Article

Selenium-rich Ag-Au mineralization at the Kremnica
Ag-Au epithermal deposit, Slovak Republic

Martin Števko 1,2,*, Jiří Sejkora 1, Zdeněk Dolníček 1 and Pavel Škácha 1,3

1 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 - Horní Počernice, 193 00, Czech Republic
2 UK Mining Ventures Ltd., No. 1, The Old Coach Yard, East Coker; Somerset, BA22 9HY; Great Britain
3 Mining Museum Příbram, Hynka Klíčky Place 293, 261 01 Příbram VI - Březové Hory, Czech Republic

* e-mail: msminerals@gmail.com

Abstract: Selenium-rich Ag-Au mineralization has been discovered in the Kremnica ore district, central Slovakia. The mineralization is hosted by a single quartz-dolomite vein hosted by Neogene propylitized andesites of the Kremnica stratovolcano. Ore mineralogy and crystal chemistry of individual ore minerals have been studied here. The early base-metal ore mineralization composed of pyrite, sphalerite and chalcopyrite lacks selenium, whereas the superimposed Ag-Au paragenesis is Se-enriched. The Au-Ag alloys, uytenbogaardtite, minerals of the galena-clausthalite series, acanthite-naumannite series, diaphorite, miargyrite, pyrargyrite-proustite, polybasite group, minerals of the tetrahedrite group and andorite branch (andorite IV, andorite VI, Ag-excess fizélyite), freislebenite, and rare Pb-Sb sulphasalts (scaniite, robinsonite, plagionite) have been identified here. Besides selenides, the most Se-enriched phases are miargyrite, proustite-pyrargyrite, and polybasite-pearceite, whose Se contents are among the highest reported worldwide. In addition, one new phase has been found, corresponding to a Se-analogue of pearceite containing 2.08 - 3.54 apfu Se. The style of mineralization, paragenetic situation, and chemical trends observed in individual minerals are comparable to those of Au-Ag low-sulphidation epithermal Ag-Au mineralizations of the Kremnica and neighboring Štiavnica and Hodruša-Hámre Ore Districts, however, the pronounced enrichment in selenium is a specific feature of the studied vein only.

Keywords: Au-Ag low-sulphidation epithermal mineralization; Kremnica; gold; selenium; clausthalite; naumannite; miargyrite; pyrargyrite-proustite; polybasite-pearceite; diaphorite; Pb-Sb sulphasalts

1. Introduction

The ore mineralizations containing selenides or Se-enriched minerals are rather rare in the territory of the Slovak part of the Western Carpathians. A Bi-Se-Te mineralization represented mainly by telluronevskite and vihoralitite is relatively abundant in body of metasomatites and secondary quartzites near Poruba pod Vihorlatom, Vihorlat Mts. [1-3]. Minor amounts of selenides (clausthalite, bohdanowitzite, naumannite, laitakarite and ikunolite) as well as Se-bearing bourononite, hedleyite, jamesonite, tetradymite, and tintinaite were described from the quartz-siderite-sulphidic veins near Dobšiná and Uhorná in the Generic Superunit [4-6]. Clausthalite has also been identified at the stratiform U-Mo deposit at Novoveská Huta [7]. Laitakarite together with Se-bearing galena and sulphasalts was described from the sulphidic mineralization at the Mútnik magnesite deposit near Hnúšťa [8-9].

The Central Slovakia Volcanic Field is hosting several famous Ag-Au epithermal vein-type deposits including Banská Štiavnica, Kremnica, Hodruša-Hámre or Nová Baňa, which were important sources of the precious as well as base metals in the past. The only known and very
limited occurrence of selenides from the epithermal veins in this area was described by Jeleň [10], who identified microscopic aggregates of naumannite associated with Se-bearing galena and Se-bearing matildite from the deeper parts of the Špitaler vein in the Banská Štiavnica ore district. Maťo and Háber [11], Maťo [12] and Maťo and Ragan [9] reported the presence of elevated amounts of selenium in galena, acanthite and minerals of the polybasite group from the 1st vein system of the Kremnica Au-Ag deposit. This paper is dealing with an unique occurrence of selenides and Se-enriched Ag sulphosalts, which was recently discovered in the Václav-south adit, 1st vein system of the Kremnica Au-Ag epithermal deposit.

2. Geological setting

The Kremnica Au-Ag epithermal deposit is located in the vicinity of the Kremnica town, in the northern part of the Central Slovakian Volcanic Field, which is represented by the remnants of a large andesite stratovolcano. This deposit was the most important gold producer in Slovakia.

The system of low-sulphidation epithermal veins with Au-Ag-Sb mineralization is developed on marginal faults in the eastern part of the Kremnica resurgent horst. The horst is build of the Miocene pre-graben propylitised andesites accompanied at the depth by sub-volcanic intrusions of gabbrodiorite, diorite, diorite porphyry and minor quartz-diorite porphyry [13]. The structure of the horst is dominated by N-S and NE-SW trending normal faults [14]. The two principal vein systems were distinguished at the Kremnica deposit [15-17]. The 1st vein system, which is located NW of the Kremnica town, is dominated by a first-order listric fault, intruded by rhyolite dikes. The mineralized fault dipping 50 to 60° gradually opens towards the surface to its maximum width of 80

