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Abstract: Keyhole neurosurgery implies reaching a target area inside the brain through an entry 18 
point specified by the neurosurgeon. In order to avoid complications, a risk assessment procedure 19 
must be done to establish the minimum risk trajectory from the entry point to the target area. The 20 
neurosurgeon establishes the risk values for the brain structure according to the type of 21 
intervention. The preset brain structure risk value is used to assess the risk value for each voxel of 22 
the brain. This paper proposes an improved risk assessment methodology based on the sum of N 23 
maximum risk values for each voxel. Then, risk assessment for a trajectory is done by adding the 24 
risk of all voxels that are part of the path. The safest trajectory is defined as the trajectory with the 25 
lower risk. Our proposed search trajectory methodology includes a Genetic Algorithm (GA) for 26 
finding the safest trajectories. The use of a GA drastically reduces the number of trajectories to 27 
analyze, speeding up the planning procedure. The achieved results were qualified by expert 28 
neurosurgeons as satisfactory. Our proposed method allows neurosurgeons to calibrate the 29 
surgical planning system by allowing them to establish the risk brain structure and the risk value 30 
for each structure. 31 

Keywords: genetic algorithms; trajectory planning; keyhole neurosurgery; risk assessment; medical 32 
imaging 33 

 34 

1. Introduction 35 
One of the main concerns of neurosurgeons in performing brain surgical interventions is to 36 

minimize the damage caused during a surgical procedure. The goal of minimally invasive surgery is 37 
to operate with a minimum of trauma while achieving maximal surgical efficiency [1]. To increase 38 
the success odds in a surgical intervention, a meticulous preoperative planning should be done, in 39 
which the determination of multiple factors can be reached such as the best surgical approach point 40 
and the safest trajectory to the surgical target. The dimension of the craniotomy is reduced by 41 
finding the best surgical approach for an intervention. Therefore, planning surgical trajectories is 42 
vital for neurosurgeon. The craniotomy should be as small as possible for minimally invasive 43 
exposure but as large as necessary for achieving maximal surgical effect. Therefore, limited exposure 44 
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is not the primary goal but the result of the keyhole concept, with the main and most important goal 45 
being to avoid surgery-related complications [2].  46 

 47 
 Keyhole neurosurgery is an invasive intervention which attempts to reach a target area in the 48 
brain. The definition of the entry point is crucial for the surgical procedure. One key problem in a 49 
surgery is planning the trajectory from a surgical approach to the target area. Once the entry point 50 
has been selected, the surgical tool should follow a trajectory from it to the target. In keyhole 51 
neurosurgery the main goal is to find the best corridor to make a straight trajectory which is easier to 52 
perform. A poor decision in the trajectory selection could lead to cause further complications such as 53 
bleeding, damage of fundamental cerebral functions or even death [3]. In order to achieve a 54 
considerable risk reduction in surgical interventions, the search for incision areas and trajectories 55 
with lower risk is a great interest topic for neurosurgeon. 56 
 57 

Modern medical imaging techniques have given rise to the development of methodologies for 58 
the construction of data analysis systems for medical applications such as lesion segmentation and 59 
diseases diagnosis [4]. Such systems use information extracted from medical images datasets 60 
obtained by computed tomography (CT) or magnetic resonance imaging (MRI), providing surgeons 61 
with tools for better decision-making.  62 

 63 
Medical image data is obtained by several methods such as CT and MRI, where a contiguous 64 

series of image slices are captured [5]. Each slice denotes a cut through the scanned body structure 65 
with a particular thickness. The pixels within each image slice are represented by scalar values that 66 
can be interpreted as intensity values [6]. Each slice represents a movement in the z-axis of the 3D 67 
image. The minimum processing unit in a 3D image is a volumetric pixel (voxel).  68 

 69 
An application of medical imaging techniques is the planning of surgical trajectories, which is 70 

an auxiliary tool used by the neurosurgeons in the decision making process for surgical 71 
interventions. The problem of planning surgical trajectories can be divided into two stages: 72 
assessment of risk values for each considered voxel and search of the minimum risk trajectory. 73 
Multiple investigations have been carried out and several techniques have been proposed to 74 
calculate the risks in the surgical trajectories using the patient’s medical images [7-15].  75 

 76 
The interest in surgery trajectory planning has sparkled several methodologies. Vaillant et al. 77 

proposed association of risk values to brain structures [7]. Then a risk map of the brain is obtained 78 
through Atlases and image registration techniques. This map contains the risk values for each voxel 79 
associated to a preset risk of a brain structure. Then a weighted sum of the risks associated with each 80 
voxel is calculated to obtain a trajectory. However, this work does not calculate a risk map of the 81 
brain and also does not consider the length of the trajectory. Additionally the use of Atlases limits 82 
the accuracy of the method since the risk structures were not obtained from the patient images. 83 

 84 
Lee et al. proposed an assisted planning trajectory tool based on the combination of patient 85 

MRIs with a 3D Brain Atlas [8]. The method is capable of locate risk structures as well as tool 86 
insertion point. However, the trajectory is obtained manually by the expert neurosurgeon assisted 87 
by the proposed system. This implies a random search for the trajectory with less risk, but does not 88 
assure to find the safest trajectories. 89 

