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Abstract: This paper presents a novel method of restoring the electron beam (EB) measurements 9 

that are degraded by linear motion blur. This is based on a Fuzzy Inference System (FIS) and Wiener 10 
inverse filter, together providing autonomy, reliability, flexibility and real-time execution. This 11 
system is capable of restoring highly degraded signals without requiring the exact knowledge of EB 12 
probe size. The FIS is formed of three inputs, eight fuzzy rules and one output. The FIS is responsible 13 
to monitor the restoration results, grade their validity and choose the one that yields to a better 14 
grade. These grades are produced autonomously by analyzing results of Wiener inverse filter. To 15 
benchmark the performance of the system, ground truth signals obtained using an 18 um wire probe 16 
are compared with the restorations. Main aims are therefore a) Provide unsupervised deblurring 17 
for device independent EB measurement; b) Improve the reliability of the process; c) Apply 18 
deblurring without knowing the probe size. These, further facilitate the deployment and 19 
manufacturing of EB probes and probe independent and accurate EB characterization. The paper 20 
findings also makes restoration of previously collected EB measurements easier, where the probe 21 
sizes are not known or recorded. 22 

Keywords: Fuzzy Inference System; Fuzzy Logics; Linear Motion Blur; Fuzzy Deblurring; Electron 23 

Beam Calibration; Signal & Image Processing 24 
25 

1. Introduction26 

The main goal of fuzzy systems is to define and control sophisticated processes by incorporating 27 
and taking advantage of human knowledge and experience. Nowadays, fuzzy logics are widely used 28 
in industry for various applications ranging from cameras, to cement kilns, trains and vacuum 29 
cleaners [1]. Furthermore, deblurring techniques have versatile applications and they are either 30 
performed in spatial [2] or frequency domains [3-5]. Author in [6] modeled the EB measurement 31 
process with a linear motion blur and evaluated three of the well-established deblurring techniques 32 
for EB restoration. In this study [6] author used Weiner inverse filter, Blind and Richardson-Lucy 33 
deconvolutions to restore the EB distribution and correct the measurements through deblurring. A 34 
simple motion blur is formulated in equation. 1. 35 

36 

𝑔(𝑥) = ∫ 𝑓(𝑥)ℎ(𝑥) + 𝑛(𝑥) (1) 

37 
Where in the spatial domain 𝑓, 𝑔, ℎ and 𝑛 are the ground-truth signal (EB distribution) of 38 

length 𝐿𝑓, degraded signal (measurement from probe), point spread function (PSF) of length 𝐿ℎ and 39 

noise respectively, with their frequency domains being represented by uppercase letters 𝐹, 𝐺 and 𝐻. 40 
In case of electron beam measurements, the ground through signal is the distribution of EB, and the 41 
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degraded signal is the measurement acquired from the probe. The electron absorption of a slit or wire 42 
probe of size 𝐿ℎ is modeled with a PSF kernel [6]. 43 

Linear motion blur point spread function has two distinct characteristics of motion direction and 44 
length (𝐿 ) [7]. The PSF is known for having harmonically spaced vanishing magnitudes in the 45 
frequency domain due to its limited length in the spatial domain [8]. There are several approaches to 46 
estimate 𝐿ℎ such as log power spectrum, cepstrum, bispectrum, and pitch detection algorithms. In 47 
image deblurring jargon, it is assumed that the frequency spectrum of 𝐹 is smooth and does not 48 
contain vanishing frequencies, hence any vanishing frequencies in 𝐺  are associated to 𝐻 [9][10]. 49 
However, this assumption usually does not hold for EB measurements, especially where the 𝐿𝑓 is in 50 

the same order of 𝐿ℎ. This similarity makes it complicated to distinguish between 𝐿𝑓 and 𝐿ℎ and 51 

therefore compromises the deblurring process by an incorrect detection of null frequencies. Such 52 
erroneous deblurring process is likely to produce an incorrect but convincing result, notably when 𝑓 53 
and ℎ have remarkable cross-correlation. This ambiguity is likely to happen in EB measurements, 54 
because a) 𝑓 and ℎ are usually in the same order of magnitude and they have relatively high cross-55 
correlation; b) the 𝐿𝑓  can be inconsistent. In [6], a prior knowledge of 𝐿ℎ  is used to estimate the 56 

