

1 *Type of the Paper (Article)*

2 **A Fuzzy Inference System for Unsupervised** 3 **Deblurring of Motion Blur in Electron Beam** 4 **Calibration**

5 **Salaheddin Hosseinzadeh** ^{1,*}

6 ¹ Brunel University; salaheddin.hosseinzadeh@gmail.com

7 * Correspondence: salaheddin.hosseinzadeh@gmail.com

8

9 **Abstract:** This paper presents a novel method of restoring the electron beam (EB) measurements
10 that are degraded by linear motion blur. This is based on a Fuzzy Inference System (FIS) and Wiener
11 inverse filter, together providing autonomy, reliability, flexibility and real-time execution. This
12 system is capable of restoring highly degraded signals without requiring the exact knowledge of EB
13 probe size. The FIS is formed of three inputs, eight fuzzy rules and one output. The FIS is responsible
14 to monitor the restoration results, grade their validity and choose the one that yields to a better
15 grade. These grades are produced autonomously by analyzing results of Wiener inverse filter. To
16 benchmark the performance of the system, ground truth signals obtained using an 18 um wire probe
17 are compared with the restorations. Main aims are therefore a) Provide unsupervised deblurring
18 for device independent EB measurement; b) Improve the reliability of the process; c) Apply
19 deblurring without knowing the probe size. These, further facilitate the deployment and
20 manufacturing of EB probes and probe independent and accurate EB characterization. The paper
21 findings also makes restoration of previously collected EB measurements easier, where the probe
22 sizes are not known or recorded.

23 **Keywords:** Fuzzy Inference System; Fuzzy Logics; Linear Motion Blur; Fuzzy Deblurring; Electron
24 Beam Calibration; Signal & Image Processing

25

26 **1. Introduction**

27 The main goal of fuzzy systems is to define and control sophisticated processes by incorporating
28 and taking advantage of human knowledge and experience. Nowadays, fuzzy logics are widely used
29 in industry for various applications ranging from cameras, to cement kilns, trains and vacuum
30 cleaners [1]. Furthermore, deblurring techniques have versatile applications and they are either
31 performed in spatial [2] or frequency domains [3-5]. Author in [6] modeled the EB measurement
32 process with a linear motion blur and evaluated three of the well-established deblurring techniques
33 for EB restoration. In this study [6] author used Weiner inverse filter, Blind and Richardson-Lucy
34 deconvolutions to restore the EB distribution and correct the measurements through deblurring. A
35 simple motion blur is formulated in equation. 1.

36

$$g(x) = \int f(x)h(x) + n(x) \quad (1)$$

37

38 Where in the spatial domain f , g , h and n are the ground-truth signal (EB distribution) of
39 length L_f , degraded signal (measurement from probe), point spread function (PSF) of length L_h and
40 noise respectively, with their frequency domains being represented by uppercase letters F , G and H .
41 In case of electron beam measurements, the ground through signal is the distribution of EB, and the

42 degraded signal is the measurement acquired from the probe. The electron absorption of a slit or wire
43 probe of size L_h is modeled with a PSF kernel [6].

44 Linear motion blur point spread function has two distinct characteristics of motion direction and
45 length (L) [7]. The PSF is known for having harmonically spaced vanishing magnitudes in the
46 frequency domain due to its limited length in the spatial domain [8]. There are several approaches to
47 estimate L_h such as log power spectrum, cepstrum, bispectrum, and pitch detection algorithms. In
48 image deblurring jargon, it is assumed that the frequency spectrum of F is smooth and does not
49 contain vanishing frequencies, hence any vanishing frequencies in G are associated to H [9][10].
50 However, this assumption usually does not hold for EB measurements, especially where the L_f is in
51 the same order of L_h . This similarity makes it complicated to distinguish between L_f and L_h and
52 therefore compromises the deblurring process by an incorrect detection of null frequencies. Such
53 erroneous deblurring process is likely to produce an incorrect but convincing result, notably when f
54 and h have remarkable cross-correlation. This ambiguity is likely to happen in EB measurements,
55 because a) f and h are usually in the same order of magnitude and they have relatively high cross-
56 correlation; b) the L_f can be inconsistent. In [6], a prior knowledge of L_h is used to estimate the
57 position of null frequency of h from the spectrum analysis of G . The author limited the spectrum of
58 G to $\pm 15\%$ of the nominal L_h by applying a window to its log-power spectrum, therefore, ignoring
59 vanishing frequencies outside of this interval, this algorithm is available in [11]. This strategy relies
60 on knowing the L_h therefore, it is a good approach when it is known accurately. There are few
61 limitations with this method due to the varying nature of L_f during the calibration and even
62 measurement process. As a result, the beam's vanishing frequency (or its harmonics) could be located
63 within the applied window and cause a false detection. Furthermore, if the inaccuracy of L_h is more
64 than 15% the null frequency of h is ignored by the window, resulting in an erroneous restoration. In
65 addition, any inaccuracy more than $\pm 15\%$ cannot be compensated.