 90 
The automatic acquisition of trajectories became a point of interest, so in the proposal of 91 

Fujii et al. it was presented a work on automatic trajectory planning using the blood vessels as risk 92 
structures [9]. The authors proposed a Cost of Blood Vessel Dominant Area (CBVDA) function to 93 
calculate risk associated to blood vessels. This function was based on the distance between the 94 
voxels of the risk structure and the planned trajectory. Nevertheless, this approach considered as a 95 
risk structure only blood vessels. Additionally, the selection of the trajectory was based on analyzing 96 
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all possible trajectories to find a minimum risk trajectory. The calculation of all possible trajectories 97 
leads to a high computational load causing elevated processing times.    98 

 99 
The use of trajectory search algorithms extends to different types of brain surgical 100 

interventions. Brunenberg et al. proposed a methodology for Automatic Trajectory Planning in Deep 101 
Brain Stimulation interventions. In this work, the trajectory risk was calculated based on Euclidean 102 
distance between the trajectory and the risk structures [10]. A preset threshold determines the 103 
maximum distance allowed to find the best trajectory. Then, all possible trajectories within the 104 
threshold were calculated and the minimum risk trajectory was selected. The computational cost 105 
was reduced due to the limited number of trajectories. However, if the best trajectory is outside the 106 
preset threshold the algorithm will only find a suboptimal trajectory. 107 

 108 
Shamir et al. determined risk structures to voxels belonging to brain structures such as blood 109 

vessels and ventricles. Then, risk values were associated to each voxel based on the distance to risk 110 
structure voxels forming a risk map. A trajectory risk was defined as the weighted sum of the risk 111 
value of all voxels that cross the trajectory. Then, all possible trajectories were calculated from the set 112 
of entry points to a set of target area. The minimum risk trajectory was selected [11]. However, this 113 
definition of the risk trajectory cost does not consider that a voxel is surrounded by two or more 114 
brain structures. 115 

 116 
Essert et al. used ventricles and sulci segmented from MRI images as a risk structures. Then, 117 

marching cubes approach was used to obtain 3D meshes of risk structures. A set of rules indicating 118 
the risk conditions in deep brain stimulation (DBS) were defined. Subsequently, the set of rules were 119 
divided in soft and strict restrictions. The division was based on the importance of the surgical rule. 120 
Then, the optimal trajectory was defined as the lowest risk trajectory based on the rules and 121 
restrictions previously defined [12]. However, to estimate the best trajectory, the calculation must be 122 
made for each of the candidate trajectories. 123 

 124 
The amount of information that must be processed for trajectory planning is large, leading to 125 

high processing times. Therefore, a speed up in the algorithm was proposed by 126 
Rincon-Nigro et al. [13]. This method employed meshes for grouping multiple voxels information 127 
which greatly reduced the amount of information to be processed. In addition, the information was 128 
processed using Graphic Processing Unit (GPU) which resulted in short processing times. Although 129 
better results were obtained in terms of processing time, the acquisition of the risk map by meshes 130 
and not by voxel decreases the precision to the algorithm because close voxels with the same risk are 131 
gather into a mesh.  132 

 133 
An improvement of the methodology presented by Shamir [11] was introduced by 134 

De León-Cuevas [14]. In this work, a fuzzy logic system for trajectory evaluation was proposed. The 135 
authors proposed a set of fuzzy rules corresponding to the soft and strict restrictions. Like other 136 
works, this proposal requires a thorough calculation of the risk of each trajectory. 137 

 138 
Hamze et al. performed a comparison of several methodologies for planning trajectory in deep 139 

brain stimulation procedures [15]. This methodology used a model of triangular surface meshes of 140 
the sulci, the ventricles and the subthalamic nucleus segmented from MRI images. The 141 
neurosurgeon assigned a risk value to each mesh. Then, the risk assessment is done by means of 142 
several methodologies to compare the results. In this work, a Non-dominated Sorting Genetic 143 
Algorithm II (NSGA-II) was employed, resulting in lower processing time to find the safest 144 
trajectory. This algorithm was based on stochastic search of trajectories considering an initial 145 
population of N possible trajectories and performing crossover and mutation operations in an 146 
iterative stage of M generations. Although processing times were improved by the use of the 147 
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NSGA-II algorithm, the accuracy of the risk values decreases due to the calculation of risk in meshes 148 
instead of individual voxels. 149 

 150 
All previous methodologies are summarized in Table 1. The surgical trajectory planning is 151 

basically an optimization problem that tries to find the optimal trajectory that minimize the risk to 152 
damage an important brain structure. All previous approaches differ in the definition of risk 153 
structures and cost function. However, the processing time is high due to the fact that most of the 154 
methodologies performed an exhaustive search of trajectories forcing them to calculate all possible 155 
trajectories. In order to speed-up the process, a limited area of search has been proposed. However, 156 
this limitation may cause to find a sub-optimal trajectory. Additionally, association of voxels in grids 157 
or meshes have been proposed to accelerate the process. However, these approaches suffer from lost 158 
in precision. On other hand, the function cost in most cases consider the distance to risk structure but 159 
only consider one structure, leading to an unrealistic scenario because more than one structure 160 
surrounds each voxel.  161 
 162 
Table 1. Comparison of previous approaches in trajectory planning for image guided neurosurgery. 163 