position of null frequency of ℎ from the spectrum analysis of 𝐺. The author limited the spectrum of 57 
𝐺 to ±15% of the nominal 𝐿ℎ by applying a window to its log-power spectrum, therefore, ignoring 58 
vanishing frequencies outside of this interval, this algorithm is available in [11]. This strategy relies 59 
on knowing the 𝐿ℎ  therefore, it is a good approach when it is known accurately. There are few 60 
limitations with this method due to the varying nature of 𝐿𝑓  during the calibration and even 61 

measurement process. As a result, the beam’s vanishing frequency (or its harmonics) could be located 62 
within the applied window and cause a false detection. Furthermore, if the inaccuracy of 𝐿ℎ is more 63 
than 15% the null frequency of ℎ is ignored by the window, resulting in an erroneous restoration. In 64 
addition, any inaccuracy more than ±15% cannot be compensated. 65 

One solution to effectively address this uncertainty is to use fuzzy systems. Fuzzy inference 66 
systems are widely used to address instrumental uncertainties, a comprehensive review and 67 
explanation of fuzzy inference systems are provided in [12]. 68 

It is known that a wrong estimation of 𝐿ℎ can lead to drastic noise-like errors in the restorations 69 
[13]. Furthermore, utilizing deblurring techniques for industrial purposes requires real-time, reliable 70 
and unsupervised methods. To satisfy these requirements, this article proposed a Wiener filter that 71 
is monitored by a Fuzzy Inference System. Wiener filter is selected due to its simplicity, real-time 72 
execution and superior performance in the restoration of linear motion blur [6]. The fuzzy inference 73 
system deals with the uncertainty of the deconvolution process, it controls the whole restoration 74 
process and it comprised of three crisp inputs that includes the PSF length or probe size (𝐿ℎ ) 75 
deviation, attenuation of the vanishing frequencies and deconvolution residue. 76 

However, probe size deviation is an optional input, which is based on a previous rough 77 
knowledge of 𝐿ℎ. If 𝐿ℎ is roughly known, it serves as a reference point from which the PSF length 78 
deviation is calculated. Therefore, unlike [6], prior knowledge of 𝐿ℎ does not limit the inaccuracy 79 
compensation to ±15%. It is demonstrated in [6] that the spatial domain of ℎ, has a sharper transition 80 
compared to the EB distribution (𝑓). This is due to the semi-Gaussian distribution of 𝑓 compared to 81 
ℎ. Therefore, vanishing frequencies of ℎ are expected to have higher attenuation or lower magnitude 82 
compared to 𝑓 . Hence, the normalized magnitude of the detected null frequencies in 𝐺  are the 83 
second crisp input to the FIS. The last input of the system is the quantified deblurring artifacts that 84 
are introduced during the restoration of 𝑓 from 𝑔. The restored beam distributions are denoted as 85 
(𝑓). These residual artifacts are inevitable and they increase as the ℎ deviates from its mathematical 86 
definition. Extraction of residues from 𝑓 is explained in section II. The output of the fuzzy system 87 
(𝐸𝑖) is defuzzified to represent the quality of the restorations. This output is generated based on the 88 
definition of the fuzzy rules that are explained in the next section. 89 

The rest of this paper is arranged as follows. Section II, illustrates the details of FIS 90 
implementation. This includes specifying the crisp inputs and fuzzifying them, defining the 91 
membership functions and formulating the fuzzy sets. The section continues by identifying the fuzzy 92 
rules and making an inference to generate the output. Section III, presents the practical results of 93 
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proposed method and the ability of the system to distinguish the correct deblurring results. The 94 
values of membership functions parameters are provided and a comparison is made between 95 
implementing the fuzzy system with and without the knowledge of probe size (𝐿ℎ). 96 

2. Modeling and Implementation 97 

As mentioned, when there is similarity between 𝐿𝑓  and 𝐿ℎ  it is difficult to discriminate 98 

between their null frequencies just by looking at 𝐺. This introduces an uncertainty and makes it hard 99 
to decide which null frequency belongs to the probe (𝐻), because null frequencies can belong to either 100 
beam (𝐹 ) or probe (𝐻 ). To address the uncertainty of unsupervised 𝐿ℎ  detection, all the null 101 
frequencies in 𝐺 are identified and only the first two nulls with lowest frequencies are extracted, 102 
while avoiding the harmonics. This implies that maximum of two null frequencies (𝜔𝑖= 1,2) are to be 103 

