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Abstract: This paper presents a novel method of restoring the electron beam (EB) measurements
that are degraded by linear motion blur. This is based on a Fuzzy Inference System (FIS) and Wiener
inverse filter, together providing autonomy, reliability, flexibility and real-time execution. This
system is capable of restoring highly degraded signals without requiring the exact knowledge of EB
probe size. The FIS is formed of three inputs, eight fuzzy rules and one output. The FIS is responsible
to monitor the restoration results, grade their validity and choose the one that yields to a better
grade. These grades are produced autonomously by analyzing results of Wiener inverse filter. To
benchmark the performance of the system, ground truth signals obtained using an 18 um wire probe
are compared with the restorations. Main aims are therefore a) Provide unsupervised deblurring
for device independent EB measurement; b) Improve the reliability of the process; c) Apply
deblurring without knowing the probe size. These, further facilitate the deployment and
manufacturing of EB probes and probe independent and accurate EB characterization. The paper
findings also makes restoration of previously collected EB measurements easier, where the probe
sizes are not known or recorded.

Keywords: Fuzzy Inference System; Fuzzy Logics; Linear Motion Blur; Fuzzy Deblurring; Electron
Beam Calibration; Signal & Image Processing

1. Introduction

The main goal of fuzzy systems is to define and control sophisticated processes by incorporating
and taking advantage of human knowledge and experience. Nowadays, fuzzy logics are widely used
in industry for various applications ranging from cameras, to cement kilns, trains and vacuum
cleaners [1]. Furthermore, deblurring techniques have versatile applications and they are either
performed in spatial [2] or frequency domains [3-5]. Author in [6] modeled the EB measurement
process with a linear motion blur and evaluated three of the well-established deblurring techniques
for EB restoration. In this study [6] author used Weiner inverse filter, Blind and Richardson-Lucy
deconvolutions to restore the EB distribution and correct the measurements through deblurring. A
simple motion blur is formulated in equation. 1.

900 = [ fCORG) +n(x) M

Where in the spatial domain f, g, h and n are the ground-truth signal (EB distribution) of
length L;, degraded signal (measurement from probe), point spread function (PSF) of length L, and
noise respectively, with their frequency domains being represented by uppercase letters F,G and H.
In case of electron beam measurements, the ground through signal is the distribution of EB, and the
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42 degraded signal is the measurement acquired from the probe. The electron absorption of a slit or wire
43 probe of size L, is modeled with a PSF kernel [6].

44 Linear motion blur point spread function has two distinct characteristics of motion direction and
45  length (L) [7]. The PSF is known for having harmonically spaced vanishing magnitudes in the
46  frequency domain due to its limited length in the spatial domain [8]. There are several approaches to
47  estimate L, such as log power spectrum, cepstrum, bispectrum, and pitch detection algorithms. In
48  image deblurring jargon, it is assumed that the frequency spectrum of F is smooth and does not
49  contain vanishing frequencies, hence any vanishing frequencies in G are associated to H [9][10].
50  However, this assumption usually does not hold for EB measurements, especially where the L isin
51  the same order of L. This similarity makes it complicated to distinguish between L; and L, and
52 therefore compromises the deblurring process by an incorrect detection of null frequencies. Such
53 erroneous deblurring process is likely to produce an incorrect but convincing result, notably when f
54  and h have remarkable cross-correlation. This ambiguity is likely to happen in EB measurements,
55  becausea) f and h are usually in the same order of magnitude and they have relatively high cross-
56  correlation; b) the L; can be inconsistent. In [6], a prior knowledge of L, is used to estimate the
57  position of null frequency of h from the spectrum analysis of G. The author limited the spectrum of
58 G to £15% of the nominal L, by applying a window to its log-power spectrum, therefore, ignoring
59  vanishing frequencies outside of this interval, this algorithm is available in [11]. This strategy relies
60  on knowing the L, therefore, it is a good approach when it is known accurately. There are few
61  limitations with this method due to the varying nature of L; during the calibration and even
62  measurement process. As a result, the beam’s vanishing frequency (or its harmonics) could be located
63  within the applied window and cause a false detection. Furthermore, if the inaccuracy of L, is more
64  than 15% the null frequency of h is ignored by the window, resulting in an erroneous restoration. In
65  addition, any inaccuracy more than +15% cannot be compensated.