Figure 1. Geological map of the study area. Explanations: 1 - rhyolite, 2 - rhyolite tuffs, 3 - Kremnica graben andesites, 4 - pre-graben andesites, 5 - hydrothermal altered rock, affected mostly by kaolinization and adularization, 6 - faults, 7 - epithermal veins, 8 - position of the Václav-south adit. Adapted from Koděra and Lexa [17].
m in the central part of the Šturec area. The total length of the 1st vein system is close to 6.5 km and
the vertical extent of veins exceeds 1.2 km in the northern part of the system [18]. The 2nd vein system
extends underneath Kremnica town and it is represented by a large-scale complementary vein
system with 40 veins in the hanging wall of the listric fault. In contrast to the 1st vein system, the
veins are much shorter (less than 1.5 km) and no more than 2 m wide [15]. Vein filling of the both
vein systems is represented by banded and cavernous quartz with carbonates, mainly dolomite and
calcite. According to Böhm [15] and Mafo [19] the vein filling was formed during the two main
mineralization stages (Au-Ag stage and Au-Hg-Sb-As stage) with six mineral associations. Pyrite,
arsenopyrite and gold (electrum) are the most frequent ore minerals of the Au-Ag stage,
accompanied by minor galena, sphalerite, chalcopyrite, acanthite, proustite, pyrargyrite, polybasite,
stephanite, miargyrite and tetrabedrite. In the deeper parts of the 1st vein system the base-metal
sulphides are more common and are accompanied by tellurides like altaite, goldfieldite, hessite,
petzite and stützite. Macroscopic gold (electrum) is much more common at the 2nd vein system. The
Au-Hg-Sb-As stage includes quartz-carbonate and stibnite substages, with stibnite, pyrite, marcasite
and minor cinnabar as principal ore minerals [11, 12, 15, 17, 19-21]. Extensive wallrock alteration
includes orthoclase var. adularia, quartz, illite/smectite, kaolinite, passing outwards into chlorite,
smectite with disseminated pyrite and carbonates [22]. A recent fluid inclusion study and oxygen
isotope data from the vein quartz showed that the northern part of the 1st vein system has the highest
homogenization temperatures (Th) of fluid inclusions (250 to 270 °C) and the average Th values
decrease gradually towards the south. Fluids are predominantly of meteoric origin with low salinity
(0.5 to 1.6 wt% NaCl eq.). Two episodes of boiling of fluids at ~ 240 °C and 205 °C were documented
at the central part of the 1st vein system (area of Šturec), indicating a long-living hydrothermal
system with a syngenetic uplift of the Kremnica resurgent horst [17, 23].

The samples studied were collected from the quartz-dolomite vein, situated at the hanging of
the 1st stibnite vein in the crosscut P-102, Václav-south adit, in the central part of the 1st vein system
(area of Šturec). This thin (3 to 20 cm wide) NE-SW trending vein was explored in 1958 by short
drive and exhibits brecciated to drusy structure, with white to grey cavernous or drusy quartz and
yellow crystalline dolomite as principal minerals. Macroscopic aggregates of older common
sulphides (sphalerite and pyrite) up to 5 mm as well as younger Ag-sulphosalts (mainly miargyrite,
pyrargyrite and proustite) up to 2 mm are locally scattered in both quartz and dolomite.

3. Sampling and analytical methods

The studied ore samples were collected in-situ in the adit Václav-south from an unnamed
quartz-dolomite vein located at the hanging of the 1st stibnite vein in the central part of the 1st vein
system of the Kremnica Au-Ag deposit.

Samples for microscopy and following laboratory study were prepared as polished sections
2.54 cm in diameter, mounted in resin and polished with diamond suspensions in the Diatech s.r.o.
company, Prague. The ore minerals and textures were studied in reflected light using a Nikon
Eclipse ME600 polarizing microscope in the National Museum, Prague.

The chemical analyses of individual minerals were performed using a Cameca SX100 electron
microprobe (National Museum, Prague; Z. Dolníček and J. Sejkora as analysts) operating in the
wave-dispersive (WDS) mode (25 kV, 10 nA and 1 - 5 μm wide beam). The following standards and
X-ray lines were used to minimize line overlaps: Ag (AgLα), Au (AuMα), BiSe (BiMβ), CdTe
(CdLα), chalcopyrite (CuKα, SKα), FeS (FeKα), Ge (GeLα), halite (ClKα), HgTe (HgLα), Mn
(MnKα), NiAs (AsLβ), PbS (PbMα), PbSe (SeLβ), PbTe (TeLα), Sb2S3 (SbLα), and ZnS (ZnKα). Peak
counting times were 20 - 30 s and one-half of the peak time was used for each background. Contents
of the above-listed elements, which are not included in the tables, were analysed quantitatively, but
their contents were below the detection limit (ca. 0.01 – 0.04 wt. % for individual elements). Raw
intensities were converted to the concentrations of elements using automatic “PAP”
matrix-correction software [24]. Tables containing the full data-set of collected WDS analyses (more
than 1500 analytical points) are included as supplementary files of this paper.
4. Mineralogy and mineral chemistry

4.1. Selenides

Minerals of the **clausthalite-galena series** are frequent. They form irregular anhedral grains and aggregates up to 200 μm in size (Fig. 2 a,b), which are often closely associated together with diaphorite, miargyrite, pyrargyrite-proustite, andorite, minerals of the polybasite and tetrahedrite group and minor amounts of gold-silver alloy and acanthite.

![Figure 2](image-url)

Figure 2. (a) Clausthalite (white) intergrown with Se-rich diaphorite (grey); (b) Se-rich galena (Ga) associated with diaphorite (Di), pyrargyrite (Py) and Ag-rich tetrahedrite (Td); (c) aguilarite (Ag) associated with Se-rich acanthite (Ac), galena (Ga) and Se-rich pearceite (Pe); (d) naumannite (Na) associated with aguilarite (Ag), galena (Ga) and pearceite (Pe); (e) acanthite associated with galena (Ga), pyrargyrite (Py), miargyrite (Mi) and diaphorite (Di); (f) Se-rich acanthite (Ac) associated with pearceite (Pe) and galena (Ga); all back-scattered electron (BSE) images.
During the study of chemical composition of minerals of the clausthalite-galena series (Table S1) we have observed only minor traces of Cu, Hg, Fe, Cd, Sb and Bi not exceeding 0.04 apfu. Somewhat higher are Ag contents, reaching up to 0.08 apfu and also interesting contents of Cl up to 0.01 apfu (0.13 wt. %) were determined. The range of SeS\textsubscript{1} substitution is limited (Fig. 3), the highest Se content in clausthalite does not exceed 0.76 apfu. With regard to unlimited miscibility between clausthalite and galena observed in experimental studies [25-27] and also natural samples [28-32], the absence of next members to pure clausthalite in the studied samples is probably a result of lower value of f\textsubscript{Se\textsubscript{2}} in the fluids with f\textsubscript{Se\textsubscript{2}}/f\textsubscript{S\textsubscript{2}} ratio close to unity [33-34].

Naumannite and aguilarite are rare and they occur as irregular elongated grains up to 30 μm in size (Fig. 2c,d) in association with acanthite, galena-clausthalite and pearceite. Acanthite is a bit more frequent as anhedral grains up to 120 μm in size (Fig. 2e,f) accompanied predominantly with miargyrite, galena-clausthalite, pyrargyrite-proustite, andorite, minerals of the polybasite and tetrahedrite group and minerals of the gold-silver solid solution.