extracted from 𝐺. There are three possibilities based on the extracted number of null frequencies: a) 104 
If no null frequency is detected due to 𝐿ℎ ≪ 𝐿𝑓 , then motion blur effect is negligible and 105 

deconvolution is not necessary; b) If a single null frequency is detected, as a result of 𝐿ℎ ≫ 𝐿𝑓, then 106 

the deconvolution can progress without involving the fuzzy system as the null frequency belongs to 107 
𝐿ℎ; c) In case two null freqsuencies are extracted (𝜔1, 𝜔2), two deconvolutions are performed, where 108 
each of the deconvolutions are performed by adjusting their corresponding  𝐿̂𝑖=1,2  ( 𝐿̂𝑖=1,2  ∝109 
 1/𝜔𝑖=1,2). This is done because both 𝜔1 and 𝜔2 could be belonging to ℎ of different sizes. 110 

A FIS is defined with three merits to grade the deblurrings. Deblurrings are performed by two 111 
individual Weiner filter that uses 𝐿̂1  and   𝐿̂2  resulting in  𝑓1  and  𝑓2  respectively. The fuzzy 112 
system produces a single crisp output, deconvolution grade (𝐸𝑖=1,2) for each restoration. The restoration 113 

process that produces a higher 𝐸𝑖 is then chosen as the correct process with its corresponding 𝐿̂𝑖 114 
being the correct probe size (𝐿ℎ ← 𝐿̂𝑖). A single layer (non-hierarchal) fuzzy inference system of three 115 
inputs and a single output is designed to evaluate the overall deblurring process. These inputs are: 116 
PSF length deviation, null frequency magnitude and residues, and the deconvolution grade is the 117 
only output. These inputs and the output are explained in details as follows. 118 

2.1. PSF length deviation 119 

As mentioned, 𝜔1  and 𝜔2 are extracted to accurately adjust the 𝐿ℎ  during the restoration 120 
process. By having rough prior knowledge of the probe size (𝐿ℎ) and the estimated sizes (𝐿̂𝑖) from 𝐺, 121 
we can define PSF length deviation as the distance between expected and the estimations (|𝐿ℎ –  𝐿̂𝑖|). 122 
This definition converges to zero if the estimation is close to the prior knowledge, whereas, it 123 
increases if 𝐿̂𝑖 is deviated from 𝐿ℎ. Two fuzzy sets (𝐴𝑓𝑎𝑟  & 𝐴𝑐𝑙𝑜𝑠𝑒) with membership functions of 𝜇𝑚

′  124 

and 𝜇𝑚 are defined to account for the probe inaccuracy and assign a degree of membership to each 125 
𝐿̂𝑖 based on its deviation from 𝐿ℎ. Membership functions are defined by polynomial-Z (zmf) and 126 
polynomial-S (smf). The 𝐴𝑐𝑙𝑜𝑠𝑒  fuzzy set definition and its membership function is formulated in 127 
equation 2. A thorough evaluation of fuzzy membership functions are provided in [14]. 128 

 129 

𝐴𝑐𝑙𝑜𝑠𝑒 = {(𝐿̂𝑖 , 𝜇𝑚(𝐿̂𝑖))| 0 < 𝐿̂𝑖 < ∞ ,𝑚(𝐿̂𝑖) =
2|𝐿ℎ − 𝐿̂𝑖|

𝐿ℎ
} 

 

𝜇𝑚 =

{
 
 

 
 

1

1 − 2 (
𝑚 − 𝑎𝑚
𝑐𝑚 − 𝑎𝑚

)
2

2 (
𝑚 − 𝑐𝑚
𝑐𝑚 − 𝑎𝑚

)
2

0

 

 𝑚 ≤ 𝑎𝑚 

𝑎𝑚 < 𝑚 ≤
𝑎𝑚 + 𝑐𝑚

2
 

𝑎𝑚 + 𝑐𝑚
2

< 𝑚 ≤ 𝑐𝑚 

 𝑚 > 𝑐𝑚 
 

 

(2) 

 130 
Where 𝑎𝑚  and 𝑐𝑚  are the membership function parameters that are found heuristically 131 

through analysis of several measurements. 132 

2.2. Null frequency magnitude 133 
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The second input of the fuzzy system is the magnitude of the extracted null frequencies. This is 134 
extracted from the normalized log-power spectrum of 𝑔, and has a dynamic range of 0 to 1 dB, 135 
demonstrated in Figure 1.  136 

 137 

 
Figure 1. Normalized power spectrum of 𝐺 exhibits 𝜔1 and 𝜔2 at 0.12 and 0.165 MHz frequencies, with 

their harmonics at higher frequencies. 