66 One solution to effectively address this uncertainty is to use fuzzy systems. Fuzzy inference
67 systems are widely used to address instrumental uncertainties, a comprehensive review and
68 explanation of fuzzy inference systems are provided in [12].

69 It is known that a wrong estimation of L_h can lead to drastic noise-like errors in the restorations
70 [13]. Furthermore, utilizing deblurring techniques for industrial purposes requires real-time, reliable
71 and unsupervised methods. To satisfy these requirements, this article proposed a Wiener filter that
72 is monitored by a Fuzzy Inference System. Wiener filter is selected due to its simplicity, real-time
73 execution and superior performance in the restoration of linear motion blur [6]. The fuzzy inference
74 system deals with the uncertainty of the deconvolution process, it controls the whole restoration
75 process and it comprised of three crisp inputs that includes the PSF length or probe size (L_h)
76 deviation, attenuation of the vanishing frequencies and deconvolution residue.

77 However, probe size deviation is an optional input, which is based on a previous rough
78 knowledge of L_h . If L_h is roughly known, it serves as a reference point from which the PSF length
79 deviation is calculated. Therefore, unlike [6], prior knowledge of L_h does not limit the inaccuracy
80 compensation to $\pm 15\%$. It is demonstrated in [6] that the spatial domain of h , has a sharper transition
81 compared to the EB distribution (f). This is due to the semi-Gaussian distribution of f compared to
82 h . Therefore, vanishing frequencies of h are expected to have higher attenuation or lower magnitude
83 compared to f . Hence, the normalized magnitude of the detected null frequencies in G are the
84 second crisp input to the FIS. The last input of the system is the quantified deblurring artifacts that
85 are introduced during the restoration of f from g . The restored beam distributions are denoted as
86 (\hat{f}). These residual artifacts are inevitable and they increase as the h deviates from its mathematical
87 definition. Extraction of residues from \hat{f} is explained in section II. The output of the fuzzy system
88 (E_i) is defuzzified to represent the quality of the restorations. This output is generated based on the
89 definition of the fuzzy rules that are explained in the next section.

90 The rest of this paper is arranged as follows. Section II, illustrates the details of FIS
91 implementation. This includes specifying the crisp inputs and fuzzifying them, defining the
92 membership functions and formulating the fuzzy sets. The section continues by identifying the fuzzy
93 rules and making an inference to generate the output. Section III, presents the practical results of

94 proposed method and the ability of the system to distinguish the correct deblurring results. The
 95 values of membership functions parameters are provided and a comparison is made between
 96 implementing the fuzzy system with and without the knowledge of probe size (L_h).

97 **2. Modeling and Implementation**

98 As mentioned, when there is similarity between L_f and L_h it is difficult to discriminate
 99 between their null frequencies just by looking at G . This introduces an uncertainty and makes it hard
 100 to decide which null frequency belongs to the probe (H), because null frequencies can belong to either
 101 beam (F) or probe (H). To address the uncertainty of unsupervised L_h detection, all the null
 102 frequencies in G are identified and only the first two nulls with lowest frequencies are extracted,
 103 while avoiding the harmonics. This implies that maximum of two null frequencies ($\omega_{i=1,2}$) are to be
 104 extracted from G . There are three possibilities based on the extracted number of null frequencies: a)
 105 If no null frequency is detected due to $L_h \ll L_f$, then motion blur effect is negligible and
 106 deconvolution is not necessary; b) If a single null frequency is detected, as a result of $L_h \gg L_f$, then
 107 the deconvolution can progress without involving the fuzzy system as the null frequency belongs to
 108 L_h ; c) In case two null frequencies are extracted (ω_1, ω_2), two deconvolutions are performed, where
 109 each of the deconvolutions are performed by adjusting their corresponding $\hat{L}_{i=1,2}$ ($\hat{L}_{i=1,2} \propto$
 110 $1/\omega_{i=1,2}$). This is done because both ω_1 and ω_2 could be belonging to h of different sizes.