66 One solution to effectively address this uncertainty is to use fuzzy systems. Fuzzy inference
67  systems are widely used to address instrumental uncertainties, a comprehensive review and
68  explanation of fuzzy inference systems are provided in [12].

69 It is known that a wrong estimation of L, can lead to drastic noise-like errors in the restorations
70 [13]. Furthermore, utilizing deblurring techniques for industrial purposes requires real-time, reliable
71 and unsupervised methods. To satisfy these requirements, this article proposed a Wiener filter that
72 is monitored by a Fuzzy Inference System. Wiener filter is selected due to its simplicity, real-time
73 execution and superior performance in the restoration of linear motion blur [6]. The fuzzy inference
74  system deals with the uncertainty of the deconvolution process, it controls the whole restoration
75  process and it comprised of three crisp inputs that includes the PSF length or probe size (L)
76  deviation, attenuation of the vanishing frequencies and deconvolution residue.

71 However, probe size deviation is an optional input, which is based on a previous rough
78  knowledge of L. If L, is roughly known, it serves as a reference point from which the PSF length
79  deviation is calculated. Therefore, unlike [6], prior knowledge of L, does not limit the inaccuracy
80  compensation to +15%. It is demonstrated in [6] that the spatial domain of h, has a sharper transition
81 compared to the EB distribution (f). This is due to the semi-Gaussian distribution of f compared to
82  h.Therefore, vanishing frequencies of h are expected to have higher attenuation or lower magnitude
83  compared to f. Hence, the normalized magnitude of the detected null frequencies in G are the
84  second crisp input to the FIS. The last input of the system is the quantified deblurring artifacts that
85 are introduced during the restoration of f from g. The restored beam distributions are denoted as
86 (f). These residual artifacts are inevitable and they increase as the h deviates from its mathematical
87  definition. Extraction of residues from f is explained in section II. The output of the fuzzy system
88  (E;) is defuzzified to represent the quality of the restorations. This output is generated based on the
89  definition of the fuzzy rules that are explained in the next section.

90 The rest of this paper is arranged as follows. Section II, illustrates the details of FIS
91  implementation. This includes specifying the crisp inputs and fuzzifying them, defining the
92 membership functions and formulating the fuzzy sets. The section continues by identifying the fuzzy
93  rules and making an inference to generate the output. Section III, presents the practical results of
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proposed method and the ability of the system to distinguish the correct deblurring results. The
values of membership functions parameters are provided and a comparison is made between
implementing the fuzzy system with and without the knowledge of probe size (Lj).

2. Modeling and Implementation

As mentioned, when there is similarity between Ly and L it is difficult to discriminate
between their null frequencies just by looking at G. This introduces an uncertainty and makes it hard
to decide which null frequency belongs to the probe (H), because null frequencies can belong to either
beam (F) or probe (H). To address the uncertainty of unsupervised L, detection, all the null
frequencies in G are identified and only the first two nulls with lowest frequencies are extracted,
while avoiding the harmonics. This implies that maximum of two null frequencies (w;- ;,) are to be
extracted from G. There are three possibilities based on the extracted number of null frequencies: a)
If no null frequency is detected due to L, < Ly, then motion blur effect is negligible and
deconvolution is not necessary; b) If a single null frequency is detected, as a result of L, > L¢, then
the deconvolution can progress without involving the fuzzy system as the null frequency belongs to
Ly; ) In case two null freqsuencies are extracted (w;, w,), two deconvolutions are performed, where
each of the deconvolutions are performed by adjusting their corresponding Lj—y, (Li=y, ©

1/wj=12). This is done because both w; and w, could be belonging to h of different sizes.

A FIS is defined with three merits to grade the deblurrings. Deblurrings are performed by two
individual Weiner filter that uses L, and L, resulting in f; and f, respectively. The fuzzy
system produces a single crisp output, deconvolution grade (E;, ,) for each restoration. The restoration
process that produces a higher E; is then chosen as the correct process with its corresponding L;
being the correct probe size (L, < L;). A single layer (non-hierarchal) fuzzy inference system of three
inputs and a single output is designed to evaluate the overall deblurring process. These inputs are:
PSF length deviation, null frequency magnitude and residues, and the deconvolution grade is the
only output. These inputs and the output are explained in details as follows.