Method Risk Evaluation Trajectory Search Additional 
Considerations 

Vaillant et al. [7] Weighted sum Exhaustive search Atlas Image registration  
Lee et al. [8] No risk evaluation Manual Atlas Image registration  
Fujii et al. [9] Maximum Exhaustive search Voxel Based 
Brunenberg et al. [10] Maximum Distance threshold Atlas Image registration  
Shamir et al. [11]  Maximum  Exhaustive search Voxel based 
Essert et al. [12]  Geometric constraints Rules based solver Mesh based algorithm 
Rincon-Nigro et al. [13]  Avoid critical meshes Trajectory length  Mesh based algorithm 
De León et al. [14]  Maximum Fuzzy logic Voxel based 
Hamze et al. [15]  Weighted sum NSGA-II/Montecarlo Mesh based algorithm 
Current approach Sum of N Maximum GA Voxel Based 

 164 
The proposed methodology allows the configuration of the brain structure that will be 165 

considered as risk structures. The selection of the brain structures is done by the end user 166 
(neurosurgeon) and depend on the type or surgery that will be performed. This feature gives the 167 
neurosurgeon the ability to adapt the calculation of the trajectory taking into account the risks 168 
corresponding to the type of intervention as well as the particular case of a patient, obtaining a set of 169 
suggestions for the safest trajectories. An improvement over the risk assessment is performed by 170 
introducing the value of multiple risk structures that surrounds a given voxel. The risk map is based 171 
on the segmented risk structures using patient’s information. The accuracy of the results are 172 
guarantee by assessing the risk for each voxel instead of using a set of voxels gather in a mesh.  173 

 174 
The main objective of this work is the improvement of technical planning of surgical trajectories 175 

through a risk assessment that includes multiple structures and the use of optimization algorithms 176 
for the searching the minimum risk trajectory. Thus, the contributions of this work are the 177 
generation of a risk map that includes more than one structure that surrounds a given voxel and the 178 
use of a genetic algorithm (GA) to perform a search of the trajectory with the least risk, without the 179 
need to apply an exhaustive search of all the possible trajectories, considering a set of entry points 180 
that they draw straight trajectories towards a series of target points. GA provides an adaptive search 181 
methodology in complex scenarios [16-19], because GA are known as global search methods 182 
avoiding local minima, overcoming typical optimization algorithms. Therefore, they are a viable 183 
option to solve the problem of trajectory planning. 184 

 185 
The remainder of the paper is organized as follows. Section 2 describes the proposed 186 

methodology showing all the operations to be done in the medical image such as brain structures 187 
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segmentation (2.1) and the proposed risk assessment methodology (2.2) and selection of trajectories 188 
(2.3). Section 3 shows the application of the methodology in a case of study. Conclusions and results 189 
are presented in section 4.  190 

2. Materials and Methods  191 
Surgical trajectory planning involves several steps. Figure 1 shows the proposed methodology 192 

workflow. The method begins with the medical image dataset under consideration.  193 

 194 

Figure 1. Proposed workflow for trajectory planning. 195 

Once the input data has been selected, segmentation of brain structures is performed. The brain 196 
structure considered in this work are cranial surface, cerebral cortex, blood vessels and ventricles. 197 
Using the patient's images and the segmented cranial surface the neurosurgeon can select the target 198 
area and the entry area respectively. Then, the risk map is calculated using the defined risk 199 
structures (blood vessels and ventricles). The candidate trajectories are generated using the risk map. 200 
Then the obtained trajectories are shown to the neurosurgeon.  201 

 202 
The medical images used in this work are formatted in the Digital Imaging and 203 

Communications in Medicine (DICOM) standard with a resolution of N x M voxels. The specific set 204 
of images used is a Magnetic Resonance Angiogram (MRA) with a resolution of 512 x 514 and 236 205 
slices each slice has a thickness of 0.51 mm. 206 

2.1. Structures Segmentation. 207 
Segmentation can be defined simply as the partitioning of a dataset into disjoint sets whose 208 

member elements have commons and cohesive properties [20]. The segmentation of several 209 
structures in the brain was performed using the Medical Imaging Interaction Toolkit (MITK) [21].  210 

 211 
The segmentation of the cranial surface is done using thresholding techniques. The principle of 212 

the thresholding techniques is based on the correct selection of the appropriate thresholds to divide 213 
the pixels of the image and to separate the objects from the background [22]. This operation is 214 
expressed by the following equation: 215 𝑆(𝑥, 𝑦, 𝑧)  =  0   𝑓(𝑥, 𝑦, 𝑧)  <  𝑇1   𝑓(𝑥, 𝑦, 𝑧)  ≥  𝑇 , (1)

where 𝑆(𝑥, 𝑦, 𝑧) is the function that indicates the gray level value of the image in the coordinate 216 (𝑥, 𝑦, 𝑧) and T is the value used as threshold. Usually the selection of the value of T is done manually 217 
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by verifying the correct segmentation of the objective area. However peaks and valleys of the image 218 
histogram can help in choosing the appropriate value for the threshold.  219 
 220 