Nomenclature of mineral phases along the Ag\textsubscript{2}S - Ag\textsubscript{2}Se join was published by Bindi and Pingitore [35]. They suggest that two distinct solid solution series could exist: monoclinic "acanthite-type" series including aguilarite in the range Ag\textsubscript{2}S - Ag\textsubscript{2}Se\textsubscript{0.6}, and an orthorhombic "naumannite-type" series between Ag\textsubscript{2}Se\textsubscript{0.7} - Ag\textsubscript{2}Se. The question is the status of members with Se contents in the range 0.60 - 0.70, which correspond to two-phase (monoclinic and orthorhombic) field, which was described by Pingitore et al. [36] or Pal’yanova et al. [37]. There are two possible explanations – either presence of metastable cubic high-temperature phase or mixtures of two sub-microscopic phases formed during cooling of a homogenous cubic phase below 80 °C [38]. Natural minerals with composition corresponding to this two-phase field were also reported [38-39].

During our study of chemical composition of mineral phases along the Ag\textsubscript{2}S - Ag\textsubscript{2}Se join (Table S2), the compositions related to acanthite, aguilarite, phases from so-called two-phase field as well as naumannite were observed (Fig. 4). Acanthite contains selenium up to 0.28 apfu and aguilarite in the range 0.51 - 0.58 apfu (on the base of three atoms). Compositions of mineral phases of two-phase field (0.67 - 0.70 apfu) are close to naumannite which has 0.71 - 0.90 apfu Se (Fig. 4). In all studied phases, irregular traces of Hg, Cl and Te (up to 0.02 apfu) were also found. The observed minor contents of Fe, Pb, Zn and Cu in some analyzed points are probably influenced by surrounding phases.

Figure 3. Graph Se vs. S (apfu) for members of the clausthalite-galena series from the Kremnica deposit.
Figure 4. Graph Se vs. S (apfu) for mineral phases of the Ag:S - Ag:Se series from the Kremnica deposit.

4.2. Au-Ag minerals

Minerals of the Au-Ag solid solution are infrequent and form anhedral grains up to 100 μm in size (Fig. 5), which often show strong irregular chemical zoning in BSE images (Fig. 5b). They are associated with acanthite, andorite, galena-clausthalite, diaphorite, pyrargyrite-proustite and minerals of the polybasite and tetrahedrite group.

Highly variable chemical composition is typical (Table S3, Fig. 6) ranging from silver with Au contents in the range 0.11 - 0.49 apfu, up to gold with Ag contents between 0.31 and 0.42 apfu. Both minerals are Hg free, and only insignificant traces of Fe, Cu and Cl were identified.

Figure 5. (a) Ag-rich gold (Go) in association with pyrargyrite (Py), clausthalite (Cl), diaphorite (Di), Ag-rich tetrahedrite (Td) and Ag-rich tennantite (Tn); (b) Zoned silver (Si) with variable Au contents (18 - 57 wt. %) in association with Se-rich acanthite (Ac), pyrargyrite (Py) and galena (Ga); both back-scattered electron (BSE) images.
Figure 6. Graph Ag vs. Au (apfu) for members of the Ag-Au solid solution from the Kremnica deposit.

Uytenbogaardtite was found very rarely as single irregular grain only 13 μm in size, which is closely associated with gold-silver alloy, miargyrite and minerals of the tetrahedrite group. Its chemical composition (Table S4) is slightly different with regards to ideal formula Ag₃AuS₂, especially by lower contents of Au. This is most probably caused by some inhomogeneity of the studied grain, by its non-stoichiometry, or by its instability under the electron beam [40-41]. The determined selenium contents are reaching only up to 0.08 apfu, the observed minor contents of Fe, Pb, Cu and Sb are probably influenced by surrounding phases.

4.3. Ag-Sb(-As) sulphosalts

Miargyrite is very common and occurs as euhedral to anhedral grains and aggregates up to 2 mm in size (Fig. 7), which are closely associated predominantly together with pyrargyrite-proustite, andorite, diaphorite, galena-clausthalite and minerals of the tetrahedrite group. It often shows strong irregular chemical zoning in BSE images (Fig. 7c,d).

For the chemical composition of miargyrite the significant range of SeS₁ substitution up to 0.75 apfu is characteristic (Fig. 8). Similar high selenium contents are reported for miargyrite from only two sites: Kutná Hora, Czech Republic (up to 0.62 apfu) [42] and Ailaoshan, China (up to 0.60 apfu) [43]. A natural sample from an unspecified locality in USSR with contents of Se up to 1.34 apfu [44] is in fact a selenium analogue of miargyrite. Besides identified traces of Pb, Fe, Zn, Cu and Hg, contents of As in range up to 0.23 apfu were determined. The negative correlation of As with Sb (Fig. 9) indicates large extent of AsSb₁ substitution. According to experiments made by Ghosal and Sack [45], similar As contents in miargyrite occur only in temperature range 200 - 350 °C. The chemical analyses of miargyrite and corresponding empirical formulae are given in the Table S5.

Minerals of the pyrargyrite-proustite series are frequent. Their euhedral to anhedral grains and aggregates up to 2 mm in size, often with irregular chemical zoning in BSE photos (Fig. 10), are predominantly accompanied by miargyrite, andorite, diaphorite, galena-clausthalite, and minerals of the polybasite and tetrahedrite group.
Figure 7. (a) Miargyrite (Mi) intergrown with Ag-rich tetrahedrite (Td) and tennantite (Tn); (b) Se-rich miargyrite (Mi) associated with diaphorite (Di), Ag-rich tetrahedrite (Td) and galena (Ga); (c) zonal miargyrite with variable Se contents; (d) zonal miargyrite with variable Se contents (grey) in association with Se-rich galena (white); all back-scattered electron (BSE) images.

Figure 8. Graph Se vs. S (apfu) for miargyrite from the Kremnica deposit.
Figure 9. Graph Sb vs. As (apfu) for miargyrite from the Kremnica deposit.

Figure 10. (a) Se-rich proustite (Pr) and Se-free proustite (Pr*) intergrown with pearceite (Pe) and gold (Go); (b) pyrargyrite (Py) associated with miargyrite (Mi), freibergite (Fr) and Ag-rich tennantite (Tn); (c) aggregates formed by members of pyrargyrite-proustite solid solution; (d)
proustite aggregates with variable Sb and Se contents in association with galena and Ag-rich tetrahedrite; all back-scattered electron (BSE) images.