2.1. PSF length deviation

As mentioned, w; and w, are extracted to accurately adjust the L, during the restoration
process. By having rough prior knowledge of the probe size (L;,) and the estimated sizes (L;) from G,
we can define PSF length deviation as the distance between expected and the estimations (|L, - L;|).
This definition converges to zero if the estimation is close to the prior knowledge, whereas, it
increases if L; is deviated from Lj. Two fuzzy sets (Afar & Agiose) With membership functions of uy,
and p,, are defined to account for the probe inaccuracy and assign a degree of membership to each
L; based on its deviation from L,. Membership functions are defined by polynomial-Z (zmf) and
polynomial-S (smf). The Ag,s. fuzzy set definition and its membership function is formulated in
equation 2. A thorough evaluation of fuzzy membership functions are provided in [14].

o R oy 2|l — L
Aciose = {(Li' :um(ii))l 0<L;j<o 'm(l‘i) - Ly }
m <ap
1 - am) a, < m _ 9m +cp 2)
Cm —am - 2
2 — Cm 2 ay + m <cp,
| Cm - am 2
k 0 m > Cm

Where a, and c, are the membership function parameters that are found heuristically
through analysis of several measurements.

2.2. Null frequency magnitude
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134 The second input of the fuzzy system is the magnitude of the extracted null frequencies. This is
135  extracted from the normalized log-power spectrum of g, and has a dynamic range of 0 to 1 dB,
136  demonstrated in Figure 1.

137
1 T T T
degraded signal
@ --------- null freguencies
«-;; oo : ol
S osft .
5
=
0 ! L 1 ¢ | : v o e
o 0.4 1 1.4 2 24 3 348 4 4.4
Freguency (Hz) w107
Figure 1. Normalized power spectrum of G exhibits w; and w, at 0.12 and 0.165 MHz frequencies, with
their harmonics at higher frequencies.
138
139 As explained, h is most likely to have rapid spatial transitions compared to f, this implies that

140  H islikely to have the nulls with higher attenuation in G (nulls with lower magnitude). As a result,
141 two fuzzy sets (Bpign & Bp,yw) with membership functions of p, and u, are defined to assign a
142 higher membership value to the nulls with more attenuation (or lower magnitude); whereas, a lower
143 degree of membership is assigned to less attenuated (higher magnitude) nulls. Membership functions
144 are defined with zmf and sfm. B, is formulated in equation 3, where Gy is the normalized
145  frequency spectrum of the degraded signal g and a, and ¢, are the membership function
146  parameters. Ag, membership function definitionissimilarto By, asthey are both defined by smf.

147
Brow = {(ii,ug(wi))|0 < Ei < ,0(w;) = lOg(|GN(Zi) + 1|)}
( 0 <a,
! =a) W< o Bl ®)
-2
0 - co a4 + ¢ <c,
N
o 0
t 1 > Co
148 2.3. Deconvolution artifact residues
149 Deconvolutions are performed using the Wiener inverse filtering process in equation 4.
150
N 1 |H ()]
F = o - : G(w) 4)
4 . R
@) + 577033
151
152 Where in the frequency domain, F; is the restored ground truth signal and SNR is the signal to
153 noise ratio. After the deconvolutions, f;_;, has shorter lengths in spatial domain, compared to g.
154  We first normalized g and both of the restorations (fi_; ;) between [0,—1], gy is then shifted so its
155  minimum is matched with the minimums of each f; in the spatial domain to obtain gy. Finally,
156  every restoration residue (r;) is quantified as in equation 5.
157

158

4 o
i =m'ffi(f) dr

{r € x|gy(x) > —0.05} (5)
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The deconvolution process using both of the extracted PSFs and their corresponding residues
are showed in Figure 2. The deconvolution was performed with a Wiener inverse filter, where h is
formulated in equation 6.