 138 
As explained, ℎ is most likely to have rapid spatial transitions compared to 𝑓, this implies that 139 

𝐻 is likely to have the nulls with higher attenuation in 𝐺 (nulls with lower magnitude). As a result, 140 
two fuzzy sets (𝐵ℎ𝑖𝑔ℎ  & 𝐵𝐿𝑜𝑤 ) with membership functions of 𝜇𝑜

′  and 𝜇𝑜  are defined to assign a 141 

higher membership value to the nulls with more attenuation (or lower magnitude); whereas, a lower 142 
degree of membership is assigned to less attenuated (higher magnitude) nulls. Membership functions 143 
are defined with zmf and sfm. 𝐵𝐿𝑜𝑤  is formulated in equation 3, where  𝐺𝑁  is the normalized 144 
frequency spectrum of the degraded signal  𝑔  and  𝑎𝑜  and  𝑐𝑜  are the membership function 145 
parameters. 𝐴𝐹𝑎𝑟  membership function definition is similar to 𝐵𝐿𝑜𝑤  as they are both defined by smf. 146 

 147 

𝐵𝐿𝑜𝑤 = {(𝐿̂𝑖 , 𝜇𝑜(𝜔𝑖)
′ )|0 < 𝐿̂𝑖 < ∞, 𝑜(𝜔𝑖) = log(|𝐺𝑁(𝐿̂𝑖) + 1|)} 

 

𝜇𝑜
′ =

{
 
 

 
 

0

2 (
𝑜 − 𝑎𝑜
𝑐𝑜 − 𝑎𝑜

)
2

1 −  2 (
𝑜 − 𝑐𝑜
𝑐𝑜 − 𝑎𝑜

)
2

1

 

 𝑜 ≤ 𝑎𝑜 

𝑎𝑜 < 𝑜 ≤
𝑎𝑜 + 𝑐𝑜
2

 

𝑎𝑜 + 𝑐𝑜
2

< 𝑜 ≤ 𝑐𝑜 

 𝑜 > 𝑐𝑜 
 

 

(3) 

2.3. Deconvolution artifact residues 148 

Deconvolutions are performed using the Wiener inverse filtering process in equation 4. 149 
 150 

  𝐹̂𝑖 =
1

𝐻(𝜔𝑖)
[ 

|𝐻(𝜔𝑖)|
2

|𝐻(𝜔𝑖)|
2 +

1
𝑆𝑁𝑅(𝜔)

 ] 𝐺(𝜔) (4) 

 151 
Where in the frequency domain, 𝐹̂𝑖 is the restored ground truth signal and 𝑆𝑁𝑅 is the signal to 152 

noise ratio. After the deconvolutions, 𝑓𝑖=1,2 has shorter lengths in spatial domain, compared to 𝑔. 153 
We first normalized 𝑔 and both of the restorations (𝑓𝑖=1,2) between [0, −1], 𝑔𝑁 is then shifted so its 154 

minimum is matched with the minimums of each 𝑓𝑖  in the spatial domain to obtain 𝑔̂𝑁. Finally, 155 
every restoration residue (𝑟𝑖) is quantified as in equation 5. 156 

 157 

 158 

 𝑟𝑖 =
4

∫ 𝑔(𝑥) 𝑑𝑥
∙ ∫ 𝑓𝑖(𝜏) 𝑑𝜏          {𝜏 ∈ 𝑥|𝑔̂𝑁(𝜏) >  −0.05}   (5) 
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The deconvolution process using both of the extracted PSFs and their corresponding residues 159 
are showed in Figure 2. The deconvolution was performed with a Wiener inverse filter, where ℎ is 160 
formulated in equation 6. 161 
 162 

 163 

 
Figure 2. Deconvolution of the degraded pulse in Figure 1, using two different PSF lengths and 

demonstration of their deconvolution residues. 