Figure 11. Graph Sb vs. As (apfu) for minerals of the pyrargyrite - proustite solid solution series from the Kremnica deposit.

Figure 12. Graph Se vs. S (apfu) for minerals of the pyrargyrite - proustite solid solution series from the Kremnica deposit.

The chemical composition of the studied samples (Fig. 11) is covering the complete solid solution range between pyrargyrite and proustite. The presence of the complete solid solution at the
studied locality indicates the origin of these phases at temperatures above 200 - 300 °C [45-46]; only limited miscibility was described for the lower temperatures by Ondruš et al. [47]. The determined Se contents do not correlate directly with As/Sb ratio, but range of SeS₁-substitution is larger in pyrrargyrite (up to 0.76 apfu) than in the case of proustite with contents up to 0.52 apfu Se (Fig. 12). Besides main elements, traces of Fe, Pb, Hg, Cu and Cl were also observed. The chemical analyses of members of the pyrrargyrite-proustite series and corresponding empirical formulae are given in the Table S6.

4.4. Ag-Cu sulphosalts

Minerals of the tetrahedrite group are common. They form subhedral to anhedral grains and aggregates up to 250 μm in size, which often show relatively strong irregular chemical zoning in BSE images (Fig. 13). They are always closely associated together with miargyrite, pyrrargyrite-proustite, galena-clausthalite, minerals of the polybasite group, diaphorite and in lesser extent also with acanthite, naumannite and gold-silver alloy.

![Figure 13](image)

Figure 13. (a) Aggregates of members of Ag-rich tetrahedrite (Td) - tennantite (Tn) solid solution in association with proustite (Pr); (b) zonal aggregate of freibergite (Fr) and argentotennantite (At); both back-scattered electron (BSE) images.

The tetrahedrite group is the most complex isotypic series among the sulphasalts in nature. This is caused by the multiplicity of iso- and heterovalent substitutions [48]. A simplified general formula for minerals of the tetrahedrite group can be expressed according to Moëlo et al. [48] as

$$[III]_6[A_{III}][IV]_6[B,C]_6[III]_4[X,IV]_4[Y,IV]_1[Y,VI]_1,$$

where A is Cu or Ag in triangular coordination; B is Cu¹⁺ or Ag in tetrahedral coordination, C is generally a divalent metal (typically Fe or Zn, but also Hg, Mn, Cd, Cu²⁺ etc.) in the same coordination as B; X is Sb, As, Bi or Te in trigonal pyramidal coordination; Y is S or Se in tetrahedral coordination, and Z is S or Se in special octahedral coordination. Structural studies confirmed the presence of vacancies or interstitial atoms (e.g., Cu), or heterovalent substitutions due to the incorporation of Fe³⁺ or Te⁴⁺ [48]. The status of Ag-rich members of tetrahedrite group (freibergite, argentotennantite) and especially their boundaries with tetrahedrite and tennantite is still discussed [48]. Part of authors proposed for freibergite minimum content 4 apfu Ag [48-49] and for argentotennantite Ag > Cu (about 5 apfu Ag) [50]. On the base of results of crystal structure studies [49, 51] and analyses of natural samples [52-53] Ag preferably occupies the trigonal A position with total content 6 apfu and according the present rules of mineralogical nomenclature [54] the boundary would be 3 apfu Ag [53].

Four members from the tetrahedrite group were encountered in samples from Kremnica under this study: tetrahedrite, freibergite, tennantite and argentotennantite. The tetrahedrite-group minerals form zonal aggregates with high extent of substitution in A (Fig. 14), C (Fig. 15) and X sites (Fig. 16). The contents of Se are low - in tetrahedrite reaching up to 0.36 apfu, in freibergite up to 0.28 apfu respectively; As dominant members are virtually Se-free. The A position of tetrahedrite from
the Kremnica deposit is dominantly occupied by Cu, however with regular Ag contents in the range 1.06 - 2.99 apfu (Table S7). According occupancy of the C site, there are present both Fe- and Zn-dominant members (Fig. 15); minor contents of Hg (up to 0.18 apfu) were also determined in Fe-rich tetrahedrite. Sb is the dominant element in the X position and it is partly replaced by As in the range of 0.18-1.99 apfu (Fig. 16). The A site in freibergite is dominantly occupied by Ag with contents 3.02 - 5.64 apfu (Table S8). In the C position besides Fe-dominant freibergite (some with Hg contents up to 0.22 apfu) also unusual Zn-dominant one was observed with Zn in the range 1.00 - 1.87 apfu (Fig. 15). Antimony in the X position is substituted by As reaching up to 2.01 apfu (Fig. 16).

In chemical composition of tennantite (Table S9) the predominant Cu in the A position is accompanied by Ag (0.67 – 3.00 apfu), in the C position Fe with 1.41 - 2.16 apfu always prevails (Fig. 15). In the X position, the As is replaced by Sb in the range 0.26 – 1.99 apfu (Fig. 16). According to obtained WDS analyses (Table S10), the A-site in argentotennantite is besides minor Cu occupied by Ag in the range 3.03 - 4.68 apfu (Fig. 14). In the C position, Fe in the range of 1.33 - 1.99 apfu prevails over Zn (up to 0.77 apfu). As as a dominating element in the X position is replaced by Sb in the range of 0.73-1.95 apfu (Fig. 16).

Figure 14. Graph Ag vs. Cu (apfu) for members of the tetrahedrite group from the Kremnica deposit.

Figure 15. Part of the ternary Fe-Hg-Zn (apfu) plot for members of the tetrahedrite group from the Kremnica deposit.
Figure 16. Graph Sb vs. As (apfu) for members of the tetrahedrite group from the Kremnica deposit.

Figure 17. (a) Se-rich pearceite (Pe) associated with galena (Ga) and proustite (Pr); (b) pearceite (Pe) overgrown with proustite (Pr); (c) polybasite (Po) associated with proustite (Pr) and Ag-rich tetrahedrite (Td); (d) polybasite (Po) in association with proustite (Pr) and Ag-rich tetrahedrite (Td); all back-scattered electron (BSE) images.
Minerals of the **polybasite group** are fairly common as subhedral to anhedral grains up to 300 μm in size (Fig. 17), which are mostly associated with pyrargyrite-proustite, minerals of the tetrahedrite group and galena-clausthalite. They often show weak irregular chemical zoning in BSE images (Fig. 17a,b).