111 A FIS is defined with three merits to grade the deblurrings. Deblurrings are performed by two
 112 individual Weiner filter that uses \hat{L}_1 and \hat{L}_2 resulting in \hat{f}_1 and \hat{f}_2 respectively. The fuzzy
 113 system produces a single crisp output, *deconvolution grade* ($E_{i=1,2}$) for each restoration. The restoration
 114 process that produces a higher E_i is then chosen as the correct process with its corresponding \hat{L}_i
 115 being the correct probe size ($L_h \leftarrow \hat{L}_i$). A single layer (non-hierarchical) fuzzy inference system of three
 116 inputs and a single output is designed to evaluate the overall deblurring process. These inputs are:
 117 PSF length deviation, null frequency magnitude and residues, and the deconvolution grade is the
 118 only output. These inputs and the output are explained in details as follows.

119 *2.1. PSF length deviation*

120 As mentioned, ω_1 and ω_2 are extracted to accurately adjust the L_h during the restoration
 121 process. By having rough prior knowledge of the probe size (L_h) and the estimated sizes (\hat{L}_i) from G ,
 122 we can define PSF length deviation as the distance between expected and the estimations ($|L_h - \hat{L}_i|$).
 123 This definition converges to zero if the estimation is close to the prior knowledge, whereas, it
 124 increases if \hat{L}_i is deviated from L_h . Two fuzzy sets (A_{far} & A_{close}) with membership functions of μ'_m
 125 and μ_m are defined to account for the probe inaccuracy and assign a degree of membership to each
 126 \hat{L}_i based on its deviation from L_h . Membership functions are defined by polynomial-Z (zmf) and
 127 polynomial-S (smf). The A_{close} fuzzy set definition and its membership function is formulated in
 128 equation 2. A thorough evaluation of fuzzy membership functions are provided in [14].
 129

$$A_{close} = \{(\hat{L}_i, \mu_{m(\hat{L}_i)}) \mid 0 < \hat{L}_i < \infty, m(\hat{L}_i) = \frac{2|L_h - \hat{L}_i|}{L_h}\}$$

$$\mu_m = \begin{cases} 1 - 2\left(\frac{m - a_m}{c_m - a_m}\right)^2 & a_m < m \leq \frac{a_m + c_m}{2} \\ 2\left(\frac{m - c_m}{c_m - a_m}\right)^2 & \frac{a_m + c_m}{2} < m \leq c_m \\ 0 & m > c_m \end{cases} \quad (2)$$

130
 131 Where a_m and c_m are the membership function parameters that are found heuristically
 132 through analysis of several measurements.

133 *2.2. Null frequency magnitude*

134 The second input of the fuzzy system is the magnitude of the extracted null frequencies. This is
 135 extracted from the normalized log-power spectrum of g , and has a dynamic range of 0 to 1 dB,
 136 demonstrated in Figure 1.
 137

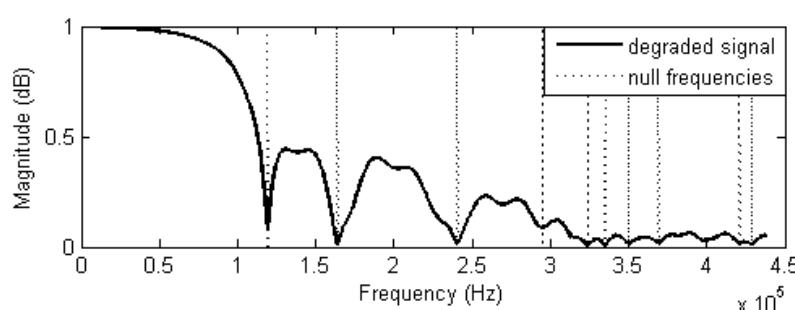


Figure 1. Normalized power spectrum of G exhibits ω_1 and ω_2 at 0.12 and 0.165 MHz frequencies, with their harmonics at higher frequencies.