0 o.w
hz (x) = L; 6
kil PR ©)
True PSF deconvolution False PSF deconvolution
0 0
= -100 = -100
|5 =
= -200 o 200
E =
= 300 £ 300
£ £
Z am < -400
500 500
0 1 2 3 4 0 1 2 3 4
data samples w10t data samples w1t
Residue Residue
8 A
g g °
2 -10 = -0
g E
= -15 = -15
£ 3
= -20 £ -20
25 -25
1 2 3 4 0 1 2 3 4
data samples w10t data samples w1t

Figure 2. Deconvolution of the degraded pulse in Figure 1, using two different PSF lengths and

demonstration of their deconvolution residues.

Two fuzzy sets (C,y, and Cpigp) are defined with membership functions of u, and ;. using
zmf and smf respectively, where the overall shape of the functions are determined by a, and c,.
These functions are designed to assign a higher degree of membership to the L; that produces a
smaller amount of residues after restoration.

2.4. Deconvolution grade

All the combinations of the aforementioned inputs are used to form 8 if-then rule statements
with different weights. These statements with their corresponding weights are provided in Table 1.
Fuzzy AND operator is then used for the implication of the fuzzy consequences.

Table. 1. Rule base formation criteria.

Antecedent Consequence Rules
PSF Dev | Attenuation | Residue | Restoration quality | Weight

Hm Ho Hy Hg 1

Bm o Iy g 0.66
Hm Ko Ly g 0.66
B Ko By Kb 0.66
Bm o Iy g 0.66
m o Ly Ky 0.66
Bm o Ly Ky 0.66
i Ko Ly Ky 1
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175 Rule weight is added to scale the consequences and account for the certainty of the rules. The
176 consequence is the restoration quality with two fuzzy sets (Dgooqg & Dpgg) and membership
177  functions of pu, and pug respectively defined by smf and zmf. Aggregations of the rules are
178  performed by using Zadeh T-Norm, and defuzzifications are carried out by mean of maximum
179 (MoM) method [15]. The resulting crisp values are the deconvolution grades (E;, ), therefore; there
180 is a grade (Ej=1,) for each deconvolution. In other words, for each fizl‘z that is deblured by its
181 corresponding h;,_, , there is an overall grade of restoration (E;=, ). According to the definition of
182  the consequence membership functions, a greater value of E; represents a better restoration and in
183  contrary alower value of E; represents a possible erroneous process, (E; is ranging from 0 to 1). With
184 this proposed system, if by mistake Ly is used instead of Lj, in the formation of the h (equation 6)
185  then the resulting E; will be lower. Overall, E; and E, are used comparatively to determine and
186  select the best restoration between f; and f, that are emerged from restoring a degraded sample
187  (g). This proposed system and its overall restoration processes are demonstrated in Figure 3.

188

! £t
< E
Restore g using h(L,) ! L

v
I
w

12 o
Restore g using h(L5) » FIS
E,
f f
Figure 3. Process diagram, L; connections to FIS are optional.

189 3. Practical Result
190  3.1. Membership function parameters
191 Membership function parameters are investigated pragmatically by testing the explained

192 algorithm for various degraded EB measurement samples. In all degraded measurements, h and f
193 had approximately similar sizes as a result of which L; = L,. The membership functions are
194  designed with smooth transitions, to provide a general solution and more flexibility, except for the
195 attenuation. To further discriminate between E; and E, the attenuation membership functions
196  parameters were adjusted to have more emphasize between the interval of 0 to 0.3dB. This intuitive
197  definition is done by observing the magnitude of null frequencies in several degraded signals, where
198  the attenuation of the null frequencies were always under 0.3dB. The membership functions
199  parameters are presented in Table 2.

200
Table 2. Membership function definition details.

PSF Deviation Attenuation Residue Restoration Quality

thn i [ I [ Yy Hq Hq

A [ Cml O lCml Qo [ Co | Ao [ Colarlcrlar|c ] Qg | €q | Qg | Cq

0.02|/ 1 |0.04| 1 ]0.02/0.3|/0.05(03]0|1|0|1] 0 | 1 0 1
201
202 The membership functions of attenuation (Byg, & Bioy) and residue (Cipyy & Chign) fuzzy sets,

203 are depicted in Figure 4, according to their values in Table 2. The fuzzy sets of PSF deviation and
204  restoration quality are also defined with the similar membership functions to that of residues.