The nomenclature of the polybasite group has recently been clarified through the resolution of the crystal structures of various polytypes of this group by Bindi et al. [55] and general formula [Ag₉CuS₄(Ag,Cu)₆(As,Sb)₂S₇] was proposed. As the first selenium-dominant member, selenopolybasite with formula [Ag₉Cu(S,Se)₂Se₂(Ag,Cu)₆(As,Sb)(S,Se)₇], was described by Bindi et al. [56].

Four members of the polybasite group were determined in the studied material from the Kremnica deposit: polybasite, selenopolybasite, pearceite and a new unnamed Se-analogue of pearceite referred as "selenopearceite" in the following text. The members of the polybasite group form zonal aggregates with high extent of substitutions As-Sb, Ag-Cu (Fig. 18) and Se-S (Fig. 19). **Polybasite** is characterized by contents of Cu in the range 0.83 - 2.48 apfu and As 0.11 - 1.13 apfu, respectively (Table S11). In the anion sites, S is partly substituted by Se (up to 1.88 apfu).

Selenopolybasite has Cu contents around 1 apfu (0.69 - 1.40) and the range of AsSb₁ substitution is 0.30 - 0.98 apfu (Table S12). The minimum content of 2 apfu Se in anion positions was determined as a boundary between polybasite and selenopolybasite; selenopolybasite from type locality De Lamar mine, Idaho, USA contains up to 2.55 apfu Se [56], but significant is that selenium fully occupies one specific site with general content of 2 apfu [57]. Polybasites with about 1 apfu Se were also found, but in case of this reduced contents, selenium is disordered in the anion positions of the A layer of the crystal structure [58]. In the selenopolybasite from the Kremnica deposit, the Se contents in the range 2.01 - 3.56 apfu were determined (Fig. 19). In chemical composition of As-dominant member, **pearceite**, As is in partly replaced by Sb up to 1.09 apfu (Fig. 18) and Cu content varies in the range 0.63 - 2.27 apfu (Table S13). The observed Se contents reach up to 1.91 apfu. For the last member of this group, new unnamed "**selenopearceite**", the contents of Cu around 1 apfu (0.64 - 1.55) and Sb up to 1.04 apfu were determined (Table S14). The observed range of SeS₁ substitution is 2.08 - 3.54 apfu (Fig. 19); similar high contents of selenium in pearceite (as As-dominant member) have not been described yet.

Figure 18. Graph As/(As+Sb) vs. Cu (apfu) for members of the polybasite group from the Kremnica deposit.
Figure 19. Graph As/(As+Sb) vs. Se (apfu) for members of the polybasite group from the Kremnica deposit.

4.5. Ag-Pb sulphosalts

Diaphorite is relatively common mineral in the studied mineral association. It occurs as anhedral grains and aggregates up to 150 μm in size (Fig. 20), which are replacing galena and are predominantly associated with miargyrite, pyrargyrite-proustite and minerals of the tetrahedrite group.

Figure 20. (a) Diaphorite (Di) in association with clausthalite (Cl), pyrargyrite (Py) and Ag-rich tetrahedrite (Td); (b) diaphorite (Di) associated with galena (Ga), miargyrite (Mi) and Ag-rich tetrahedrite (Td); both back-scattered electron (BSE) images.

The chemical composition of diaphorite from the Kremnica deposit (Table S15) slightly differs from ideal formula Ag₃Pb₂Sb₃S₈, especially in Ag/Pb ratio, which is ranging from 1.63 to 1.98 (Fig. 21). The similar variations were described by Mozgova et al. [59] on the base of microanalytical and crystallographic data from various occurrences of diaphorite. Mozgova et al. (1989) speculated about the existence of a continuous solid solution series between diaphorite and a phase with the formula Ag₃PbSb₂S₈ (old non-valid name "brongniardite") and concluded that this phase with Ag/Pb ratios
between 1.75 and 2.00 may be called as Ag-rich diaphorite. This hypothesis is supported by results of
study of diaphorite from Herja, Romania (Ag/Pb = 1.53 - 1.69) [60], Apuan Alps, Italy (Ag/Pb = 1.67)
[61] or Poličany, Czech Republic (Ag/Pb = 1.47 - 1.80) [42]. Diaphorite samples with composition
close to the ideal stoichiometry (Ag/Pb = 1.44 - 1.54) were found at other localities - Kutná Hora,
Czech Republic [62-63] or Příbram, Czech Republic [64]. The determined minor contents of As (up to
0.34 apfu) in diaphorite from Kremnica negatively correlates with Sb, indicating existence of the
AsSb⁻¹ substitution. The observed range of SSe⁻¹ substitution in anion part of formula (up to 0.86
apfu) are significantly higher than those published for Se-bearing diaphorite from Kutná Hora,
Czech Republic (up to 0.29 apfu Se) [42].

![Graph Ag/Pb vs. Se/(S+Se) (apfu) for diaphorite from the Kremnica deposit.](image)

Figure 21. Graph Ag/Pb vs. Se/(S+Se) (apfu) for diaphorite from the Kremnica deposit.

Minerals of the andorite branch are relatively rare. They occur as subhedral to anhedral grains
and aggregates up to 100 μm in size, which show slight irregular to oscillatory chemical zoning in
BSE images (Fig. 22). The most common associated minerals are miargyrite, pyrargyrite-proustite,
galena-clausthalite and minerals of the tetrahedrite group. Minor amounts of freibergite, scainiite,
plagonite and robinsonite were also observed together with andorites.

The results of chemical analyses of andorite VI shows for the majority of analytical points its
oversubstituted character with %And substitution reaching up to 112 (Fig. 23). This chemical
composition corresponds to the so-called nakaselite defined by Ito and Muraoka [65] with 106 %And,
which was later confirmed by Moëlo et al. [66] to be an oversubstituted, Cu-rich (about 1 wt. %)
variety of andorite VI; the contents of Cu in the studied material from Kremnica reaches up to 1.1 wt.
% (Table S16). The presence of very thin zones with different chemical compositions observed in BSE
images (Fig. 22b,c) suggests also a possibility of exsolution of structures of andorite VI and a mineral
phase close to roshchinite [67-68].