138
 139 As explained, h is most likely to have rapid spatial transitions compared to f , this implies that
 140 H is likely to have the nulls with higher attenuation in G (nulls with lower magnitude). As a result,
 141 two fuzzy sets (B_{high} & B_{Low}) with membership functions of μ'_o and μ_o are defined to assign a
 142 higher membership value to the nulls with more attenuation (or lower magnitude); whereas, a lower
 143 degree of membership is assigned to less attenuated (higher magnitude) nulls. Membership functions
 144 are defined with zmf and sfm. B_{Low} is formulated in equation 3, where G_N is the normalized
 145 frequency spectrum of the degraded signal g and a_o and c_o are the membership function
 146 parameters. A_{Far} membership function definition is similar to B_{Low} as they are both defined by smf.
 147

$$B_{Low} = \{(\hat{L}_i, \mu'_{o(\omega_i)}) \mid 0 < \hat{L}_i < \infty, o(\omega_i) = \log(|G_N(\hat{L}_i) + 1|)\}$$

$$\mu'_{o(\omega_i)} = \begin{cases} 0 & o < \frac{a_o + c_o}{2} \\ 2\left(\frac{o - a_o}{c_o - a_o}\right)^2 & o \leq \frac{a_o + c_o}{2} \\ 1 - 2\left(\frac{o - c_o}{c_o - a_o}\right)^2 & o \leq c_o \\ 1 & o > c_o \end{cases} \quad (3)$$

148 2.3. Deconvolution artifact residues

149 Deconvolutions are performed using the Wiener inverse filtering process in equation 4.
 150

$$\hat{F}_i = \frac{1}{H(\omega_i)} \left[\frac{|H(\omega_i)|^2}{|H(\omega_i)|^2 + \frac{1}{SNR(\omega)}} \right] G(\omega) \quad (4)$$

151
 152 Where in the frequency domain, \hat{F}_i is the restored ground truth signal and SNR is the signal to
 153 noise ratio. After the deconvolutions, $\hat{f}_{i=1,2}$ has shorter lengths in spatial domain, compared to g .
 154 We first normalized g and both of the restorations ($\hat{f}_{i=1,2}$) between $[0, -1]$, g_N is then shifted so its
 155 minimum is matched with the minimums of each \hat{f}_i in the spatial domain to obtain \hat{g}_N . Finally,
 156 every restoration residue (r_i) is quantified as in equation 5.
 157

$$r_i = \frac{4}{\int g(x) dx} \cdot \int \hat{f}_i(\tau) d\tau \quad \{\tau \in x \mid \hat{g}_N(\tau) > -0.05\} \quad (5)$$

159 The deconvolution process using both of the extracted PSFs and their corresponding residues
 160 are showed in Figure 2. The deconvolution was performed with a Wiener inverse filter, where h is
 161 formulated in equation 6.
 162

163

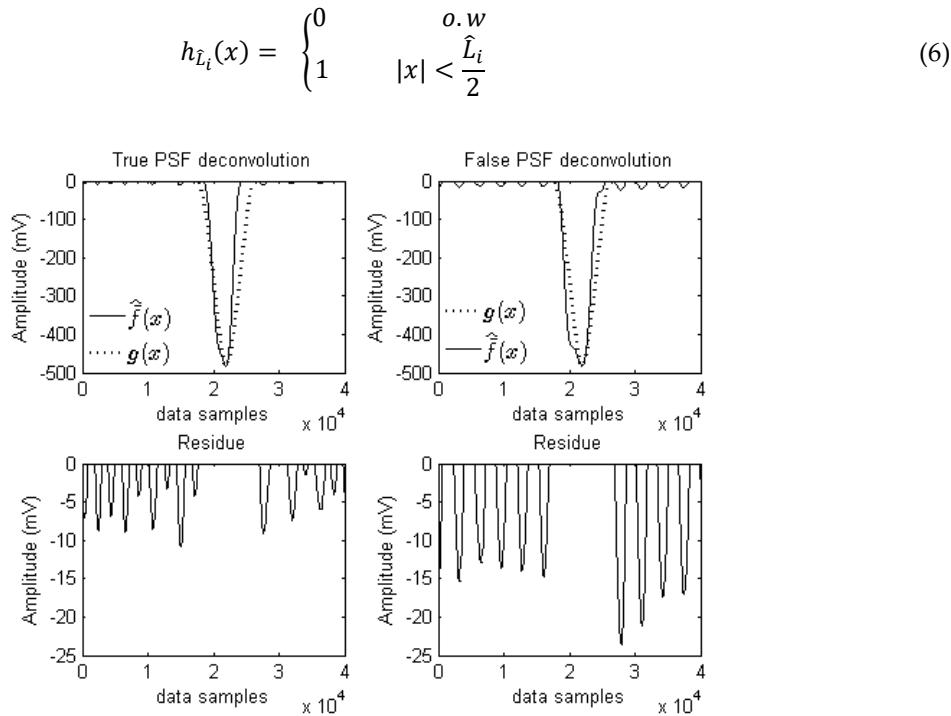


Figure 2. Deconvolution of the degraded pulse in Figure 1, using two different PSF lengths and demonstration of their deconvolution residues.