The cranial surface segmentation provides an image where the neurosurgeon can define an 221 
entry area that consists of all possible starting points of the candidate trajectories. Segmentation also 222 
provide the isolation of the brain to start working in the risk map. This technique is also used to 223 
make the brain segmentation. 224 

 225 
Structures selected by the neurosurgeon for the calculation of risk are segmented using region 226 

growing flood-fill technique [20]. This method begins with a set of seed voxels within the region 𝑅. 227 
For all voxels connected to the seeds, a similarity function 𝑆(𝑝 , 𝑝 ) is applied by means of which 228 
the connected voxels that meet this function are added to the region R. If the similarity function is 229 
based on a threshold value, it can be expressed by the following equation: 230 𝑆(𝑝 , 𝑝 )  =   0   |𝑔(𝑝 )  −  𝑔(𝑝 )|  <  𝑇1   |𝑔(𝑝 )  −  𝑔(𝑝 )| ≥  𝑇  , (2)

where the function 𝑔(𝑝 ) returns the gray level value of the voxel 𝑝  and T is the threshold 231 
value. If the function S applied to the Voxel seed 𝑝  with a connected voxel 𝑝  and it results in the 232 
similarity of both voxels, then 𝑝  is added to the segmented region and becomes a new voxel seed. 233 
Equation 2 can be extended with the objective of using two threshold values, one upper and one 234 
lower: 235 𝑆(𝑝 , 𝑝 )  =   0   |𝑔(𝑝 )  −  𝑔(𝑝 )|  >  𝑇  ⋀ |𝑔(𝑝 )  −  𝑔(𝑝 )|  <  𝑇  1   |𝑔(𝑝 )  −  𝑔(𝑝 )|  ≤  𝑇  ∨  |𝑔(𝑝 )  −  𝑔(𝑝 )|  ≥  𝑇 . (3)

The segmented images of risk structures obtained, will be used later in the risk labelling 236 
process. For this work, the risk structures segmented were the blood vessels and ventricles. 237 
Ventricles are interconnected cerebral cavities that create cerebrospinal liquid to maintain 238 
intracranial pressure. Therefore, cannot be damaged. Blood vessels distribute blood through the 239 
brain and they should be avoided to prevent a cerebral hemorrhage. 240 

2.2. Proposed Risk Assesment Function 241 
Voxel risk assessment procedure must consider the distance to the preset risk structures. This 242 

process is known as risk labeling and is performed for all voxels obtained from the segmentation of 243 
the brain. 244 

 245 
In the labelling process, a risk percentage is associated to each voxel belonging to a preset risk 246 

structure. For this work, the voxels corresponding to blood vessels are assigned a risk value of 70% 247 
while the ventricles are assigned a risk value of 30%. These percentages values could change 248 
considering the type of surgery and must be defined by the expert neurosurgeon. 249 

 250 
Risk labelling should generate a map with the risk value for each voxel reflecting the position of 251 

the voxel regarding risk structures. Shamir et al. [11] proposed a risk assessment for each voxel as 252 
described in Equation 4. The risk for the voxel (𝑥) is calculated by a ratio of each risk structure 253 
divided by the distance from the voxel to that particular risk structure. The maximum ratio is 254 
assigned as the risk value of the given voxel (𝑥). The α constant is added to avoid division by zero. 255 

 256 𝑟𝑖𝑠𝑘( �̅� ) =  𝑚𝑎𝑥 𝑟𝑑𝑖𝑠𝑡(�̅�, 𝑠 ) + 𝛼  (4)

 257 
The last equation consider only the maximum ratio to a given risk structure. However, each 258 

voxel might be surrounded by more than one risk structure. Therefore, the after mentioned equation 259 
does not reflect a realistic scenario. An illustration of this situation is presented in Figure 2. The 260 
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distance between Voxel 1 and Voxel 2 to the Risk Structure 1 is the same, and assuming that the two 261 
risk structures have the same risk value. When the risk value is calculated using Equation 4, the risk 262 
value for Voxel 1 and Voxel 2 are equal, although in reality the risk for Voxel 2 should be greater, 263 
reaching this voxel implies passing by two nearby structures of risk, while the Voxel 1 only has a 264 
nearby structure. 265 

 266 

 267 
Figure 2. Risk calculation for 2 voxels considering 2 risk structures. 268 

In order to improve the modeling of several risk structure surrounding a given voxel, our 269 
proposal is to include N maximum values. The value of N corresponds to the number of risk 270 
structures close to a given voxel. 271 

 272 
The set all possible risk values for voxel x with respect to the segmented brain structure is 273 

defined in Equation 5. 274 
 275 𝑈 =   𝑟𝑑𝑖𝑠𝑡(𝑥, 𝑠 ) + 𝛼  1 ≤ 𝑘 ≤ 𝑛  (5)

