schmerr Jr, L.W. *Fundamentals of ultrasonic phased arrays*; Vol. 215, Springer, 2014.

489 13. Smith, N.; Webb, A. *Introduction to Medical Imaging: Physics, Engineering and Clinical Applications*; Cambridge
490 Texts in Biomedical Engineering, Cambridge University Press, 2010.

491 14. Jensen, J.A. A model for the propagation and scattering of ultrasound in tissue. *Acoustical Society of America*
492 **1991**, 89, 182–190.

493 15. Jensen, J. Simulation of advanced ultrasound systems using Field II. Biomedical Imaging: Nano to Macro,
494 2004. IEEE International Symposium on, 2004, pp. 636–639 Vol. 1.

495 16. Mor, E.; Azoulay, A.; Aladjem, M. A matching pursuit method for approximating overlapping ultrasonic
496 echoes. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control* **2010**, 57, 1996–2004.

497 17. Carcreff, E.; Bourguignon, S.; Idier, J.; Simon, L. A linear model approach for ultrasonic inverse problems
498 with attenuation and dispersion. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control* **2014**,
499 61, 1191–1203.

500 18. Kruizinga, P.; van der Meulen, P.; Fedjajevs, A.; Mastik, F.; Springeling, G.; de Jong, N.; Bosch,
501 J.G.; Leus, G. Compressive 3D ultrasound imaging using a single sensor. *Science Advances* **2017**, 3,
502 [<http://advances.sciencemag.org/content/3/12/e1701423.full.pdf>].

503 19. Golub, G.H.; Van Loan, C.F. *Matrix Computations (Johns Hopkins Studies in Mathematical Sciences)(3rd Edition)*,
504 3rd ed.; The Johns Hopkins University Press, 1996.

505 20. Hansen, C. *Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion*; SIAM:
506 Philadelphia, 1998.

507 21. Guarneri, G.A.; Pipa, D.R.; Junior, F.N.; de Arruda, L.V.R.; Zibetti, M.V.W. A Sparse Reconstruction
508 Algorithm for Ultrasonic Images in Nondestructive Testing. *Sensors* **2015**, 15, 9324–9343.

509 22. Chi, C.Y.; Goutsias, J.; Mendel, J. A fast maximum-likelihood estimation and detection algorithm for
510 Bernoulli-Gaussian processes. ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal
511 Processing, 1985, Vol. 10, pp. 1297–1300.

512 23. Ekanadham, C.; Tranchina, D.; Simoncelli, E.P. Recovery of Sparse Translation-Invariant Signals With
513 Continuous Basis Pursuit. *IEEE Transactions on Signal Processing* **2011**, 59, 4735–4744.

514 24. Yang, Z.; Zhang, C.; Xie, L. Robustly stable signal recovery in compressed sensing with structured matrix
515 perturbation. *IEEE Transactions on Signal Processing* **2012**, 60, 4658–4671.

516 25. Teke, O.; Gurbuz, A.C.; Arikan, O. A robust compressive sensing based technique for reconstruction of
517 sparse radar scenes. *Digital Signal Processing* **2014**, 27, 23–32.

518 26. Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed Sensing Off the Grid. *IEEE Transactions on
519 Information Theory* **2013**, 59, 7465–7490.

520 27. Zhu, H.; Leus, G.; Giannakis, G.B. Sparsity-Cognizant Total Least-Squares for Perturbed Compressive
521 Sampling. *IEEE Transactions on Signal Processing* **2011**, 59, 2002–2016.

522 28. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic Decomposition by Basis Pursuit. *SIAM Journal on*
523 *Scientific Computing* **1998**, *20*, 33–61.

524 29. Knudson, K.C.; Yates, J.; Huk, A.; Pillow, J.W. Inferring sparse representations of continuous signals with
525 continuous orthogonal matching pursuit. *Advances in Neural Information Processing Systems* **27**, 2014,
526 pp. 1215–1223.

527 30. Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit.
528 *IEEE Transactions on Information Theory* **2007**, *53*, 4655–4666.

529 31. Passarin, T.A.R.; Pipa, D.R.; Zibetti, M.V.W. A minimax dictionary expansion for sparse continuous
530 reconstruction. *2017 25th European Signal Processing Conference (EUSIPCO)*, 2017, pp. 2136–2140.

531 32. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. *Psychometrika* **1936**,
532 *1*, 211–218.

533 33. Fyhn, K.; Marco, F.; Holdt, S.; others. Compressive parameter estimation for sparse translation-invariant
534 signals using polar interpolation. *IEEE Transactions on Signal Processing* **2015**, *63*, 870–881.

535 34. Barrett, H.; Myers, K. *Foundations of image science*; Wiley series in pure and applied optics, Wiley-Interscience,
536 2004.

537 35. Bovik, A. *Handbook of Image & Video Processing*; Academic Press Series in Communications, Networking
538 and Multimedia, Academic Press, 2000.

539 36. Kim, S.J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An Interior-Point Method for Large-Scale
540 L1-Regularized Least Squares. *IEEE journal of selected topics in signal processing* **2007**, *1*, 606–617.

541 37. Tupholme, G.E. Generation of acoustic pulses by baffled plane pistons. *Mathematika* **1969**, *16*, 209–224.

542 38. Miller, A. *Subset selection in regression*; CRC Press, 2002.

543 39. Souassen, C.; Idier, J.; Brie, D.; Duan, J. From Bernoulli Gaussian Deconvolution to Sparse Signal Restoration.
544 *IEEE Transactions on Signal Processing* **2011**, *59*, 4572–4584.

545 40. Schmerr, L.W.; Song, S.J. *Ultrasonic nondestructive evaluation systems: models and measurements*; Springer,
546 2007.

547 41. Velichko, A.; Bai, L.; Drinkwater, B. Ultrasonic defect characterization using parametric-manifold mapping.
548 *Proc. R. Soc. A* **2017**, *473*, 20170056.

549 42. Ekanadham, C.; Tranchina, D.; Simoncelli, E.P. A unified framework and method for automatic neural
550 spike identification. *J. Neuroscience Methods* **2014**, *222*, 47–55.