164

165 Two fuzzy sets (C_{low} and C_{high}) are defined with membership functions of μ_r and μ'_r using
 166 zmf and smf respectively, where the overall shape of the functions are determined by a_r and c_r .
 167 These functions are designed to assign a higher degree of membership to the \hat{L}_i that produces a
 168 smaller amount of residues after restoration.

169

2.4. Deconvolution grade

170

171 All the combinations of the aforementioned inputs are used to form 8 if-then rule statements
 172 with different weights. These statements with their corresponding weights are provided in Table 1.
 173 Fuzzy AND operator is then used for the implication of the fuzzy consequences.

Table. 1. Rule base formation criteria.

Antecedent			Consequence	Rules Weight
PSF Dev	Attenuation	Residue	Restoration quality	
μ_m	μ_o	μ_r	μ_g	1
μ_m	μ_o	μ'_r	μ_g	0.66
μ_m	μ'_o	μ_r	μ_g	0.66
μ_m	μ'_o	μ'_r	μ_b	0.66
μ'_m	μ_o	μ_r	μ_g	0.66
μ'_m	μ_o	μ'_r	μ_b	0.66
μ'_m	μ'_o	μ_r	μ_b	0.66
μ'_m	μ'_o	μ'_r	μ_b	1

174

175 Rule weight is added to scale the consequences and account for the certainty of the rules. The
 176 consequence is the restoration quality with two fuzzy sets (D_{good} & D_{bad}) and membership
 177 functions of μ_q and μ'_q respectively defined by smf and zmf. Aggregations of the rules are
 178 performed by using Zadeh T-Norm, and defuzzifications are carried out by mean of maximum
 179 (MoM) method [15]. The resulting crisp values are the *deconvolution grades* ($E_{i=1,2}$), therefore; there
 180 is a grade ($E_{i=1,2}$) for each deconvolution. In other words, for each $\hat{f}_{i=1,2}$ that is deblurred by its
 181 corresponding $h_{\hat{L}_{i=1,2}}$ there is an overall grade of restoration ($E_{i=1,2}$). According to the definition of
 182 the consequence membership functions, a greater value of E_i represents a better restoration and in
 183 contrary a lower value of E_i represents a possible erroneous process, (E_i is ranging from 0 to 1). With
 184 this proposed system, if by mistake L_f is used instead of L_h in the formation of the h (equation 6)
 185 then the resulting E_i will be lower. Overall, E_1 and E_2 are used comparatively to determine and
 186 select the best restoration between \hat{f}_1 and \hat{f}_2 that are emerged from restoring a degraded sample
 187 (g). This proposed system and its overall restoration processes are demonstrated in Figure 3.
 188

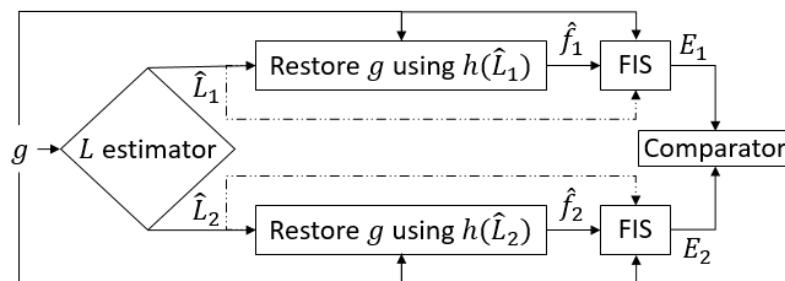


Figure 3. Process diagram, \hat{L}_i connections to FIS are optional.

189 3. Practical Result

190 3.1. Membership function parameters

191 Membership function parameters are investigated pragmatically by testing the explained
 192 algorithm for various degraded EB measurement samples. In all degraded measurements, h and f
 193 had approximately similar sizes as a result of which $\hat{L}_1 \approx \hat{L}_2$. The membership functions are
 194 designed with smooth transitions, to provide a general solution and more flexibility, except for the
 195 attenuation. To further discriminate between E_1 and E_2 the attenuation membership functions
 196 parameters were adjusted to have more emphasize between the interval of 0 to 0.3dB. This intuitive
 197 definition is done by observing the magnitude of null frequencies in several degraded signals, where
 198 the attenuation of the null frequencies were always under 0.3dB. The membership functions
 199 parameters are presented in Table 2.
 200

Table 2. Membership function definition details.