205
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Figure 4. Attenuation, and Deconvolution Residue membership functions.
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The analysis of few of the samples are showed in Figure 5 and 6. For few of EB measurements
the L, (probe sizes) were known to be 1.00, 0.20 and 0.40 mm respectively. The crisp fuzzy inputs
and deconvolution grades E; are also provided for every sample. The restoration that resulted in the
higher E; is selected by the system as the correct solution and its corresponding L; therefore,
represents the probe size (L, « L;). To validate the proposed system, with the ground truth signal
(f) [6], both restorations ( f1,2) were compared against their ground truth signal using cross-
correlation. For all the f; with the higher E;, the cross-correlation of fi and f also produced
greater coefficients, supporting the accuracy and reliability of the system. As another benchmark, full
width at half maximum (FWHM) analysis is used, as it is a popular measure in the EB calibration
jargon. The FWHM of f and the f; that has the higher E; produced similar result, further
confirming that the FIS has successfully identified the correct restoration process.

: degraded signal !
0a B EEEEEES ‘null frequencies oak
e T =)
DE | % D 5 F
0.4 P 1 Eoaf
02 4 =z}
0 i ’ R %% 3 o
0 0.5 1 1.5 2 25 0
Fraguency (Hz) ad Fregquency [Hz) w1
PSE Deviation: 009 PSF length{mm): 1.05 PSF Deviation: 1.3 PSF length{mm): 0.33
Atten(dB}: 0.04 Deconv Res: 0.33 Atten(dB): 0,11 Decony Res: 031
Decony Grade: 0.85 Decony Grade: 0.30
0 — = T T ™ i — . . — —
=
£
000t 1 2 2mf 1
2000 L 1 1 1 L - Il Il Il 1 1 1 1
i 2 4 6 8 10 12 muu 05 1 15 2 25 3 35 4
o data samples < 10° data samples T
FSF Deviation: 0.14 PSF length{mm). 0.93 PSF Deviation: 0.29 PSF length(mm): 0.22
"‘ge”(dB)éU 1(:16 %e?cé’”‘f Res 048 Atten(dB) 0.02 Deconv Res: 0.15
econy Grade: 0. .
0 - . - - 0 Deconv Grade: 086
= . — — .
£
-1o00t 1 8 oml i
oo ) . . ) ) i ) ) )
0 2 4 £ 8 10 12 40 05 1 15 2 25 3 35 4
data samples w10t data samples w10t

Figure 5. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected null

frequencies, expected PSF length of 1mm on the left, and 0.2mm on the right.
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Figure 6. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected null
frequencies, expected PSF length of 0.4mm.

220 4. Conclusion & Discussion

221 Algorithm showed superior performance while a rough prior knowledge of L, was provided
222 for the fuzzy inference system, and the AE; = (|E; — E,|) had been greater than 0.5, therefore, clearly
223 identifying and segregating the correct deconvolution process. The algorithm was also tested without
224 including the PSF knowledge, in which case AE; was in the interval of 0.1 to 0.5, which was enough
225  to confidently separate the correct deconvolution process.

226 Figure 6 depicted a special case where H had a null frequency at w, = 120 kHz with a
227 normalized magnitude of 0.09, whereas, F null was at w; =170 kHz with a magnitude of 0.02, and
228  had 4 times higher attenuation. Although, w; had a magnitude that was in its favor, whereas, the
229  PSF deviation of 0.51 was not. The PSF deviation had outwaited its low magnitude and the correct
230  restoration was successfully distinguished with 14% separation in the deconvolution grades (|E; —
231 E,|=0.14). This high attenuation of w; was most likely due to it being closer to the second harmonic
232  of wp and, therefore, experienced further attenuation. Nevertheless, owing to the FIS
233 implementation, the correct restoration process had been identified. All the possible rules were
234 considered for the implementation of this FIS and its tuning was performed heuristically by an expert.
235  However, clustering algorithms could be used for FIS with multiple inputs and membership
236  functions to determine the optimum number of rules. Furthermore, adaptive FISs can be used to
237  automate the tuning and learning process of the FIS in a more complicated and complex scenario.
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