 164 
Two fuzzy sets (𝐶𝑙𝑜𝑤  and 𝐶ℎ𝑖𝑔ℎ) are defined with membership functions of 𝜇𝑟  and 𝜇𝑟

′  using 165 

zmf and smf respectively, where the overall shape of the functions are determined by 𝑎𝑟  and 𝑐𝑟. 166 
These functions are designed to assign a higher degree of membership to the 𝐿̂𝑖  that produces a 167 
smaller amount of residues after restoration. 168 

2.4. Deconvolution grade 169 

All the combinations of the aforementioned inputs are used to form 8 if-then rule statements 170 
with different weights. These statements with their corresponding weights are provided in Table 1. 171 
Fuzzy AND operator is then used for the implication of the fuzzy consequences. 172 

 173 
Table. 1. Rule base formation criteria. 

Antecedent Consequence Rules 

Weight PSF Dev Attenuation Residue Restoration quality 

𝜇𝑚 𝜇𝑜 𝜇𝑟 𝜇𝑔 1 

𝜇𝑚 𝜇𝑜 𝜇𝑟
′  𝜇𝑔 0.66 

𝜇𝑚 𝜇𝑜
′  𝜇𝑟 𝜇𝑔 0.66 

𝜇𝑚 𝜇𝑜
′  𝜇𝑟

′  𝜇𝑏 0.66 

𝜇𝑚
′  𝜇𝑜 𝜇𝑟 𝜇𝑔 0.66 

𝜇𝑚
′  𝜇𝑜 𝜇𝑟

′  𝜇𝑏 0.66 

𝜇𝑚
′  𝜇𝑜

′  𝜇𝑟 𝜇𝑏 0.66 

𝜇𝑚
′  𝜇𝑜

′  𝜇𝑟
′  𝜇𝑏 1 

 

 174 

 
ℎ𝐿̂𝑖(𝑥) =  {

0       𝑜. 𝑤

1    |𝑥| <
𝐿̂𝑖
2

 (6) 
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Rule weight is added to scale the consequences and account for the certainty of the rules. The 175 
consequence is the restoration quality with two fuzzy sets  (𝐷𝑔𝑜𝑜𝑑  & 𝐷𝑏𝑎𝑑)  and membership 176 

functions of 𝜇𝑞  and  𝜇𝑞
′  respectively defined by smf and zmf. Aggregations of the rules are 177 

performed by using Zadeh T-Norm, and defuzzifications are carried out by mean of maximum 178 
(MoM) method [15]. The resulting crisp values are the deconvolution grades (𝐸𝑖=1,2), therefore; there 179 
is a grade (𝐸𝑖=1,2) for each deconvolution. In other words, for each 𝑓𝑖=1,2 that is deblured by its 180 
corresponding ℎ𝐿̂𝑖=1,2  there is an overall grade of restoration (𝐸𝑖=1,2). According to the definition of 181 

the consequence membership functions, a greater value of 𝐸𝑖 represents a better restoration and in 182 
contrary a lower value of 𝐸𝑖 represents a possible erroneous process, (𝐸𝑖 is ranging from 0 to 1). With 183 
this proposed system, if by mistake 𝐿𝑓 is used instead of 𝐿ℎ in the formation of the ℎ (equation 6) 184 

then the resulting 𝐸𝑖 will be lower. Overall, 𝐸1 and 𝐸2 are used comparatively to determine and 185 
select the best restoration between 𝑓1 and 𝑓2 that are emerged from restoring a degraded sample 186 
(𝑔). This proposed system and its overall restoration processes are demonstrated in Figure 3. 187 

 188 

 
Figure 3. Process diagram, 𝐿̂𝑖 connections to FIS are optional. 

3. Practical Result 189 

3.1. Membership function parameters 190 

Membership function parameters are investigated pragmatically by testing the explained 191 
algorithm for various degraded EB measurement samples. In all degraded measurements, ℎ and 𝑓 192 
had approximately similar sizes as a result of which  𝐿̂1 ≅ 𝐿̂2 . The membership functions are 193 
designed with smooth transitions, to provide a general solution and more flexibility, except for the 194 
attenuation. To further discriminate between 𝐸1  and 𝐸2  the attenuation membership functions 195 
parameters were adjusted to have more emphasize between the interval of 0 to 0.3dB. This intuitive 196 
definition is done by observing the magnitude of null frequencies in several degraded signals, where 197 
the attenuation of the null frequencies were always under 0.3dB. The membership functions 198 
parameters are presented in Table 2. 199 
 200 

Table 2. Membership function definition details. 
 