PSF Deviation				Attenuation				Residue				Restoration Quality			
μ_m	μ'_m	μ_o	μ'_o	μ_r	μ'_r	μ_q	μ'_q	a_m	c_m	a_o	c_o	a_r	c_r	a_q	c_q
0.02	1	0.04	1	0.02	0.3	0.05	0.3	0	1	0	1	0	1	0	1

201 The membership functions of attenuation (B_{high} & B_{Low}) and residue (C_{low} & C_{high}) fuzzy sets,
 202 are depicted in Figure 4, according to their values in Table 2. The fuzzy sets of PSF deviation and
 203 restoration quality are also defined with the similar membership functions to that of residues.
 204
 205

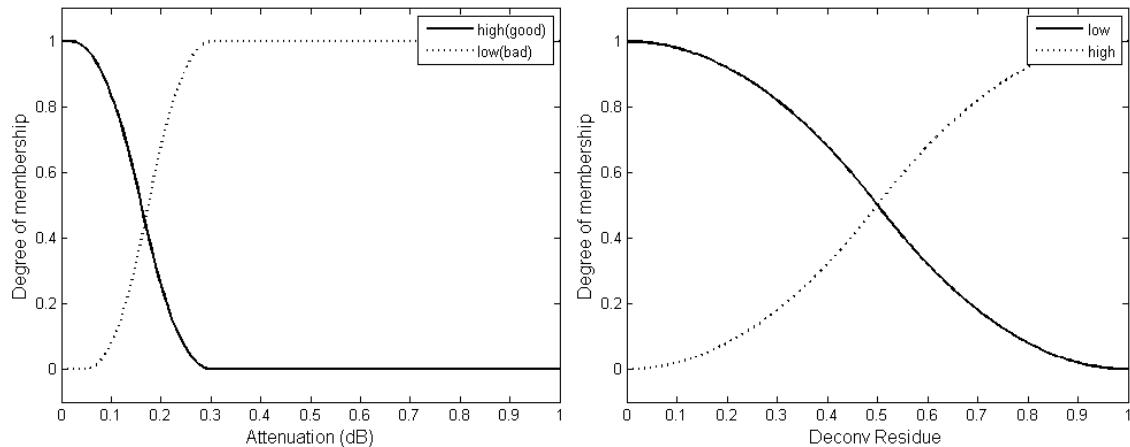


Figure 4. Attenuation, and Deconvolution Residue membership functions.

206
207
208
209
210
211
212
213
214
215
216
217
218

The analysis of few of the samples are showed in Figure 5 and 6. For few of EB measurements the L_h (probe sizes) were known to be 1.00, 0.20 and 0.40 mm respectively. The crisp fuzzy inputs and deconvolution grades E_i are also provided for every sample. The restoration that resulted in the higher E_i is selected by the system as the correct solution and its corresponding \hat{L}_i therefore, represents the probe size ($\hat{L}_h \leftarrow \hat{L}_i$). To validate the proposed system, with the ground truth signal (f) [6], both restorations ($\hat{f}_{1,2}$) were compared against their ground truth signal using cross-correlation. For all the \hat{f}_i with the higher E_i , the cross-correlation of \hat{f}_i and f also produced greater coefficients, supporting the accuracy and reliability of the system. As another benchmark, full width at half maximum (FWHM) analysis is used, as it is a popular measure in the EB calibration jargon. The FWHM of f and the \hat{f}_i that has the higher E_i produced similar result, further confirming that the FIS has successfully identified the correct restoration process.