 276 
The dataset 𝑈  is defined as the risk calculation for the Voxel x regarding to all risk structures 277 𝑠 . This calculation is made by a division of the risk of the structure 𝑟  and the distance between the 278 

structure 𝑠  and the Voxel x. A positive numerical constant 𝛼 is used to avoid a division by zero. 279 
The 𝑟  risk value assigned to each structure 𝑠  only can be assigned by an expert neurosurgeon 280 
according to the clinical case. For this study case, the neurosurgeon assigned a risk value of 0.3 to 281 
ventricles and 0.7 to blood vessels. 282 

 283 
Our proposed approach establishes that the risk value for Voxel x is the sum of k maximum 284 

values of the set 𝑈 . Figure 3 shows a block diagram for the calculation of 𝑟𝑖𝑠𝑘 , where k is the 285 
number of maximum values to be added. 286 

 287 
Figure 3. Block diagram of the calculation of risk for k maximum values. 288 

For risk calculation, the 𝑈  values are first sorted downwards, obtaining the 𝑈  array that 289 
contains all risk values ordered from higher to lower. Now the sum of the first k values in the 𝑈  290 
array is made, obtaining the value of 𝑟𝑖𝑠𝑘  equal to the sum of the k maximum values of 𝑈 . 291 

 292 
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This method is applied to all voxels that are part of the brain (obtained from the brain 293 
segmentation), obtaining the risk map as a three-dimensional array that contains the risk values for 294 
all the voxels corresponding to that area. 295 

2.3. Proposed Trajectories Selection Algorithm  296 
The trajectory is a set of contiguous voxels that begin in a point of entry and ends in a target 297 

area. The trajectory risk is measure as the sum of the voxel risk that compose it. Therefore, this value 298 
can be obtained until the risk labelling has been completed. The risk labelling process ends with a 299 
risk map that include the risk value for each voxel within the image. 300 

 301 
Previous approaches to this problem have searched for the safest trajectory by calculating all 302 

possible options and determine the risk associated to each one. Then, the lowest riak value is 303 
selected as the safest trajectory. This implies an exhaustive search and thus increases the processing 304 
time. Therefore, there is a need to find efficient search mechanism that can find the solution without 305 
the need to calculate all possible trajectories. 306 

 307 
Searching for a minimum risk trajectory is an optimization problem. GA can be used in these 308 

types of problems. These algorithms are designed to mimic the Darwin's fittest principle of survival 309 
[23], which is based on the best individuals having a better chance of adapting themselves to a 310 
specific environment and surviving, creating an offspring with better genes, which gives them better 311 
chances to survive in this environment [24]. 312 

 313 
The operation of a genetic algorithm consists of the inclusion of a group of individuals who will 314 

compete by means of an aptitude function, with the objective of verifying which are the most 315 
suitable. The best individuals are reproduced through techniques of crossing and mutation, 316 
producing in this way an offspring, which can being reinserted in the population, generating a new 317 
population that must produce better results regarding the aptitude function. 318 

 319 
GA were proposed by John Holland [17] as means of finding solutions to intractable 320 

computationally problems. Since then, this field has grown and is used in a common way in the 321 
resolution of optimization problems. The GA is a heuristic search tool widely used for optimization 322 
problems, obtained as the composition of selection and mixture (crossover and mutation) that is 323 
applied to a population of chromosomes [25]. In this work, the GA was implemented using the 324 
Genetic algorithm toolbox developed by A. J. Chipperfield and P. J. Fleming [18]. There are many 325 
configurations of a GA, here a single population and elitist strategy is used. It is known as simple 326 
genetic algorithm. 327 

 328 
GA have been used several times for solving optimization problems in minimally invasive 329 

surgery. In 2017, Guo-jun et al employed the non-dominated sorting genetic algorithm II 330 
(NSGA-II [26]) to obtain the remote center of motion mechanism for medical robots with better 331 
performance indexes and to avoid the collision of multi-manipulators in minimally invasive surgery 332 
[27]. The same year, Du et al used the algorithm NSGA-II to carry out a preoperative planning 333 
robot-assisted minimally invasive surgery system. In this work was simultaneously optimized the 334 
incision placement and the initial pose for the manipulator [28]. 335 

 336 
Figure 4 illustrates the general operation of the candidate trajectory generation process, where 337 

the sets E (entry points region) and G (target points region) are the input for the generation and 338 
selection of trajectories process, as a result this process gives all possible trajectories. These 339 
trajectories will be processed by the risk calculation process using the risk map to evaluate the risk as 340 
the sum of all the voxels that intersects the trajectory. Finally, the trajectories with the least risk will 341 
be selected. 342 

 343 
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 344 
Figure 4. Dataflow for the generation of candidate trajectories. 345 

In the process of generation and selection of trajectories all the possible trajectories are 346 
generated by crossing the points in the sets E and G but it is considered a strict constraint 347 
corresponding to the distance, in which the trajectories cannot have a length greater than 90 mm. 348 
This distance is considered because greater distances to that size can cause damage to the brain 349 
tissue [12, 14]. Thus, trajectories that do not fulfill this condition will be eliminated from the selection 350 
process. 351 