During the study of chemical composition of andorite IV (Table S17, Fig. 23) the N_chem values
between 3.99 - 4.14 (mean 4.05) and %And substitution 91 - 96 (mean 94) were found, which is in a
good agreement with published data [66].
Figure 22. (a) Andorite VI (An) associated with miargyrite (Mi); (b) andorite VI (An) intergrown with Ag-excess fizélyite (Fi) and miargyrite (Mi); (c) zonal andorite VI aggregate with inclusions of Ag-excess fizélyite (white); (d) aggregates of andorite IV (A4) in association with gold (Go), miargyrite (Mi), pyrargyrite (Py) and Ag-rich tetrahedrite (Td); all back-scattered electron (BSE) images.

A mineral phase with N_{chem} value in the range 4.39 - 4.72 and $\%$And substitution 67 - 70 (Fig. 23, Table S18) corresponds very well with so-called Ag-excess fizélyite. It was described for the first time on the basis of chemical composition as "minéral F" from Les Farges in France by Moëlo et al. [66] and later from the Lill mine in Příbram, Czech Republic, by Plášil et al. [69]. Structurally, it was defined by Yang et al. [70] in samples from Van Silver mine, Canada. It significantly differs from fizélyite by higher Ag contents, the excess silver is situated at the Ag2 site in the crystal structure [70], which remains unoccupied in "standard" fizélyite. Higher Ag contents results in a shift of calculated N_{chem} (the width of the blocks of octahedra separated by Pb atoms in trigonal prismatic coordination) to higher values than 4. The mineral from Van Silver mine shows calculated values of N_{chem} in the range of 4.31 - 4.59 with mean of 4.42 [70], whereas those described recently from Poličany, Czech Republic, shows a wider range of N_{chem} values of 4.27 - 4.91 with mean of 4.54 [42].

The selenium contents in minerals of the andorite branch are relatively low (Fig. 24). The higher range of SeS$_2$ substitution (up to 5.71 wt. % Se) was determined for some aggregates of andorite IV and VI only.

Freislebenite is very rare. It forms irregular anhedral grains and inclusions up to 20 μm in size enclosed in andorite, which are associated with Se-rich miargyrite. Its chemical composition is close to ideal formula (Table S19); only minor contents of As (up to 0.08 apfu) were determined. Se contents are also low (up to 0.01 apfu).
Figure 23. Graph N value vs. % And substitution for members of the andorite branch from the Kremnica deposit.

Figure 24. Graph Se vs. S contents (at. %) for members of the andorite branch from the Kremnica deposit.

4.6. Pb-Sb sulphosalts

Scainiite is very rare. It occurs as anhedral grains up to 10 μm in size associated with robinsonite, plagonite, andorite, Se-poor galena and miargyrite (Fig. 25). Its chemical composition (Table S20) is close to published data for scainiite from the type occurrence in Buca della Vena mine,
Italy [71]; moreover minor contents of Ag, Fe, Cu and Hg were identified. In anionic site, only irregular contents of Se up to 3.68 apfu (3.49 wt. %) were observed.

Figure 25. (a) Robinsonite (Ro) and scainiite (Sc) in association with galena (Ga), miargyrite (Mi) and andorite VI (An); (b) plagionite (Pg) and scainiite (Sc) associated with galena (Ga), and andorite VI (An); both back-scattered electron (BSE) images.

Plagionite is also very rare. It forms single elongated grain 15 μm in size, which is associated with andorite, Se-poor galena and scainiite (Fig. 25b). Its chemical composition (Table S21) corresponds to the ideal formula Pb$_5$Sb$_8$S$_{17}$ [48]. The determined minor contents of Ag, Fe, Hg and Cu may be caused by surrounding phases. Apart from sulphur, the anionic site contains minor amounts of selenium reaching up to 1.24 apfu (3.81 wt. %).

Robinsonite was found only in one polished section, which also contained scainiite and plagionite. It forms single irregular grain 15 μm in size (Fig. 25a), which is accompanied with scainiite, Se-poor galena, andorite and minor miargyrite. Its chemical analyses (Table S22) are close to the ideal composition Pb$_4$Sb$_6$S$_{13}$ [48], the observed minor amounts of Ag, Fe and Cu may be caused by surrounding mineral phases. In anionic site, contents of Se up to 0.71 apfu (2.80 wt. %) were determined.

5. Discussion

5.1. Paragenetic evolution of ore mineralization

The ore minerals form usually small (mm to tenths of mm big) mutually isolated aggregates enclosed in quartz or fillings of comparatively small cavities in gangue minerals (both quartz and dolomite). No crosscutting phenomena have been observed among individual ore minerals in the studied polished sections indicating virtual absence of tectonic movements during crystallization of the vein filling. Although being very rich in number of mineral species, typical feature of the studied mineralization include much more limited amount of ore phases (i.e., up to six) in individual ore aggregates. Moreover, tiny grains of many phases occur very sporadically. All these observations make difficult the construction of an unified general paragenetic sequence involving all above described ore species, which can be based only on assessment of mutual boundaries among minerals (i.e., growth, replacement) and evaluation of enclosing relationships among minerals.

The paragenetic evolution of ore mineralization can be divided into three portions based on their relative ages: early, middle and late. This notation is mainly due to reader’s comfort, it does not represent individual substages separated by tectonic events.

The early portion of the studied ore paragenesis includes base-metal sulphides, Au-Ag alloys, and minerals of the galena - clausthalite series. The base-metal sulphides (sphalerite, pyrite, chalcopyrite) represent the oldest part of ore mineralization. These minerals form aggregates, which are typically not spatially associated with younger Au-Ag mineralization. In addition, overall
absence of selenium in base-metal sulphides also suggests their pertinence to a mineralizing event not related to the Se-bearing Au-Ag mineralization. The early phases of the younger Au-Ag mineralization are represented by Au-Ag alloys and minerals of the galena - clausthalite series.

These phases typically form relatively small individual isolated grains, surrounded (or replaced) by mineral phases belonging to the middle and late associations. Both phases are almost never in mutual contact, only one observation indicated that native gold is older than galena. Although both phases show wide variations in chemical composition, we have not observed some systematic differences in mineral paragenesis associated with compositional counterparts of both mineral series. The plausible component of the early assemblage is probably also uytenbogaardtite, which was observed only once as an overgrowth on a gold particle, enclosed in miargyrite.