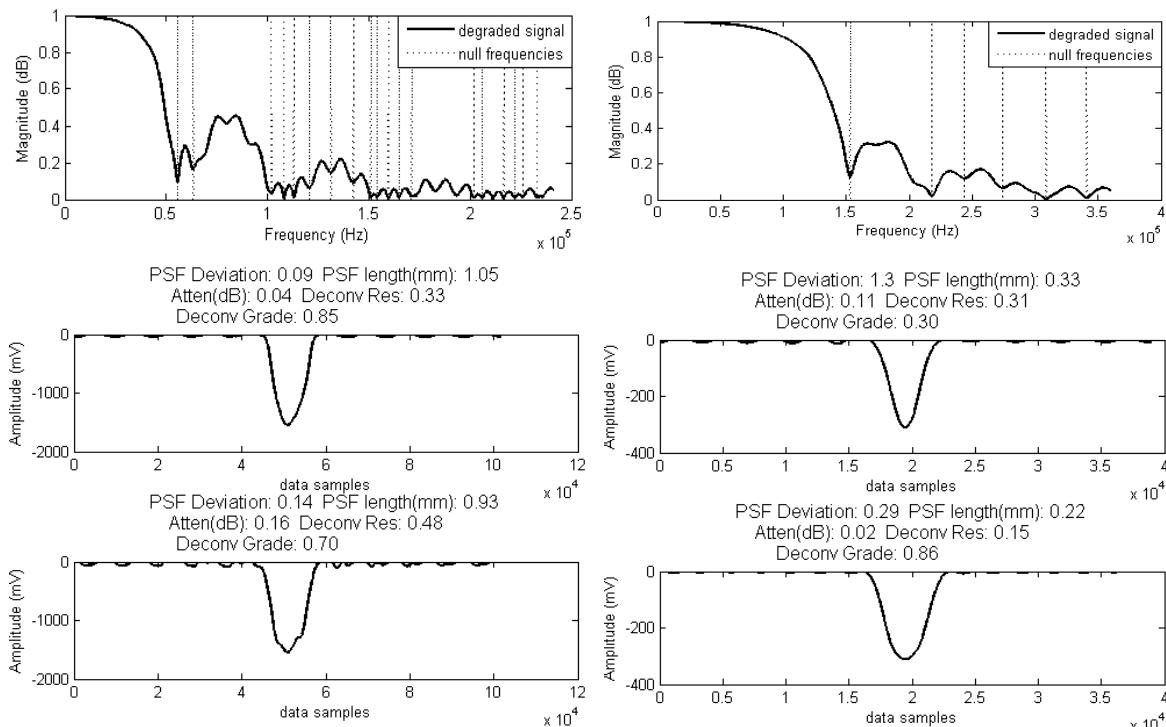


Figure 5. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected null frequencies, expected PSF length of 1mm on the left, and 0.2mm on the right.

219

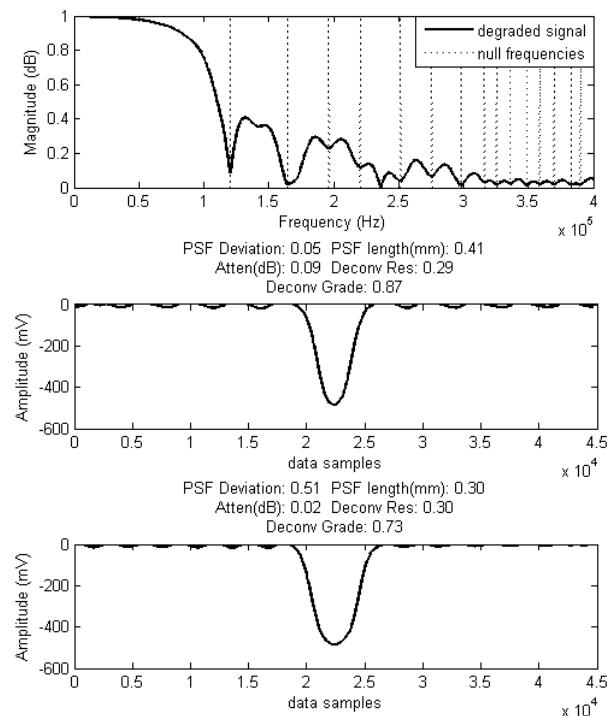


Figure 6. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected null frequencies, expected PSF length of 0.4mm.

220 4. Conclusion & Discussion

221 Algorithm showed superior performance while a rough prior knowledge of L_h was provided
 222 for the fuzzy inference system, and the $\Delta E_i = (|E_1 - E_2|)$ had been greater than 0.5, therefore, clearly
 223 identifying and segregating the correct deconvolution process. The algorithm was also tested without
 224 including the PSF knowledge, in which case ΔE_i was in the interval of 0.1 to 0.5, which was enough
 225 to confidently separate the correct deconvolution process.