 352 
The population 𝑝  of size k is defined in the following equation: 353 

𝑝  =   ⎣⎢⎢⎢
⎡𝐸 𝐺  𝐸 𝐺  ……𝐸 ……𝐺  

 𝑓 𝑓…… 𝑓 ⎦⎥⎥⎥
⎤
 , (5)

where each row in 𝑝  is known as a chromosome, which is a set of parameters {𝐸 , 𝐺 }, randomly 354 
initialized. All the 𝑘 chromosomes in the population are evaluated using 𝑓  which is the aptitude 355 
function. Algorithm 1 shows the proposed aptitude function to evaluate the trajectory. 356 
 357 

 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 

Algorithm 1. Pseudocode for the proposed aptitude function 𝑓 (𝐸 , 𝐺 ) for trajectory evaluation 371 

As can be seen in the proposed aptitude function a pseudo-exaggeratedly high risk 372 
(100,000,000) is assigned for distances greater than 90 mm. with the purpose that this trajectory 373 
cannot be considered as a viable option by the genetic algorithm.  374 

 375 

dist ← distance(𝐸 . 𝑥, 𝐸 . 𝑦, 𝐸 . 𝑧, 𝐺 . 𝑥, 𝐺 . 𝑦, 𝐺 . 𝑧); 
if (dist>90) 
 𝑓 ←  100,000,000; 
else 
{ 
 𝑓 ←  0; 
 for each voxel 𝑣  that intersects 𝐸 − 𝐺  trajectory 
  𝑓 ←  𝑓  + 𝑅𝑖𝑠𝑘𝑀𝑎𝑝[𝑣  . 𝑥,  𝑣  . 𝑦, 𝑣  . 𝑧]; 
} 
return 𝑓 ; 
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The complete algorithm that implements the search of the safest trajectory is shown in 376 
Algorithm 2.  377 

 378 
 379 

 380 
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 

 389 
 390 

Algorithm 2. Pseudocode for the Genetic Algorithm proposed for candidate trajectories generation. 391 

In this work, the GA was calibrated for use with a population of 800 individuals in a total of 392 
1000 generations with a generation gap of 20%. The selection method used is Stochastic Universal 393 
Sampling  and the recombination method is a Single Point Crossover. The probability of 394 
recombination was calibrated to 70% and the probability of mutation in 10%. For more information 395 
about the calibration parameters in a genetic algorithm, please review the documentation for the 396 
MATLAB genetic algorithm Toolbox [18]. 397 

3. Results 398 
The implementation of the methodology was performed using the MITK Workbench software 399 

for segmentation. The GA was implemented using the Genetic algorithm toolbox developed by A. J. 400 
Chipperfield and P. J. Fleming [18]. The visualization of structures is done using the Visualization 401 
Toolkit (VTK) in C++ programming language [29]. The results obtained by applying the proposed 402 
methodology are shown in the next sections.  403 

3.1. Case of Study 404 
The patient images dataset has a resolution of 512 x 414 and comprises a total of 136 slices. The 405 

dimension of each pixel in the slices is 0.37 x 0.52 mm. and each slice has a thickness of 0.51 mm. 406 
Medical images of the case are shown in Figure 5. 407 

 

 

   

Figure 5. Medical image of the clinical case used as experiment. (a) axial view; (b) Sagittal View;  408 
(c) Coronal View; (d) Skull reconstruction. 409 

RiskMap ← Risk calculation for all voxels as shown in section 2.2 
Initialize population 𝑝  
Evaluate population 𝑝  with algorithm shown in Figure 3 
for i = 1 to g 
{ 
 Select 𝑝  from 𝑝  
 Recombine 𝑝  

Mutate 𝑝  
 Evaluate 𝑝  with algorithm shown in Figure 3  
 Reinsert 𝑝  into 𝑝  
} 
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As it could be seen in the proposed methodology, the segmentation is divided into two stages: 410 
the segmentation of the cranial surface and the segmentation of the risk structures. The 411 
segmentation is done by the neurosurgeon using MITK. The toolkit allows the easy calibration of 412 
parameters until the desired segmentation is achieved. This toolkit is widely used in the medical 413 
community. 414 

 415 
Figure 6 shows the results of applying threshold technique to the dataset. These results were 416 

obtained after calibration of two thresholds, the low threshold is considered at a value of 100 while 417 
the high threshold is set to a value of 200. Threshold values represent the grey level value that is 418 
considered as a limit in the segmentation process. 419 

 420 
Figure 6. 3D reconstruction of the cranial surface segmentation. (a) Lateral View; (b) Frontal View;  421 

3.2. Pre-Processing of Input Medical Image 422 
The following step is to determine the risk structures. In this study case, the risk structure 423 

selected were the blood vessels and ventricles. The target area is close to these structures.  424 
Blood vessels segmentation was performed using the region growing technique. The seed was 425 

placed within one point of the blood vessels and the threshold points were set to 395 for the lower 426 
threshold and 1400 for the upper threshold. The result of this process is shown in Figure 7. 427 

 428 
Figure 7. Blood vessels segmentation. (a) Axial slice obtained from segmentation; (b) Top view of the 429 

3D reconstruction; (c) Lateral view of the 3D reconstruction. 430 

Ventricles segmentation is also done by region growing technique. For this purpose the seed is 431 
placed within an area of the ventricles and the threshold points are selected with the values of 200 432 
and 240. The result of this process is shown in Figure 8. 433 