PSF Deviation Attenuation Residue Restoration Quality 

𝜇𝑚 𝜇𝑚
′  𝜇𝑜 𝜇𝑜

′  𝜇𝑟 𝜇′𝑟 𝜇𝑞 𝜇′𝑞 

𝑎𝑚 𝑐𝑚 𝑎𝑚 𝑐𝑚 𝑎𝑜 𝑐𝑜 𝑎𝑜 𝑐𝑜 𝑎𝑟  𝑐𝑟 𝑎𝑟  𝑐𝑟 𝑎𝑞  𝑐𝑞 𝑎𝑞  𝑐𝑞 

0.02 1 0.04 1 0.02 0.3 0.05 0.3 0 1 0 1 0 1 0 1 

 201 
The membership functions of attenuation (𝐵ℎ𝑖𝑔ℎ & 𝐵𝐿𝑜𝑤) and residue (𝐶𝑙𝑜𝑤 & 𝐶ℎ𝑖𝑔ℎ) fuzzy sets, 202 

are depicted in Figure 4, according to their values in Table 2. The fuzzy sets of PSF deviation and 203 
restoration quality are also defined with the similar membership functions to that of residues. 204 
 205 
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Figure 4. Attenuation, and Deconvolution Residue membership functions. 

 206 
The analysis of few of the samples are showed in Figure 5 and 6. For few of EB measurements 207 

the 𝐿ℎ (probe sizes) were known to be 1.00, 0.20 and 0.40 mm respectively. The crisp fuzzy inputs 208 
and deconvolution grades 𝐸𝑖  are also provided for every sample. The restoration that resulted in the 209 
higher  𝐸𝑖  is selected by the system as the correct solution and its corresponding 𝐿̂𝑖  therefore, 210 
represents the probe size (𝐿̂ℎ ← 𝐿̂𝑖). To validate the proposed system, with the ground truth signal 211 
(𝑓 ) [6], both restorations (𝑓1,2 ) were compared against their ground truth signal using cross-212 
correlation. For all the  𝑓𝑖  with the higher  𝐸𝑖 , the cross-correlation of  𝑓𝑖  and  𝑓  also produced 213 
greater coefficients, supporting the accuracy and reliability of the system. As another benchmark, full 214 
width at half maximum (FWHM) analysis is used, as it is a popular measure in the EB calibration 215 
jargon. The FWHM of 𝑓  and the  𝑓𝑖  that has the higher 𝐸𝑖  produced similar result, further 216 
confirming that the FIS has successfully identified the correct restoration process. 217 
 218 

  

  

Figure 5. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected null 

frequencies, expected PSF length of 1mm on the left, and 0.2mm on the right. 
 219 
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Figure 6. Null frequencies in the spectrum of the degraded pulse. Result of restoration with detected null 

frequencies, expected PSF length of 0.4mm. 

4. Conclusion & Discussion 220 

Algorithm showed superior performance while a rough prior knowledge of 𝐿ℎ was provided 221 
for the fuzzy inference system, and the Δ𝐸𝑖 = (|𝐸1 − 𝐸2|) had been greater than 0.5, therefore, clearly 222 
identifying and segregating the correct deconvolution process. The algorithm was also tested without 223 
including the PSF knowledge, in which case Δ𝐸𝑖  was in the interval of 0.1 to 0.5, which was enough 224 
to confidently separate the correct deconvolution process. 225 

Figure 6 depicted a special case where 𝐻  had a null frequency at  𝜔ℎ  = 120 kHz with a 226 
normalized magnitude of 0.09, whereas, 𝐹 null was at 𝜔𝑓 = 170 kHz with a magnitude of 0.02, and 227 

had 4 times higher attenuation. Although, 𝜔𝑓 had a magnitude that was in its favor, whereas, the 228 

PSF deviation of 0.51 was not. The PSF deviation had outwaited its low magnitude and the correct 229 
restoration was successfully distinguished with 14% separation in the deconvolution grades (|𝐸1 −230 
𝐸2|= 0.14). This high attenuation of 𝜔𝑓 was most likely due to it being closer to the second harmonic 231 

of 𝜔ℎ  and, therefore, experienced further attenuation. Nevertheless, owing to the FIS 232 
implementation, the correct restoration process had been identified. All the possible rules were 233 
considered for the implementation of this FIS and its tuning was performed heuristically by an expert. 234 
However, clustering algorithms could be used for FIS with multiple inputs and membership 235 
functions to determine the optimum number of rules. Furthermore, adaptive FISs can be used to 236 
automate the tuning and learning process of the FIS in a more complicated and complex scenario. 237 
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