The middle portion of the studied ore assemblage seems to be mineralogically very different in various samples and/or individual ore aggregates within single sample. Common features characterizing this part of the studied paragenesis are (i) spatial relationship to grains of minerals of the galena - clausthalite series and (ii) a clear replacement relation of at least early portion of newly formed mineral phases to the minerals of the galena - clausthalite series. Three principal mineral assemblages were observed in the middle paragenetic position:

2a: Pb-Sb sulphosalts (robinsonite, scainiite, plagionite) followed by Pb-Ag sulphosalts (Ag-excess fizelyite, andorites);
2b: diaphorite;
2c: minerals of the acanthite - naumannite compositional series.

In most cases, these mineralogically distinct assemblages seem to occur separately. In one case, small isolated inclusions of diaphorite occurred together with inclusions of andorite (both enclosed in miargyrite), but the mutual relationship of both phases is not clear. It therefore remains open question the reasons of origin of such three paragenetically different assemblages. The observed generally antipathetic relationships among these three parageneses can be the result of continuous temporal evolution in composition of fluids (i.e., from a Pb-Sb-rich via Pb-Ag-Sb to an Ag-rich one) in combination with missing textural evidence for continuous evolution of mineral paragenesis. Alternatively, mixing of fluids with contrasting chemical composition (i.e., one Pb-Sb-rich and another Ag-rich) at site of mineral precipitation may be another possibility to explain the precipitation of virtually coeval very different mineral assemblages occurring at different places.

The youngest portion of the studied ore assemblage includes minerals of the pyrargyrite-proustite series, miargyrite, minerals of the polybasite group, and minerals of the tetrahedrite group. Therefore, parent fluids were rich in Ag, Cu, Sb and As. The following three paragenetic sequences were observed:

3a: Pyrargyrite → miargyrite → tetrahedrite group minerals;
3b: Polybasite/pearceite → proustite → tetrahedrite group minerals;
3c: Proustite/pyrargyrite → pearceite.

Paragenesis 3a is generally Sb-rich, whereas assemblages 3b and 3c show much greater involvement of As. This can indicate participation of two fluids with contrasting compositions. An opposite temporal relationship between proustite and pearceite in assemblages 3b and 3c can reflect the presence of multiple generations of these phases (but not indicated by systematic differences in chemical composition of these phases), or essentially coeval crystallization of both phases. The latter possibility can be supported by situation in one ore aggregate, where subordinate pearceite/polybasite forms graphic-like intergrowths with pyrargyrite/proustite host. In minerals of the polybasite group, pyrargyrite-proustite series as well as silver-rich tetrahedrites, there the As/(As+Sb) ratio tends to increase during crystallization.

5.2. Comparison with similar epithermal mineralizations

The ore association of the studied vein mineralization is characterized by the presence of abundant base-metal sulphides (galena and sphalerite besides pyrite), Pb-Sb(-Ag) sulphosalts, native silver to Ag-rich gold (electrum), selenides and Se-enriched sulphides. By contrast, tellurides and Mo-minerals are missing. The mineralization is thus characterized by high Ag/Au and Se/Te
ratios. Gange contains abundant dolomite in addition to quartz. Wall-rock alterations gave rise to abundant adularia and illite/smectite, whereas alunite is missing. These mineralogical and geochemical features suggest the pertinence of the studied vein to the low-sulphidation epithermal mineralizations [72].

In the area of the neighbouring Štiavnica Ore Districts, similar Au-Ag low-sulphidation vein mineralization hosted by propylitized andesites of the Štiavnica stratovolcano was described from Hodruša-Hámre and Nová Baňa sites [73-75]. The paragenetic situation is very similar to those observed in this study, mostly including the wide variability in As/Sb ratios of the tetrahedrite group minerals, proustite-pyargyrite series, and polybasite-pearceite series. However, the observed Se contents are generally low in ore minerals (up to 0.42 wt. % in proustite, 0.22 wt. % in tennantite, and 1.9 at. % in acanthite; data from Nová Baňa only). The origin of uytenbogaardtite and acanthite, occurring in similar textural position to our samples, is however interpreted in terms of late superimposed (namely supergene) enrichment at both sites [73, 75]. In our material, this interpretation is not probable at least in case of acanthite, which is usually Se-rich and often even alternated in the same paragenetic position by aguilarite or naumannite which are invariably characterized as hypogene hydrothermal phases [76].

5.3. Origin of the studied mineralization

Koděra et al. [23] Koděra et al. [74], Majzlan et al. [75] and Majzlan et al. [76] characterized formation conditions of paragenetically similar but Se-poor low-sulphidation Ag-Au mineralization occurring at the Kremnica, Hodruša-Hámre and Nová Baňa sites on the basis of fluid inclusion and stable isotope studies. Authors interpreted the source of fluids in a mixture of meteoric and magmatic waters. Most of the present fluid inclusions show low salinities of aqueous fluids (0.5 to 5 wt. % NaCl eq.), which could be increased locally up to the 24 wt. % NaCl eq. due to the boiling of fluids. The ore mineralization was deposited mostly at temperatures between ca. ~270 to 190 °C, locally at lower temperatures down to ~160 °C.

The above-mentioned formation temperatures can be adopted also in case of the Se-rich mineralization under this study, as is indicated from chemical composition of some ore minerals. The observed As content in miargyrite (up to 0.23 apfu) requires formation temperatures between 200 and 350 °C [45]. Similarly, the observed complete miscibility between pyrargyrite and proustite indicates temperatures above 200 - 300 °C [45-46].