 434 
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 435 
Figure 8. Ventricles segmentation. (a) Axial slice obtained from segmentation; (b) Lateral left view of 436 

the 3D reconstruction; (b) Back view of the 3D reconstruction. 437 
 438 
The cerebral cortex is segmented in order to get the list of all voxels that must have an assigned 439 

risk value. The segmentation is done by region growing with threshold values of 100 and 500. 440 
The 3D reconstruction of all the segmented structures can be seen in Figure 9. 441 

 442 

Figure 9. Segmented risk structures. (a) Blood vessels and ventricles; (b) Risk structures and cerebral 443 
cortex. 444 

The images that were acquired through these segmentation techniques are a key point in the 445 
subsequent calculation of global risk values. Entry point and target area are selected manually by the 446 
neurosurgeon using the original image and the segmented images. For this study case, the 447 
neurosurgeon selected an area near the supraorbital bilateral keyhole approach [30]. Figure 10 448 
shows the selected entry points as well as the corresponding target area. 449 

 450 
Figure 10. Target and entry points. (a) Entry points (blue area) and cranial surface; (b) Entry points 451 

(blue area), target points (yellow area), risk structures and brain cortex. 452 
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For this case of study, the target area is very small in which it is necessary to perform an 453 
intervention to avoid ruptures of the blood vessels. 454 

3.3. Risk Map Generation 455 
The calculation of the risk map is performed using the segmented structure obtained in the last 456 

section. Risk assessment is done for all brain voxels. The set of voxels are obtained by segmentation 457 
as was introduced in the last section. Risk assessment is done according to Figure 3. The brain 458 
segmentation of the study case in which the tests were applied has a total of 10’595,790 voxels. 459 

The number of maximums N to be considered in the calculation is configurable by the expert 460 
neurosurgeon, in such a way that it can apply that value according to the type of structures of 461 
interest. The proposed methodology establishes that a set of N maximum values must be used to 462 
determine the specific risk for each voxel. In order to find the best value of N, a risk map with N 463 
equal to 1, 5, 10, and 20 was calculated. A set of slices are shown in Figure 11.   464 

 465 
Figure 11. Risk map slices for different values of N. (a) N = 1; (b) N = 5;  466 

(c) N = 10; (d) N = 20; (e) Risk scale 467 

The color scale of the map's risk is displayed on the right side of Figure 11, being the red color 468 
assigned to the greater risk, while blue for the voxels labeled with lower risk 469 
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The risk calculation considering only 1 maximum value shows some low-risk vessels and 470 
ventricles with a moderate risk. The risk map obtained for 5 maximum values shows an increase in 471 
risk when a voxel approaches risk structures. If it approaches blood vessels the risk is greater than 472 
the case of ventricles, a situation that shows that blood vessels have priority over the ventricles. The 473 
risk maps obtained for N = 5 and N = 10 values are very similar, showing almost imperceptible 474 
differences, but the processing time consumed for N = 10 is almost twice the time consumed for the 475 
map with N=5. Increasing the N value to 20, the map begins to give preference in terms of risk to the 476 
ventricles, giving a lower risk to the blood vessels. 477 

These maps were presented to 5 neurosurgeons to validate which map they consider the best. 478 
The unanimous result is that the map of 5 maximum values is the best choice as risk labelling. 479 

3.4. Generation of Candidate Trajectories 480 
The candidate trajectories are calculated using the risk map and the defined entry and target 481 

areas. To perform this process a set of points in the entry area must reach another set of points in the 482 
target area. In this particular study case there are 11,754,106 possible trajectories, formed by the 483 
crossing of all the voxels in the area of entry (57,902 voxels) and the voxels in the target area (203 484 
voxels). 485 

Each trajectory consists of a straight line that passes through all the voxels between the entry 486 (𝑥 , 𝑦 , 𝑧 )  and the target point (𝑥 , 𝑦 , 𝑧 ). So the trajectory 𝑇  is formed by a set of voxels 𝑣  as it is 487 
shown in Equation 6 488 

𝑇  =   𝑣  (6)

Bressenham's straight line drawing algorithm is used to know all the voxeles that form a 489 
trajectory, this algorithm is based on the sum of integer numbers for the acquisition of the next point 490 
of the line [31]. As it is shown in Equation 7, the risk of a trajectory 𝑅  is calculated by the sum of 491 
the risks for all the voxeles that form the trajectory.  492 

𝑅  =   𝑟𝑖𝑠𝑘(𝑣 ) (7)

By applying the algorithms 1 and 2, and considering the calculation of the risk function shown 493 
in Equation 7, the safest trajectories are obtained. Figure 12 shows the risks calculation obtained for 494 
the trajectories generated with the calibration data mentioned in 2.3. 495 