226 Figure 6 depicted a special case where H had a null frequency at $\omega_h = 120$ kHz with a
 227 normalized magnitude of 0.09, whereas, F null was at $\omega_f = 170$ kHz with a magnitude of 0.02, and
 228 had 4 times higher attenuation. Although, ω_f had a magnitude that was in its favor, whereas, the
 229 PSF deviation of 0.51 was not. The PSF deviation had outwaited its low magnitude and the correct
 230 restoration was successfully distinguished with 14% separation in the deconvolution grades ($|E_1 -$
 231 $E_2| = 0.14$). This high attenuation of ω_f was most likely due to it being closer to the second harmonic
 232 of ω_h and, therefore, experienced further attenuation. Nevertheless, owing to the FIS
 233 implementation, the correct restoration process had been identified. All the possible rules were
 234 considered for the implementation of this FIS and its tuning was performed heuristically by an expert.
 235 However, clustering algorithms could be used for FIS with multiple inputs and membership
 236 functions to determine the optimum number of rules. Furthermore, adaptive FISs can be used to
 237 automate the tuning and learning process of the FIS in a more complicated and complex scenario.

238 **Acknowledgments:** Author would like to A. Faghihi for his help and cooperation, also V. Jefimovs for his
 239 laboratory assistance. Many thanks to NSIRC, TWI Ltd and for providing the measurement facilities.

240 **Conflicts of Interest:** The authors declare no conflict of interest.

241 References

1. H.-J. Zimmermann, "Fuzzy control," in *Fuzzy Set Theory – and Its Applications*, Springer, 1996, pp. 203-240.
2. A. P. Jansson, L. da silva, P. B. Crilly, A. Bernardi. Improving the convergence rate of johnson's deconvolution method. *Instrumentation and Measurement, IEEE Transaction on*, Vol. 51, pp. 1142-1144, 2002.
3. S. M. Riad, A. Bennia. An optimization technique for iterative frequency domain deconvolution. *Instrumentation and measurement, IEEE Transaction on*, vol. 39, pp. 358-362, 1990.

247 4. S. M. Riad, P. Bidyut. Study and performance evaluation of two iterative frequency-domain deconvolution
248 techniques. *Instrumentation and Measurement, IEEE Transaction on*, vol. 33, pp. 281-287, 1984.

249 5. B. Parruck and S. M. Riad, "Study and performance evaluation of two iterative frequency-domain
250 deconvolution techniques," *IEEE transactions on instrumentation and measurement*, vol. 33, pp. 281-287, 1984.

251 6. S. Hosseinzadeh, "Unsupervised spatial-resolution enhancement of electron beam measurement using
252 deconvolution," *Vacuum*, vol. 123, pp. 179-186, 2016.

253 7. S. Tiwari, V. P. Shukla, A. K. Singh and S. R. Biradar, "Review of motion blur estimation techniques," *Journal*
254 *of Image and Graphics*, vol. 1, pp. 176-184, 2013.

255 8. A. Bennia and S. M. Riad, "An optimization technique for iterative frequency-domain deconvolution," *IEEE*
256 *transactions on instrumentation and measurement*, vol. 39, pp. 358-362, 1990.

257 9. W. Y. Lo and S. M. Puchalski, "Digital image processing," *Veterinary Radiology & Ultrasound*, vol. 49, pp.
258 S42-S47, 2008.

259 10. M. E. Moghaddam and M. Jamzad, "Linear motion blur parameter estimation in noisy images using fuzzy
260 sets and power spectrum," *EURASIP Journal on Advances in Signal Processing*, vol. 2007, p. 068985, 2006

261 11. S. Hosseinzadeh, "Electron Beam Measurement Using Deblurring (deconvolution)," 2016. [Online].
262 Available: <https://uk.mathworks.com/matlabcentral/fileexchange/60414-electron-beam-measurement-using-deblurring-deconvolution>.

263 12. A. Ferrero, A. Federici and S. Salicone, "Instrumental uncertainty and model uncertainty unified in a
264 modified fuzzy inference system," *IEEE Transactions on Instrumentation and Measurement*, vol. 59, pp. 1149-
265 1157, 2010.

266 13. A. Bennia and S. M. Riad, "Filtering capabilities and convergence of the Van-Cittert deconvolution
267 technique," *IEEE Transactions on Instrumentation and Measurement*, vol. 41, pp. 246-250, 1992.

268 14. J. Zhao and B. K. Bose, "Evaluation of membership functions for fuzzy logic controlled induction motor
269 drive," in *IECON-PROCEEDINGS*, 2002.

270 15. L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human reasoning and
271 fuzzy logic," *Fuzzy sets and systems*, vol. 90, pp. 111-127, 1997.

272