The crystallization of native silver followed by acanthite/aguilarite/naumannite requires increase in fugacity of sulphur, selenium, or both, as is indicated from fSe – fS2 diagram (Fig. 26). The diagonal evolutionary trend is characteristic for epithermal ore deposits [34]. The close position of boundaries of stability of pairs acanthite - naumannite and galena - clausthalite in the same plot (Fig. 26) well explains the observed common spatial association of minerals from both compositional series. The character of the discovered selenium mineralization indicates the formation from hydrothermal fluids with fS2 slightly above or close to hematite-magnetite buffer and a fSe/fS2 ratio close to unity. The presence of minerals of galena - clausthalite solid solution show that the upper values of the fSe/fS2 ratio were more likely controlled by the galena - clausthalite buffer, which is still close a unity [33-34]. The occurrence of naumannite and acanthite which was deposited together with silver and Ag-sulphosalts requires conditions close to the native Ag - naumannite + acanthite invariant points [34, 77]. Together with observed minerals of the galena - clausthalite series it is possible to define a range of logfSe of the parent fluids between -18 and -25 and logfS2 between -15 and -20, respectively [34, 77]. These values correspond very well with conditions published for selenide-bearing Au-Ag epithermal deposits [34].
Figure 26. The f_{S} versus f_{Se} diagram showing the relative stability of sulphides and selenides at 200°C (adopted from Zhuravkova et al. [78]). Arrow indicates probable evolutionary trend during crystallization of early portion of the studied precious-metal mineralization. Explanations: bn – bornite, ccp – chalcopyrite, po – pyrrhotite, py – pyrite.

6. Conclusions

(1) The previously unknown selenium minerals (clausthalite, naumannite, aguilarite, selenopolybasite and "selenopearceite") and increased selenium contents in Ag-Sb(-As), Ag-Cu, Ag-Pb and Pb-Sb sulphosalts were determined in a hydrothermal quartz - dolomite vein from the Václav-south adit. This vein belongs to veins of the central part of the 1st vein system of the historical gold deposit Kremnica. The observed contents of Se in suphosalts belong to the highest ever found worldwide.

(2) A suite of more than twenty Ag-bearing minerals was determined in samples from the studied vein: minerals of the Au-Ag solid solution, acanthite, aguilarite, naumannite, uyttenbogaardtite, Ag-Sb(-As) sulphosalts (miargyrite, pyrargyrite, proustite), Ag-Cu sulphosalts (Ag-rich tetrahedrite, freibergite, Ag-rich tennantite, argentotennantite, polybasite, pearceite, selenopolybasite, "selenopearceite"), Ag-Pb sulphosalts (diaphorite, andorite VI, andorite IV, Ag-excess fizeyite, freislebenite). The rare Pb-Sb sulphosalts (scainiite, plagionite, robinsonite) were also identified at the studied occurrence.

(3) Besides observed SeS$_1$ substitution, a wide range of AsSb$_1$ substitution is characteristic for the studied mineral association: complete solid solutions between proustite - pyrargyrite, polybasite - pearceite, tetrahedrite - tennantite and freibergite - argentotennantite were confirmed.

(4) Similarly to the whole Kremnica deposit, the studied hydrothermal vein is a typical example of low-sulphidation epithermal Ag–Au mineralization. The mineralization of the Kremnica deposit was formed from low-salinity fluids composed of a mixture of meteoric and magmatic waters at temperatures mostly between ca. ~270 to 190 °C. These temperatures are in agreement with observed high contents of As in miargyrite and complete miscibility between pyrargyrite and proustite.

(5) The described association of selenides and other Se-bearing mineral phases indicates hydrothermal fluids with f_{O2} slightly above or close to hematite-magnetite buffer. The $log f_{Se}$ of
parent hydrothermal fluid probably ranged between -18 and -25 and \(\log f_{\text{S}_2} \) varied between -15 and -20. These values correspond very well with conditions published for selenide-bearing Au-Ag epithermal deposits.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1:

Table S1: Chemical composition of members of claustralite (cla) - galena (gal) solid solution.

Table S2: Chemical composition of mineral phases along the Ag:S - Ag:Se join.

Table S3: Chemical composition of members of gold (gol) - silver (sil) solid solution.

Table S4: Chemical composition of miargyrite.

Table S5: Chemical composition of uytenbogaardtite.

Table S6: Chemical composition of members of proustite (pro) - pyrargyrite (pyr) solid solution.

Table S7: Chemical composition of tetrahedrite.

Table S8: Chemical composition of freibergite.

Table S9: Chemical composition of tennantite.

Table S10: Chemical composition of argentotennantite.

Table S11: Chemical composition of polybasite.

Table S12: Chemical composition of selenopolybasite.

Table S13: Chemical composition of pearceite.

Table S14: Chemical composition of "selenopearceite" - unnamed Se-analogue of pearceite.

Table S15: Chemical composition of diaphorite.

Table S16: Chemical composition of andorite VI.

Table S17: Chemical composition of andorite IV.

Table S18: Chemical composition of Ag-excess fizeýrite.

Table S19: Chemical composition of freieslebenite.

Table S20: Chemical composition of scavinite.

Table S21: Chemical composition of plagionite.

Table S22: Chemical composition of robinsonite.

Author Contributions: Martin Števko and Pavel Škácha found mineralogical samples. Jiří Sejkora and Zdeněk Dolníček conducted the WDS analyses and Martin Števko, Jiří Sejkora and Zdeněk Dolníček wrote the paper.

Acknowledgments: The research was financially supported by the Ministry of Culture of the Czech Republic (DKRVO 2018/02; National Museum 00023272). Referees ... as well as guest editor Hans-Jürgen Förster are acknowledged for comments and suggestions that helped to improve the early version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

34. Simon, G.; Kessler, S.E.; Essene, E.J. Phase relations among selenides, sulfides, tellurides, and oxides. II. Application to selenide-bearing ore deposits. Econ. Geol. 1997, 92, 468-484.

42. Pažout, R.; Sejkora, J.; Šrein, V. Ag-Pb-Sb sulphosalts and Se mineralization of the St. Antony de Padua mine at Poličany - model example of the mineralization of silver lodes in the historic Kutná Hora Pb-Zn-Ag ore district (Czech Republic). Minerals (submitted).

58. Luca Bindi, personal communication.
59. Mozgova, N.N.; Efimov, A.V.; Nenasheva, S.N.; Golovanova, T.I.; Svetsov, A.V.; Tsepin, A.I.; Dobretsova, I.G. New data on diaphorite and other PbSb phases in dump of the Lill mine (in Russian).
70. Orlandi, P.; Moelo, Y.; Meerschaut, A.; Palvadeau, P. Lead-antimony sulfosalts from Tuscany (Italy); I, Scainiite, Pb$_2$Sb$_3$S$_9$Os, the first Pb-Sb oxy-sulfosalts, from Buca della Vena Mine. *Eur. J. Mineral.* **1999**, *11*, 949-954.