 496 
Figure 12. Risk obtained for trajectories by the GA per generation. 497 

In order to test the GA efficiency, an exhaustive calculation of the risks for all the possible 498 
trajectories was done. The GA was executed a total of 50 times and the results obtained were 499 
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compared with the optimal values obtained in the exhaustive search. With the calibrated 500 
parameters, the GA results 42 times in a global minimum and 8 times in a local minimum. By 501 
changing the calibration parameters of the genetic algorithm (higher number of population or 502 
generations), the incidence of the result corresponding to the global minimum will be greater, as a 503 
result, the processing time is also increased. For this study case, the results obtained with these 504 
parameters are satisfactory because the 50 trajectories obtained were validated as appropriate by the 505 
expert neurosurgeons. 506 
Finally, using VTK, the trajectories obtained are drawn. The trajectories selected by the GA 507 
algorithm are shown in Figure 13, where the global minimum is shown in cyan and the two local 508 
minimum are shown in blue and green.  509 

 510 
Figure 13. Candidate trajectories found by the algorithm. (a) Left side view of the trajectories 511 

obtained; (b) Top view of the trajectories obtained. 512 

The set of candidates trajectories are shown to the neurosurgeon. The final selection is going to 513 
be done by the neurosurgeon. In order to validate the trajectories obtained by our proposed 514 
methodology, the trajectories were presented to the neurosurgeon for their evaluation. All the 515 
experts agreed that the three trajectories are a good option for this study case. 516 

4. Conclusions and Future Work. 517 
A novel assessment risk methodology for keyhole neurosurgery is presented. The proposed 518 

assessment risk function is employed to obtain a risk map. A genetic algorithm is applied to search 519 
for the safest trajectory. Segmentation techniques are applied to these images to differentiate several 520 
structures such as cranial surface, brain and risk structures (ventricles and blood vessels). With the 521 
segmented images the risk assessment process begins and then the search for the safest trajectories is 522 
done. In order to get an accurate risk assessment, the proposed risk calculation include several risk 523 
structures that surround a voxel. This is accomplished by performing the risk calculation for each 524 
voxel as the sum of the N maximum risk values with respect to all risk structures and the distances 525 
with the calculated voxel. The risk map shows an allocation of risk values with respect to nearby 526 
structures by increasing the value of a voxel when approaching a structure. 527 

 528 
The calculation of the risk map using this methodology gave good results and were evaluated 529 

visually by a group of neurosurgeons.. Expert neurosurgeons remarks the fact that the map risk 530 
values are adequately adapted to the risk values assigned to each structure of interest. 531 

 532 
One of the main problems in the search for surgical trajectories is the consumed computation 533 

time due to exhaustive searches. Since planning times for surgery are short, the processing time 534 
must be minimum. The proposed methodology considers the use of a GA that significantly reduces 535 
the processing times in the trajectories search process, avoiding to perform an exhaustive search. 536 
Table 2 shows the amount of calculated trajectories and the consumed processing time for both 537 
methods: the GA and the exhaustive search. The tests were done on a laptop with 538 
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Intel® Core™ i5-3317U processor (up to 2.6 GHz, 3MB L3 Cache) 3rd generation, 4 GB in RAM, 539 
64-bit Ubuntu 18.04.1 operating system. 540 

Table 2. Results comparison of Genetic Algorithm and exhaustive search in applied study case. 541 

Method Calculated trajectories Consumed processing 
time (seconds) 

Exhaustive search 11,754,106 103,934.77 
Proposed GA 161,000 1,423.63 

 542 
As can be seen, the processing times using the proposed GA are reduced notably, decreasing a 543 

98.63% the time required to obtain the result. 544 
 545 
The results were shown to 5 experienced neurosurgeons. The risk maps obtained for different 546 

values of N were showed to them in a blind review. The experts selected the risk map which in his 547 
view was the best, coinciding all selections on the map for N = 5. With this risk map, the trajectories 548 
search with the GA was done and the results were shown to the 5 neurosurgeons. The trajectories 549 
were widely reviewed by the experts, concluding that these trajectories are quite appropriate for the 550 
study case. 551 

 552 
The proposed methodology provides significant improvements regarding the previous works 553 

on the aspect of risk calculation, generating a more complete risk map that considers more risk 554 
elements for a voxel. Additionally, the use of a genetic algorithm for candidate trajectories search 555 
significantly reduces processing time and the results are more suitable for the neurosurgeons needs. 556 

 557 
An opportunity to improve this methodology is to consider additional input information 558 

different than the traditional risk structures. The risk concept can be extended to interest areas and 559 
brain tracts. Diffusion tensor imaging (DTI) and white matter tractography (WMT) are promising 560 
techniques for estimating the course extent, and connectivity patterns of the white matter (WM) 561 
structures in the human brain [32]. With the information obtained from a tractography, the 562 
neurosurgeon can take radical decisions such as changing the pattern of a surgical approach to 563 
preserve tracts displaced or even occasionally make more aggressive approaches when the tracts are 564 
already quite destroyed. In the other hand, the inclusion of interest areas require the use of 565 
functional Magnetic Resonance Imaging (fMRI), this is mainly used to localize the primary sensory 566 
and motor cortex to determine the essential language areas and their hemispheric dominance [33]. 567 
The inclusion of the white-matter information (tractography) in conjunction with the cortex 568 
information (fMRI) allows the neurosurgeon a more innovative approach for the clinical cases that 569 
may arise. 570 
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